1701
|
Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M. Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 2007; 282:16369-78. [PMID: 17405879 DOI: 10.1074/jbc.m700138200] [Citation(s) in RCA: 279] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Major copper proteins in the cytoplasm of plant cells are plastocyanin, copper/zinc superoxide dismutase, and cytochrome c oxidase. Under copper limited conditions, expression of copper/zinc superoxide dismutase is down-regulated and the protein is replaced by iron superoxide dismutase in chloroplasts. We present evidence that a micro-RNA, miR398, mediates this regulation in Arabidopsis thaliana, by directing the degradation of copper/zinc superoxide dismutase mRNA when copper is limited. Sequence analysis indicated that the transcripts encoding cytosolic copper/zinc superoxide dismutase and COX5b-1, a subunit of the mitochondrial cytochrome c oxidase, are also targeted by miR398. This regulation via miR398 takes place in response to changes in a low range of copper levels (0.2-0.5 microM), indicating that miR398 is involved in a response to copper limitation. On the other hand, another major copper protein, plastocyanin, which is involved in photosynthetic electron flow and is essential in higher plants, was not regulated via miR398. We propose that miR398 is a key factor in copper homeostasis in plants and regulates the stability of mRNAs of major copper proteins under copper-limited conditions.
Collapse
Affiliation(s)
- Hiroaki Yamasaki
- Graduate School of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashiku, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
1702
|
Krogan NT, Berleth T. From genes to patterns: Auxin distribution and auxin-dependent gene regulation in plant pattern formation. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been recognized that the plant hormone auxin plays integral roles in a variety of plant processes. More recently, it has become clear that these processes include some of the most basic pattern formation mechanisms needed to establish a functional plant body. Considerable insight into how this regulation plays out at the molecular level has been attained in recent years. Of special note are the complementary actions of the auxin efflux carrier proteins responsible for the formation of instructive auxin concentration gradients and the transcription factor complexes required for the appropriate interpretation of such instructions. The numerous players involved and the complexity of their regulation provide insight into how a single plant hormone can operate in such a multifunctional fashion. Many new features of auxin action can now be quantified and visualized, and three-dimensional models of auxin patterning can be tested and mathematically modeled. With these new advances, the developmental biology of auxin-mediated patterning has turned into a subject of plant systems biology research.
Collapse
Affiliation(s)
- Naden T. Krogan
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
1703
|
Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet 2007; 8:93-103. [PMID: 17230196 DOI: 10.1038/nrg1990] [Citation(s) in RCA: 1109] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Changes in the patterns of gene expression are widely believed to underlie many of the phenotypic differences within and between species. Although much emphasis has been placed on changes in transcriptional regulation, gene expression is regulated at many levels, all of which must ultimately be studied together to obtain a complete picture of the evolution of gene expression. Here we compare the evolution of transcriptional regulation and post-transcriptional regulation that is mediated by microRNAs, a large class of small, non-coding RNAs in plants and animals, focusing on the evolution of the individual regulators and their binding sites. As an initial step towards integrating these mechanisms into a unified framework, we propose a simple model that describes the transcriptional regulation of new microRNA genes.
Collapse
Affiliation(s)
- Kevin Chen
- Center for Comparative Functional Genomics, Department of Biology, New York University, New York, New York 10003, USA
| | | |
Collapse
|
1704
|
Zhang X, Henderson IR, Lu C, Green PJ, Jacobsen SE. Role of RNA polymerase IV in plant small RNA metabolism. Proc Natl Acad Sci U S A 2007; 104:4536-41. [PMID: 17360559 PMCID: PMC1810338 DOI: 10.1073/pnas.0611456104] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to the three RNA polymerases (RNAP I-III) shared by all eukaryotic organisms, plant genomes encode a fourth RNAP (RNAP IV) that appears to be specialized in the production of siRNAs. Available data support a model in which dsRNAs are generated by RNAP IV and RNA-dependent RNAP 2 (RDR2) and processed by DICER (DCL) enzymes into 21- to 24-nt siRNAs, which are associated with different ARGONAUTE (AGO) proteins for transcriptional or posttranscriptional gene silencing. However, it is not yet clear what fraction of genomic siRNA production is RNAP IV-dependent, and to what extent these siRNAs are preferentially processed by certain DCL(s) or associated with specific AGOs for distinct downstream functions. To address these questions on a genome-wide scale, we sequenced approximately 335,000 siRNAs from wild-type and RNAP IV mutant Arabidopsis plants by using 454 technology. The results show that RNAP IV is required for the production of >90% of all siRNAs, which are faithfully produced from a discrete set of genomic loci. Comparisons of these siRNAs with those accumulated in rdr2 and dcl2 dcl3 dcl4 and those associated with AGO1 and AGO4 provide important information regarding the processing, channeling, and functions of plant siRNAs. We also describe a class of RNAP IV-independent siRNAs produced from endogenous single-stranded hairpin RNA precursors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Ian R. Henderson
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Cheng Lu
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711; and
| | - Pamela J. Green
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711; and
| | - Steven E. Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1705
|
Abstract
Recent studies have demonstrated the novel functions of microRNAs (miRNAs) in regulating plant adaptive responses to nutrient stresses. Plant miRNAs usually down-regulate the abundance of their target mRNAs by post-transcriptional cleavage. miR395 and miR399 are up-regulated during sulphate and phosphate (Pi) deficiency, respectively. miR395 participates in sulphate assimilation and allocation via adjusting the expression of ATP sulphurylase (APS) and a sulphate transporter (AtSULTR2;1). Up-regulation of miR399 results in the down-regulation of UBC24 encoding a ubiquitin-conjugating E2 enzyme. Plants overexpressing miR399 or are defective in UBC24display Pi toxicity because of increased Pi uptake, enhanced root-to-shoot translocation and retention of Pi in the old leaves. This observation suggests that the miR399-mediated regulation of UBC24 expression is critical in Pi homeostasis. Moreover, the existence and conservation of miR395 and miR399 and their target genes among many plant species reveals the evolutionary importance of these miRNA-mediated nutrient stress responses.
Collapse
Affiliation(s)
- Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 115, Taiwan
| |
Collapse
|
1706
|
Itaya A, Zhong X, Bundschuh R, Qi Y, Wang Y, Takeda R, Harris AR, Molina C, Nelson RS, Ding B. A structured viroid RNA serves as a substrate for dicer-like cleavage to produce biologically active small RNAs but is resistant to RNA-induced silencing complex-mediated degradation. J Virol 2007; 81:2980-94. [PMID: 17202210 PMCID: PMC1865973 DOI: 10.1128/jvi.02339-06] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022] Open
Abstract
RNA silencing is a potent means of antiviral defense in plants and animals. A hallmark of this defense response is the production of 21- to 24-nucleotide viral small RNAs via mechanisms that remain to be fully understood. Many viruses encode suppressors of RNA silencing, and some viral RNAs function directly as silencing suppressors as counterdefense. The occurrence of viroid-specific small RNAs in infected plants suggests that viroids can trigger RNA silencing in a host, raising the question of how these noncoding and unencapsidated RNAs survive cellular RNA-silencing systems. We address this question by characterizing the production of small RNAs of Potato spindle tuber viroid (srPSTVds) and investigating how PSTVd responds to RNA silencing. Our molecular and biochemical studies provide evidence that srPSTVds were derived mostly from the secondary structure of viroid RNAs. Replication of PSTVd was resistant to RNA silencing, although the srPSTVds were biologically active in guiding RNA-induced silencing complex (RISC)-mediated cleavage, as shown with a sensor system. Further analyses showed that without possessing or triggering silencing suppressor activities, the PSTVd secondary structure played a critical role in resistance to RISC-mediated cleavage. These findings support the hypothesis that some infectious RNAs may have evolved specific secondary structures as an effective means to evade RNA silencing in addition to encoding silencing suppressor activities. Our results should have important implications in further studies on RNA-based mechanisms of host-pathogen interactions and the biological constraints that shape the evolution of infectious RNA structures.
Collapse
Affiliation(s)
- Asuka Itaya
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1707
|
Chitwood DH, Guo M, Nogueira FTS, Timmermans MCP. Establishing leaf polarity: the role of small RNAs and positional signals in the shoot apex. Development 2007; 134:813-23. [PMID: 17251271 DOI: 10.1242/dev.000497] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The flattening of leaves results from the juxtaposition of upper (adaxial)and lower (abaxial) domains in the developing leaf primordium. The adaxial-abaxial axis reflects positional differences in the leaf relative to the meristem and is established by redundant genetic pathways that interpret this asymmetry through instructive, possibly non-cell autonomous, signals. Small RNAs have been found to play a crucial role in this process, and specify mutually antagonistic fates. Here, we review both classical and recently-discovered factors that contribute to leaf polarity, as well as the candidate positional signals that their existence implies.
Collapse
Affiliation(s)
- Daniel H Chitwood
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | | | | | |
Collapse
|
1708
|
Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 2007; 315:1576-9. [PMID: 17322030 PMCID: PMC2556962 DOI: 10.1126/science.1137999] [Citation(s) in RCA: 882] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are approximately 22-nucleotide RNAs that can pair to sites within messenger RNAs to specify posttranscriptional repression of these messages. Aberrant miRNA expression can contribute to tumorigenesis, but which of the many miRNA-target relationships are relevant to this process has been unclear. Here, we report that chromosomal translocations previously associated with human tumors disrupt repression of High Mobility Group A2 (Hmga2) by let-7 miRNA. This disrupted repression promotes anchorage-independent growth, a characteristic of oncogenic transformation. Thus, losing miRNA-directed repression of an oncogene provides a mechanism for tumorigenesis, and disrupting a single miRNA-target interaction can produce an observable phenotype in mammalian cells.
Collapse
Affiliation(s)
- Christine Mayr
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael T. Hemann
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David P. Bartel
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, and Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1709
|
Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2007; 2:e219. [PMID: 17299599 PMCID: PMC1790633 DOI: 10.1371/journal.pone.0000219] [Citation(s) in RCA: 870] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/24/2007] [Indexed: 11/18/2022] Open
Abstract
In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks.
Collapse
Affiliation(s)
- Noah Fahlgren
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Miya D. Howell
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kristin D. Kasschau
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Elisabeth J. Chapman
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Christopher M. Sullivan
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jason S. Cumbie
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Scott A. Givan
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Theresa F. Law
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Sarah R. Grant
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jeffery L. Dangl
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James C. Carrington
- Center for Genome Research and Biocomputing, Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1710
|
Zhu W, Buell CR. Improvement of whole-genome annotation of cereals through comparative analyses. Genome Res 2007; 17:299-310. [PMID: 17284677 PMCID: PMC1800921 DOI: 10.1101/gr.5881807] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rice is an important model species for the Poaceae and other monocotyledonous plants. With the availability of a near-complete, finished, and annotated rice genome, we performed genome level comparisons between rice and all plant species in which large genomic or transcriptomic data sets are available to determine the utility of cross-species sequence for structural and functional annotation of the rice genome. Through comparative analyses with four plant genome sequence data sets and transcript assemblies from 185 plant species, we were able to confirm and improve the structural annotation of the rice genome. Support for 38,109 (89.3%) of the total 42,653 nontransposable element-related genes in the rice genome in the form of a rice expressed sequence tag, full-length cDNA, or plant homolog from our comparative analyses could be found. Although the majority of the putative homologs were obtained from Poaceae species, putative homologs were identified in dicotyledonous angiosperms, gymnosperms, and other plants such as algae, moss, and fern. A set of rice genes (7669) lacking a putative homolog was identified which may be lineage-specific genes that evolved after speciation and have a role in species diversity. Improvements to the current rice gene structural annotation could be identified from our comparative alignments and we were able to identify 487 genes which were mostly likely missed in the current rice genome annotation and another 500 genes for structural annotation review. We were able to demonstrate the utility of cross-species comparative alignments in the identification of noncoding sequences and in confirmation of gene nesting in rice.
Collapse
Affiliation(s)
- Wei Zhu
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - C. Robin Buell
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
- Corresponding author.E-mail ; fax: (301) 838-0208
| |
Collapse
|
1711
|
Reyes JL, Chua NH. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:592-606. [PMID: 17217461 DOI: 10.1111/j.1365-313x.2006.02980.x] [Citation(s) in RCA: 490] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Upon seed imbibition, abscisic acid (ABA) levels decrease to allow embryos to germinate and develop into seedlings. However, under abiotic stress conditions, ABA levels remain high, and growth and development are arrested. Several transcription factors, including abscisic acid-insensitive (ABI)3 and ABI5, are known to control this developmental checkpoint. Here, we show that, in germinating Arabidopsis thaliana seeds, ABA induces the accumulation of microRNA 159 (miR159) in an ABI3-dependent fashion, and miRNA159 mediates cleavage of MYB101 and MYB33 transcripts in vitro and in vivo. The two MYB transcription factors function as positive regulators of ABA responses, as null mutants of myb33 and myb101 show hyposensitivity to the hormone. Consistent with this, miR159 over-expression suppresses MYB33 and MYB101 transcript levels and renders plants hyposensitive to ABA, whereas transgenic plants over-expressing cleavage-resistant forms of MYB33 and MYB101 are hypersensitive, as are plants over-expressing the Turnip mosaic virus (TuMV) P1/HC-Pro viral protein that is known to inhibit miRNA function. Our results suggest that ABA-induced accumulation of miR159 is a homeostatic mechanism to direct MYB33 and MYB101 transcript degradation to desensitize hormone signaling during seedling stress responses.
Collapse
Affiliation(s)
- José L Reyes
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | |
Collapse
|
1712
|
Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chua NH. Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute1 cleavage activity to counter plant defense. Genes Dev 2007; 20:3255-68. [PMID: 17158744 PMCID: PMC1686603 DOI: 10.1101/gad.1495506] [Citation(s) in RCA: 484] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA silencing refers to small regulatory RNA-mediated processes that repress endogenous gene expression and defend hosts from offending viruses. As an anti-host defense mechanism, viruses encode suppressors that can block RNA silencing pathways. Cucumber mosaic virus (CMV)-encoded 2b protein was among the first suppressors identified that could inhibit post-transcriptional gene silencing (PTGS), but with little or no effect on miRNA functions. The mechanisms underlying 2b suppression of RNA silencing are unknown. Here, we demonstrate that the CMV 2b protein also interferes with miRNA pathways, eliciting developmental anomalies partially phenocopying ago1 mutant alleles. In contrast to most characterized suppressors, 2b directly interacts with Argonaute1 (AGO1) in vitro and in vivo, and this interaction occurs primarily on one surface of the PAZ-containing module and part of the PIWI-box of AGO1. Consistent with this interaction, 2b specifically inhibits AGO1 cleavage activity in RISC reconstitution assays. In addition, AGO1 recruits virus-derived small interfering RNAs (siRNAs) in vivo, suggesting that AGO1 is a major factor in defense against CMV infection. We conclude that 2b blocks AGO1 cleavage activity to inhibit miRNA pathways, attenuate RNA silencing, and counter host defense. These findings provide insight on the molecular arms race between host antiviral RNA silencing and virus counterdefense.
Collapse
Affiliation(s)
- Xiuren Zhang
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
1713
|
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 2007; 20:3407-25. [PMID: 17182867 PMCID: PMC1698448 DOI: 10.1101/gad.1476406] [Citation(s) in RCA: 985] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
To better understand the diversity of small silencing RNAs expressed in plants, we employed high-throughput pyrosequencing to obtain 887,000 reads corresponding to Arabidopsis thaliana small RNAs. They represented 340,000 unique sequences, a substantially greater diversity than previously obtained in any species. Most of the small RNAs had the properties of heterochromatic small interfering RNAs (siRNAs) associated with DNA silencing in that they were preferentially 24 nucleotides long and mapped to intergenic regions. Their density was greatest in the proximal and distal pericentromeric regions, with only a slightly preferential propensity to match repetitive elements. Also present were 38 newly identified microRNAs (miRNAs) and dozens of other plausible candidates. One miRNA mapped within an intron of DICER-LIKE 1 (DCL1), suggesting a second homeostatic autoregulatory mechanism for DCL1 expression; another defined the phase for siRNAs deriving from a newly identified trans-acting siRNA gene (TAS4); and two depended on DCL4 rather than DCL1 for their accumulation, indicating a second pathway for miRNA biogenesis in plants. More generally, our results revealed the existence of a layer of miRNA-based control beyond that found previously that is evolutionarily much more fluid, employing many newly emergent and diverse miRNAs, each expressed in specialized tissues or at low levels under standard growth conditions.
Collapse
Affiliation(s)
- Ramya Rajagopalan
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Hervé Vaucheret
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), 78026 Versailles Cedex, France
| | - Jerry Trejo
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - David P. Bartel
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Corresponding author.E-MAIL ; FAX (617) 258-6768
| |
Collapse
|
1714
|
Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y. Identification of drought-induced microRNAs in rice. Biochem Biophys Res Commun 2007; 354:585-90. [PMID: 17254555 DOI: 10.1016/j.bbrc.2007.01.022] [Citation(s) in RCA: 293] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Accepted: 01/05/2007] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) are a large new class of small non-coding RNAs. To date, hundreds of microRNAs have been identified in plants. MicroRNAs play important roles in post-transcriptional gene regulation by targeting mRNAs for cleavage or repressing translation. To better understand microRNA function, we have used an oligonucleotide microarray to monitor rice (Oryza sativa) microRNA expression profile under drought stress. Two drought-induced microRNAs were identified. Furthermore, miR-169g was confirmed as the only member induced by drought among the miR-169 family and the induction of miR-169g was more prominent in roots than in shoots. Sequence analysis revealed occurrence of two proximate DREs (dehydration-responsive element) in the upstream of the MIR-169g, suggesting that miR-169g expression may be regulated directly by CBF/DREBs.
Collapse
Affiliation(s)
- Botao Zhao
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
1715
|
Ding B, Itaya A. Viroid: a useful model for studying the basic principles of infection and RNA biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:7-20. [PMID: 17249418 DOI: 10.1094/mpmi-20-0007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus 43210, USA.
| | | |
Collapse
|
1716
|
Abstract
Tracheary elements (TEs) are cells in the xylem that are highly specialized for transporting water and solutes up the plant. TEs undergo a very well-defined process of differentiation that involves specification, enlargement, patterned cell wall deposition, programmed cell death and cell wall removal. This process is coordinated such that adjacent TEs are joined together to form a continuous network. Expression studies on model systems as diverse as trees and cell cultures have contributed to providing a flood of candidate genes with potential roles in TE differentiation. Analysis of some of these genes has yielded important information on processes such as patterned secondary cell wall deposition. The current challenge is to continue this functional analysis and to use these data and build an integrated model of TE development.
Collapse
Affiliation(s)
- Simon Turner
- University of Manchester, Faculty of Life Sciences, Manchester, United Kingdom.
| | | | | |
Collapse
|
1717
|
Abstract
Small RNAs have emerged as one of the most important regulators for gene expression in eukaryotes. Small RNA-mediated gene silencing has been shown to play an essential role in antiviral defense in both plant and animal systems (Li and Ding, 2005; Voinnet, 2005; Wang et al., 2006). These viral RNA-generated small interfering RNAs (siRNAs) are extragenomic in origin. Studies from our lab and others suggest that host-endogenous small RNAs also play an important role in plant defense in response to other pathogens besides viruses (Katiyar-Agarwal et al., 2006; Navarro et al., 2006). The methods described here provide an opportunity to identify many more novel pathogen-regulated small RNAs in plants, which will help in understanding the regulatory mechanism of plant immunity. Here, we introduce the approaches of powerful high-throughput parallel sequencing and hybridization-based technologies for the discovery and detection of pathogen-regulated small RNAs. We mainly compare and discuss the methods of low-molecular-weight (LMW) RNA extraction from pathogen-infected tissue and strategies for detecting endogenous small RNAs by Northern blot analysis.
Collapse
Affiliation(s)
- Surekha Katiyar-Agarwal
- Department of Plant Pathology, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | | |
Collapse
|
1718
|
Culver JN, Padmanabhan MS. Virus-induced disease: altering host physiology one interaction at a time. ANNUAL REVIEW OF PHYTOPATHOLOGY 2007; 45:221-43. [PMID: 17417941 DOI: 10.1146/annurev.phyto.45.062806.094422] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Virus infections are the cause of numerous plant disease syndromes that are generally characterized by the induction of disease symptoms such as developmental abnormalities, chlorosis, and necrosis. How viruses induce these disease symptoms represents a long-standing question in plant pathology. Recent studies indicate that symptoms are derived from specific interactions between virus and host components. Many of these interactions have been found to contribute to the successful completion of the virus life-cycle, although the role of other interactions in the infection process is not yet known. However, all share the potential to disrupt host physiology. From this information we are beginning to decipher the progression of events that lead from specific virus-host interactions to the establishment of disease symptoms. This review highlights our progress in understanding the mechanisms through which virus-host interactions affect host physiology. The emerging picture is one of complexity involving the individual effects of multiple virus-host interactions.
Collapse
Affiliation(s)
- James N Culver
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA.
| | | |
Collapse
|
1719
|
Cairney J, Pullman GS. The cellular and molecular biology of conifer embryogenesis. THE NEW PHYTOLOGIST 2007; 176:511-536. [PMID: 17953539 DOI: 10.1111/j.1469-8137.2007.02239.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.
Collapse
Affiliation(s)
- John Cairney
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta GA 30318, USA
| | - Gerald S Pullman
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta GA 30318, USA
| |
Collapse
|
1720
|
Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 2006; 20:3084-8. [PMID: 17114582 PMCID: PMC1635144 DOI: 10.1101/gad.402806] [Citation(s) in RCA: 328] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-binding family, MtHAP2-1, for which RNA interference (RNAi) and in situ hybridization experiments indicate a key role during nodule development, possibly by controlling nodule meristem function. We could also show that MtHAP2-1 is regulated by microRNA169, whose overexpression leads to the same nodule developmental block as MtHAP2-1 RNAi constructs. The complementary expression pattern of miR169 and MtHAP2-1 and the phenotype of miR169-resistant MtHAP2-1 nodules strongly suggest, in addition, that the miR169-mediated restriction of MtHAP2-1 expression to the nodule meristematic zone is essential for the differentiation of nodule cells.
Collapse
Affiliation(s)
- Jean-Philippe Combier
- LIPM (Laboratoire des Interactions Plantes-Microorganismes) INRA-CNRS (Institut de National de la Recherche-Centre national de la recherche scientifique), 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1721
|
Johnson C, Bowman L, Adai AT, Vance V, Sundaresan V. CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res 2006; 35:D829-33. [PMID: 17169981 PMCID: PMC1781248 DOI: 10.1093/nar/gkl991] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Plant small RNAs (smRNAs), which include microRNAs (miRNAs), short interfering RNAs (siRNAs) and trans-acting siRNAs (ta-siRNAs), are emerging as significant components of epigenetic processes and of gene networks involved in development and in homeostasis. Here we present a bioinformatics resource for cereal crops, the Cereal Small RNA Database (CSRDB), consisting of large-scale datasets of maize and rice smRNA sequences generated by high-throughput pyrosequencing. The smRNA sequences have been mapped to the rice genome and to the available maize genome sequence and these results are presented in two genome browser datasets using the Generic Genome Browser. Potential RNA targets for the smRNAs have been predicted and access to the resulting smRNA/RNA target pair dataset has been made available through a MySQL based relational database. Various ways to access the data are provided including links from the genome browser to the target database. Data linking and integration are the main focus for this interface, and internal as well as external links are present. The resource is available at and will be updated as more sequences become available.
Collapse
Affiliation(s)
- Cameron Johnson
- Section of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | | | | | | | | |
Collapse
|
1722
|
Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP. A family of microRNAs present in plants and animals. THE PLANT CELL 2006; 18:3355-69. [PMID: 17189346 PMCID: PMC1785418 DOI: 10.1105/tpc.106.044420] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although many miRNAs are deeply conserved within each kingdom, none are known to be conserved between plants and animals. We identified Arabidopsis thaliana miR854 and miR855, two microRNAs (miRNAs) with multiple binding sites in the 3' untranslated region (3'UTR) of OLIGOURIDYLATE binding PROTEIN1b (At UBP1b), forming miRNA:mRNA interactions similar to those that cause translational repression/mRNA cleavage in animals. At UBP1b encodes a member of a heterogeneous nuclear RNA binding protein (hnRNP) family. The 3'UTR of At UBP1b is sufficient to repress reporter protein expression in tissues expressing miR854 or miR855 (rosette leaves and flowers, respectively) but not where both miRNAs are absent (cauline leaves). Intergenic regions containing sequences closely resembling miR854 are predicted to fold into stable miRNA precursors in animals, and members of the miR854 family are expressed in Caenorhabditis elegans, Mus musculus, and Homo sapiens, all with imperfect binding sites in the 3'UTR of genes encoding the T cell Intracellular Antigen-Related protein, an hnRNP of the UBP1 family. Potential binding sites for miR854 are absent from UBP1-like genes in fungi lacking the miRNA biogenetic machinery. Our results indicate that plants and animals share miRNAs of the miR854 family, suggesting a common origin of these miRNAs as regulators of basal transcriptional mechanisms.
Collapse
Affiliation(s)
- Mario Arteaga-Vázquez
- Laboratory of Reproductive Development and Apomixis, Centro de Investigación y Estudios Avanzados, CP 36 500, Irapuato Guanajuato, Mexico
| | | | | |
Collapse
|
1723
|
Bove J, Hord CLH, Mullen MA. The blossoming of RNA biology: Novel insights from plant systems. RNA (NEW YORK, N.Y.) 2006; 12:2035-46. [PMID: 17053084 PMCID: PMC1664721 DOI: 10.1261/rna.303806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Jérôme Bove
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
1724
|
Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 2006; 133:4211-8. [PMID: 17021043 DOI: 10.1242/dev.02602] [Citation(s) in RCA: 483] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In flowering plants, diploid sporophytic tissues in ovules and anthers support meiosis and subsequent haploid gametophyte development. These analogous reproductive functions suggest that common mechanisms may regulate ovule and anther development. Two Arabidopsis Auxin Response Factors,ARF6 and ARF8, regulate gynoecium and stamen development in immature flowers. Wild-type pollen grew poorly in arf6 arf8 gynoecia, correlating with ARF6 and ARF8 expression in style and transmitting tract. ARF6 and ARF8 transcripts are cleavage targets of the microRNA miR167, and overexpressing miR167 mimicked arf6 arf8 phenotypes. Mutations in the miR167 target sites of ARF6 or ARF8 caused ectopic expression of these genes in domains of both ovules and anthers where miR167 was normally present. As a result, ovule integuments had arrested growth, and anthers grew abnormally and failed to release pollen. Thus, miR167 is essential for correct patterning of gene expression, and for fertility of both ovules and anthers. The essential patterning function of miR167 contrasts with cases from animals in which miRNAs reinforce or maintain transcriptionally established gene expression patterns.
Collapse
Affiliation(s)
- Miin-Feng Wu
- University of North Carolina at Chapel Hill, Department of Biology, CB #3280, Coker Hall, Chapel Hill, NC 27599-3280, USA
| | | | | |
Collapse
|
1725
|
Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A, Zhu JK, Staskawicz BJ, Jin H. A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 2006; 103:18002-7. [PMID: 17071740 PMCID: PMC1693862 DOI: 10.1073/pnas.0608258103] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RNA interference, mediated by small interfering RNAs (siRNAs), is a conserved regulatory process that has evolved as an antiviral defense mechanism in plants and animals. It is not known whether host cells also use siRNAs as an antibacterial defense mechanism in eukaryotes. Here, we report the discovery of an endogenous siRNA, nat-siRNAATGB2, that is specifically induced by the bacterial pathogen Pseudomonas syringae carrying effector avrRpt2. We demonstrate that the biogenesis of this siRNA requires DCL1, HYL1, HEN1, RDR6, NRPD1A, and SGS3. Its induction also depends on the cognate host disease resistance gene RPS2 and the NDR1 gene that is required for RPS2-specified resistance. This siRNA contributes to RPS2-mediated race-specific disease resistance by repressing PPRL, a putative negative regulator of the RPS2 resistance pathway.
Collapse
Affiliation(s)
| | | | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Omar Borsani
- Botany and Plant Sciences, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521; and
| | | | - Jian-Kang Zhu
- Botany and Plant Sciences, Center for Plant Cell Biology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521; and
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- To whom correspondence may be addressed. E-mail:
or
| | - Hailing Jin
- Departments of *Plant Pathology and
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
1726
|
Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH. Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 2006; 24:1420-8. [PMID: 17057702 DOI: 10.1038/nbt1255] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 09/25/2006] [Indexed: 12/31/2022]
Abstract
Plant microRNAs (miRNAs) regulate the abundance of target mRNAs by guiding their cleavage at the sequence complementary region. We have modified an Arabidopsis thaliana miR159 precursor to express artificial miRNAs (amiRNAs) targeting viral mRNA sequences encoding two gene silencing suppressors, P69 of turnip yellow mosaic virus (TYMV) and HC-Pro of turnip mosaic virus (TuMV). Production of these amiRNAs requires A. thaliana DICER-like protein 1. Transgenic A. thaliana plants expressing amiR-P69(159) and amiR-HC-Pro(159) are specifically resistant to TYMV and TuMV, respectively. Expression of amiR-TuCP(159) targeting TuMV coat protein sequences also confers specific TuMV resistance. However, transgenic plants that express both amiR-P69(159) and amiR-HC-Pro(159) from a dimeric pre-amiR-P69(159)/amiR-HC-Pro(159) transgene are resistant to both viruses. The virus resistance trait is displayed at the cell level and is hereditable. More important, the resistance trait is maintained at 15 degrees C, a temperature that compromises small interfering RNA-mediated gene silencing. The amiRNA-mediated approach should have broad applicability for engineering multiple virus resistance in crop plants.
Collapse
Affiliation(s)
- Qi-Wen Niu
- Laboratory of Plant Molecular Biology, Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
1727
|
Lu C, Kulkarni K, Souret FF, MuthuValliappan R, Tej SS, Poethig RS, Henderson IR, Jacobsen SE, Wang W, Green PJ, Meyers BC. MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res 2006; 16:1276-88. [PMID: 16954541 PMCID: PMC1581437 DOI: 10.1101/gr.5530106] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 07/19/2006] [Indexed: 11/25/2022]
Abstract
The Arabidopsis genome contains a highly complex and abundant population of small RNAs, and many of the endogenous siRNAs are dependent on RNA-Dependent RNA Polymerase 2 (RDR2) for their biogenesis. By analyzing an rdr2 loss-of-function mutant using two different parallel sequencing technologies, MPSS and 454, we characterized the complement of miRNAs expressed in Arabidopsis inflorescence to considerable depth. Nearly all known miRNAs were enriched in this mutant and we identified 13 new miRNAs, all of which were relatively low abundance and constitute new families. Trans-acting siRNAs (ta-siRNAs) were even more highly enriched. Computational and gel blot analyses suggested that the minimal number of miRNAs in Arabidopsis is approximately 155. The size profile of small RNAs in rdr2 reflected enrichment of 21-nt miRNAs and other classes of siRNAs like ta-siRNAs, and a significant reduction in 24-nt heterochromatic siRNAs. Other classes of small RNAs were found to be RDR2-independent, particularly those derived from long inverted repeats and a subset of tandem repeats. The small RNA populations in other Arabidopsis small RNA biogenesis mutants were also examined; a dcl2/3/4 triple mutant showed a similar pattern to rdr2, whereas dcl1-7 and rdr6 showed reductions in miRNAs and ta-siRNAs consistent with their activities in the biogenesis of these types of small RNAs. Deep sequencing of mutants provides a genetic approach for the dissection and characterization of diverse small RNA populations and the identification of low abundance miRNAs.
Collapse
Affiliation(s)
- Cheng Lu
- Department of Plant and Soil Sciences & Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1728
|
Howard-Till RA, Yao MC. Induction of gene silencing by hairpin RNA expression in Tetrahymena thermophila reveals a second small RNA pathway. Mol Cell Biol 2006; 26:8731-42. [PMID: 17000759 PMCID: PMC1636817 DOI: 10.1128/mcb.01430-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unlike in other eukaryotes, in which it causes gene silencing, RNA interference (RNAi) has been linked to programmed DNA deletion in the ciliate Tetrahymena thermophila. Here we have developed an efficient method to inducibly express double-stranded RNA hairpins and demonstrated that they cause gene silencing through targeted mRNA degradation in all phases of the life cycle, including growth, starvation, and mating. This technique offers a new tool for gene silencing in this model organism. Induction of RNA hairpins causes dramatic upregulation of Dicer and Argonaute family genes, revealing a system capable of rapidly responding to double-stranded RNA. These hairpins are processed into 23- to 24-nucleotide (nt) small RNAs, which are distinctly different from the 28- to 30-nt small RNAs known to be associated with DNA deletion. Thus, two different small RNA pathways appear to be responsible for gene silencing and DNA deletion. Surprisingly, expression of the RNA hairpin also causes targeted DNA deletion during conjugation, although at low efficiencies, which suggests a possible crossover of these two molecular paths.
Collapse
Affiliation(s)
- Rachel A Howard-Till
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., Seattle, WA 98109, USA
| | | |
Collapse
|
1729
|
Varshney RK, Hoisington DA, Tyagi AK. Advances in cereal genomics and applications in crop breeding. Trends Biotechnol 2006; 24:490-9. [PMID: 16956681 DOI: 10.1016/j.tibtech.2006.08.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2005] [Revised: 08/01/2006] [Accepted: 08/24/2006] [Indexed: 11/16/2022]
Abstract
Recent advances in cereal genomics have made it possible to analyse the architecture of cereal genomes and their expressed components, leading to an increase in our knowledge of the genes that are linked to key agronomically important traits. These studies have used molecular genetic mapping of quantitative trait loci (QTL) of several complex traits that are important in breeding. The identification and molecular cloning of genes underlying QTLs offers the possibility to examine the naturally occurring allelic variation for respective complex traits. Novel alleles, identified by functional genomics or haplotype analysis, can enrich the genetic basis of cultivated crops to improve productivity. Advances made in cereal genomics research in recent years thus offer the opportunities to enhance the prediction of phenotypes from genotypes for cereal breeding.
Collapse
Affiliation(s)
- Rajeev K Varshney
- Applied Genomics Laboratory, Global Theme on Biotechnology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, A.P., India.
| | | | | |
Collapse
|
1730
|
Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG. MicroRNA promoter element discovery in Arabidopsis. RNA (NEW YORK, N.Y.) 2006; 12:1612-9. [PMID: 16888323 PMCID: PMC1557699 DOI: 10.1261/rna.130506] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In this study we present a method of identifying Arabidopsis miRNA promoter elements using known transcription factor binding motifs. We provide a comparative analysis of the representation of these elements in miRNA promoters, protein-coding gene promoters, and random genomic sequences. We report five transcription factor (TF) binding motifs that show evidence of overrepresentation in miRNA promoter regions relative to the promoter regions of protein-coding genes. This investigation is based on the analysis of 800-nucleotide regions upstream of 63 experimentally verified Transcription Start Sites (TSS) for miRNA primary transcripts in Arabidopsis. While the TATA-box binding motif was also previously reported by Xie and colleagues, the transcription factors AtMYC2, ARF, SORLREP3, and LFY are identified for the first time as overrepresented binding motifs in miRNA promoters.
Collapse
Affiliation(s)
- Molly Megraw
- Center for Bioinformatics and Department of Genetics, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
1731
|
Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 2006; 16:939-44. [PMID: 16682356 DOI: 10.1016/j.cub.2006.03.065] [Citation(s) in RCA: 398] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/12/2006] [Accepted: 03/21/2006] [Indexed: 10/24/2022]
Abstract
MicroRNAs (miRNAs) and trans-acting siRNAs (ta-siRNAs) in plants form through distinct pathways, although they function as negative regulators of mRNA targets by similar mechanisms . Three ta-siRNA gene families (TAS1, TAS2, and TAS3) are known in Arabidopsis thaliana. Biogenesis of TAS3 ta-siRNAs, which target mRNAs encoding several AUXIN RESPONSE FACTORs (including ARF3/ETTIN and ARF4 ) involves miR390-guided processing of primary transcripts, conversion of a precursor to dsRNA through RNA-DEPENDENT RNA POLYMERASE6 (RDR6) activity, and sequential DICER-LIKE4 (DCL4)-mediated cleavage events. We show that the juvenile-to-adult phase transition is normally suppressed by TAS3 ta-siRNAs, in an ARGONAUTE7-dependent manner, through negative regulation of ARF3 mRNA. Expression of a nontargeted ARF3 mutant (ARF3mut) in a wild-type background reproduced the phase-change phenotypes detected in rdr6-15 and dcl4-2 mutants, which lose all ta-siRNAs. Expression of either ARF3 or ARF3mut in rdr6-15 plants, in which both endogenous and transgenic copies of ARF3 were derepressed, resulted in further acceleration of phase change and severe morphological and patterning defects of leaves and floral organs. In light of the functions of ARF3 and ARF4 in organ asymmetry, these data reveal multiple roles for TAS3 ta-siRNA-mediated regulation of ARF genes in developmental timing and patterning.
Collapse
Affiliation(s)
- Noah Fahlgren
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97330, USA
| | | | | | | | | | | | | |
Collapse
|
1732
|
Krützfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab 2006; 4:9-12. [PMID: 16814728 DOI: 10.1016/j.cmet.2006.05.009] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 05/11/2006] [Accepted: 05/16/2006] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by binding to target mRNAs, which leads to reduced protein synthesis and sometimes decreased steady-state mRNA levels. Although hundreds of miRNAs have been identified, much less is known about their biological function. Several studies have provided evidence that miRNAs affect pathways that are fundamental for metabolic control in higher organisms such as adipocyte and skeletal muscle differentiation. Furthermore, some miRNAs have been implicated in lipid, amino acid, and glucose homeostasis. These studies open the possibility that miRNAs may contribute to common metabolic diseases and point to novel therapeutic opportunities based on targeting of miRNAs.
Collapse
Affiliation(s)
- Jan Krützfeldt
- Laboratory of Metabolic Diseases, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
1733
|
Bouché N, Lauressergues D, Gasciolli V, Vaucheret H. An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 2006; 25:3347-56. [PMID: 16810317 PMCID: PMC1523179 DOI: 10.1038/sj.emboj.7601217] [Citation(s) in RCA: 352] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Accepted: 06/03/2006] [Indexed: 11/08/2022] Open
Abstract
Plants contain more DICER-LIKE (DCL) enzymes and double-stranded RNA binding (DRB) proteins than other eukaryotes, resulting in increased small RNA network complexities. Analyses of single, double, triple and quadruple dcl mutants exposed DCL1 as a sophisticated enzyme capable of producing both microRNAs (miRNAs) and siRNAs, unlike the three other DCLs, which only produce siRNAs. Depletion of siRNA-specific DCLs results in unbalanced small RNA levels, indicating a redeployment of DCL/DRB complexes. In particular, DCL2 antagonizes the production of miRNAs and siRNAs by DCL1 in certain circumstances and affects development deleteriously in dcl1 dcl4 and dcl1 dcl3 dcl4 mutant plants, whereas dcl1 dcl2 dcl3 dcl4 quadruple mutant plants are viable. We also show that viral siRNAs are produced by DCL4, and that DCL2 can substitute for DCL4 when this latter activity is reduced or inhibited by viruses, pointing to the competitiveness of DCL2. Given the complexity of the small RNA repertoire in plants, the implication of each DCL, in particular DCL2, in the production of small RNAs that have no known function will constitute one of the next challenges.
Collapse
Affiliation(s)
- Nicolas Bouché
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France
| | | | - Virginie Gasciolli
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France
| | - Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Versailles, France
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, INRA, Route de St-Cyr, 78026 Versailles Cedex, France. Tel.: +33 1308 33170; Fax: +33 1308 33099; E-mail:
| |
Collapse
|
1734
|
Abstract
Cullin RING ubiquitin ligases (CRULs) are found in all eukaryotes and play an essential role in targeting proteins for ubiquitin-mediated destruction, thus regulating a plethora of cellular processes. Viruses manipulate CRULs by redirecting this destruction machinery to eliminate unwanted host cell proteins, thus allowing viruses to slip past host immune barriers. Depending on the host organism, virus-modified CRULs can perform an amazing range of tasks, including the elimination of crucial signal transduction molecules in the human interferon pathway and suppression of virus-induced gene silencing in plants. This Perspective summarizes recent advances in our understanding of how viral proteins manipulate the function of CRULs.
Collapse
Affiliation(s)
- Michele Barry
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
1735
|
Abstract
Small RNAs are riboregulators that have critical roles in most eukaryotes. They repress gene expression by acting either on DNA to guide sequence elimination and chromatin remodeling, or on RNA to guide cleavage and translation repression. This review focuses on the various types of post-transcriptional small RNA-directed pathways in plants, describing their roles and their regulations.
Collapse
MESH Headings
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Expression Regulation, Plant
- Genes, Plant
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Plant Viruses/pathogenicity
- Plants/genetics
- Plants/metabolism
- RNA Interference
- RNA Processing, Post-Transcriptional
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Hervé Vaucheret
- Laboratoire de Biologie Cellulaire, Institut Jean-Pierre Bourgin, l'Institut National de la Recherche Agronomique, 78026 Versailles Cedex, France.
| |
Collapse
|
1736
|
Khomicheva IV, Levitsky VG, Omelyanchuk NA, Savinskaya SA, Kolchanov NA. Pattern of locally positioned dinucleotides correlates with MicroRNA abundance in plants. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906070025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
1737
|
Abstract
RNA has many functions in addition to being a simple messenger between the genome and the proteome. Over two decades, several classes of small noncoding RNAs c. 21 nucleotides (nt) long have been uncovered in eukaryotic genomes, which appear to play a central role in diverse and fundamental processes. In plants, small RNA-based mechanisms are involved in genome stability, gene expression and defense. Many of the discoveries in this new "small RNA world" were made by plant biologists. Here, we discuss the three major classes of small RNAs that are found in the plant kingdom, namely small interfering RNAs, microRNAs, and the recently discovered trans-acting small interfering RNAs. Recent results shed light on the identification, integration and specialization of the different components (Dicer-like, Argonaute, and others) involved in the biogenesis of the different classes of small RNAs in plants. Owing to the development of better experimental and computational methods, an ever increasing number of small noncoding RNAs are uncovered in different plant genomes. In particular the well-studied microRNAs seem to act as key regulators in several different developmental pathways, with a marked preference for transcription factors as targets. In addition, an increasing amount of data suggest that they also play an important role in other mechanisms, such as response to stress or environmental changes.
Collapse
Affiliation(s)
- Eric Bonnet
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|
1738
|
Nogueira FTS, Sarkar AK, Chitwood DH, Timmermans MCP. Organ polarity in plants is specified through the opposing activity of two distinct small regulatory RNAs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:157-64. [PMID: 17381292 DOI: 10.1101/sqb.2006.71.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Small RNAs and their targets form complex regulatory networks that control cellular and developmental processes in multicellular organisms. In plants, dorsoventral (adaxial/abaxial) patterning provides a unique example of a developmental process in which early patterning decisions are determined by small RNAs. A gradient of microRNA166 on the abaxial/ventral side of the incipient leaf restricts the expression of adaxial/dorsal determinants. Another class of small RNAs, the TAS3-derivated trans-acting short-interfering RNAs (ta-siRNAs), are expressed adaxially and repress the activity of abaxial factors. Loss of maize leafbladeless1 (lbl1) function, a key component of the ta-siRNA biogenesis pathway, leads to misexpression of miR166 throughout the initiating leaf, implicating ta-siRNAs in the spatiotemporal regulation of miR166. The spatial restriction of tasiRNA biogenesis components suggests that this pathway may act non-cell-autonomously in the meristem and possibly contributes to the classic meristem-borne adaxializing Sussex signal. Here, we discuss the key participants in adaxial/abaxial patterning and point out the intriguing possibility that organ polarity in plants is established by the opposing action of specific ta-siRNAs and miRNAs.
Collapse
Affiliation(s)
- F T S Nogueira
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
1739
|
Galbraith DW, Birnbaum K. Global studies of cell type-specific gene expression in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:451-75. [PMID: 16669770 DOI: 10.1146/annurev.arplant.57.032905.105302] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Technological advances in expression profiling and in the ability to collect minute quantities of tissues have come together to allow a growing number of global transcriptional studies at the cell level in plants. Microarray technology, with a choice of cDNA or oligo-based slides, is now well established, with commercial full-genome platforms for rice and Arabidopsis and extensive expressed sequence tag (EST)-based designs for many other species. Microdissection and cell sorting are two established methodologies that have been used in conjunction with microarrays to provide an early glimpse of the transcriptional landscape at the level of individual cell types. The results indicate that much of the transcriptome is compartmentalized. A minor but consistent percentage of transcripts appear to be unique to specific cell types. Functional analyses of cell-specific patterns of gene expression are providing important clues to cell-specific functions. The spatial dissection of the transcriptome has also yielded insights into the localized mediators of hormone inputs and promises to provide detail on cell-specific effects of microRNAs.
Collapse
Affiliation(s)
- David W Galbraith
- Department of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|