1901
|
Aoyagi T, Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr Pharm Des 2011; 17:1818-24. [PMID: 21631421 PMCID: PMC3337715 DOI: 10.2174/138161211796390976] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/27/2011] [Indexed: 11/22/2022]
Abstract
Heart failure, a major symptom in the progression of cardiac hypertrophy, is a critical risk factor for cardiac death. A large body of research has investigated cardioprotective mechanisms that prevent or minimize hypertrophy, identifying a variety of specific peptide hormones, growth factors, and cytokines with cardioprotective properties. Recent investigation of the downstream effector pathways for these growth factors has identified molecules involved in the progression of cardiac hypertrophy and heart failure, including phosphoinositide 3-kinase (PI3K), Akt and mammalian target of rapamycin (mTOR). Using genetically modified transgenic or knockout mice and adenoviral targeting to manipulate expression or function in experimental models of heart failure, several investigators have demonstrated that the PI3K-Akt pathway regulates cardiomyocyte size, survival, angiogenesis, and inflammation in both physiological and pathological cardiac hypertrophy. In this review, we discuss the reciprocal regulation of PI3K, Akt and mTOR in cardiomyocytes and their association with cardiac disease.
Collapse
Affiliation(s)
- Toshinori Aoyagi
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813
| | - Takashi Matsui
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813
| |
Collapse
|
1902
|
Frost RA, Pereyra E, Lang CH. Ethyl pyruvate preserves IGF-I sensitivity toward mTOR substrates and protein synthesis in C2C12 myotubes. Endocrinology 2011; 152:151-63. [PMID: 21106878 PMCID: PMC3219047 DOI: 10.1210/en.2010-0248] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection decreases skeletal muscle protein synthesis via inhibition of the mammalian target of rapamycin (mTOR), a key regulator of translation initiation. To better define the mechanism by which muscle mTOR activity is decreased, we used an in vitro model of C2C12 myotubes treated with endotoxin [lipopolysaccharide (LPS)]and interferon (IFN)-γ to determine whether stable lipophilic pyruvate derivatives restore mTOR signaling. Myotubes treated with a combination of LPS and IFNγ down-regulated the phosphorylation of the mTOR substrates S6 kinase-1 and 4E binding protein-1. The phosphorylation of ribosomal protein S6 was decreased, whereas phosphorylation of elongation factor-2 was enhanced; all results consistent with defects in both translation initiation and elongation. LPS/IFNγ decreased protein synthesis 60% in myotubes. Treatment with methyl or ethyl pyruvate partially protected against the LPS/IFNγ-induced fall in mTOR signaling. The protective effect of ethyl and methyl pyruvate could not be replicated by an equimolar amount of sodium pyruvate. Although LPS/IFNγ treated myotubes were initially IGF-I responsive, prolonged exposure (≥ 17 h) resulted in IGF-I resistance at the level of mTOR despite normal IGF-I receptor phosphorylation. Ethyl pyruvate treatment restored IGF-I sensitivity as evidenced by the left shift in the IGF-I dose-response curve and maintained IGF-I responsiveness for a prolonged period of time. Ethyl pyruvate also restored IGF-I-stimulated protein synthesis in LPS/IFNγ-treated myotubes. Cotreatment with N-acetyl cysteine or ascorbic acid also preserved IGF-I sensitivity and mTOR activity. The data suggest that the combination of LPS and IFNγ inhibits mTOR activity and that prolonged exposure induces IGF-I resistance in myotubes. Lipophilic pyruvate derivatives and antioxidants show promise at rescuing mTOR activity and muscle protein synthesis by maintaining IGF-I sensitivity in this model.
Collapse
Affiliation(s)
- Robert A Frost
- Department of Cellular and Molecular Physiology (H166), Pennsylvania State University College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, USA.
| | | | | |
Collapse
|
1903
|
Dickinson JM, Rasmussen BB. Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Curr Opin Clin Nutr Metab Care 2011; 14:83-8. [PMID: 21076294 PMCID: PMC3290995 DOI: 10.1097/mco.0b013e3283406f3e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To highlight the recent research pertaining to the cellular mechanisms linking amino acid availability, mTORC1 signaling, and muscle protein metabolism. RECENT FINDINGS Activation of the mTORC1 pathway in response to amino acids may be dependent upon cellular relocalization of mTORC1, a process that appears to involve the Rag GTPases. Recent studies have also identified other intracellular proteins, such as hVps34 and MAP4K3, and specific amino acid transporters as necessary links between amino acid availability and mTORC1. In human skeletal muscle, it appears that mTORC1 activity increases the expression of several amino acid transporters, which may be an important adaptive response to sensitize muscle to a subsequent increase in amino acid availability. SUMMARY The precise cellular mechanisms linking amino acids to mTORC1 signaling and muscle protein metabolism are currently not well understood. More defined cellular mechanisms are beginning to emerge suggesting a role for several intracellular proteins including hVps34, MAP4K3, and Rag GTPases. Additionally, specific amino acid transporters may have a role both upstream and downstream of mTORC1. Continued investigation into the precise cellular mechanisms linking amino acid availability and muscle protein metabolism will help facilitate improvements in existing therapies for conditions of muscle wasting.
Collapse
|
1904
|
Zhang N, Bilsland E. Contributions of Saccharomyces cerevisiae to understanding mammalian gene function and therapy. Methods Mol Biol 2011; 759:501-523. [PMID: 21863505 DOI: 10.1007/978-1-61779-173-4_28] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Due to its genetic tractability and ease of manipulation, the yeast Saccharomyces cerevisiae has been extensively used as a model organism to understand how eukaryotic cells grow, divide, and respond to environmental changes. In this chapter, we reasoned that functional annotation of novel genes revealed by sequencing should adopt an integrative approach including both bioinformatics and experimental analysis to reveal functional conservation and divergence of complexes and pathways. The techniques and resources generated for systems biology studies in yeast have found a wide range of applications. Here we focused on using these technologies in revealing functions of genes from mammals, in identifying targets of novel and known drugs and in screening drugs targeting specific proteins and/or protein-protein interactions.
Collapse
Affiliation(s)
- Nianshu Zhang
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
1905
|
Abstract
Autophagy is a major catabolic pathway in eukaryotes, which is required for the lysosomal/vacuolar degradation of cytoplasmic proteins and organelles. Interest in the autophagy pathway has recently gained momentum largely owing to identification of multiple autophagy-related genes and recognition of its involvement in various physiological conditions. Here we review current knowledge of the molecular mechanisms regulating autophagy in mammals and yeast, specifically the biogenesis of autophagosomes and the selectivity of their cargo recruitment. We discuss the different steps of autophagy, from the signal transduction events that regulate it to the completion of this pathway by fusion with the lysosome/vacuole. We also review research on the origin of the autophagic membrane, the molecular mechanism of autophagosome formation, and the roles of two ubiquitin-like protein families and other structural elements that are essential for this process. Finally, we discuss the various modes of autophagy and highlight their functional relevance for selective degradation of specific cargos.
Collapse
Affiliation(s)
- Hilla Weidberg
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | |
Collapse
|
1906
|
Fenton TR, Gout IT. Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol 2011; 43:47-59. [PMID: 20932932 DOI: 10.1016/j.biocel.2010.09.018] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/17/2010] [Accepted: 09/23/2010] [Indexed: 01/01/2023]
Abstract
The 70kDa ribosomal protein S6 kinases, S6K1 and S6K2 are two highly homologous serine/threonine kinases that are activated in response to growth factors, cytokines and nutrients. The S6 kinases have been linked to diverse cellular processes, including protein synthesis, mRNA processing, glucose homeostasis, cell growth and survival. Studies in model organisms have highlighted the roles that S6K activity plays in a number of pathologies, including obesity, diabetes, ageing and cancer. The importance of S6K function in human diseases has led to the development of S6K-specific inhibitors by a number of companies, offering the promise of improved tools with which to study these enzymes and potentially the effective targeting of deregulated S6K signalling in patients. Here we review the current literature on the role of S6Ks in the regulation of cell growth, survival and proliferation downstream of various signalling pathways and how their dysregulation contributes to the pathogenesis of human diseases.
Collapse
Affiliation(s)
- Tim R Fenton
- Ludwig Institute for Cancer Research, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093-0660, USA
| | | |
Collapse
|
1907
|
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011. [PMID: 21157483 DOI: 10.1038/nrm302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.
Collapse
Affiliation(s)
- Roberto Zoncu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
1908
|
Abstract
The marked increase in skeletal muscle mass during the neonatal period is largely due to a high rate of postprandial protein synthesis that is modulated by an enhanced sensitivity to insulin and amino acids. The amino acid signaling pathway leading to the stimulation of protein synthesis has not been fully elucidated. Among the amino acids, leucine is considered to be a principal anabolic agent that regulates protein synthesis. mTORC1, which controls protein synthesis, has been implicated as a target for leucine. Until recently, there have been few studies exploring the role of amino acids in enhancing muscle protein synthesis in vivo. In this review, we discuss amino acid-induced protein synthesis in muscle in the neonate, focusing on current knowledge of the role of amino acids in the activation of mTORC1 leading to mRNA translation. The role of the amino acid transporters, SNAT2, LAT1, and PAT, in the modulation of mTORC1 activation and the role of amino acids in the activation of putative regulators of mTORC1, i.e., raptor, Rheb, MAP4K3, Vps34, and Rag GTPases, are discussed.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department Of Agriculture/Agriculture Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
1909
|
Sengupta S, Peterson TR, Laplante M, Oh S, Sabatini DM. mTORC1 controls fasting-induced ketogenesis and its modulation by ageing. Nature 2010; 468:1100-4. [PMID: 21179166 DOI: 10.1038/nature09584] [Citation(s) in RCA: 522] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 10/13/2010] [Indexed: 11/08/2022]
Abstract
The multi-component mechanistic target of rapamycin complex 1 (mTORC1) kinase is the central node of a mammalian pathway that coordinates cell growth with the availability of nutrients, energy and growth factors. Progress has been made in the identification of mTORC1 pathway components and in understanding their functions in cells, but there is relatively little known about the role of the pathway in vivo. Specifically, we have little knowledge regarding the role mTOCR1 has in liver physiology. In fasted animals, the liver performs numerous functions that maintain whole-body homeostasis, including the production of ketone bodies for peripheral tissues to use as energy sources. Here we show that mTORC1 controls ketogenesis in mice in response to fasting. We find that liver-specific loss of TSC1 (tuberous sclerosis 1), an mTORC1 inhibitor, leads to a fasting-resistant increase in liver size, and to a pronounced defect in ketone body production and ketogenic gene expression on fasting. The loss of raptor (regulatory associated protein of mTOR, complex 1) an essential mTORC1 component, has the opposite effects. In addition, we find that the inhibition of mTORC1 is required for the fasting-induced activation of PPARα (peroxisome proliferator activated receptor α), the master transcriptional activator of ketogenic genes, and that suppression of NCoR1 (nuclear receptor co-repressor 1), a co-repressor of PPARα, reactivates ketogenesis in cells and livers with hyperactive mTORC1 signalling. Like livers with activated mTORC1, livers from aged mice have a defect in ketogenesis, which correlates with an increase in mTORC1 signalling. Moreover, we show that the suppressive effects of mTORC1 activation and ageing on PPARα activity and ketone production are not additive, and that mTORC1 inhibition is sufficient to prevent the ageing-induced defect in ketogenesis. Thus, our findings reveal that mTORC1 is a key regulator of PPARα function and hepatic ketogenesis and suggest a role for mTORC1 activity in promoting the ageing of the liver.
Collapse
Affiliation(s)
- Shomit Sengupta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | |
Collapse
|
1910
|
Liu J, Stevens PD, Gao T. mTOR-dependent regulation of PHLPP expression controls the rapamycin sensitivity in cancer cells. J Biol Chem 2010; 286:6510-20. [PMID: 21177869 DOI: 10.1074/jbc.m110.183087] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PHLPP belongs to a novel family of protein phosphatases that serve as negative regulators of Akt. There are two isoforms, PHLPP1 and PHLPP2, identified in this family. Our previous studies indicated a tumor suppressor role of both PHLPP isoforms in colon cancer. Here we report that the expression of PHLPP is controlled by mTOR-dependent protein translation in colon and breast cancer cells. Treating cells with rapamycin or knockdown of mTOR using RNAi results in a marked decrease of PHLPP protein expression. In contrast, stable knockdown of TSC2, a negative regulator of mTOR activity, increases PHLPP expression. The rapamycin-mediated down-regulation of PHLPP is blocked by expression of a rapamycin-insensitive mutant of p70S6K. In addition, depletion of 4E-BP1 expression by RNAi results in an increase of PHLPP expression and resistance to rapamycin-induced down-regulation. Moreover, inhibition of mTOR activity by amino acid or glucose starvation reduces PHLPP expression in cells. Functionally, we show that rapamycin-mediated inhibition of PHLPP expression contributes to rapamycin resistance in colon cancer cells. Thus, our studies identify a compensatory feedback regulation in which the activation of Akt is inhibited by up-regulation of PHLPP through mTOR, and this mTOR-dependent expression of PHLPP subsequently determines the rapamycin sensitivity of cancer cells.
Collapse
Affiliation(s)
- Jianyu Liu
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | | | | |
Collapse
|
1911
|
Nutrient provision increases signalling and protein synthesis in human skeletal muscle after repeated sprints. Eur J Appl Physiol 2010; 111:1473-83. [PMID: 21165642 DOI: 10.1007/s00421-010-1768-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2010] [Indexed: 01/16/2023]
Abstract
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg(-1), 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L: -[ring-(13)C(6)] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo (~48%, P < 0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6K-rpS6 phosphorylation 15 min post-exercise (~200-600%, P < 0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.
Collapse
|
1912
|
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2010; 12:21-35. [PMID: 21157483 DOI: 10.1038/nrm3025] [Citation(s) in RCA: 3162] [Impact Index Per Article: 210.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In all eukaryotes, the target of rapamycin (TOR) signalling pathway couples energy and nutrient abundance to the execution of cell growth and division, owing to the ability of TOR protein kinase to simultaneously sense energy, nutrients and stress and, in metazoans, growth factors. Mammalian TOR complex 1 (mTORC1) and mTORC2 exert their actions by regulating other important kinases, such as S6 kinase (S6K) and Akt. In the past few years, a significant advance in our understanding of the regulation and functions of mTOR has revealed the crucial involvement of this signalling pathway in the onset and progression of diabetes, cancer and ageing.
Collapse
Affiliation(s)
- Roberto Zoncu
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | |
Collapse
|
1913
|
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that plays key roles in cellular regulation. It forms complexes with additional proteins. The best-understood one is mTOR complex 1 (mTORC1). The regulation and cellular functions of mTORC1 have been the subjects of intense study; despite this, many questions remain to be answered. They include questions about the actual mechanisms by which mTORC1 signaling is stimulated by hormones and growth factors, which involves the small GTPase Rheb, and by amino acids, which involves other GTPase proteins. The control of Rheb and the mechanism by which it activates mTORC1 remain incompletely understood. Although it has been known for many years that rapamycin interferes with some functions of mTORC1, it is not known how it does this, or why only some functions of mTORC1 are affected. mTORC1 regulates diverse cellular functions. Several mTORC1 substrates are now known, although in several cases their physiological roles are poorly or incompletely understood. In the case of several processes, although it is clear that they are regulated by mTORC1, it is not known how mTORC1 does this. Lastly, mTORC1 is implicated in ageing, but again it is unclear what mechanisms account for this. Given the importance of mTORC1 signaling both for cellular functions and in human disease, it is a high priority to gain further insights into the control of mTORC1 signaling and the mechanisms by which it controls cellular functions and animal physiology.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Biological Sciences, Life Sciences Building, University of Southampton, UK
| | | |
Collapse
|
1914
|
Goberdhan DCI. Intracellular amino acid sensing and mTORC1-regulated growth: new ways to block an old target? CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2010; 11:1360-7. [PMID: 21154118 PMCID: PMC3044466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a multicomponent, nutrient-sensitive protein that is implicated in a wide range of major human diseases. mTORC1 responds to both growth factors and changes in local amino acid levels. Until recently, the intracellular amino acid-sensing mechanism that regulates mTORC1 had remained unexplored. However, studies in human cells in culture have demonstrated that in response to amino acid stimulation, mTOR (a conserved member of the PI3K superfamily) is shuttled to late endosomal and lysosomal compartments, where it binds the Ragulator-Rag complex and is assembled into active mTORC1. Members of the proton-assisted amino acid transporter (PAT/SLC36) family have been identified as critical components of the amino acid-sensing system that regulates mTORC1 present in endosomal and lysosomal membranes. These discoveries not only highlight several new potential drug targets that could impact selectively on mTORC1 activity in cancer cells, but also provide novel insights into the strategies used by such cells to outcompete their neighbors in growth factor- and nutrient-depleted conditions. In this review, recent mechanistic insights into how mTORC1 activity is controlled by amino acids and the potential for the selective targeting this regulatory input are discussed.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
1915
|
Burman C, Ktistakis NT. Autophagosome formation in mammalian cells. Semin Immunopathol 2010; 32:397-413. [PMID: 20740284 DOI: 10.1007/s00281-010-0222-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/08/2010] [Indexed: 02/07/2023]
Abstract
Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.
Collapse
Affiliation(s)
- Chloe Burman
- Signalling Programme, Babraham Institute, Cambridge, CB22 3AT, UK.
| | | |
Collapse
|
1916
|
Abstract
The serum and glucocorticoid kinase (SGK) family of serine/threonine kinases consists of three isoforms, SGK-1, SGK-2 and SGK-3. This family of kinases is highly homologous to the AKT kinase family, sharing similar upstream activators and downstream targets. SGKs have been implicated in the regulation of cell growth, proliferation, survival and migration: cellular processes that are dysregulated in cancer. Furthermore, SGKs lie downstream of phosphoinositide-3-kinase (PI3Kinase) signalling and interact at various levels with RAS/RAF/ERK signalling, two pathways that are involved in promoting tumorigenesis. Recent evidence suggests that mutant PI3Kinase can induce tumorigenesis through an AKT-independent but SGK3-dependent mechanism, thus implicating SGKs as potential players in malignant transformation. Here, we will review the current state of knowledge on the regulation of the SGKs and their role in normal cell physiology and transformation with a particular focus on SGK3.
Collapse
Affiliation(s)
- Maressa A Bruhn
- Growth Control and Differentiation Program, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia
| | | | | | | |
Collapse
|
1917
|
Boukhettala N, Claeyssens S, Bensifi M, Maurer B, Abed J, Lavoinne A, Déchelotte P, Coëffier M. Effects of essential amino acids or glutamine deprivation on intestinal permeability and protein synthesis in HCT-8 cells: involvement of GCN2 and mTOR pathways. Amino Acids 2010; 42:375-83. [DOI: 10.1007/s00726-010-0814-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/16/2010] [Indexed: 01/03/2023]
|
1918
|
Tatebe H, Morigasaki S, Murayama S, Zeng CT, Shiozaki K. Rab-family GTPase regulates TOR complex 2 signaling in fission yeast. Curr Biol 2010; 20:1975-82. [PMID: 21035342 PMCID: PMC3008323 DOI: 10.1016/j.cub.2010.10.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/13/2010] [Accepted: 10/11/2010] [Indexed: 11/15/2022]
Abstract
BACKGROUND From yeast to human, TOR (target of rapamycin) kinase plays pivotal roles in coupling extracellular stimuli to cell growth and metabolism. TOR kinase functions in two distinct protein complexes, TOR complex 1 (TORC1) and 2 (TORC2), which phosphorylate and activate different AGC-family protein kinases. TORC1 is controlled by the small GTPase Rheb, but little is known about TORC2 regulators. RESULTS We have identified the Ryh1 GTPase, a human Rab6 ortholog, as an activator of TORC2 signaling in the fission yeast Schizosaccharomyces pombe. Mutational inactivation of Ryh1 or its guanine nucleotide exchange factor compromises the TORC2-dependent phosphorylation of the AGC-family Gad8 kinase. In addition, the effector domain of Ryh1 is important for its physical interaction with TORC2 and for stimulation of TORC2 signaling. Thus, GTP-bound Ryh1 is likely to be the active form stimulatory to TORC2-Gad8 signaling. Consistently, expression of the GTP-locked mutant Ryh1 is sufficient to promote interaction between TORC2 and Gad8 and to induce Gad8 hyperphosphorylation. The loss of functional Ryh1, TORC2, or Gad8 brings about similar vacuolar fragmentation and stress sensitivity, further corroborating their involvement in a common cellular process. Human Rab6 can substitute Ryh1 in S. pombe, and therefore Rab6 may be a potential activator of TORC2 in mammals. CONCLUSIONS In its GTP-bound form, Ryh1, an evolutionarily conserved Rab GTPase, activates TORC2 signaling to the AGC kinase Gad8. The Ryh1 GTPase and the TORC2-Gad8 pathway are required for vacuolar integrity and cellular stress resistance in S. pombe.
Collapse
Affiliation(s)
- Hisashi Tatebe
- Department of Microbiology, University of California, Davis, California 95616, USA
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Susumu Morigasaki
- Department of Microbiology, University of California, Davis, California 95616, USA
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shinichi Murayama
- Department of Microbiology, University of California, Davis, California 95616, USA
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Cui Tracy Zeng
- Department of Microbiology, University of California, Davis, California 95616, USA
| | - Kazuhiro Shiozaki
- Department of Microbiology, University of California, Davis, California 95616, USA
| |
Collapse
|
1919
|
Lewis CA, Griffiths B, Santos CR, Pende M, Schulze A. Genetic ablation of S6-kinase does not prevent processing of SREBP1. ACTA ACUST UNITED AC 2010; 51:280-90. [PMID: 21093473 DOI: 10.1016/j.advenzreg.2010.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 11/19/2022]
Abstract
The SREBP family of transcription factors regulates the expression of genes involved in fatty acid and cholesterol biosynthesis. The activation of SREBP transcription factors requires proteolytic cleavage of the inactive precursor and nuclear translocation of the mature form of the protein. It has been shown that nuclear accumulation of the mature form of SREBP1 is induced in response to activation of the serine/threonine kinase Akt, an important effector of the Ras/PI3-kinase signalling pathway. Activation of SREBP by Akt depends on the mammalian target of rapamycin complex 1 (mTORC1) but the exact mechanism of this activation remains unclear. We have investigated whether ablation of different signalling molecules downstream of mTORC1 affects expression of SREBP targets genes. We could show that inhibition of S6-kinases 1 and 2 expression using RNA interference did not block induction of expression of fatty acid synthase (FASN) or ATP-citrate lyase (ACLY) following activation of Akt in human retinal pigment epithelial cells. Furthermore, accumulation of mature SREBP1 was not inhibited after combined silencing of S6-kinases 1 and 2. Genetic ablation of both kinases also did not prevent the formation of mature SREBP1 in mouse embryonic fibroblasts. Taken together, these results suggest that S6-kinases 1 and 2 are dispensable for the induction of SREBP processing in the experimental systems used here.
Collapse
Affiliation(s)
- Caroline A Lewis
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, London, UK
| | | | | | | | | |
Collapse
|
1920
|
Abstract
Amino acids (AA) were traditionally classified as nutritionally essential or nonessential for animals and humans based on nitrogen balance or growth. A key element of this classification is that all nonessential AA (NEAA) were assumed to be synthesized adequately in the body as substrates to meet the needs for protein synthesis. Unfortunately, regulatory roles for AA in nutrition and metabolism have long been ignored. Such conceptual limitations were not recognized until recent seminal findings that dietary glutamine is necessary for intestinal mucosal integrity and dietary arginine is required for maximum neonatal growth and embryonic survival. Some of the traditionally classified NEAA (e.g. glutamine, glutamate, and arginine) play important roles in regulating gene expression, cell signaling, antioxidative responses, and immunity. Additionally, glutamate, glutamine, and aspartate are major metabolic fuels for the small intestine and they, along with glycine, regulate neurological function. Among essential AA (EAA), much emphasis has been placed on leucine (which activates mammalian target of rapamycin to stimulate protein synthesis and inhibit proteolysis) and tryptophan (which modulates neurological and immunological functions through multiple metabolites, including serotonin and melatonin). A growing body of literature leads to a new concept of functional AA, which are defined as those AA that regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of organisms. Both NEAA and EAA should be considered in the classic "ideal protein" concept or formulation of balanced diets to maximize protein accretion and optimize health in animals and humans.
Collapse
Affiliation(s)
- Guoyao Wu
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
1921
|
Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics 2010; 187:441-54. [PMID: 21078689 DOI: 10.1534/genetics.110.123372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells integrate information from multiple sources to respond appropriately to changes in the environment. Here, we examined the relationship between two signaling pathways in Saccharomyces cerevisiae that are essential for the coordination of cell growth with nutrient availability. These pathways involve the cAMP-dependent protein kinase (PKA) and Tor proteins, respectively. Although these pathways control a similar set of processes important for growth, it was not clear how their activities were integrated in vivo. The experiments here examined this coordination and, in particular, tested whether the PKA pathway was primarily a downstream effector of the TORC1 signaling complex. Using a number of reporters for the PKA pathway, we found that the inhibition of TORC1 did not result in diminished PKA signaling activity. To the contrary, decreased TORC1 signaling was generally associated with elevated levels of PKA activity. Similarly, TORC1 activity appeared to increase in response to lower levels of PKA signaling. Consistent with these observations, we found that diminished PKA signaling partially suppressed the growth defects associated with decreased TORC1 activity. In all, these data suggested that the PKA and TORC1 pathways were functioning in parallel to promote cell growth and that each pathway might restrain, either directly or indirectly, the activity of the other. The potential significance of this antagonism for the regulation of cell growth and overall fitness is discussed.
Collapse
|
1922
|
Philp A, Hamilton DL, Baar K. Signals mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1. J Appl Physiol (1985) 2010; 110:561-8. [PMID: 21071597 DOI: 10.1152/japplphysiol.00941.2010] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For over 10 years, we have known that the activation of the mammalian target of rapamycin complex 1 (mTORC1) has correlated with the increase in skeletal muscle size and strength that occurs following resistance exercise. Initial cell culture and rodent models of muscle growth demonstrated that the activation of mTORC1 is common to hypertrophy induced by growth factors and increased loading. The further observation that high loads increased the local production of growth factors led to the paradigm that resistance exercise stimulates the autocrine production of factors that act on membrane receptors to activate mTORC1, and this results in skeletal muscle hypertrophy. Over the last few years, there has been a paradigm shift. From both human and rodent studies, it has become clear that the phenotypic and molecular responses to resistance exercise occur in a growth factor-independent manner. Although the mechanism of load-induced mTORC1 activation remains to be determined, it is clear that it does not require classical growth factor signaling.
Collapse
Affiliation(s)
- Andrew Philp
- 1 Shields Ave., 174 Briggs Hall, Univ. of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
1923
|
Dreesen IAJ, Fussenegger M. Ectopic expression of human mTOR increases viability, robustness, cell size, proliferation, and antibody production of chinese hamster ovary cells. Biotechnol Bioeng 2010; 108:853-66. [PMID: 21404259 DOI: 10.1002/bit.22990] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 10/11/2010] [Accepted: 10/18/2010] [Indexed: 01/14/2023]
Abstract
Engineering of mammalian production cell lines to improve titer and quality of biopharmaceuticals is a top priority of the biopharmaceutical manufacturing industry providing protein therapeutics to patients worldwide. While many engineering strategies have been successful in the past decade they were often based on the over-expression of a single transgene and therefore limited to addressing a single bottleneck in the cell's production capacity. We provide evidence that ectopic expression of the global metabolic sensor and processing protein mammalian target of rapamycin (mTOR), simultaneously improves key bioprocess-relevant characteristics of Chinese hamster ovary (CHO) cell-derived production cell lines such as cell growth (increased cell size and protein content), proliferation (increased cell-cycle progression), viability (decreased apoptosis), robustness (decreased sensitivity to sub-optimal growth factor and oxygen supplies) and specific productivity of secreted human glycoproteins. Cultivation of mTOR-transgenic CHO-derived cell lines engineered for secretion of a therapeutic IgG resulted in antibody titers of up to 50 pg/cell/day, which represents a four-fold increase compared to the parental production cell line. mTOR-based engineering of mammalian production cell lines may therefore have a promising future in biopharmaceutical manufacturing of human therapeutic proteins.
Collapse
Affiliation(s)
- Imke A J Dreesen
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | |
Collapse
|
1924
|
Ohsaki Y, Suzuki M, Shinohara Y, Fujimoto T. Lysosomal accumulation of mTOR is enhanced by rapamycin. Histochem Cell Biol 2010; 134:537-44. [PMID: 21063721 DOI: 10.1007/s00418-010-0759-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2010] [Indexed: 01/07/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a key regulator of cell growth that integrates signals from growth factors and nutrients. Recent studies have shown that an mTOR-containing complex, mTORC1, is targeted to lysosomes in the presence of amino acids and activated by Rheb GTPase resident in that compartment. In this study, we found that treatment with the mTOR inhibitors rapamycin and Torin1 significantly enhanced lysosomal accumulation of mTOR and Raptor. This phenomenon was not observed in the absence of amino acids but was restored upon addition of L-leucine or protein synthesis inhibitors. mTOR was not concentrated in autophagosomes that were induced by rapamycin. These results suggest that the lysosome harbors both active and inactive forms of mTOR in the presence of amino acids.
Collapse
Affiliation(s)
- Yuki Ohsaki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | |
Collapse
|
1925
|
Shibata T, Saito S, Kokubu A, Suzuki T, Yamamoto M, Hirohashi S. Global downstream pathway analysis reveals a dependence of oncogenic NF-E2-related factor 2 mutation on the mTOR growth signaling pathway. Cancer Res 2010; 70:9095-105. [PMID: 21062981 DOI: 10.1158/0008-5472.can-10-0384] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In multicellular organisms, adaptive responses to oxidative stress are regulated by NF-E2-related factor 2 (NRF2), a master transcription factor of antioxidant genes and phase II detoxifying enzymes. Aberrant activation of NRF2 by either loss-of-function mutations in the Keap1 gene or gain-of-function mutations in the Nrf2 gene occurs in a wide range of human cancers, but details of the biological consequences of NRF2 activation in the cancer cells remain unclear. Here, we report that mutant NRF2 induces epithelial cell proliferation, anchorage-independent growth, and tumorigenicity and metastasis in vivo. Genome-wide gene expression profiling revealed that mutant NRF2 affects diverse molecular pathways including the mammalian target of rapamycin (mTOR) pathway. Mutant NRF2 upregulates RagD, a small G-protein activator of the mTOR pathway, which was also overexpressed in primary lung cancer. Consistently, Nrf2-mutated lung cancer cells were sensitive to mTOR pathway inhibitors (rapamycin and NVP-BEZ235) in both in vitro and an in vivo xenograft model. The gene expression signature associated with mutant NRF2 was a marker of poor prognosis in patients with carcinoma of the head and neck region and lung. These results show that oncogenic Nrf2 mutation induces dependence on the mTOR pathway during carcinogenesis. Our findings offer a rationale to target NRF2 as an anticancer strategy, and they suggest NRF2 activation as a novel biomarker for personalized molecular therapies or prognostic assessment.
Collapse
Affiliation(s)
- Tatsuhiro Shibata
- Cancer Genomics Project and Pathology Division, National Cancer Center Research Institute, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
1926
|
Abstract
Cells sense and respond to physical stresses through mechanotransduction, a process that converts mechanical stimuli into biochemical signals. The bending of primary cilia has now been shown to modulate TOR signalling to negatively regulate cell size.
Collapse
|
1927
|
Atherton PJ, Etheridge T, Watt PW, Wilkinson D, Selby A, Rankin D, Smith K, Rennie MJ. Muscle full effect after oral protein: time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. Am J Clin Nutr 2010; 92:1080-8. [PMID: 20844073 DOI: 10.3945/ajcn.2010.29819] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND We previously showed that human muscle protein synthesis (MPS) increased during infusion of amino acids (AAs) and peaked at ≈120 min before returning to baseline rates, despite elevated plasma AA concentrations. OBJECTIVE We tested whether a protein meal elicited a similar response and whether signaling responses that regulate messenger RNA translation matched MPS changes. DESIGN Eight postabsorptive healthy men (≈21 y of age) were studied during 8.5 h of primed continuous infusion of [1,2-¹³C₂]leucine with intermittent quadriceps biopsies for determination of MPS and anabolic signaling. After 2.5 h, subjects consumed 48 g whey protein. RESULTS At 45-90 min after oral protein bolus, mean (± SEM) myofibrillar protein synthesis increased from 0.03 ± 0.003% to 0.10 ± 0.01%/h; thereafter, myofibrillar protein synthesis returned to baseline rates even though plasma essential AA (EAA) concentrations remained elevated (+130% at 120 min, +80% at 180 min). The activity of protein kinase B (PKB) and phosphorylation of eukaryotic initiation factor 4G preceded the rise of MPS and increases in phosphorylation of ribosomal protein kinase S6 (S6K1), and 4E-binding protein 1 (4EBP1) was superimposable with MPS responses until 90 min. However, although MPS decreased thereafter, all signals, with the exception of PKB activity (which mirrored insulin responses), remained elevated, which echoed the slowly declining plasma EAA profile. The phosphorylation of eukaryotic initiation factor 2α increased only at 180 min. Thus, discordance existed between MPS and the mammalian target of rapamycin complex 1 (mTORC1) and signaling (ie, S6K1 and 4EBP1 phosphorylation). CONCLUSIONS We confirm our previous findings that MPS responses to AAs are transient, even with oral protein bolus. However, changes in MPS only reflect elevated mTORC1 signaling during the upswing in MPS.
Collapse
Affiliation(s)
- Philip J Atherton
- School of Graduate Entry Medicine and Health, Division of Clinical Physiology, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
1928
|
Stasyk T, Holzmann J, Stumberger S, Ebner HL, Hess MW, Bonn GK, Mechtler K, Huber LA. Proteomic analysis of endosomes from genetically modified p14/MP1 mouse embryonic fibroblasts. Proteomics 2010; 10:4117-27. [PMID: 21080497 DOI: 10.1002/pmic.201000258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Accepted: 06/01/2010] [Indexed: 01/10/2023]
Abstract
The p14/MP1 scaffold complex binds MEK1 and ERK1/2 on late endosomes, thus regulating the strength, duration and intracellular location of MAPK signaling. By organelle proteomics we have compared the protein composition of endosomes purified from genetically modified p14⁻/⁻, p14+/⁻ and p14(rev) mouse embryonic fibroblasts. The latter ones were reconstituted retrovirally from p14⁻/⁻ mouse embryonic fibroblasts by reexpression of pEGFP-p14 at equimolar ratios with its physiological binding partner MP1, as shown here by absolute quantification of MP1 and p14 proteins on endosomes by quantitative MS using the Equimolarity through Equalizer Peptide strategy. A combination of subcellular fractionation, 2-D DIGE and MALDI-TOF/TOF MS revealed 31 proteins differentially regulated in p14⁻/⁻ organelles, which were rescued by reexpression of pEGFP-p14 in p14⁻/⁻ endosomes. Regulated proteins are known to be involved in actin remodeling, endosomal signal transduction and trafficking. Identified proteins and their in silico interaction networks suggested that endosomal signaling might regulate such major cellular functions such as proliferation, differentiation, migration and survival.
Collapse
Affiliation(s)
- Taras Stasyk
- Biocenter, Division of Cell Biology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
1929
|
Suryawan A, Davis TA. The abundance and activation of mTORC1 regulators in skeletal muscle of neonatal pigs are modulated by insulin, amino acids, and age. J Appl Physiol (1985) 2010; 109:1448-54. [PMID: 20724570 PMCID: PMC2980373 DOI: 10.1152/japplphysiol.00428.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/11/2010] [Indexed: 02/07/2023] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) signaling is crucial for the regulation of protein synthesis. Most of known mTORC1 regulators have been isolated and characterized using cell culture systems, and the physiological roles of these regulators have not been fully tested in vivo. Previously we demonstrated that the insulin (INS) and amino acid (AA)-induced activation of mTORC1 is developmentally regulated in skeletal muscle (Suryawan A et al. Am J Physiol Endocrinol Metab 293: E1597-E1605, 2007). The present study aimed to characterize in more detail the effects of the postprandial rise in INS and AA on the activation and abundance of mTORC1 regulators in muscle and how this is modified by development. Overnight fasted 6- and 26-day-old pigs were studied during 1) euinsulinemic-euglycemic-euaminoacidemic conditions (control), 2) euinsulinemic-euglycemic-hyperaminoacidemic clamps (AA), and 3) hyperinsulinemic-euglycemic-euaminoacidemic clamps (INS). INS, but not AA, enhanced the PRAS40 phosphorylation, and this effect was greater in 6- than in 26-day old pigs. Phospholipase D1 (PLD1) abundance and phosphorylation, and the association of PLD1 with Ras homolog enriched in brain (Rheb), were greater in the younger pigs. Neither INS, AA, nor age altered the abundance of Rheb, vacuolar protein sorting 34 (Vps34), or FK506-binding protein 38 (FKBP38). Although INS and AA had no effect, the abundance of ras-related GTP binding B (RagB) and the association of RagB with Raptor were greater in 6- than in 26-day-old pigs. Neither INS, AA, nor age altered AMPK-induced phosphorylation of Raptor. Our results suggest that the enhanced activation of mTORC1 in muscle of neonatal pigs is in part due to regulation by PRAS40, PLD1, and the Rag GTPases.
Collapse
Affiliation(s)
- Agus Suryawan
- United States Department of Agriculture/Agriculture Research Service Children's Nutrition Research Center, Department of Paediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
1930
|
Chong ZZ, Shang YC, Zhang L, Wang S, Maiese K. Mammalian target of rapamycin: hitting the bull's-eye for neurological disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:374-91. [PMID: 21307646 PMCID: PMC3154047 DOI: 10.4161/oxim.3.6.14787] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mammalian target of rapamycin (mTOR) and its associated cell signaling pathways have garnered significant attention for their roles in cell biology and oncology. Interestingly,the explosion of information in this field has linked mTOR to neurological diseases with promising initial studies. mTOR, a 289 kDa serine/threonine protein kinase, plays an important role in cell growth and proliferation and is activated through phosphorylation in response to growth factors, mitogens and hormones. Growth factors, amino acids, cellular nutrients and oxygen deficiency can downregulate mTOR activity. The function of mTOR signaling is mediated primarily through two mTOR complexes: mTORC1 and mTORC2. mTORC1 initiates cap-dependent protein translation, a rate-limiting step of protein synthesis, through the phosphorylation of the targets eukaryotic initiation factor 4E-binding protein 1 (4EBP1) and p70 ribosomal S6 kinase (p70S6K). In contrast, mTORC2 regulates development of the cytoskeleton and also controls cell survival. Although closely tied to tumorigenesis, mTOR and the downstream signaling pathways are significantly involved in the central nervous system (CNS) with synaptic plasticity, memory retention, neuroendocrine regulation associated with food intake and puberty and modulation of neuronal repair following injury. The signaling pathways of mTOR also are believed to be a significant component in a number of neurological diseases, such as Alzheimer disease, Parkinson disease and Huntington disease, tuberous sclerosis, neurofibromatosis, fragile X syndrome, epilepsy, traumatic brain injury and ischemic stroke. Here we describe the role of mTOR in the CNS and illustrate the potential for new strategies directed against neurological disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology and Neurosciences, Cancer Center, University of Medicine and Dentistry - New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | |
Collapse
|
1931
|
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40:310-22. [PMID: 20965424 PMCID: PMC2993060 DOI: 10.1016/j.molcel.2010.09.026] [Citation(s) in RCA: 971] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/03/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023]
Abstract
The large serine/threonine protein kinase mTOR regulates cellular and organismal homeostasis by coordinating anabolic and catabolic processes with nutrient, energy, and oxygen availability and growth factor signaling. Cells and organisms experience a wide variety of insults that perturb the homeostatic systems governed by mTOR and therefore require appropriate stress responses to allow cells to continue to function. Stress can manifest from an excess or lack of upstream signals or as a result of genetic perturbations in upstream effectors of the pathway. mTOR nucleates two large protein complexes that are important nodes in the pathways that help buffer cells from stresses, and are implicated in the progression of stress-associated phenotypes and diseases, such as aging, tumorigenesis, and diabetes. This review focuses on the key components of the mTOR complex 1 pathway and on how various stresses impinge upon them.
Collapse
Affiliation(s)
- Shomit Sengupta
- Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
1932
|
Chotechuang N, Azzout-Marniche D, Bos C, Chaumontet C, Gaudichon C, Tomé D. Down-regulation of the ubiquitin-proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes. Amino Acids 2010; 41:457-68. [PMID: 20957397 DOI: 10.1007/s00726-010-0765-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 09/28/2010] [Indexed: 12/01/2022]
Abstract
The purpose of this work was to examine whether changes in dietary protein levels could elicit differential responses of tissue proteolysis and the pathway involved in this response. In rats fed with a high protein diet (55%) for 14 days, the liver was the main organ where adaptations occurred, characterized by an increased protein pool and a strong, meal-induced inhibition of the protein breakdown rate when compared to the normal protein diet (14%). This was associated with a decrease in the key-proteins involved in expression of the ubiquitin-proteasome and autophagy pathway gene and a reduction in the level of hepatic ubiquitinated protein. In hepatocytes, we demonstrated that the increase in amino acid (AA) levels was sufficient to down-regulate the ubiquitin proteasome pathway, but this inhibition was more potent in the presence of insulin. Interestingly, AICAR, an adenosine monophosphate-activated protein kinase (AMPK) activator, reversed the inhibition of protein ubiquination induced by insulin at high AA concentrations. Rapamycin, an mammalian target of rapamycin (mTOR) inhibitor, reversed the inhibition of protein ubiquination induced by a rise in insulin levels with both high and low AA concentrations. Moreover, in both low and high AA concentrations in the presence of insulin, AICAR decreased the mTOR phosphorylation, and in the presence of both AICAR and rapamycin, AICAR reversed the effects of rapamycin. These results demonstrate that the inhibition of AMPK and the activation of mTOR transduction pathways, are required for the down-regulation of protein ubiquitination in response to high amino acid and insulin concentrations.
Collapse
Affiliation(s)
- Nattida Chotechuang
- CNRH-IdF, UMR914 Nutrition Physiology and Ingestive Behavior, AgroParisTech, 16 rue Claude, 75005, Paris, France
| | | | | | | | | | | |
Collapse
|
1933
|
Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 2010; 53:7146-55. [PMID: 20860370 PMCID: PMC3893826 DOI: 10.1021/jm101144f] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mTOR protein is a master regulator of cell growth and proliferation, and inhibitors of its kinase activity have the potential to become new class of anticancer drugs. Starting from quinoline 1, which was identified in a biochemical mTOR assay, we developed a tricyclic benzonaphthyridinone inhibitor 37 (Torin1), which inhibited phosphorylation of mTORC1 and mTORC2 substrates in cells at concentrations of 2 and 10 nM, respectively. Moreover, Torin1 exhibits 1000-fold selectivity for mTOR over PI3K (EC(50) = 1800 nM) and exhibits 100-fold binding selectivity relative to 450 other protein kinases. Torin1 was efficacious at a dose of 20 mg/kg in a U87MG xenograft model and demonstrated good pharmacodynamic inhibition of downstream effectors of mTOR in tumor and peripheral tissues. These results demonstrate that Torin1 is a useful probe of mTOR-dependent phenomena and that benzonaphthridinones represent a promising scaffold for the further development of mTOR-specific inhibitors with the potential for clinical utility.
Collapse
Affiliation(s)
- Qingsong Liu
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Jae Won Chang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Jinhua Wang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Seong A. Kang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Ma 02142
| | - Carson C. Thoreen
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Andrew Markhard
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Ma 02142
| | - Wooyoung Hur
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Jianming Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - Taebo Sim
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| | - David M. Sabatini
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Ma 02142
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Koch Center for Integrative Cancer Research at MIT, 77 Massachusetts Ave. Cambridge, MA 02139
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Ave. Boston, MA 02115
| |
Collapse
|
1934
|
Chen Y, Wang J, Cai J, Sternberg P. Altered mTOR signaling in senescent retinal pigment epithelium. Invest Ophthalmol Vis Sci 2010; 51:5314-9. [PMID: 20445122 PMCID: PMC3066610 DOI: 10.1167/iovs.10-5280] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/26/2010] [Accepted: 04/12/2010] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Mammalian target of rapamycin (mTOR)-mediated pathways play central roles in regulating aging. The purpose of the present study was to characterize the mTOR cascade in human retinal pigment epithelial (RPE) cells and to investigate its potential roles in controlling RPE senescence. METHODS Expression of major components of the mTOR signaling networks was evaluated by Western blot analyses. Formations of the two signaling complexes of mTOR, mTORC1, and mTORC2 were determined by coimmunoprecipitation. The activation of mTORC1 was monitored by measuring the phosphorylation status of the downstream substrate protein S6. Senescence of the cultured human RPE cells was assessed by measuring both the senescence associated-β-galactosidase (SA-β-Gal) activity and the expression level of p16, a cyclin-dependent kinase inhibitor. RESULTS Human RPE cells contained functional mTORC1 and mTORC2 signaling complexes. The assembly and activity of mTORC1 were regulated by upstream nutrient and growth factor signals. The sensitivity of mTORC1 to extracellular nutrient stimuli increased in RPE cells that had developed in vitro senescence. Suppression of the mTORC1 by rapamycin prevented the appearance of senescence markers in the RPE. CONCLUSIONS The mTOR pathway presented age-associated changes in human RPE cells, and downregulation of mTORC1 could delay the aging process of the RPE.
Collapse
Affiliation(s)
- Yan Chen
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
1935
|
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DCO, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90:1383-435. [PMID: 20959619 DOI: 10.1152/physrev.00030.2009] [Citation(s) in RCA: 1367] [Impact Index Per Article: 91.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded. Although the term autophagy was first used in 1963, the field has witnessed dramatic growth in the last 5 years, partly as a consequence of the discovery of key components of its cellular machinery. In this review we focus on mammalian autophagy, and we give an overview of the understanding of its machinery and the signaling cascades that regulate it. As recent studies have also shown that autophagy is critical in a range of normal human physiological processes, and defective autophagy is associated with diverse diseases, including neurodegeneration, lysosomal storage diseases, cancers, and Crohn's disease, we discuss the roles of autophagy in health and disease, while trying to critically evaluate if the coincidence between autophagy and these conditions is causal or an epiphenomenon. Finally, we consider the possibility of autophagy upregulation as a therapeutic approach for various conditions.
Collapse
Affiliation(s)
- Brinda Ravikumar
- Department of Medical Genetics, University of Cambridge, Cambridge Institute for Medical Research, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1936
|
Peter C, Waldmann H, Cobbold SP. mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol 2010; 22:655-61. [PMID: 20833524 DOI: 10.1016/j.coi.2010.08.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/15/2010] [Indexed: 01/28/2023]
Abstract
T cells constantly monitor energy status and nutrient levels in order to adjust metabolic pathways according to their nutritional status and other environmental stimuli. It is increasingly evident that the regulation of cellular metabolism is tightly coupled to T cell differentiation that ultimately determines the cellular fate. The mammalian target of Rapamycin (mTOR) pathway has emerged as a key player in sensing these nutritional/energetic signals and in addition, acts as a major integrator of growth factor induced signals, so placing mTOR at the core of a signalling network controlling metabolism and cellular fate. The mTOR pathway has been shown to play an important role in determining the differentiation of CD4(+) T cells into inflammatory and regulatory subsets, in the induction of anergy, in the development of CD8(+) memory T cells and the regulation of T cell trafficking.
Collapse
Affiliation(s)
- Christian Peter
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
1937
|
Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010; 33:301-11. [PMID: 20870173 PMCID: PMC2962404 DOI: 10.1016/j.immuni.2010.09.002] [Citation(s) in RCA: 389] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Indexed: 12/19/2022]
Abstract
In the two-signal model of T cell activation, the outcome of antigen recognition is determined by the integration of multiple cues in the immune microenvironment. mTOR is an evolutionarily conserved PI3-kinase family member that plays a central role in integrating environmental cues in the form of amino acids, energy, and growth factors. Recently, an increasingly important role for mTOR in directing T cell activation and differentiation has become apparent. Here we review recent findings demonstrating the ability of mTOR to interpret signals in the immune microenvironment and program the generation of CD4(+) effector versus regulatory T cells, the generation of CD8(+) effector versus memory cells, T cell trafficking, and T cell activation versus anergy. The key theme to emerge from these studies is that the central role of mTOR provides a direct link between T cell metabolism and function.
Collapse
Affiliation(s)
- Jonathan D Powell
- Sidney-Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | |
Collapse
|
1938
|
Shertz CA, Bastidas RJ, Li W, Heitman J, Cardenas ME. Conservation, duplication, and loss of the Tor signaling pathway in the fungal kingdom. BMC Genomics 2010; 11:510. [PMID: 20863387 PMCID: PMC2997006 DOI: 10.1186/1471-2164-11-510] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 09/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The nutrient-sensing Tor pathway governs cell growth and is conserved in nearly all eukaryotic organisms from unicellular yeasts to multicellular organisms, including humans. Tor is the target of the immunosuppressive drug rapamycin, which in complex with the prolyl isomerase FKBP12 inhibits Tor functions. Rapamycin is a gold standard drug for organ transplant recipients that was approved by the FDA in 1999 and is finding additional clinical indications as a chemotherapeutic and antiproliferative agent. Capitalizing on the plethora of recently sequenced genomes we have conducted comparative genomic studies to annotate the Tor pathway throughout the fungal kingdom and related unicellular opisthokonts, including Monosiga brevicollis, Salpingoeca rosetta, and Capsaspora owczarzaki. Results Interestingly, the Tor signaling cascade is absent in three microsporidian species with available genome sequences, the only known instance of a eukaryotic group lacking this conserved pathway. The microsporidia are obligate intracellular pathogens with highly reduced genomes, and we hypothesize that they lost the Tor pathway as they adapted and streamlined their genomes for intracellular growth in a nutrient-rich environment. Two TOR paralogs are present in several fungal species as a result of either a whole genome duplication or independent gene/segmental duplication events. One such event was identified in the amphibian pathogen Batrachochytrium dendrobatidis, a chytrid responsible for worldwide global amphibian declines and extinctions. Conclusions The repeated independent duplications of the TOR gene in the fungal kingdom might reflect selective pressure acting upon this kinase that populates two proteinaceous complexes with different cellular roles. These comparative genomic analyses illustrate the evolutionary trajectory of a central nutrient-sensing cascade that enables diverse eukaryotic organisms to respond to their natural environments.
Collapse
Affiliation(s)
- Cecelia A Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
1939
|
Trojel-Hansen C, Erichsen KD, Christensen MK, Jensen PB, Sehested M, Nielsen SJ. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential. Cancer Chemother Pharmacol 2010; 68:127-38. [PMID: 20852860 DOI: 10.1007/s00280-010-1453-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Rapidly dividing tumor cells have an increased demand for nutrients to support their characteristic unabated growth; this demand is met by an increased availability of nutrients such as amino acids through vasculogenesis and by the enhanced cellular entry of nutrients through the upregulation of specific transporters. Deprivation of intracellular amino acids or block of amino acid uptake has been shown to be cytotoxic to many established human cancer cell lines in vitro and in human cancer xenograft models. RESULTS In this paper, we provide evidence that the two small molecule oxyphenisatine analogs TOP001 and TOP216 exert their anti-cancer effect by affecting tumor cell metabolism and inducing intracellular amino acid deprivation, leading to a block of cell proliferation. GCN2-mediated phosphorylation of eIF2α as well as mTOR pathway inhibition supports the above notion. In addition, these novel anti-cancer compounds inhibit DNA and protein synthesis and induce apoptosis in a broad spectrum of cancer cell lines. In vivo, the compounds induce tumor stasis and regression in mouse xenograft models of human breast, prostate, ovarian and pancreatic cancer, both when administered intravenously and orally. CONCLUSION In conclusion, these small molecules, built on a 1,3-dihydroindole-2-one scaffold, elicit strong anti-proliferative and cytotoxic activity, and importantly, a strong anti-tumorigenicity is observed in in vivo xenograft models of human breast, ovary, prostate and pancreatic cancers encouraging the translation of this class of compounds into the clinic.
Collapse
Affiliation(s)
- Christina Trojel-Hansen
- XPU Bartholin, Rigshospitalet 3731, TopoTarget A/S, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
1940
|
Garelick MG, Kennedy BK. TOR on the brain. Exp Gerontol 2010; 46:155-63. [PMID: 20849946 DOI: 10.1016/j.exger.2010.08.030] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 08/20/2010] [Accepted: 08/27/2010] [Indexed: 11/19/2022]
Abstract
Signaling by target of rapamycin (mTOR in mammals) has been shown to modulate lifespan in several model organisms ranging from yeast to mice. In mice, reduced mTOR signaling by chronic rapamycin treatment leads to life span extension, raising the possibility that rapamycin and its analogs may benefit the aging brain and serve as effective treatments of age-related neurodegenerative diseases. Here, we review mTOR signaling and how neurons utilize mTOR to regulate brain function, including regulation of feeding, synaptic plasticity and memory formation. Additionally, we discuss recent findings that evaluate the mechanisms by which reduced mTOR activity might benefit the aging brain in normal and pathological states. We will focus on recent studies investigating mTOR and Alzheimer's disease, Parkinson's disease, and polyglutamine expansion syndromes such as Huntington's disease.
Collapse
Affiliation(s)
- Michael G Garelick
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
1941
|
Dey N, Ghosh-Choudhury N, Das F, Li X, Venkatesan B, Barnes JL, Kasinath BS, Ghosh Choudhury G. PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy. J Cell Physiol 2010; 225:27-41. [PMID: 20629086 DOI: 10.1002/jcp.22186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Diabetic nephropathy manifests aberrant activation of TORC1, which senses key signals to modulate protein synthesis and renal hypertrophy. PRAS40 has recently been identified as a raptor-interacting protein and is a component and a constitutive inhibitor of TORC1. The mechanism by which high glucose stimulates TORC1 activity is not known. PRAS40 was identified in the mesangial cells in renal glomeruli and in tubulointerstitium of rat kidney. Streptozotocin-induced diabetic renal hypertrophy was associated with phosphorylation of PRAS40 in the cortex and glomeruli. In vitro, high glucose concentration increased PRAS40 phosphorylation in a PI 3 kinase- and Akt-dependent manner, resulting in dissociation of raptor-PRAS40 complex in mesangial cells. High glucose augmented the inactivating and activating phosphorylation of 4EBP-1 and S6 kinase, respectively, with concomitant induction of protein synthesis and hypertrophy. Expression of TORC1-nonphosphorylatable mutant of 4EBP-1 and dominant-negative S6 kinase significantly inhibited high glucose-induced protein synthesis and hypertrophy. PRAS40 knockdown mimicked the effect of high glucose on phosphorylation of 4EBP-1 and S6 kinase, protein synthesis, and hypertrophy. To elucidate the role of PRAS40 phosphorylation, we used phosphorylation-deficient mutant of PRAS40, which in contrast to PRAS40 knockdown inhibited phosphorylation of 4EBP-1 and S6 kinase, leading to reduced mesangial cell hypertrophy. Thus, our data identify high glucose-induced phosphorylation and inactivation of PRAS40 as a central node for mesangial cell hypertrophy in diabetic nephropathy.
Collapse
Affiliation(s)
- Nirmalya Dey
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
1942
|
Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D. Mol Cell Biol 2010; 30:5406-20. [PMID: 20837708 DOI: 10.1128/mcb.00217-10] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian target of rapamycin complex 1 (mTORC1) is a molecular hub that regulates protein synthesis in response to a number of extracellular stimuli. Cyclic AMP (cAMP) is considered to be an important second messenger that controls mTOR; however, the signaling components of this pathway have not yet been elucidated. Here, we identify cAMP phosphodiesterase 4D (PDE4D) as a binding partner of Rheb that acts as a cAMP-specific negative regulator of mTORC1. Under basal conditions, PDE4D binds Rheb in a noncatalytic manner that does not require its cAMP-hydrolyzing activity and thereby inhibits the ability of Rheb to activate mTORC1. However, elevated cAMP levels disrupt the interaction of PDE4D with Rheb and increase the interaction between Rheb and mTOR. This enhanced Rheb-mTOR interaction induces the activation of mTORC1 and cap-dependent translation, a cellular function of mTORC1. Taken together, our results suggest a novel regulatory mechanism for mTORC1 in which the cAMP-determined dynamic interaction between Rheb and PDE4D provides a key, unique regulatory event. We also propose a new role for PDE4 as a molecular transducer for cAMP signaling.
Collapse
|
1943
|
Gao D, Wan L, Inuzuka H, Berg AH, Tseng A, Zhai B, Shaik S, Bennett E, Tron AE, Gasser JA, Lau A, Gygi S, Harper JW, DeCaprio JA, Toker A, Wei W. Rictor forms a complex with Cullin-1 to promote SGK1 ubiquitination and destruction. Mol Cell 2010; 39:797-808. [PMID: 20832730 PMCID: PMC2939073 DOI: 10.1016/j.molcel.2010.08.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 03/24/2010] [Accepted: 06/21/2010] [Indexed: 12/31/2022]
Abstract
The Rictor/mTOR complex (also known as mTORC2) plays a critical role in cellular homeostasis by phosphorylating AGC kinases such as Akt and SGK at their hydrophobic motifs to activate downstream signaling. However, the regulation of mTORC2 and whether it has additional function(s) remain largely unknown. Here, we report that Rictor associates with Cullin-1 to form a functional E3 ubiquitin ligase. Rictor, but not Raptor or mTOR alone, promotes SGK1 ubiquitination. Loss of Rictor/Cullin-1-mediated ubiquitination leads to increased SGK1 protein levels as detected in Rictor null cells. Moreover, as part of a feedback mechanism, phosphorylation of Rictor at T1135 by multiple AGC kinases disrupts the interaction between Rictor and Cullin-1 to impair SGK1 ubiquitination. These findings indicate that the Rictor/Cullin-1 E3 ligase activity is regulated by a specific signal relay cascade and that misregulation of this mechanism may contribute to the frequent overexpression of SGK1 in various human cancers.
Collapse
Affiliation(s)
- Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Anders H. Berg
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Alan Tseng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - Shavali Shaik
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Eric Bennett
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - Adriana E. Tron
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Jessica A. Gasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Alan Lau
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Steven Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | - J. Wade Harper
- Department of Pathology, Harvard Medical School, Boston, MA 02115
| | - James A. DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| |
Collapse
|
1944
|
Tao Z, Barker J, Shi SDH, Gehring M, Sun S. Steady-state kinetic and inhibition studies of the mammalian target of rapamycin (mTOR) kinase domain and mTOR complexes. Biochemistry 2010; 49:8488-98. [PMID: 20804212 DOI: 10.1021/bi100673c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase and a major controller of cell growth. In cells, mTOR forms two distinct multiprotein complexes, mTORC1 and mTORC2. The mTORC1 complex can phosphorylate 4EBP1 and S6K1, two key regulators of translation initiation, whereas mTORC2 phosphorylates AKT1, an event required for AKT1 activation. Here, we expressed and purified human mTORC1 and mTORC2 from HEK-293 cells using FLAG-M2 affinity chromatography. Western blotting analysis using phospho-specific antibodies indicated that recombinant mTORC1 and mTORC2 exhibit distinct substrate preferences in vitro, consistent with their roles in cells. To improve our understanding of the enzymatic properties of mTOR alone and mTOR in its complex form, steady-state kinetic profiles of truncated mTOR containing the kinase domain (residues 1360-2549) and mTORC1 were determined. The results revealed that mTORC1 is catalytically less active than truncated mTOR, as evidenced by 4.7- and 3.1-fold decreases in catalytic efficiency, k(cat)/K(m), for ATP and 4EBP1, respectively. We also found that truncated mTOR undergoes autophosphorylation through an intramolecular mechanism. Mass spectrometric analysis identified two novel mTOR autophosphorylation sites, Ser2454 and either Thr2473 or Thr2474, in addition to the previously reported Ser2481 site. Truncated mTOR and mTORC1 were completely inhibited by ATP competitive inhibitors PI103 and BEZ235 and partially inhibited by rapamycin/FKBP12 in a noncompetitive fashion toward ATP. All inhibitors tested exhibited similar inhibitory potencies between mTORC1 and truncated mTOR containing the kinase domain. Our studies presented here provide the first detailed kinetic studies of a recombinant mTOR complex.
Collapse
Affiliation(s)
- Zhihua Tao
- Pfizer La Jolla Laboratories, Worldwide Research and Development, San Diego, California 92121, USA
| | | | | | | | | |
Collapse
|
1945
|
Abstract
The mammalian target of rapamycin (mTOR) has attracted substantial attention because of its involvement in a variety of diseases, such as cancer, cardiac hypertrophy, diabetes and obesity. Current knowledge indicates that mTOR functions as two distinct multiprotein complexes, mTORC1 and mTORC2. mTORC1 phosphorylates p70 S6 kinase (S6K1) and eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1), and regulates cell growth, proliferation, and survival by integrating hormones, growth factors, nutrients, stressors and energy signals. In contrast, mTORC2 is insensitive to nutrients or energy conditions. However, in response to hormones or growth factors, mTORC2 phosphorylates Akt, and regulates actin cytoskeleton and cell survival. These findings not only reveal the crucial role of mTOR in physiology and pathology, but also reflect the complexity of the mTOR signaling network. In this review, we discuss the advances in studies of the mTOR complexes, including the interacting proteins, the upstream regulators and the downstream effectors of mTOR complexes, as well as their implication in certain human diseases.
Collapse
Affiliation(s)
- Hongyu Zhou
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130-3932, USA
| |
Collapse
|
1946
|
Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism. Semin Cell Dev Biol 2010; 21:683-90. [DOI: 10.1016/j.semcdb.2010.03.002] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 02/19/2010] [Accepted: 03/03/2010] [Indexed: 01/07/2023]
|
1947
|
Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, McCubrey JA. The emerging role of the phosphatidylinositol 3-kinase/ akt/mammalian target of rapamycin signaling network in cancer stem cell biology. Cancers (Basel) 2010; 2:1576-96. [PMID: 24281174 PMCID: PMC3837323 DOI: 10.3390/cancers2031576] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/16/2010] [Indexed: 12/23/2022] Open
Abstract
The cancer stem cell theory entails the existence of a hierarchically organized, rare population of cells which are responsible for tumor initiation, self-renewal/maintenance, and mutation accumulation. The cancer stem cell proposition could explain the high frequency of cancer relapse and resistance to currently available therapies. The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway regulates a wide array of physiological cell functions which include differentiation, proliferation, survival, metabolism, autophagy, and motility. Dysregulated PI3K/Akt/mTOR signaling has been documented in many types of neoplasias. It is now emerging that this signaling network plays a key role in cancer stem cell biology. Interestingly, cancer stem cells displayed preferential sensitivity to pathway inhibition when compared to healthy stem cells. This observation provides the proof-of-principle that functional differences in signaling pathways between neoplastic stem cells and healthy stem cells could be identified. In this review, we present the evidence which links the signals emanating from the PI3K/Akt/mTOR cascade with the functions of cancer stem cells, both in solid and hematological tumors. We then highlight how targeting PI3K/Akt/mTOR signaling with small molecules could improve cancer patient outcome.
Collapse
Affiliation(s)
- Alberto M. Martelli
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-051-2091580; Fax: +39-051-2091695
| | - Camilla Evangelisti
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
| | - Francesca Chiarini
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
| | - Cecilia Grimaldi
- Department of Human Anatomy, University of Bologna, via Irnerio 48, 40126 Bologna, Italy; E-Mails: (C.E.); (F.C.); (C.G.)
| | - James A. McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, NC 27834, USA; E-Mail: (J.A.M.)
| |
Collapse
|
1948
|
Mieulet V, Yan L, Choisy C, Sully K, Procter J, Kouroumalis A, Krywawych S, Pende M, Ley SC, Moinard C, Lamb RF. TPL-2-mediated activation of MAPK downstream of TLR4 signaling is coupled to arginine availability. Sci Signal 2010; 3:ra61. [PMID: 20716763 DOI: 10.1126/scisignal.2000934] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The innate immune response is influenced by the nutrient status of the host. Mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase 1 (ERK1) and ERK2, are activated after the stimulation of macrophages with bacterial lipopolysaccharide (LPS) and are necessary for the optimal production of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha). We uncovered a role for the extracellular nutrient arginine in the activation of ERK1/2 in LPS-stimulated macrophages. Arginine facilitated the activation of MAPKs by preventing the dephosphorylation and inactivation of the MAPK kinase kinase tumor-promoting locus 2 (TPL-2). Starvation of mice decreased the concentration of arginine in the plasma and impaired the activation of ERK1/2 by LPS. Supplementation of starved mice with arginine promoted the subsequent activation of ERK1/2 and the production of TNF-alpha in response to LPS. Thus, arginine is critical for two aspects of the innate immune response in macrophages: It is the precursor used in the generation of the antimicrobial mediator nitric oxide, and it facilitates MAPK activation and consequently cytokine production.
Collapse
Affiliation(s)
- Virginie Mieulet
- Department of Oncology, University of Alberta, Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1949
|
Chapuis N, Tamburini J, Green AS, Willems L, Bardet V, Park S, Lacombe C, Mayeux P, Bouscary D. Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies. Leukemia 2010; 24:1686-99. [PMID: 20703258 DOI: 10.1038/leu.2010.170] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mammalian target of rapamycin (mTOR) is a protein kinase implicated in the regulation of various cellular processes, including those required for tumor development, such as the initiation of mRNA translation, cell-cycle progression and cellular proliferation. In a wide range of hematological malignancies, the mTORC1 signaling pathway has been found to be deregulated and has been designed as a major target for tumor therapy. Given that pre-clinical studies have clearly established the therapeutic value of mTORC1 inhibition, numerous clinical trials of rapamycin and its derivates (rapalogs) are ongoing for treatment of these diseases. At this time, although disease stabilization and tumor regression have been observed, objective responses in some tumor types have been modest. Nevertheless, some of the mechanisms underlying cancer-cell resistance to rapamycin have now been described, thereby leading to the development of new strategy to efficiently target mTOR signaling in these diseases. In this review, we discuss the rationale for using mTOR inhibitors as novel therapies for a variety of hematological, malignancies with a focus on promising new perspectives for these approaches.
Collapse
Affiliation(s)
- N Chapuis
- Département d'Immunologie-Hématologie, Institut Cochin, Université Paris Descartes, CNRS, UMR8104, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
1950
|
DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, Sancak Y, Cui X, Steine EJ, Miller JC, Tam P, Bartsevich VV, Meng X, Rupniewski I, Gopalan SM, Sun HC, Pitz KJ, Rock JM, Zhang L, Davis GD, Rebar EJ, Cheeseman IM, Yamamoto KR, Sabatini DM, Jaenisch R, Gregory PD, Urnov FD. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res 2010; 20:1133-42. [PMID: 20508142 PMCID: PMC2909576 DOI: 10.1101/gr.106773.110] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/11/2010] [Indexed: 11/25/2022]
Abstract
Isogenic settings are routine in model organisms, yet remain elusive for genetic experiments on human cells. We describe the use of designed zinc finger nucleases (ZFNs) for efficient transgenesis without drug selection into the PPP1R12C gene, a "safe harbor" locus known as AAVS1. ZFNs enable targeted transgenesis at a frequency of up to 15% following transient transfection of both transformed and primary human cells, including fibroblasts and hES cells. When added to this locus, transgenes such as expression cassettes for shRNAs, small-molecule-responsive cDNA expression cassettes, and reporter constructs, exhibit consistent expression and sustained function over 50 cell generations. By avoiding random integration and drug selection, this method allows bona fide isogenic settings for high-throughput functional genomics, proteomics, and regulatory DNA analysis in essentially any transformed human cell type and in primary cells.
Collapse
Affiliation(s)
- Russell C. DeKelver
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Vivian M. Choi
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Erica A. Moehle
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - David E. Paschon
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Dirk Hockemeyer
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Sebastiaan H. Meijsing
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
| | - Yasemin Sancak
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Xiaoxia Cui
- Sigma-Aldrich Research Biotechnology, St. Louis, Missouri 63103, USA
| | - Eveline J. Steine
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Jeffrey C. Miller
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Phillip Tam
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Victor V. Bartsevich
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Xiangdong Meng
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Igor Rupniewski
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Sunita M. Gopalan
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Helena C. Sun
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Kathleen J. Pitz
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Jeremy M. Rock
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Lei Zhang
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Gregory D. Davis
- Sigma-Aldrich Research Biotechnology, St. Louis, Missouri 63103, USA
| | - Edward J. Rebar
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Iain M. Cheeseman
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Keith R. Yamamoto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
| | - David M. Sabatini
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Rudolf Jaenisch
- The Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Philip D. Gregory
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| | - Fyodor D. Urnov
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, California 94804, USA
| |
Collapse
|