1601
|
Schittenhelm L, Hilkens CM, Morrison VL. β 2 Integrins As Regulators of Dendritic Cell, Monocyte, and Macrophage Function. Front Immunol 2017; 8:1866. [PMID: 29326724 PMCID: PMC5742326 DOI: 10.3389/fimmu.2017.01866] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence suggests that the β2 integrin family of adhesion molecules have an important role in suppressing immune activation and inflammation. β2 integrins are important adhesion and signaling molecules that are exclusively expressed on leukocytes. The four β2 integrins (CD11a, CD11b, CD11c, and CD11d paired with the β2 chain CD18) play important roles in regulating three key aspects of immune cell function: recruitment to sites of inflammation; cell-cell contact formation; and downstream effects on cellular signaling. Through these three processes, β2 integrins both contribute to and regulate immune responses. This review explores the pro- and anti-inflammatory effects of β2 integrins in monocytes, macrophages, and dendritic cells and how they influence the outcome of immune responses. We furthermore discuss how imbalances in β2 integrin function can have far-reaching effects on mounting appropriate immune responses, potentially influencing the development and progression of autoimmune and inflammatory diseases. Therapeutic targeting of β2 integrins, therefore, holds enormous potential in exploring treatment options for a variety of inflammatory conditions.
Collapse
Affiliation(s)
- Leonie Schittenhelm
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Catharien M Hilkens
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| | - Vicky L Morrison
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,Arthritis Research UK Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Glasgow, United Kingdom
| |
Collapse
|
1602
|
Ritz T, Krenkel O, Tacke F. Dynamic plasticity of macrophage functions in diseased liver. Cell Immunol 2017; 330:175-182. [PMID: 29454647 DOI: 10.1016/j.cellimm.2017.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/01/2017] [Accepted: 12/15/2017] [Indexed: 02/08/2023]
Abstract
Liver macrophages attract increasing interest due to their crucial roles in homeostasis and hepatic diseases. Recent findings in mice and man suggest a remarkable phenotypic and functional diversity of liver macrophages. Kupffer cells, the subset of tissue resident macrophages with sentinel functions in liver, mainly arise from embryogenic precursors, whereas in injury, liver tissue is engrafted by monocyte-derived macrophages. Both principal macrophage populations respond to local or systemic signals and have substantial effects on reduction as well as aggravation of hepatic diseases. Despite contrasting functions of heterogeneous macrophage subsets in disease progression and regression, they may provide promising targets for novel therapeutic interventions in hepatology. Areas of intense research include their multifaceted roles in metabolic diseases (non-alcoholic steatohepatitis, NASH), fibrosis or liver cancer (hepatocellular or cholangiocellular carcinoma, HCC or CCA). We discuss recent findings on the origin, diversity and functional plasticity of liver macrophages in homeostasis and hepatic disease conditions.
Collapse
Affiliation(s)
- Thomas Ritz
- Department of Medicine III, University Hospital Aachen, Aachen, Germany; Institute of Pathology, University Hospital Aachen, Aachen, Germany
| | - Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
1603
|
Clements SJ, Maijo M, Ivory K, Nicoletti C, Carding SR. Age-Associated Decline in Dendritic Cell Function and the Impact of Mediterranean Diet Intervention in Elderly Subjects. Front Nutr 2017; 4:65. [PMID: 29312949 PMCID: PMC5742184 DOI: 10.3389/fnut.2017.00065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/04/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Aging is accompanied by increased susceptibility to infection and age-associated chronic diseases. It is also associated with reduced vaccine responses, which is often attributed to immunosenescence and the functional decline of the immune system. Immunosenescence is characterized by a chronic, low-grade, inflammatory state termed inflammaging. Habitants of Mediterranean (MED) regions maintain good health into old age; often attributed to MED diets. HYPOTHESIS Adoption of a MED-diet by elderly subjects, in Norfolk (UK), may improve immune responses of these individuals and in particular, dendritic cell (DC) function. EXPERIMENTAL APPROACH A total of 120 elderly subjects (65-79 years old) recruited onto the Nu-AGE study, a multicenter European dietary study specifically addressing the needs of the elderly, across five countries, and were randomized to the control or MED-diet groups, for one year. Blood samples were taken pre- and post-intervention for DC analysis and were compared with each other, and to samples obtained from 45 young (18-40 years old) subjects. MED-diet compliance was assessed using high performance liquid chromatography-with tandem mass spectrometry analysis of urine samples. Immune cell and DC subset numbers and concentrations of secreted proteins were determined by flow cytometric analysis. RESULTS As expected, reduced myeloid DC numbers were observed in blood samples from elderly subjects compared with young. The elevated secretion of the adipokine, resistin, after ex vivo stimulation of peripheral blood mononuclear cells from elderly subjects, was significantly reduced after MED-diet intervention. CONCLUSION This study provides further evidence of numerical and functional effects of aging on DCs. The MED-diet showed potential to impact on the aging immune cells investigated and could provide an economical approach to address problems associated with our aging population.
Collapse
Affiliation(s)
- Sarah J. Clements
- Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, United Kingdom
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Monica Maijo
- Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Kamal Ivory
- Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, United Kingdom
| | - Claudio Nicoletti
- Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, United Kingdom
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Simon R. Carding
- Gut Health and Food Safety Research Programme, The Quadram Institute, Norwich Research Park, Norwich, United Kingdom
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
1604
|
Kurowska-Stolarska M, Alivernini S. Synovial tissue macrophages: friend or foe? RMD Open 2017; 3:e000527. [PMID: 29299338 PMCID: PMC5729306 DOI: 10.1136/rmdopen-2017-000527] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 12/20/2022] Open
Abstract
Healthy synovial tissue includes a lining layer of synovial fibroblasts and macrophages. The influx of leucocytes during active rheumatoid arthritis (RA) includes monocytes that differentiate locally into proinflammatory macrophages, and these produce pathogenic tumour necrosis factor. During sustained remission, the synovial tissue macrophage numbers recede to normal. The constitutive presence of tissue macrophages in the lining layer of the synovial membrane in healthy donors and in patients with RA during remission suggests that this macrophage population may have a role in maintaining and reinstating synovial tissue homeostasis respectively. Recent appreciation of the different origins and functions of tissue-resident compared with monocyte-derived macrophages has improved the understanding of their relative involvement in organ homeostasis in mouse models of disease. In this review, informed by mouse models and human data, we describe the presence of different functional subpopulations of human synovial tissue macrophages and discuss their distinct contribution to joint homeostasis and chronic inflammation in RA.
Collapse
Affiliation(s)
- Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK.,Rheumatoid Arthritis Pathogenesis Centre of Excellence (RACE), Universities of Glasgow, Birmingham and Newcastle, Glasgow, Birmingham and Newcastle, UK
| | - Stefano Alivernini
- Institute of Rheumatology, Fondazione Policlinico Universitario A Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
1605
|
Granulocyte-Monocyte Progenitors and Monocyte-Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes. Immunity 2017; 47:890-902.e4. [PMID: 29166589 DOI: 10.1016/j.immuni.2017.10.021] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 07/11/2017] [Accepted: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Granulocyte-monocyte progenitors (GMPs) and monocyte-dendritic cell progenitors (MDPs) produce monocytes during homeostasis and in response to increased demand during infection. Both progenitor populations are thought to derive from common myeloid progenitors (CMPs), and a hierarchical relationship (CMP-GMP-MDP-monocyte) is presumed to underlie monocyte differentiation. Here, however, we demonstrate that mouse MDPs arose from CMPs independently of GMPs, and that GMPs and MDPs produced monocytes via similar but distinct monocyte-committed progenitors. GMPs and MDPs yielded classical (Ly6Chi) monocytes with gene expression signatures that were defined by their origins and impacted their function. GMPs produced a subset of "neutrophil-like" monocytes, whereas MDPs gave rise to a subset of monocytes that yielded monocyte-derived dendritic cells. GMPs and MDPs were also independently mobilized to produce specific combinations of myeloid cell types following the injection of microbial components. Thus, the balance of GMP and MDP differentiation shapes the myeloid cell repertoire during homeostasis and following infection.
Collapse
|
1606
|
Lasseaux C, Fourmaux MP, Chamaillard M, Poulin LF. Type I interferons drive inflammasome-independent emergency monocytopoiesis during endotoxemia. Sci Rep 2017; 7:16935. [PMID: 29209091 PMCID: PMC5717267 DOI: 10.1038/s41598-017-16869-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Emergency monocytopoiesis is an inflammation-driven hematological process that supplies the periphery with monocytes and subsequently with macrophages and monocyte-derived dendritic cells. Yet, the regulatory mechanisms by which early bone marrow myeloid progenitors commit to monocyte-derived phagocytes during endotoxemia remains elusive. Herein, we show that type I interferons signaling promotes the differentiation of monocyte-derived phagocytes at the level of their progenitors during a mouse model of endotoxemia. In this model, we characterized early changes in the numbers of conventional dendritic cells, monocyte-derived antigen-presenting cells and their respective precursors. While loss of caspase-1/11 failed to impair a shift toward monocytopoiesis, we observed sustained type-I-IFN-dependent monocyte progenitors differentiation in the bone marrow correlated to an accumulation of Mo-APCs in the spleen. Importantly, IFN-alpha and -beta were found to efficiently generate the development of monocyte-derived antigen-presenting cells while having no impact on the precursor activity of conventional dendritic cells. Consistently, the LPS-driven decrease of conventional dendritic cells and their direct precursor occurred independently of type-I-IFN signaling in vivo. Our characterization of early changes in mononuclear phagocytes and their dependency on type I IFN signaling during sepsis opens the way to the development of treatments for limiting the immunosuppressive state associated with sepsis.
Collapse
Affiliation(s)
- Corentin Lasseaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Marie-Pierre Fourmaux
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Mathias Chamaillard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France
| | - Lionel Franz Poulin
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, F-59000, Lille, France.
| |
Collapse
|
1607
|
Alcántara-Hernández M, Leylek R, Wagar LE, Engleman EG, Keler T, Marinkovich MP, Davis MM, Nolan GP, Idoyaga J. High-Dimensional Phenotypic Mapping of Human Dendritic Cells Reveals Interindividual Variation and Tissue Specialization. Immunity 2017; 47:1037-1050.e6. [PMID: 29221729 DOI: 10.1016/j.immuni.2017.11.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/20/2017] [Accepted: 10/31/2017] [Indexed: 12/24/2022]
Abstract
Given the limited efficacy of clinical approaches that rely on ex vivo generated dendritic cells (DCs), it is imperative to design strategies that harness specialized DC subsets in situ. This requires delineating the expression of surface markers by DC subsets among individuals and tissues. Here, we performed a multiparametric phenotypic characterization and unbiased analysis of human DC subsets in blood, tonsil, spleen, and skin. We uncovered previously unreported phenotypic heterogeneity of human cDC2s among individuals, including variable expression of functional receptors such as CD172a. We found marked differences in DC subsets localized in blood and lymphoid tissues versus skin, and a striking absence of the newly discovered Axl+ DCs in the skin. Finally, we evaluated the capacity of anti-receptor monoclonal antibodies to deliver vaccine components to skin DC subsets. These results offer a promising path for developing DC subset-specific immunotherapies that cannot be provided by transcriptomic analysis alone.
Collapse
Affiliation(s)
- Marcela Alcántara-Hernández
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rebecca Leylek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edgar G Engleman
- Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Tibor Keler
- Celldex Therapeutics, Inc., Hampton, NJ 08827, USA
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Dermatology Service, Veterans Affairs Medical Center, Palo Alto, CA 94304, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Garry P Nolan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Program in Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
1608
|
Dendritic cell recruitment and activation in autoimmunity. J Autoimmun 2017; 85:126-140. [DOI: 10.1016/j.jaut.2017.07.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022]
|
1609
|
Fonseka CY, Rao DA, Raychaudhuri S. Leveraging blood and tissue CD4+ T cell heterogeneity at the single cell level to identify mechanisms of disease in rheumatoid arthritis. Curr Opin Immunol 2017; 49:27-36. [PMID: 28888129 PMCID: PMC5705469 DOI: 10.1016/j.coi.2017.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/12/2017] [Indexed: 12/17/2022]
Abstract
CD4+ T cells have been long known to play an important role in the pathogenesis of rheumatoid arthritis (RA), but the specific cell populations and states that drive the disease have been challenging to identify with low dimensional single cell data and bulk assays. The advent of high dimensional single cell technologies-like single cell RNA-seq or mass cytometry-has offered promise to defining key populations, but brings new methodological and statistical challenges. Recent single cell profiling studies have revealed a broad diversity of cell types among CD4+ T cells, identifying novel populations that are expanded or altered in RA. Here, we will review recent findings on CD4+ T cell heterogeneity and RA that have come from single cell profiling studies and discuss the best practices for conducting these studies.
Collapse
Affiliation(s)
- Chamith Y Fonseka
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Deepak A Rao
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA; Center for Data Sciences, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
1610
|
Wu H, Humphreys BD. The promise of single-cell RNA sequencing for kidney disease investigation. Kidney Int 2017; 92:1334-1342. [PMID: 28893418 PMCID: PMC5696024 DOI: 10.1016/j.kint.2017.06.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/14/2022]
Abstract
Recent techniques for single-cell RNA sequencing (scRNA-seq) at high throughput are leading to profound new discoveries in biology. The ability to generate vast amounts of transcriptomic data at cellular resolution represents a transformative advance, allowing the identification of novel cell types, states, and dynamics. In this review, we summarize the development of scRNA-seq methodologies and highlight their advantages and drawbacks. We discuss available software tools for analyzing scRNA-Seq data and summarize current computational challenges. Finally, we outline ways in which this powerful technology might be applied to discovery research in kidney development and disease.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
1611
|
Ray A, Kolls JK. Neutrophilic Inflammation in Asthma and Association with Disease Severity. Trends Immunol 2017; 38:942-954. [PMID: 28784414 PMCID: PMC5711587 DOI: 10.1016/j.it.2017.07.003] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 06/28/2017] [Accepted: 07/11/2017] [Indexed: 01/22/2023]
Abstract
Asthma is a chronic inflammatory disorder of the airways. While the local infiltration of eosinophils and mast cells, and their role in the disease have long been recognized, neutrophil infiltration has also been assessed in many clinical studies. In these studies, airway neutrophilia was associated with asthma severity. Importantly, neutrophilia also correlates with asthma that is refractory to corticosteroids, the mainstay of asthma treatment. However, it is now increasingly recognized that neutrophils are a heterogeneous population, and a more precise phenotyping of these cells may help delineate different subtypes of asthma. Here, we review current knowledge of the role of neutrophils in asthma and highlight future avenues of research in this field.
Collapse
Affiliation(s)
- Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Asthma Institute@UPMC/UPSOM, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jay K Kolls
- Richard King Mellon Institute for Pediatric Research, Children's Hospital of Pittsburgh at University of Pittsburgh Medical Center/University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
1612
|
Smirnov A, Pohlmann S, Nehring M, Ali S, Mann-Nüttel R, Scheu S, Antoni AC, Hansen W, Büettner M, Gardiasch MJ, Westendorf AM, Wirsdörfer F, Pastille E, Dudda M, Flohé SB. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4 + Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression. Front Immunol 2017; 8:1622. [PMID: 29218051 PMCID: PMC5703700 DOI: 10.3389/fimmu.2017.01622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated in the bone marrow and induce functional reprogramming of differentiating BMDC toward an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Anna Smirnov
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Pohlmann
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Nehring
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion, Cluster of Excellence, University of Münster, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anne-Charlotte Antoni
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela Büettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Miriam J Gardiasch
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie B Flohé
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
1613
|
Varol C, Sagi I. Phagocyte-extracellular matrix crosstalk empowers tumor development and dissemination. FEBS J 2017; 285:734-751. [DOI: 10.1111/febs.14317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/01/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Chen Varol
- The Research Center for Digestive Tract and Liver Diseases; Tel-Aviv Sourasky Medical Center; Sackler Faculty of Medicine; Tel-Aviv University; Israel
- Department of Clinical Microbiology and Immunology; Sackler Faculty of Medicine; Tel Aviv University; Israel
| | - Irit Sagi
- Department of Biological Regulation; Weizmann Institute of Science; Rehovot Israel
| |
Collapse
|
1614
|
Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G. Eosinophils: The unsung heroes in cancer? Oncoimmunology 2017; 7:e1393134. [PMID: 29308325 DOI: 10.1080/2162402x.2017.1393134] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022] Open
Abstract
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of a cancer. Eosinophils are components of the immune microenvironment that modulates tumor initiation and progression. Although canonically associated with a detrimental role in allergic disorders, these cells can induce a protective immune response against helminthes, viral and bacterial pathogens. Eosinophils are a source of anti-tumorigenic (e.g., TNF-α, granzyme, cationic proteins, and IL-18) and protumorigenic molecules (e.g., pro-angiogenic factors) depending on the milieu. In several neoplasias (e.g., melanoma, gastric, colorectal, oral and prostate cancer) eosinophils play an anti-tumorigenic role, in others (e.g., Hodgkin's lymphoma, cervical carcinoma) have been linked to poor prognosis, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of eosinophils and their mediators could be cancer-dependent. The microlocalization (e.g., peritumoral vs intratumoral) of eosinophils could be another important aspect in the initiation/progression of solid and hematological tumors. Increasing evidence in experimental models indicates that activation/recruitment of eosinophils could represent a new therapeutic strategy for certain tumors (e.g., melanoma). Many unanswered questions should be addressed before we understand whether eosinophils are an ally, adversary or neutral bystanders in different types of human cancers.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Stefania Loffredo
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, Naples, Italy.,Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore", National Research Council (CNR), Naples, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
1615
|
Kim TG, Kim SH, Park J, Choi W, Sohn M, Na HY, Lee M, Lee JW, Kim SM, Kim DY, Kim HP, Choi JH, Park CG, Lee MG. Skin-Specific CD301b + Dermal Dendritic Cells Drive IL-17-Mediated Psoriasis-Like Immune Response in Mice. J Invest Dermatol 2017; 138:844-853. [PMID: 29138056 DOI: 10.1016/j.jid.2017.11.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
Conventional dendritic cells (cDCs) are composed of heterogeneous subsets commonly arising from dendritic cell (DC)-committed progenitors. A population of CD301b-expressing DCs has recently been identified in non-lymphoid barrier tissues such as skin. However, whether CD301b+ DCs in the skin represent an ontogenetically unique subpopulation of migratory cDCs has not been fully addressed. Here, we demonstrated that CD301b+ dermal DCs were distinct subpopulation of FMS-like tyrosine kinase 3 ligand (FLT3L)-dependent CD11b+ cDC2 lineage, which required an additional GM-CSF cue for the adequate development. Although the majority of lymphoid-resident cDC2 lacked CD301b expression, dermal migratory cDC2 contained a substantial fraction of CD301b+ subset. Similar to CD301b- population, CD301b+ dermal DC development was closely regulated by FLT3 signaling, suggesting their common origin from FLT3L-responsive cDC progenitors. However, FLT3L-driven cDC progenitor culture was not sufficient, but additional GM-CSF treatment was required to produce CD301b+ cDC2. In vivo development of CD301b+ cDC2 was significantly augmented by exogenous GM-CSF, while the repopulation of CD301b+ dermal cDC2 was abrogated by GM-CSF neutralization. Functionally, CD301b+ cDC2 was capable of producing a high level of IL-23, and the depletion of CD301b+ cDC2 effectively prevented IL-17-mediated psoriasiform dermatitis. Therefore, our findings highlight the differentiation program of a distinct CD301b+ dermal cDC2 subset in the skin and its involvement in psoriatic inflammation.
Collapse
Affiliation(s)
- Tae-Gyun Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hee Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jeyun Park
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wanho Choi
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Moah Sohn
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye Young Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Minseok Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Won Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Min Kim
- Department of Dermatology, National Health Insurance Service Ilsan Hospital, Goyang, South Korea
| | - Do-Young Kim
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyoung-Pyo Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul, South Korea
| | - Chae Gyu Park
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
| | - Min-Geol Lee
- Department of Dermatology, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
1616
|
Abstract
PURPOSE OF REVIEW The purpose of the study was to review the characteristics of renal macrophages and dendritic cells during homeostasis and disease, with a particular focus on lupus nephritis. RECENT FINDINGS Resident renal macrophages derive from embryonic sources and are long-lived and self-renewing; they are also replaced from the bone marrow with age. The unique characteristics of macrophages in each tissue are imposed by the microenvironment and reinforced by epigenetic modifications. In acute renal injury, inflammatory macrophages are rapidly recruited and then replaced by those with a wound healing/resolution phenotype. In lupus nephritis, dendritic cells infiltrate the kidneys and function to present antigen and organize tertiary lymphoid structures that amplify inflammation. In addition, both infiltrating and resident macrophages contribute to ongoing injury. These cells have a mixed inflammatory and alternatively activated phenotype that may reflect failed resolution, potentially leading to tissue fibrosis and irreversible damage. A further understanding of the renal inflammatory cells that mediate tissue injury and fibrosis should lead to new therapies to help preserve renal function in patients with lupus nephritis.
Collapse
Affiliation(s)
- Naomi I Maria
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA
| | - Anne Davidson
- Center for Autoimmunity and Musculoskeletal Diseases, Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, New York, NY, 11030, USA.
| |
Collapse
|
1617
|
|
1618
|
Affandi AJ, Carvalheiro T, Radstake TRDJ, Marut W. Dendritic cells in systemic sclerosis: Advances from human and mice studies. Immunol Lett 2017; 195:18-29. [PMID: 29126878 DOI: 10.1016/j.imlet.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Systemic sclerosis (SSc) is a complex heterogeneous fibrotic autoimmune disease with an unknown exact etiology, and characterized by three hallmarks: fibrosis, vasculopathy, and immune dysfunction. Dendritic cells (DCs) are specialized cells in pathogen sensing with high potency of antigen presentation and capable of releasing mediators to shape the immune response. Altered DCs distributions and their impaired functions may account for their role in breaking the immune tolerance and driving inflammation in SSc, and the direct contribution of DCs in promoting endothelial dysfunction and fibrotic process has only begun to be understood. Plasmacytoid dendritic cells in particular have been implicated due to their high production of type I interferon as well as other cytokines and chemokines, including the pro-inflammatory and anti-angiogenic CXCL4. Furthermore, a deeper understanding of human and mouse DC biology has clarified their identification and function in different tissues, and novel DC subsets have only recently been discovered. In this review, we highlight key findings and recent advances exploring DC role in the pathogenesis of SSc and other related autoimmune diseases, and consideration of their potential use as targeted therapy in SSc.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
1619
|
Minoda Y, Virshup I, Leal Rojas I, Haigh O, Wong Y, Miles JJ, Wells CA, Radford KJ. Human CD141 + Dendritic Cell and CD1c + Dendritic Cell Undergo Concordant Early Genetic Programming after Activation in Humanized Mice In Vivo. Front Immunol 2017; 8:1419. [PMID: 29163495 PMCID: PMC5670352 DOI: 10.3389/fimmu.2017.01419] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/12/2017] [Indexed: 12/24/2022] Open
Abstract
Human immune cell subsets develop in immunodeficient mice following reconstitution with human CD34+ hematopoietic stem cells. These "humanized" mice are useful models to study human immunology and human-tropic infections, autoimmunity, and cancer. However, some human immune cell subsets are unable to fully develop or acquire full functional capacity due to a lack of cross-reactivity of many growth factors and cytokines between species. Conventional dendritic cells (cDCs) in mice are categorized into cDC1, which mediate T helper (Th)1 and CD8+ T cell responses, and cDC2, which mediate Th2 and Th17 responses. The likely human equivalents are CD141+ DC and CD1c+ DC subsets for mouse cDC1 and cDC2, respectively, but the extent of any interspecies differences is poorly characterized. Here, we exploit the fact that human CD141+ DC and CD1c+ DC develop in humanized mice, to further explore their equivalency in vivo. Global transcriptome analysis of CD141+ DC and CD1c+ DC isolated from humanized mice demonstrated that they closely resemble those in human blood. Activation of DC subsets in vivo, with the TLR3 ligand poly I:C, and the TLR7/8 ligand R848 revealed that a core panel of genes consistent with DC maturation status were upregulated by both subsets. R848 specifically upregulated genes associated with Th17 responses by CD1c+ DC, while poly I:C upregulated IFN-λ genes specifically by CD141+ DC. MYCL expression, known to be essential for CD8+ T cell priming by mouse DC, was specifically induced in CD141+ DC after activation. Concomitantly, CD141+ DC were superior to CD1c+ DC in their ability to prime naïve antigen-specific CD8+ T cells. Thus, CD141+ DC and CD1c+ DC share a similar activation profiles in vivo but also have induce unique signatures that support specialized roles in CD8+ T cell priming and Th17 responses, respectively. In combination, these data demonstrate that humanized mice provide an attractive and tractable model to study human DC in vitro and in vivo.
Collapse
Affiliation(s)
- Yoshihito Minoda
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Isaac Virshup
- The Centre for Stem Cell Systems, Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Ingrid Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Oscar Haigh
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Yide Wong
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, QLD, Australia
| | - John J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, QLD, Australia
| | - Christine A Wells
- The Centre for Stem Cell Systems, Anatomy and Neuroscience, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
1620
|
Rozenblatt-Rosen O, Stubbington MJ, Regev A, Teichmann SA. The Human Cell Atlas: from vision to reality. Nature 2017; 550:451-453. [DOI: 10.1038/550451a] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
1621
|
Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett 2017; 412:236-242. [PMID: 29107106 DOI: 10.1016/j.canlet.2017.10.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are canonical antigen presenting cells of the immune system and serve as a bridge between innate and adaptive immune responses. When DCs are activated by a stimulus through toll-like receptors (TLRs), DCs undergo a process of maturation defined by cytokine & chemokine secretion, co-stimulatory molecule expression, antigen processing and presentation, and the ability to activate T cells. DC maturation is coupled with an increase in biosynthetic demand, which is fulfilled by a TLR-driven upregulation in glycolytic metabolism. Up-regulation of glycolysis in activated DCs provides these cells with molecular building blocks and cellular energy required for DC activation, and inhibition of glycolysis during initial activation impairs both the survival and effector function of activated DCs. Evidence shows that DC glycolytic upregulation is controlled by two distinct pathways, an early burst of glycolysis that is nitric oxide (NO) -independent, and a sustained commitment to glycolysis in NO-producing DC subsets. This review will address the complex role of NO in regulating DC metabolism and effector function.
Collapse
Affiliation(s)
- Phyu M Thwe
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
1622
|
Costa ML, Robinette ML, Bugatti M, Longtine MS, Colvin BN, Lantelme E, Vermi W, Colonna M, Nelson DM, Cella M. Two Distinct Myeloid Subsets at the Term Human Fetal-Maternal Interface. Front Immunol 2017; 8:1357. [PMID: 29123519 PMCID: PMC5662895 DOI: 10.3389/fimmu.2017.01357] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
During pregnancy, immune cells infiltrate the placenta at different stages of fetal development. NK cells and macrophages are the most predominant cell types. These immune cells play pleiotropic roles, as they control spiral artery remodeling to ensure appropriate blood supply and maintain long-term tolerance to a true allograft; yet, they must be able to mount appropriate immune defenses to pathogens that may threaten the fetus. Whether the same cell type accomplishes all these tasks or if there are dedicated subsets remains controversial. Here, we identify and characterize two distinct subsets of myeloid cells that differ in their pro-inflammatory/regulatory capacity. While one subset predominantly produces the immune-modulating cytokine IL-10, the second subset has superior capacity to secrete pro-inflammatory mediators, such as IL-1β and IL-6. The putative regulatory myeloid cells also express high levels of inhibitory receptors and their ligands, including programmed cell death 1 (PD1) ligands. Importantly, a large fraction of CD8 and CD4 cells in normal term human placenta are PD1 positive, suggesting that the PD1/PD1 ligands axis might be critical to maintain tolerance during pregnancy.
Collapse
Affiliation(s)
- Maria Laura Costa
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States.,Department of Obstetrics and Gynecology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Michelle L Robinette
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Mark S Longtine
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Bryanne N Colvin
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States.,Department of Pediatrics, Washington University School of Medicine, St Louis, MO, United States
| | - Erica Lantelme
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - William Vermi
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States.,Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| | - D Michael Nelson
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, United States
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, United States
| |
Collapse
|
1623
|
Abstract
Tubulointerstitial fibrosis is a chronic and progressive process affecting kidneys during aging and in chronic kidney disease (CKD), regardless of cause. CKD and renal fibrosis affect half of adults above age 70 and 10% of the world's population. Although no targeted therapy yet exists to slow renal fibrosis, a number of important recent advances have clarified the cellular and molecular mechanisms underlying the disease. In this review, I highlight these advances with a focus on cells and pathways that may be amenable to therapeutic targeting. I discuss pathologic changes regulating interstitial myofibroblast activation, including profibrotic and proinflammatory paracrine signals secreted by epithelial cells after either acute or chronic injury. I conclude by highlighting novel therapeutic targets and approaches with particular promise for development of new treatments for patients with fibrotic kidney disease.
Collapse
Affiliation(s)
- Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| |
Collapse
|
1624
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
1625
|
Goudot C, Coillard A, Villani AC, Gueguen P, Cros A, Sarkizova S, Tang-Huau TL, Bohec M, Baulande S, Hacohen N, Amigorena S, Segura E. Aryl Hydrocarbon Receptor Controls Monocyte Differentiation into Dendritic Cells versus Macrophages. Immunity 2017; 47:582-596.e6. [PMID: 28930664 DOI: 10.1016/j.immuni.2017.08.016] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 05/23/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
After entering tissues, monocytes differentiate into cells that share functional features with either macrophages or dendritic cells (DCs). How monocyte fate is directed toward monocyte-derived macrophages (mo-Macs) or monocyte-derived DCs (mo-DCs) and which transcription factors control these differentiation pathways remains unknown. Using an in vitro culture model yielding human mo-DCs and mo-Macs closely resembling those found in vivo in ascites, we show that IRF4 and MAFB were critical regulators of monocyte differentiation into mo-DCs and mo-Macs, respectively. Activation of the aryl hydrocarbon receptor (AHR) promoted mo-DC differentiation through the induction of BLIMP-1, while impairing differentiation into mo-Macs. AhR deficiency also impaired the in vivo differentiation of mouse mo-DCs. Finally, AHR activation correlated with mo-DC infiltration in leprosy lesions. These results establish that mo-DCs and mo-Macs are controlled by distinct transcription factors and show that AHR acts as a molecular switch for monocyte fate specification in response to micro-environmental factors.
Collapse
Affiliation(s)
- Christel Goudot
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France
| | - Alice Coillard
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France
| | - Alexandra-Chloé Villani
- Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Department of Medicine, Charlestown, MA 02129, USA
| | - Paul Gueguen
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France
| | - Adeline Cros
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France
| | - Siranush Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02142, USA
| | - Tsing-Lee Tang-Huau
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France; Sanofi, Breakthrough Laboratory, 1 impasse des ateliers, 94400 Vitry-sur-Seine, France
| | - Mylène Bohec
- Institut Curie, PSL Research University, NGS platform, 26 rue d'Ulm, 75005 Paris, France
| | - Sylvain Baulande
- Institut Curie, PSL Research University, NGS platform, 26 rue d'Ulm, 75005 Paris, France
| | - Nir Hacohen
- Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA; Center for Cancer Research, Massachusetts General Hospital, Department of Medicine, Charlestown, MA 02129, USA
| | - Sebastian Amigorena
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, 75005 Paris, France.
| |
Collapse
|
1626
|
Hen-Avivi S, Avraham R. Immune cell type 'fingerprints' at the basis of outcome diversity of human infection. Curr Opin Microbiol 2017; 42:31-39. [PMID: 29049916 DOI: 10.1016/j.mib.2017.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
Abstract
Despite the availability of antibiotics and immunization, infectious diseases remain a major cause of malignancy and death worldwide. Yet, it is well documented that for most infectious agents, clinical disease develops in only a small minority of infected individuals. There is, in fact, great heterogeneity in infection outcome, from complete clearance of the pathogen to severe illness. Understanding this variation remains elusive, despite its great potential to equip us with new tools for the treatment of infectious diseases. Here, we propose a novel perspective for studying this diversity in human infection outcome, one that utilizes single-cell analysis technologies. Recent advances in single-cell RNA-seq technologies allow the detection of rare subpopulations that play important roles in host-pathogen interactions. We propose that applying single-cell RNA-seq to the study of infection can provide a 'fingerprint' of the immune cell types that are associated with the ability of the host to clear a pathogen and, thereby, broaden our current understanding of variation in susceptibility to infection within the population.
Collapse
Affiliation(s)
- Shelly Hen-Avivi
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot, Israel
| | - Roi Avraham
- Weizmann Institute of Science, Department of Biological Regulation, Rehovot, Israel.
| |
Collapse
|
1627
|
Li S, Wu J, Zhu S, Liu YJ, Chen J. Disease-Associated Plasmacytoid Dendritic Cells. Front Immunol 2017; 8:1268. [PMID: 29085361 PMCID: PMC5649186 DOI: 10.3389/fimmu.2017.01268] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/22/2017] [Indexed: 12/20/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs), also called natural interferon (IFN)-producing cells, represent a specialized cell type within the innate immune system. pDCs are specialized in sensing viral RNA and DNA by toll-like receptor-7 and -9 and have the ability to rapidly produce massive amounts of type 1 IFNs upon viral encounter. After producing type 1 IFNs, pDCs differentiate into professional antigen-presenting cells, which are capable of stimulating T cells of the adaptive immune system. Chronic activation of human pDCs by self-DNA or mitochondrial DNA contributes to the pathogenesis of systemic lupus erythematosis and IFN-related autoimmune diseases. Under steady-state conditions, pDCs play an important role in immune tolerance. In many types of human cancers, recruitment of pDCs to the tumor microenvironment contributes to the induction of immune tolerance. Here, we provide a systemic review of recent progress in studies on the role of pDCs in human diseases, including cancers and autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
1628
|
HIV Fusion in Dendritic Cells Occurs Mainly at the Surface and Is Limited by Low CD4 Levels. J Virol 2017; 91:JVI.01248-17. [PMID: 28814521 DOI: 10.1128/jvi.01248-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/10/2017] [Indexed: 01/06/2023] Open
Abstract
HIV-1 poorly infects monocyte-derived dendritic cells (MDDCs). This is in large part due to SAMHD1, which restricts viral reverse transcription. Pseudotyping HIV-1 with vesicular stomatitis virus G protein (VSV-G) strongly enhances infection, suggesting that earlier steps of viral replication, including fusion, are also inefficient in MDDCs. The site of HIV-1 fusion remains controversial and may depend on the cell type, with reports indicating that it occurs at the plasma membrane or, conversely, in an endocytic compartment. Here, we examined the pathways of HIV-1 entry in MDDCs. Using a combination of temperature shift and fusion inhibitors, we show that HIV-1 fusion mainly occurs at the cell surface. We then asked whether surface levels or intracellular localization of CD4 modulates HIV-1 entry. Increasing CD4 levels strongly enhanced fusion and infection with various HIV-1 isolates, including reference and transmitted/founder strains, but not with BaL, which uses low CD4 levels for entry. Overexpressing coreceptors did not facilitate viral infection. To further study the localization of fusion events, we generated CD4 mutants carrying heterologous cytoplasmic tails (LAMP1 or Toll-like receptor 7 [TLR7]) to redirect the molecule to intracellular compartments. The intracellular CD4 mutants did not facilitate HIV-1 fusion and replication in MDDCs. Fusion of an HIV-2 isolate with MDDCs was also enhanced by increasing surface CD4 levels. Our results demonstrate that MDDCs are inefficiently infected by various HIV-1 and HIV-2 strains, in part because of low CD4 levels. In these cells, viral fusion occurs mainly at the surface, and probably not after internalization.IMPORTANCE Dendritic cells (DCs) are professional antigen-presenting cells inducing innate and adaptive immune responses. DCs express the HIV receptor CD4 and are potential target cells for HIV. There is debate about the sensitivity of DCs to productive HIV-1 and HIV-2 infection. The fusion step of the viral replication cycle is inefficient in DCs, and the underlying mechanisms are poorly characterized. We show that increasing the levels of CD4 at the plasma membrane allows more HIV fusion and productive infection in DCs. We further demonstrate that HIV fusion occurs mainly at the cell surface and not in an intracellular compartment. Our results help us understand why DCs are poorly sensitive to HIV infection.
Collapse
|
1629
|
Tukiainen T, Villani AC, Yen A, Rivas MA, Marshall JL, Satija R, Aguirre M, Gauthier L, Fleharty M, Kirby A, Cummings BB, Castel SE, Karczewski KJ, Aguet F, Byrnes A, GTEx Consortium, Lappalainen T, Regev A, Ardlie KG, Hacohen N, MacArthur DG. Landscape of X chromosome inactivation across human tissues. Nature 2017; 550:244-248. [PMID: 29022598 PMCID: PMC5685192 DOI: 10.1038/nature24265] [Citation(s) in RCA: 743] [Impact Index Per Article: 92.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 09/28/2017] [Indexed: 12/16/2022]
Abstract
X chromosome inactivation (XCI) silences transcription from one of the two X chromosomes in female mammalian cells to balance expression dosage between XX females and XY males. XCI is, however, incomplete in humans: up to one-third of X-chromosomal genes are expressed from both the active and inactive X chromosomes (Xa and Xi, respectively) in female cells, with the degree of 'escape' from inactivation varying between genes and individuals. The extent to which XCI is shared between cells and tissues remains poorly characterized, as does the degree to which incomplete XCI manifests as detectable sex differences in gene expression and phenotypic traits. Here we describe a systematic survey of XCI, integrating over 5,500 transcriptomes from 449 individuals spanning 29 tissues from GTEx (v6p release) and 940 single-cell transcriptomes, combined with genomic sequence data. We show that XCI at 683 X-chromosomal genes is generally uniform across human tissues, but identify examples of heterogeneity between tissues, individuals and cells. We show that incomplete XCI affects at least 23% of X-chromosomal genes, identify seven genes that escape XCI with support from multiple lines of evidence and demonstrate that escape from XCI results in sex biases in gene expression, establishing incomplete XCI as a mechanism that is likely to introduce phenotypic diversity. Overall, this updated catalogue of XCI across human tissues helps to increase our understanding of the extent and impact of the incompleteness in the maintenance of XCI.
Collapse
Affiliation(s)
- Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Angela Yen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manuel A. Rivas
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jamie L. Marshall
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rahul Satija
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- New York Genome Center, New York, NY 10013, USA
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Matt Aguirre
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Laura Gauthier
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark Fleharty
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrew Kirby
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beryl B. Cummings
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephane E. Castel
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Konrad J. Karczewski
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - François Aguet
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Andrea Byrnes
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Tuuli Lappalainen
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
1630
|
Stubbington MJT, Rozenblatt-Rosen O, Regev A, Teichmann SA. Single-cell transcriptomics to explore the immune system in health and disease. Science 2017; 358:58-63. [PMID: 28983043 PMCID: PMC5654495 DOI: 10.1126/science.aan6828] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The immune system varies in cell types, states, and locations. The complex networks, interactions, and responses of immune cells produce diverse cellular ecosystems composed of multiple cell types, accompanied by genetic diversity in antigen receptors. Within this ecosystem, innate and adaptive immune cells maintain and protect tissue function, integrity, and homeostasis upon changes in functional demands and diverse insults. Characterizing this inherent complexity requires studies at single-cell resolution. Recent advances such as massively parallel single-cell RNA sequencing and sophisticated computational methods are catalyzing a revolution in our understanding of immunology. Here we provide an overview of the state of single-cell genomics methods and an outlook on the use of single-cell techniques to decipher the adaptive and innate components of immunity.
Collapse
Affiliation(s)
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah A Teichmann
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
- Theory of Condensed Matter, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK
| |
Collapse
|
1631
|
Korenfeld D, Gorvel L, Munk A, Man J, Schaffer A, Tung T, Mann C, Klechevsky E. A type of human skin dendritic cell marked by CD5 is associated with the development of inflammatory skin disease. JCI Insight 2017; 2:96101. [PMID: 28931765 DOI: 10.1172/jci.insight.96101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are important in regulating immunity and tolerance and consist of functionally distinct subsets that differentially regulate T lymphocyte function. The underlying basis for this subset specificity is lacking, particularly in humans, where the classification of tissue DCs is currently incomplete. Examination of healthy human epidermal Langerhans cells and dermal skin cells revealed a tissue CD5-expressing DC subtype. The CD5+ DCs were potent inducers of cytotoxic T cells and Th22 cells. The products of these T cells, IL-22 and IFN-γ, play a key role in the pathogenesis of psoriasis. Remarkably, CD5+ DCs were significantly enriched in lesional psoriatic skin compared with distal tissues, suggesting their involvement in the disease. We show that CD5+ DCs can be differentiated from hematopoietic progenitor cells independently of the CD5- DCs. A progenitor population found in human cord blood and in the dermal skin layer, marked as CD34-CD123+CD117dimCD45RA+, was an immediate precursor of these CD11c+CD1c+CD5+ DCs. Overall, our discovery of the CD5-expressing DC subtype suggests that strategies to regulate their composition or function in the skin will represent an innovative approach for the treatment of immune-mediated disorders in and beyond the skin.
Collapse
Affiliation(s)
- Daniel Korenfeld
- Department of Pathology and Immunology, Division of Immunobiology
| | - Laurent Gorvel
- Department of Pathology and Immunology, Division of Immunobiology
| | - Adiel Munk
- Department of Pathology and Immunology, Division of Immunobiology
| | - Joshua Man
- Department of Pathology and Immunology, Division of Immunobiology
| | - Andras Schaffer
- Department of Pathology and Immunology, Dermatopathology Center
| | - Thomas Tung
- Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Caroline Mann
- Department of Medicine, Division of Dermatology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology
| |
Collapse
|
1632
|
Filby A, Houston JP. Imaging cytometry: Automated morphology and feature extraction. Cytometry A 2017; 91:851-853. [DOI: 10.1002/cyto.a.23200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Andrew Filby
- Flow Cytometry Core Facility, Faculty of Medical Sciences; Newcastle University; United Kingdom
| | - Jessica P. Houston
- Department of Chemicals and Materials Engineering; New Mexico State University; New Mexico
| |
Collapse
|
1633
|
Tošić - Golubović S, University of Niš, Faculty of Medicine in Niš, Ser bia, Slavković V, Sibinović V, Guglet D, Nikolić G, Clinic of Mental Health Protection, Clinical Center Niš, Niš, Serbia. D EPRESSION AMONG MEDCALLY ILL PATIENTS. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
1634
|
Zhou T, Matsunami H. Lessons from single-cell transcriptome analysis of oxygen-sensing cells. Cell Tissue Res 2017; 372:403-415. [PMID: 28887696 DOI: 10.1007/s00441-017-2682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/07/2017] [Indexed: 12/15/2022]
Abstract
The advent of single-cell RNA-sequencing (RNA-Seq) technology has enabled transcriptome profiling of individual cells. Comprehensive gene expression analysis at the single-cell level has proven to be effective in characterizing the most fundamental aspects of cellular function and identity. This unbiased approach is revolutionary for small and/or heterogeneous tissues like oxygen-sensing cells in identifying key molecules. Here, we review the major methods of current single-cell RNA-Seq technology. We discuss how this technology has advanced the understanding of oxygen-sensing glomus cells in the carotid body and helped uncover novel oxygen-sensing cells and mechanisms in the mice olfactory system. We conclude by providing our perspective on future single-cell RNA-Seq research directed at oxygen-sensing cells.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 261 CARL Building, Box 3509, Durham, NC, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 261 CARL Building, Box 3509, Durham, NC, USA.,Department of Neurobiology and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
1635
|
Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, Moore R, McClanahan TK, Sadekova S, Klappenbach JA. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol 2017; 35:936-939. [PMID: 28854175 DOI: 10.1038/nbt.3973] [Citation(s) in RCA: 580] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022]
Abstract
We present a tool to measure gene and protein expression levels in single cells with DNA-labeled antibodies and droplet microfluidics. Using the RNA expression and protein sequencing assay (REAP-seq), we quantified proteins with 82 barcoded antibodies and >20,000 genes in a single workflow. We used REAP-seq to assess the costimulatory effects of a CD27 agonist on human CD8+ lymphocytes and to identify and characterize an unknown cell type.
Collapse
Affiliation(s)
- Vanessa M Peterson
- Genetics &Pharmacogenomics, Department of Translational Medicine, Merck &Co., Inc., Boston, Massachusetts, USA
| | - Kelvin Xi Zhang
- Informatics IT, Merck &Co., Inc., Boston, Massachusetts, USA
| | - Namit Kumar
- Genetics &Pharmacogenomics, Department of Translational Medicine, Merck &Co., Inc., Boston, Massachusetts, USA
| | - Jerelyn Wong
- Department of Profiling and Expression, Merck &Co., Inc., Palo Alto, California, USA
| | - Lixia Li
- Genetics &Pharmacogenomics, Department of Translational Medicine, Merck &Co., Inc., Boston, Massachusetts, USA
| | - Douglas C Wilson
- Department of Profiling and Expression, Merck &Co., Inc., Palo Alto, California, USA
| | - Renee Moore
- Protein Sciences, Department of Biologics, Merck &Co., Inc., Boston, Massachusetts, USA
| | - Terrill K McClanahan
- Department of Profiling and Expression, Merck &Co., Inc., Palo Alto, California, USA
| | - Svetlana Sadekova
- Department of Profiling and Expression, Merck &Co., Inc., Palo Alto, California, USA
| | - Joel A Klappenbach
- Genetics &Pharmacogenomics, Department of Translational Medicine, Merck &Co., Inc., Boston, Massachusetts, USA
| |
Collapse
|
1636
|
Abstract
The fundamental operative unit of a cancer is the genetically and epigenetically innovative single cell. Whether proliferating or quiescent, in the primary tumour mass or disseminated elsewhere, single cells govern the parameters that dictate all facets of the biology of cancer. Thus, single-cell analyses provide the ultimate level of resolution in our quest for a fundamental understanding of this disease. Historically, this quest has been hampered by technological shortcomings. In this Opinion article, we argue that the rapidly evolving field of single-cell sequencing has unshackled the cancer research community of these shortcomings. From furthering an elemental understanding of intra-tumoural genetic heterogeneity and cancer genome evolution to illuminating the governing principles of disease relapse and metastasis, we posit that single-cell sequencing promises to unravel the biology of all facets of this disease.
Collapse
Affiliation(s)
- Timour Baslan
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10044, USA, and Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - James Hicks
- University of Southern California Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
1637
|
Short JD, Tavakoli S, Nguyen HN, Carrera A, Farnen C, Cox LA, Asmis R. Dyslipidemic Diet-Induced Monocyte "Priming" and Dysfunction in Non-Human Primates Is Triggered by Elevated Plasma Cholesterol and Accompanied by Altered Histone Acetylation. Front Immunol 2017; 8:958. [PMID: 28878765 PMCID: PMC5572238 DOI: 10.3389/fimmu.2017.00958] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 12/13/2022] Open
Abstract
Monocytes and the recruitment of monocyte-derived macrophages into sites of inflammation play a key role in atherogenesis and other chronic inflammatory diseases linked to cardiometabolic syndrome and obesity. Previous studies from our group have shown that metabolic stress promotes monocyte priming, i.e., enhanced adhesion and accelerated chemotaxis of monocytes in response to chemokines, both in vitro and in dyslipidemic LDLR-/- mice. We also showed that metabolic stress-induced monocyte dysfunction is, at least to a large extent caused by the S-glutathionylation, inactivation, and subsequent degradation of mitogen-activated protein kinase phosphatase 1. Here, we analyzed the effects of a Western-style, dyslipidemic diet (DD), which was composed of high levels of saturated fat, cholesterol, and simple sugars, on monocyte (dys)function in non-human primates (NHPs). We found that similar to mice, a DD enhances monocyte chemotaxis in NHP within 4 weeks, occurring concordantly with the onset of hypercholesterolemia but prior to changes in triglycerides, blood glucose, monocytosis, or changes in monocyte subset composition. In addition, we identified transitory decreases in the acetylation of histone H3 at the lysine residues 18 and 23 in metabolically primed monocytes, and we found that monocyte priming was correlated with the acetylation of histone H3 at lysine 27 after an 8-week DD regimen. Our data show that metabolic stress promotes monocyte priming and hyper-chemotactic responses in NHP. The histone modifications accompanying monocyte priming in primates suggest a reprogramming of the epigenetic landscape, which may lead to dysregulated responses and functionalities in macrophages derived from primed monocytes that are recruited to sites of inflammation.
Collapse
Affiliation(s)
- John D Short
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Sina Tavakoli
- Department of Radiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Huynh Nga Nguyen
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ana Carrera
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Chelbee Farnen
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Laura A Cox
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, United States.,Southwest National Primate Research Center, San Antonio, TX, United States
| | - Reto Asmis
- Department of Radiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Clinical Laboratory Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
1638
|
Leal Rojas IM, Mok WH, Pearson FE, Minoda Y, Kenna TJ, Barnard RT, Radford KJ. Human Blood CD1c + Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4 + T Cells. Front Immunol 2017; 8:971. [PMID: 28878767 PMCID: PMC5572390 DOI: 10.3389/fimmu.2017.00971] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DC) initiate the differentiation of CD4+ helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4+ T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1β, IL-6, and IL-23, by human blood monocytes, CD1c+ DC, CD141+ DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4+ T cells. Human CD1c+ DC produced IL-12p70, IL-1β, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141+ DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c+ DC. Activated CD1c+ DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4+ T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c+ DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.
Collapse
Affiliation(s)
- Ingrid M Leal Rojas
- Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Wai-Hong Mok
- Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Frances E Pearson
- Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Yoshihito Minoda
- Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Tony J Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Ross T Barnard
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Kristen J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
1639
|
Kim-Hellmuth S, Bechheim M, Pütz B, Mohammadi P, Nédélec Y, Giangreco N, Becker J, Kaiser V, Fricker N, Beier E, Boor P, Castel SE, Nöthen MM, Barreiro LB, Pickrell JK, Müller-Myhsok B, Lappalainen T, Schumacher J, Hornung V. Genetic regulatory effects modified by immune activation contribute to autoimmune disease associations. Nat Commun 2017; 8:266. [PMID: 28814792 PMCID: PMC5559603 DOI: 10.1038/s41467-017-00366-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/15/2022] Open
Abstract
The immune system plays a major role in human health and disease, and understanding genetic causes of interindividual variability of immune responses is vital. Here, we isolate monocytes from 134 genotyped individuals, stimulate these cells with three defined microbe-associated molecular patterns (LPS, MDP, and 5'-ppp-dsRNA), and profile the transcriptomes at three time points. Mapping expression quantitative trait loci (eQTL), we identify 417 response eQTLs (reQTLs) with varying effects between conditions. We characterize the dynamics of genetic regulation on early and late immune response and observe an enrichment of reQTLs in distal cis-regulatory elements. In addition, reQTLs are enriched for recent positive selection with an evolutionary trend towards enhanced immune response. Finally, we uncover reQTL effects in multiple GWAS loci and show a stronger enrichment for response than constant eQTLs in GWAS signals of several autoimmune diseases. This demonstrates the importance of infectious stimuli in modifying genetic predisposition to disease.Insight into the genetic influence on the immune response is important for the understanding of interindividual variability in human pathologies. Here, the authors generate transcriptome data from human blood monocytes stimulated with various immune stimuli and provide a time-resolved response eQTL map.
Collapse
Affiliation(s)
- Sarah Kim-Hellmuth
- New York Genome Center, New York, NY, 10013, USA.
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany.
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany.
| | - Matthias Bechheim
- Institute of Molecular Medicine, University of Bonn, Bonn, 53127, Germany
| | - Benno Pütz
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Pejman Mohammadi
- New York Genome Center, New York, NY, 10013, USA
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Yohann Nédélec
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Canada, H3T 1C5
- Department of Biochemistry, University of Montreal, Montreal, Canada, H3C 3J7
| | - Nicholas Giangreco
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Jessica Becker
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany
| | - Vera Kaiser
- Institute of Molecular Medicine, University of Bonn, Bonn, 53127, Germany
| | - Nadine Fricker
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany
| | - Esther Beier
- Institute of Molecular Medicine, University of Bonn, Bonn, 53127, Germany
| | - Peter Boor
- Institute of Pathology and Department of Nephrology, University Clinic of RWTH Aachen, Aachen, 52074, Germany
| | - Stephane E Castel
- New York Genome Center, New York, NY, 10013, USA
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany
| | - Luis B Barreiro
- Department of Genetics, CHU Sainte-Justine Research Center, Montreal, Canada, H3T 1C5
- Department of Pediatrics, University of Montreal, Montreal, Canada, H3T 1C5
| | - Joseph K Pickrell
- New York Genome Center, New York, NY, 10013, USA
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Bertram Müller-Myhsok
- Statistical Genetics, Max Planck Institute of Psychiatry, Munich, 80804, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, 80804, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, 10013, USA.
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.
| | - Johannes Schumacher
- Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany.
- Department of Genomics, Life & Brain Center, University of Bonn, Bonn, 53127, Germany.
| | - Veit Hornung
- Institute of Molecular Medicine, University of Bonn, Bonn, 53127, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität Munich, Munich, 81377, Germany
- Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität Munich, Munich, 81377, Germany
| |
Collapse
|
1640
|
Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients' peripheral blood. Sci Rep 2017; 7:7853. [PMID: 28798369 PMCID: PMC5552769 DOI: 10.1038/s41598-017-08233-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is one of the causes of neurodegeneration in Amyotrophic lateral sclerosis (ALS). Here we examined whether circulating dendritic cells (DCs) can contribute to disease progression. We found ALS patients show a significant reduction in the number of circulating DCs. Also, patients' DCs present an increased expression of CD62L and a tendency to overexpress CCR2 compared with healthy donors. Moreover, DCs derived from a subpopulation of ALS patients produced higher levels of IL-8 and CCL-2 upon lipopolysaccharide (LPS)-stimulation. Finally, we found a significant inverse correlation between the time from onset of the pathology to its diagnosis and the levels of IL-6 secretion induced by LPS. Our data support the hypothesis, in a subpopulation of patients, DCs recruited at the diseased tissue produce high levels of CCL-2 and IL-8 and contribute to the inflammatory process promoting the recruitment of other inflammatory cells. An increased efficiency of IL-6 production may accelerate only the initial phases of disease progression. Blood DC analysis can be used to identify ALS patients with an altered course of inflammatory cell recruitment at the diseased central nervous system (CNS). The high levels of CD62L expression suggests this molecule could be a target for treatment of CNS inflammation.
Collapse
|
1641
|
Vroman H, Hendriks RW, Kool M. Dendritic Cell Subsets in Asthma: Impaired Tolerance or Exaggerated Inflammation? Front Immunol 2017; 8:941. [PMID: 28848549 PMCID: PMC5552666 DOI: 10.3389/fimmu.2017.00941] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
Asthma is a prevalent chronic heterogeneous inflammatory disease of the airways, leading to reversible airway obstruction, in which various inflammatory responses can be observed. Mild to moderate asthma patients often present with a Th2-mediated eosinophilic inflammation whereas in severe asthma patients, a Th17-associated neutrophilic or combined Th2 and Th17-mediated eosinophilic/neutrophilic inflammation is observed. The differentiation of these effector Th2 and Th17-cells is induced by allergen-exposed dendritic cells (DCs) that migrate toward the lung draining lymph node. The DC lineage comprises conventional DCs (cDCs) and plasmacytoid DCs (pDCs), of which the cDC lineage consists of type 1 cDCs (cDC1s) and cDC2s. During inflammation, also monocytes can differentiate into so-called monocyte-derived DCs (moDCs). These DC subsets differ both in ontogeny, localization, and in their functional properties. New identification tools and the availability of transgenic mice targeting specific DC subsets enable the investigation of how these different DC subsets contribute to or suppress asthma pathogenesis. In this review, we will discuss mechanisms used by different DC subsets to elicit or hamper the pathogenesis of both Th2-mediated eosinophilic asthma and more severe Th17-mediated neutrophilic inflammation.
Collapse
Affiliation(s)
- Heleen Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
1642
|
Transcriptome Profiling in Human Diseases: New Advances and Perspectives. Int J Mol Sci 2017; 18:ijms18081652. [PMID: 28758927 PMCID: PMC5578042 DOI: 10.3390/ijms18081652] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/21/2017] [Accepted: 07/27/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decades, transcriptome profiling has been one of the most utilized approaches to investigate human diseases at the molecular level. Through expression studies, many molecular biomarkers and therapeutic targets have been found for several human pathologies. This number is continuously increasing thanks to total RNA sequencing. Indeed, this new technology has completely revolutionized transcriptome analysis allowing the quantification of gene expression levels and allele-specific expression in a single experiment, as well as to identify novel genes, splice isoforms, fusion transcripts, and to investigate the world of non-coding RNA at an unprecedented level. RNA sequencing has also been employed in important projects, like ENCODE (Encyclopedia of the regulatory elements) and TCGA (The Cancer Genome Atlas), to provide a snapshot of the transcriptome of dozens of cell lines and thousands of primary tumor specimens. Moreover, these studies have also paved the way to the development of data integration approaches in order to facilitate management and analysis of data and to identify novel disease markers and molecular targets to use in the clinics. In this scenario, several ongoing clinical trials utilize transcriptome profiling through RNA sequencing strategies as an important instrument in the diagnosis of numerous human pathologies.
Collapse
|
1643
|
|
1644
|
Andrews TS, Hemberg M. Identifying cell populations with scRNASeq. Mol Aspects Med 2017; 59:114-122. [PMID: 28712804 DOI: 10.1016/j.mam.2017.07.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 01/06/2023]
Abstract
Single-cell RNASeq (scRNASeq) has emerged as a powerful method for quantifying the transcriptome of individual cells. However, the data from scRNASeq experiments is often both noisy and high dimensional, making the computational analysis non-trivial. Here we provide an overview of different experimental protocols and the most popular methods for facilitating the computational analysis. We focus on approaches for identifying biologically important genes, projecting data into lower dimensions and clustering data into putative cell-populations. Finally we discuss approaches to validation and biological interpretation of the identified cell-types or cell-states.
Collapse
Affiliation(s)
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
1645
|
Helft J, Anjos-Afonso F, van der Veen AG, Chakravarty P, Bonnet D, Reis e Sousa C. Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors. Cell Rep 2017; 20:529-537. [PMID: 28723558 PMCID: PMC5529209 DOI: 10.1016/j.celrep.2017.06.075] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/22/2017] [Accepted: 06/23/2017] [Indexed: 01/16/2023] Open
Abstract
Conventional dendritic cells (cDCs) are thought to descend from a DC precursor downstream of the common myeloid progenitor (CMP). However, a mouse lymphoid-primed multipotent progenitor has been shown to generate cDCs following a DC-specific developmental pathway independent of monocyte and granulocyte poiesis. Similarly, here we show that, in humans, a large fraction of multipotent lymphoid early progenitors (MLPs) gives rise to cDCs, in particular the subset known as cDC1, identified by co-expression of DNGR-1 (CLEC9A) and CD141 (BDCA-3). Single-cell analysis indicates that over one-third of MLPs have the potential to efficiently generate cDCs. cDC1s generated from CMPs or MLPs do not exhibit differences in transcriptome or phenotype. These results demonstrate an early imprinting of the cDC lineage in human hematopoiesis and highlight the plasticity of developmental pathways giving rise to human DCs.
Collapse
Affiliation(s)
- Julie Helft
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cardiff University, European Cancer Stem Cell Institute, Cardiff, CF10 3XQ, UK
| | | | - Probir Chakravarty
- Bioinformatics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
1646
|
Kurowska-Stolarska M, Alivernini S, Melchor EG, Elmesmari A, Tolusso B, Tange C, Petricca L, Gilchrist DS, Di Sante G, Keijzer C, Stewart L, Di Mario C, Morrison V, Brewer JM, Porter D, Milling S, Baxter RD, McCarey D, Gremese E, Lemke G, Ferraccioli G, McSharry C, McInnes IB. MicroRNA-34a dependent regulation of AXL controls the activation of dendritic cells in inflammatory arthritis. Nat Commun 2017. [PMID: 28639625 PMCID: PMC5489689 DOI: 10.1038/ncomms15877] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Current treatments for rheumatoid arthritis (RA) do not reverse underlying aberrant immune function. A genetic predisposition to RA, such as HLA-DR4 positivity, indicates that dendritic cells (DC) are of crucial importance to pathogenesis by activating auto-reactive lymphocytes. Here we show that microRNA-34a provides homoeostatic control of CD1c+ DC activation via regulation of tyrosine kinase receptor AXL, an important inhibitory DC auto-regulator. This pathway is aberrant in CD1c+ DCs from patients with RA, with upregulation of miR-34a and lower levels of AXL compared to DC from healthy donors. Production of pro-inflammatory cytokines is reduced by ex vivo gene-silencing of miR-34a. miR-34a-deficient mice are resistant to collagen-induced arthritis and interaction of DCs and T cells from these mice are reduced and do not support the development of Th17 cells in vivo. Our findings therefore show that miR-34a is an epigenetic regulator of DC function that may contribute to RA.
Collapse
Affiliation(s)
- Mariola Kurowska-Stolarska
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Stefano Alivernini
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Emma Garcia Melchor
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Aziza Elmesmari
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Clare Tange
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Luca Petricca
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Derek S Gilchrist
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Gabriele Di Sante
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Chantal Keijzer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Lynn Stewart
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Clara Di Mario
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Vicky Morrison
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - James M Brewer
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Duncan Porter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Simon Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Ronald D Baxter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK.,NHS Greater Glasgow and Clyde, 1055 Great Western Road, Glasgow G12 0XH, UK
| | - David McCarey
- NHS Greater Glasgow and Clyde, 1055 Great Western Road, Glasgow G12 0XH, UK
| | - Elisa Gremese
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Gianfranco Ferraccioli
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli, Catholic University of the Sacred Heart, Rome 00168, Italy
| | - Charles McSharry
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Iain B McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
1647
|
Breedveld A, Groot Kormelink T, van Egmond M, de Jong EC. Granulocytes as modulators of dendritic cell function. J Leukoc Biol 2017. [DOI: 10.1189/jlb.4mr0217-048rr] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
1648
|
Chung L, Maestas DR, Housseau F, Elisseeff JH. Key players in the immune response to biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 2017; 114:184-192. [PMID: 28712923 DOI: 10.1016/j.addr.2017.07.006] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 02/07/2023]
Abstract
The compatibility of biomaterials is critical to their structural and biological function in medical applications. The immune system is the first responder to tissue trauma and to a biomaterial implant. The innate immune effector cells, most notably macrophages, play a significant role in the defense against foreign bodies and the formation of a fibrous capsule around synthetic implants. Alternatively, macrophages participate in the pro-regenerative capacity of tissue-derived biological scaffolds. Research is now elucidating the role of the adaptive immune system, and T cells in particular, in directing macrophage response to synthetic and biological materials. Here, we review basic immune cell types and discuss recent research on the role of the immune system in tissue repair and its potential relevance to scaffold design. We will also discuss new emerging immune cell types relevant to biomaterial responses and tissue repair. Finally, prospects for specifically targeting and modulating the immune response to biomaterial scaffolds for enhancing tissue repair and regeneration will be presented.
Collapse
|