151
|
Chen MY, Li SX, Du ZX, Xiong QF, Zhong YD, Liu DX, Yang YF. Liver biopsy-proven non-alcoholic fatty liver disease predicts no impact on antiviral response in patients with chronic hepatitis B. Clinics (Sao Paulo) 2024; 79:100493. [PMID: 39332149 PMCID: PMC11467630 DOI: 10.1016/j.clinsp.2024.100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVE The role of Non-Alcoholic Fatty Liver Disease (NAFLD) on antiviral response in Chronic Hepatitis B (CHB) remains unclear. Previous studies mainly focus on the impact of the Non-Alcoholic Fatty Liver (NAFL) on antiviral efficacy, whereas the role of Non-Alcoholic Steatohepatitis (NASH) has not been highlighted. The authors aimed to investigate the association of NAFLD (NAFL and NASH), viral and histological characteristics with antiviral response. METHODS The authors collected data of treatment-naïve CHB patients who underwent liver biopsy. All these patients received antiviral monotherapy and 48-week follow-up. The antiviral response was evaluated by Kaplan-Meier analysis. Cox regression analysis identified the variables associated with antiviral response. RESULTS Overall, 120 treatment-naïve CHB patients were enrolled, with 49.2 % (59/120) of them were complicated by NAFLD. Male (Odd Ratio [OR = 4.222], 95 % Confidence Interval [95 % CI 1.620-11.003]) and overweight (OR = 8.709, 95 % CI 3.355-22.606) were independent predictors for concurrent NAFLD. After 48-week follow-up, the authors found that the overall antiviral response did not differ between CHB patients with and without concomitant NAFL/NASH (p > 0.05). High viral load (Hazard Ratio [HR = 0.522], 95 % CI 0.286-0.952), advanced fibrosis (HR = 2.426, 95 % CI 1.256-4.686), and moderate-to-severe interface hepatitis (HR = 2.541, 95 % CI 1.406-4.592) were significantly correlated with antiviral response after 8-week follow-up. CONCLUSION Neither NAFL nor NASH had an impact on antiviral therapy for CHB. It was low hepatitis B load, advanced fibrosis, and moderate-to-severe interface hepatitis that contributed to the virological response.
Collapse
Affiliation(s)
- Miao-Yang Chen
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shun-Xin Li
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhi-Xiang Du
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Qing-Fang Xiong
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan-Dan Zhong
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Du-Xian Liu
- Department of Pathology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yong-Feng Yang
- Department of Infectious Disease and Liver Disease, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
152
|
Yang H, Ran S, Zhou Y, Shi Q, Yu J, Wang W, Sun C, Li D, Hu Y, Pan C, Yuan Q, Zhen Y, Liu Q, Song L. Exposure to Succinate Leads to Steatosis in Non-Obese Non-Alcoholic Fatty Liver Disease by Inhibiting AMPK/PPARα/FGF21-Dependent Fatty Acid Oxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21052-21064. [PMID: 39268842 DOI: 10.1021/acs.jafc.4c05671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Succinate is an important metabolite and a critical chemical with diverse applications in the food, pharmaceutical, and agriculture industries. Recent studies have demonstrated several protective or detrimental functions of succinate in diseases; however, the effect of succinate on lipid metabolism is still unclear. Here, we identified a role of succinate in nonobese nonalcoholic fatty liver disease (NAFLD). Specifically, the level of succinate is increased in the livers and serum of mice with hepatic steatosis. The administration of succinate promotes triglyceride (TG) deposition and hepatic steatosis by suppressing fatty acid oxidation (FAO) in nonobese NAFLD mouse models. RNA-Seq revealed that succinate suppressed fibroblast growth factor 21 (FGF21) expression. Then, the restoration of FGF21 was sufficient to alleviate hepatic steatosis and FAO inhibition induced by succinate treatment in vitro and in vivo. Furthermore, the inhibition of FGF21 expression and FAO mediated by succinate was dependent on the AMPK/PPARα axis. This study provides evidence linking succinate exposure to abnormal hepatic lipid metabolism and the progression of nonobese NAFLD.
Collapse
Affiliation(s)
- Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Suye Ran
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qing Shi
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Jiangnan Yu
- Department of Gastroenterology, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou 550000, China
| | - Wenjuan Wang
- Department of Gastroenterology, Xingyi People's Hospital, Xingyi, Guizhou 562400, China
| | - Chengqin Sun
- Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Dengke Li
- Luoyang Vocational and Technical College, Luoyang, Henan 471000, China
| | - Yue Hu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Chen Pan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Yuan
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yunhuan Zhen
- Department of Colorectal Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lingyu Song
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
153
|
Puspita R, Jusuf AA, Antarianto RD, Sianipar IR. A systematic review of the anti-inflammatory and anti-fibrotic potential of human umbilical cord mesenchymal stem cells-derived exosomes in experimental models of liver regeneration. Mol Biol Rep 2024; 51:999. [PMID: 39302506 DOI: 10.1007/s11033-024-09929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Chronic liver injuries and their complications are leading causes of death, especially in developing countries (Sharma and Nagalli in Sex/Gender-Specific Medicine in the Gastrointestinal Diseases, StatPearls Publishing, 2023). The available and effective treatment plans are limited, implicating the need for innovative treatment approaches (Tsuchiya et al. in Inflamm Regener, 2019;Sharma and Nagalli in Sex/Gender-Specific Medicine in the Gastrointestinal Diseases, StatPearls Publishing, 2023;Younossi et al. in Clin Gastroenterol Hepatol 21:1978-1991, 2023;). This paper aims to summarize the effects and mechanisms of hUC-MSC-exo on liver injuries and its complications; it also suggests future directions for future research. The outcomes of interest are the morphology and histology of the liver, pathology score, liver function enzyme, glucose and lipid metabolism, and the effect hUC-MSC-exo had on gene regulation regarding liver diseases. A comprehensive review of nineteen studies was conducted to assess the effectiveness of the implementation of the hUC-MSC-Exo, instilling confidence in the validity of the findings. Regarding the morphology and histology of the liver and pathology score, hUC-MSC-exo treatment resulted in improved liver morphology post-treatment, as indicated by the reduction in pathology scores. However, these observed improvements in the liver surface are not directly attributed to the hUC-MSC-Exo itself but to the overall healing processes stimulated by the treatment. In physiological outcomes, hUC-MSC-exo also improves glucose and lipid metabolism, especially in diet-induced liver injury and its complications. In gene regulation, one interesting gene in this intervention is the fat mass and obesity-associated (FTO), in which hUC-MSC-exo combined with miRNAs can suppress FTO. HUC-MSC-Exo can improve by utilizing several possible pathways, targeting pinpoints in the pathogenesis of liver disease or glucose and lipid metabolism. This study presents hUC-MSC-exo better in all outcomes of interest compared to the control or sham group. Further specification of indications of the hUC-MSC-exo method may be beneficial and essential to be analyzed in future reviews to better understand the effectiveness of each hUC-MSC-exo dose, duration, and medium.
Collapse
Affiliation(s)
- Ratna Puspita
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Biochemistry, Faculty of Medicine, Universitas Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.
| | | | | |
Collapse
|
154
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
155
|
Laudermilk LT, Schlosburg JE, Gay EA, Decker AM, Williams A, Runton R, Vasukuttan V, Kotiya A, Amato GS, Maitra R. Novel Peripherally Selective Cannabinoid Receptor 1 Neutral Antagonist Improves Metabolic Dysfunction-Associated Steatotic Liver Disease in Mice. ACS Pharmacol Transl Sci 2024; 7:2856-2868. [PMID: 39296275 PMCID: PMC11406686 DOI: 10.1021/acsptsci.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/21/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is increasing globally. MASLD is characterized by clinically significant liver steatosis, and a subset of patients progress to more severe metabolic-disorder-associated steatohepatitis (MASH) with liver inflammation and fibrosis. Cannabinoid receptor 1 (CB1) antagonism is a proven therapeutic strategy for the treatment of the phenotypes that underlie MASLD, though work on early centrally penetrant compounds largely ceased following adverse psychiatric indications in humans. We present here preclinical testing of a CB1 neutral antagonist, N-[1-[8-(2-Chlorophenyl)-9-(4-chlorophenyl)-9H-purin-6-yl]-4-phenylpiperidin-4l]methanesulfonamide (RTI-348), with minimal brain exposure when administered to mice. In a diet-induced model of MASLD-induced MASH, administration of RTI-348 decreased the total body and liver weight gain. Animals treated with RTI-348 showed reduced steatosis. Furthermore, they produced lower plasma alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH), biomarkers associated with liver damage. Mice maintained on the MASH diet had elevated expression of genes associated with profibrogenesis, immune response, and extracellular matrix remodeling, and treatment with RTI-348 mitigated these diet-induced changes in gene expression. Using an intracranial electrical self-stimulation model, we also demonstrated that RTI-348 does not produce an anhedonia response, as seen with the first-generation CB1 inverse agonist rimonabant. Altogether, the results herein point to RTI-348 as a promising neutral antagonist for MASH.
Collapse
Affiliation(s)
- Lucas T Laudermilk
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Joel E Schlosburg
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia 23298-0565, United States
| | - Elaine A Gay
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Ann M Decker
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Aaron Williams
- Undergraduate Studies, Clemson University, Clemson, South Carolina 29634, United States
| | - Rubica Runton
- Undergraduate Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0002, United States
| | - Vineetha Vasukuttan
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Archana Kotiya
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - George S Amato
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
| | - Rangan Maitra
- Center for Drug Discovery, RTI International, Research Triangle Park, North Carolina 27709-2194, United States
- Artiam Bio Inc., Cary, North Carolina 27513-2754, United States
| |
Collapse
|
156
|
Yang Y, Fan G, Lan J, Li X, Li X, Liu R. Polysaccharide-mediated modulation of gut microbiota in the treatment of liver diseases: Promising approach with significant challenges. Int J Biol Macromol 2024:135566. [PMID: 39270901 DOI: 10.1016/j.ijbiomac.2024.135566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Liver disease represents a significant global health burden, with an increasing prevalence and a lack of efficient treatment options. The microbiota-gut-liver axis involves bidirectional communication between liver function and intestinal microorganisms. A balanced gut flora protects intestinal homeostasis, while imbalances contribute to the development of liver diseases. Distinct alterations in the structure of gut flora during illness are crucial in the management of various liver diseases. Polysaccharides derived from herbal products, fungi, and other sources have been identified to possess diverse biological activities and are well-tolerated in the treatment of liver diseases. This review provides updates on the therapeutic effects of polysaccharides on liver diseases, including fatty liver diseases, acute liver injuries and liver cancers. It also summarizes advancements in understanding the mechanisms involved, particularly from the perspective of gut microbiota and metabolites, by highlighting the changes in the composition of potentially beneficial and harmful bacteria and their correlation with the therapeutic effects of polysaccharides. Additionally, by exploring the structure-activity relationship, our review provides valuable insights for the structural modification of polysaccharides and expanding their applications. In conclusion, this review offers theoretical support and novel perspectives on developing polysaccharides-based therapeutic approaches for the treatment of liver diseases.
Collapse
Affiliation(s)
- Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Jianhang Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China.
| |
Collapse
|
157
|
Xie X, Liao Y, Lin Z, Luo H, Wei G, Huang N, Li Y, Chen J, Su Z, Yu X, Chen L, Liu Y. Patchouli alcohol alleviates metabolic dysfunction-associated steatohepatitis via inhibiting mitochondria-associated endoplasmic reticulum membrane disruption-induced hepatic steatosis and inflammation in rats. Int Immunopharmacol 2024; 138:112634. [PMID: 38971107 DOI: 10.1016/j.intimp.2024.112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by abnormal hepatic steatosis and inflammation. Previous studies have shown that Patchouli alcohol (PA), the primary component of Pogostemonis Herba, can alleviate digestive system diseases. However, its protection against MASH remains unclear. This study explored the protective effects and underlying mechanism of PA against high-fat diet-induced MASH in rats. Results showed that PA considerably reduced body weight, epididymal fat, and liver index and attenuated liver histological injury in MASH rats. PA alleviated hepatic injury by inhibiting steatosis and inflammation. These effects are associated with the improvement of SREBP-1c- and PPARα-mediated lipid metabolism and inhibition of the STING-signaling pathway-mediated inflammatory response. Moreover, PA-inhibited hepatic endoplasmic reticulum (ER) stress and mitochondrial dysfunction, reducing SREBP-1c and STING expressions and enhance PPARα expression. PA treatment had the strongest effect on the regulation of mitogen fusion protein 2 (Mfn2) in inhibiting mitochondrial dysfunction. Mfn2 is an important structural protein for binding ERs and mitochondria to form mitochondria-associated ER membranes (MAMs). MASH-mediated disruption of MAMs was inhibited after PA treatment-induced Mfn2 activation. Therefore, the pharmacological effect of PA on MASH is mainly attributed to the inhibition of MAM disruption-induced hepatic steatosis and inflammation. The findings of this study may have implications for MASH treatment that do not neglect the role of Mfn2-mediated MAMs.
Collapse
Affiliation(s)
- Xingyu Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yingyi Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zixin Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huijuan Luo
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Guilan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ning Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiuting Yu
- Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China; Pharmaceutical Department, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Liping Chen
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Dongguan Institute of Guangzhou University of Chinese Medicine, Dongguan 523808, China.
| |
Collapse
|
158
|
Lu Y, Xu X, Wu J, Ji L, Huang H, Chen M. Association between neutrophil-to-high-density lipoprotein cholesterol ratio and metabolic dysfunction-associated steatotic liver disease and liver fibrosis in the US population: a nationally representative cross-sectional study using NHANES data from 2017 to 2020. BMC Gastroenterol 2024; 24:300. [PMID: 39237899 PMCID: PMC11378436 DOI: 10.1186/s12876-024-03394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The neutrophil-to-high-density lipoprotein cholesterol ratio (NHR) has emerged as a promising biomarker for assessing inflammation and lipid dysregulation. Increasing evidence indicates that these metabolic disturbances play a crucial role in the development of metabolic dysfunction-associated steatotic liver disease(MASLD). This study aims to investigate the association between NHR, MASLD, and liver fibrosis. METHODS This cross-sectional study analyzed data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES). Weighted multivariate logistic regression models were used to investigate the association between NHR and both MASLD and liver fibrosis. Smoothed curve fitting and threshold effect analysis were performed to detect potential nonlinear relationships. Subgroup analyses were conducted to assess the consistency of these associations across different groups. RESULTS The study involved 4,761 participants. We observed a significant positive association between NHR and MASLD (OR = 1.20, 95% CI: 1.09-1.31). However, there was no significant association between NHR and liver fibrosis (OR = 1.01; 95% CI: 0.94-1.09). The analysis of smoothed curve fitting and threshold effect revealed an inverted U-shaped relationship between NHR and MASLD, with a turning point at 5.63. CONCLUSION Our findings indicate a positive correlation between elevated NHR levels and MASLD prevalence. However, we did not observe a significant association between NHR and liver fibrosis prevalence. Further prospective research is needed to validate these findings in a longitudinal setting.
Collapse
Affiliation(s)
- Yangni Lu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Xianli Xu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Jianlin Wu
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Lei Ji
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Huiya Huang
- Department of General Medicine, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China
| | - Maowei Chen
- Department of Infectious Diseases, Wuming Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
159
|
Levien TL, Baker DE. Resmetirom. Hosp Pharm 2024; 60:00185787241278571. [PMID: 39558940 PMCID: PMC11569717 DOI: 10.1177/00185787241278571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy and Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are available online to subscribers. Monographs can be customized to meet the needs of a facility. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, contact Wolters Kluwer customer service at 866-397-3433.
Collapse
Affiliation(s)
- Terri L. Levien
- Pharmacotherapy Department, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Danial E. Baker
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
160
|
Fishman JC, Qian C, Kim Y, Rochon H, Szabo SM, Sun R, Charlton M. Cost burden of cirrhosis and liver disease progression in metabolic dysfunction-associated steatohepatitis: A US cohort study. J Manag Care Spec Pharm 2024; 30:929-941. [PMID: 38845444 PMCID: PMC11365567 DOI: 10.18553/jmcp.2024.24069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatohepatitis (MASH), formerly nonalcoholic steatohepatitis, is characterized by fat accumulation and inflammation of the liver and may result in progression to cirrhosis and liver-related events. OBJECTIVE To characterize the impact of cirrhosis and progression to liver-related events on costs and health care resource use (HCRU) among MASH patients in the United States. METHODS The study cohort included patients with diagnosed nonalcoholic steatohepatitis (International Classification of Diseases, Tenth Revision, Clinical Modification code K75.81) in Optum's deidentified Clinformatics Data Mart Database (October 2015 to December 2022) and were stratified by baseline cirrhosis status. Among those without cirrhosis at baseline, patients were further stratified by status of progression to cirrhosis during follow-up. Total HCRU and costs per-person per-year (PPPY) were estimated and compared descriptively between the cohorts. In addition, gamma generalized linear models were used to compare costs PPPY between those with vs without cirrhosis at baseline, as well as with vs without progression during follow-up, while adjusting for baseline patient and disease characteristics. Annual costs per person were also longitudinally modeled using gamma generalized linear mixed models to understand longitudinal changes in costs PPPY while accounting for time correlations within individual patients. Lastly, a series of sensitivity analyses were conducted to assess the impact of study design features and clinical variations of total costs PPPY. RESULTS A total of 28,576 adults were included, and 9,157 (32.0%) had baseline cirrhosis; of the 19,419 without baseline cirrhosis, a total of 4,235 (21.8%) progressed over follow-up. Mean (SD) HCRU and costs PPPY were higher among patients with cirrhosis ($110,403 [$226,037]) than without ($28,340 [$61,472]; P < 0.01) and among those with progression ($58,128 [$102,626]) than without ($20,031 [$39,740]; P < 0.01). Costs remained significantly greater when adjusted for covariates, with a risk ratio (95% CI) of 1.99 (1.89-2.09) when comparing with vs without baseline cirrhosis and 2.28 (2.15-2.42) when comparing with vs without progression over follow-up. Costs increased with each subsequent year, to 21% by year 6 among those with cirrhosis at baseline and 49% among those without baseline cirrhosis who progressed. CONCLUSIONS The financial burden of MASH is substantial and significantly greater among those with cirrhosis or disease progression. Although patients without cirrhosis incur lower burden, the increase over time is greater and associated with progression. Therapies that slow progression may help alleviate the financial burden, and strategies are needed to identify patients with MASH at risk of progressing to cirrhosis.
Collapse
Affiliation(s)
| | | | - Yestle Kim
- Madrigal Pharmaceuticals, Inc., West Conshohocken, PA
| | | | | | - Rosie Sun
- Broadstreet HEOR, Vancouver, BC, Canada
| | | |
Collapse
|
161
|
Chen H, Bai Z, Tao S, Li M, Jian L, Zhang Y, Yang X. Optimization of enzyme-assisted microwave extraction, structural characterization, antioxidant activity and in vitro protective effect against H 2O 2-induced damage in HepG2 cells of polysaccharides from roots of Rubus crataegifolius Bunge. Int J Biol Macromol 2024; 276:133969. [PMID: 39029849 DOI: 10.1016/j.ijbiomac.2024.133969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
In this study, an enzyme-assisted microwave extraction process was obtained by response surface method of polysaccharide from roots of Rubus crataegifolius Bunge. The optimized extraction process was as follow: enzyme dosage 2 %, enzymatic time was 3.6 h, enzymatic pH 4.9, and microwave time 4.7 min, with the extraction yield of 9.07 %. Four homogeneous polysaccharides (RCP-1, RCP-3, RCP-4 and RCP-5) were purified through column chromatography. Four polysaccharides have the relative higher molecular weights of 1.70 × 106 Da, 5.56 × 106 Da, 4.97 × 106 Da, and 9.80 × 106 Da and mainly consisted of GluN, GluA, Glu, Gal and Arab. FT-IR and NMR spectral analysis confirmed that the purified polysaccharides were polypyranose containing α- and β-glycosidic bonds. RCP - 1 has a relative high crystallinity. Four purified polysaccharides contained triple helical conformations, and have good antioxidant activities. Among the purified polysaccharides, RCP - 1 was found to reduce the oxidative cell damage induced by H2O2 through increasing of cell viability, inhibition of AST and ALT levels, ROS production and cell apoptosis, increasing of the activities of antioxidative enzymes, as well as reduction of MDA content. Our findings would provide a foundation for purified polysaccharides efficient extraction and demonstrated that the polysaccharides from R. crataegifolius roots could be a promising hepatoprotective agent.
Collapse
Affiliation(s)
- Huiling Chen
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Zifan Bai
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Shuo Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Muchun Li
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Liqiao Jian
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Yan Zhang
- College of Medical, Jiaxing University, Jiaxing 314001, PR China.
| | - Xiudong Yang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China.
| |
Collapse
|
162
|
Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. LIVER RESEARCH 2024; 8:131-140. [PMID: 39957748 PMCID: PMC11771255 DOI: 10.1016/j.livres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
Compared with the widely used rodents, pigs are anatomically, physiologically, and genetically more similar to humans, making them high-quality models for the study of liver diseases. Here, we review the latest research progress on pigs as a model of human liver disease, including methods for establishing them and their advantages in studying cystic fibrosis liver disease, acute liver failure, liver regeneration, non-alcoholic fatty liver disease, liver tumors, and xenotransplantation. We also emphasize the importance of genetic engineering techniques, mainly the CRISPR/Cas9 system, which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research. Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
163
|
Sun X, Yao L, Kang X, Yu W, Kitaghenda FK, Ibn Rashid MS, Taguemkam AN, Hong J, Dong Z, Sun X, Zhu X. Outcome of bariatric surgery in patients with unexpected liver cirrhosis: A multicenter study from China. LIVER RESEARCH 2024; 8:172-178. [PMID: 39957746 PMCID: PMC11771253 DOI: 10.1016/j.livres.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/26/2024] [Accepted: 08/21/2024] [Indexed: 01/03/2025]
Abstract
Background and aims Liver cirrhosis is a complex disease that may result in increased morbidity and mortality following bariatric surgery (BS). This study aimed to explore the outcome of BS in patients with unexpected cirrhosis, focusing on postoperative complications and the progression of liver disease. Methods A retrospective study of bariatric patients with cirrhosis from four centers in China between 2016 and 2023 was conducted, with follow-up for one year after BS. The primary outcome was the safety of BS in patients with unexpected cirrhosis, while the secondary outcome was the metabolic efficacy of BS in this group postoperatively. Results A total of 47 patients met the study criteria, including 46 cases of Child-Pugh class A cirrhosis and 1 case of Child-Pugh B. Pathological examination confirmed nodular cirrhosis in 21 patients (44.68%), pseudolobule formation in 1 patient (2.13%), lipedema degeneration with inflammatory cell infiltration in 3 patients (6.38%), and chronic hepatitis in 1 patient (2.13%). The average percentage of total weight loss was 29.73 ± 6.53% at one year postoperatively. During the 30-day postoperative period, the complication rate was 6.38%, which included portal vein thrombosis, gastrointestinal bleeding, and intra-abdominal infection. Moreover, no cases of liver decompensation or mortality were reported during the follow-up period. The remission rates of comorbidities among 41 patients one year after surgery were as follows: dyslipidemia 100%, type 2 diabetes 82.61%, hypertension 84.62%, and obstructive sleep apnea syndrome 85.71%. Conclusions BS can be safely performed in patients with unexpected cirrhosis in the compensated stage of liver disease, with low postoperative morbidity and no mortality observed during one-year follow-up.
Collapse
Affiliation(s)
- Xia Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Libin Yao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xing Kang
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Weihua Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fidele Kakule Kitaghenda
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mohammad Sajjad Ibn Rashid
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Angeline Nogue Taguemkam
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jian Hong
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyong Dong
- Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xitai Sun
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaocheng Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
164
|
Lu K, Cheng X, He L, Li M, Chen Q, Qian C, Zhao R, Yang L, Liu F, Liu S, Zhang T, Feng L, Wu L, Wu X, Xu N, Li Y, Wang J, Han Y, Yuan H, Liu T, Zheng M, Lu S, Li D. LNCHC directly binds and regulates YBX1 stability to ameliorate metabolic dysfunction-associated steatotic liver disease progression. Liver Int 2024; 44:2396-2408. [PMID: 38847599 DOI: 10.1111/liv.15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the foremost cause of chronic liver disease, yet its underlying mechanisms remain elusive. Our group previously discovered a novel long non-coding RNA (lncRNA) in rats, termed lncHC and its human counterpart, LNCHC. This study aimed to explore the role of LNCHC in the progression of MASLD. METHODS RNA-binding proteins bound to LNCHC were searched by mass spectrometry. The target genes of LNCHC and Y-Box binding protein 1 (YBX1) were identified by RNA-seq. MASLD animal models were utilised to examine the roles of LNCHC, YBX1 and patatin-like phospholipase domain containing 3 (PNPLA3) in MASLD progression. RESULTS Here, we identified LNCHC as a native restrainer during MASLD development. Notably, LNCHC directly binds YBX1 and prevents protein ubiquitination. Up-regulation of YBX1 then stabilises PNPLA3 mRNA to alleviate lipid accumulation in hepatocytes. Furthermore, both cell and animal studies demonstrate that LNCHC, YBX1 and PNPLA3 function to improve hepatocyte lipid accumulation and exacerbate metabolic dysfunction-associated steatohepatitis development. CONCLUSIONS In summary, our findings unveil a novel LNCHC functionality in regulating YBX1 and PNPLA3 mRNA stability during MASLD development, providing new avenues in MASLD treatment.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing, China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Chen Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Fangtong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Sitong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Xiaodan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan Xi, China
| | - Ya Li
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, China
| | - Jun Wang
- Second Department of Infectious Disease, Xi'an Children's Hospital, Xi'an, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyang Yuan
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, School of Life Sciences, Fudan University, Shanghai, China
| | - Minghua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| |
Collapse
|
165
|
Guo C, Liu Z, Fan H, Wang H, Zhang X, Zhao S, Li Y, Wang T, Dai L, Huang J, Chen X, Zhang T. Nonlinear relationships of circulating polyunsaturated fatty acids with the complications of liver cirrhosis: A prospective, longitudinal cohort study. Clin Nutr 2024; 43:2083-2091. [PMID: 39094473 DOI: 10.1016/j.clnu.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS The role of circulating polyunsaturated fatty acids (PUFAs) in preventing liver cirrhosis complications remains unclear. METHODS Between 2006 and 2010, 273,834 UK Biobank participants with plasma PUFA quantification data were enrolled and followed up until October 31, 2022. Plasma PUFAs were quantified using a high-throughput nuclear magnetic resonance-based metabolic profiling platform. Liver cirrhosis complications were defined as hospitalization for liver cirrhosis or presentation with hepatocellular carcinoma. RESULTS During a median follow-up of 13.9 years, 2026 participants developed liver cirrhosis complications. Total plasma PUFAs, omega-3 PUFAs, docosahexaenoic acid (DHA), omega-6 PUFAs, and linoleic acid (LA) were inversely associated with the risk of liver cirrhosis complications, whereas the plasma omega-6/omega-3 ratio was positively associated. Nonparametrically restricted cubic spline regression showed nonlinear associations of plasma PUFAs with liver cirrhosis complications. The inflection points were 4.78 mmol/L for total PUFAs, 0.73 mmol/L for omega-3 PUFAs, 0.25 mmol/L for DHA, 4.07 mmol/L for omega-6 PUFAs, and 2.99 mmol/L for LA. Plasma omega-3 PUFAs were negatively associated with the risk of liver cirrhosis complications when omega-3 PUFAs were <0.73 mmol/L (adjusted hazard ratio [HR], 0.11 [0.08-0.16]), whereas the association was inverted when omega-3 PUFAs were ≥0.73 mmol/L (adjusted HR, 1.87 [1.20-2.92]). CONCLUSIONS The protective effect of plasma omega-3 PUFAs on liver cirrhosis complications is reversed after passing the corresponding inflection point, suggesting an optimal dietary omega-3 PUFA supplementation dose.
Collapse
Affiliation(s)
- Chengnan Guo
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Zhenqiu Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Hong Fan
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Haili Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Shuzhen Zhao
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Yi Li
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Tianye Wang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Luojia Dai
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Jiayi Huang
- Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| | - Tiejun Zhang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China; Department of Epidemiology, School of Public Health, Key Laboratory of Public Health Safety (Fudan University), Ministry of Education, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| |
Collapse
|
166
|
Li N, Cui C, Xu J, Mi M, Wang J, Qin Y. Quercetin intervention reduced hepatic fat deposition in patients with nonalcoholic fatty liver disease: a randomized, double-blind, placebo-controlled crossover clinical trial. Am J Clin Nutr 2024; 120:507-517. [PMID: 39032786 DOI: 10.1016/j.ajcnut.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has become a growing public health problem worldwide. However, there is still lack of effective treatment strategies except lifestyle intervention. OBJECTIVES To evaluate whether quercetin improves intrahepatic lipid content in patients with NAFLD. METHODS In this randomized, double-blind, placebo-controlled crossover trial, 41 patients with NAFLD were randomly assigned to receive the quercetin (500 mg) or placebo capsules for 12 wk, then switched interventions for another 12 wk after a 4-wk washout period. The primary outcome was intrahepatic lipid content evaluated by magnetic resonance imaging estimated proton density fat fraction. The secondary outcomes were liver function measurements, etc. Safety outcomes included blood routine. RESULTS A total of 36 patients completed the trial. In intention-to-treat analyses, the quercetin intervention moderately decreased the intrahepatic lipid contents from 11.5% ± 6.4% to 9.6% ± 5.8%, compared with the placebo intervention (decreased by 0.1% ± 2.6%, P = 0.013 and adjusted P value is 0.028). Body weight and body mass index were mildly reduced by 1.5 ± 2.6 kg and 0.5 ± 0.9 kg/m2 after the quercetin intervention (P < 0.05 and both adjusted P values are 0.038), whereas the reductions were only 0.2 ± 1.8 kg and 0.1 ± 0.7 kg/m2 after the placebo intervention. The intrahepatic lipid content reductions were noticeably positively associated with the body weight losses after the quercetin and placebo interventions (r = 0.557 and 0.412, P < 0.001 and P = 0.007, respectively). Subgroup analyses found that the reduction of intrahepatic lipid contents in females (3.0% ± 3.7%) was about twice as large as that in males (1.4% ± 2.5%) with a trend of statistical significance (P = 0.113 and adjusted P value is 0.061). There were no significant differences in other secondary and safety outcomes. No adverse events associated with study intervention were found. CONCLUSIONS Twelve weeks treatment of quercetin could reduce intrahepatic lipid contents in patients with NAFLD, possibly explained by a slightly larger body weight loss in the quercetin group. TRIAL REGISTRATION The trial is registered at www.chictr.org.cn as ChiCTR2100047904.
Collapse
Affiliation(s)
- NingChao Li
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chun Cui
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Endocrinology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - ManTian Mi
- Research Center for Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jian Wang
- Department of Nutrition, Xinqiao Hospital, Army Medical University, Chongqing, China.
| | - Yu Qin
- Research Center for Nutrition and Health, Institute of Military Preventive Medicine, Army Medical University, Chongqing, China.
| |
Collapse
|
167
|
Al Smadi K, Qureshi A, Ashouri B, Kayali Z. Investigational new drug approval of DA-1241: what we know about GPR119 targeting for MASH therapy? Expert Opin Investig Drugs 2024; 33:877-880. [PMID: 39092979 DOI: 10.1080/13543784.2024.2388592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Affiliation(s)
- Khaled Al Smadi
- Department of Gastroenterology and Hepatology, University of California - Riverside School of Medicine, Rialto, CA, USA
| | - Ammar Qureshi
- Department of Gastroenterology and Hepatology, University of California - Riverside School of Medicine, Rialto, CA, USA
| | - Besher Ashouri
- Department of Gastroenterology and Hepatology, University of California - Riverside School of Medicine, Rialto, CA, USA
| | - Zeid Kayali
- Department of Gastroenterology and Hepatology, University of California - Riverside School of Medicine, Rialto, CA, USA
| |
Collapse
|
168
|
Chen ME, Kapoor S, Baron TH, Desai CS. Biliary Complications in Liver Transplant Recipients With a History of Bariatric Surgery. EXP CLIN TRANSPLANT 2024; 22:686-690. [PMID: 39431836 DOI: 10.6002/ect.2024.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
OBJECTIVES Bariatric surgery can greatly ameliorate obesity and its associated metabolic disorders. Alteration of foregut anatomy, as is seen after Roux-en-Y gastric bypass and biliopancreatic diversion with duodenal switch, renders traditional access to the biliary tree difficult, if not impossible. This may complicate management of anastomotic biliary complications after liver transplant. MATERIALS AND METHODS In this single-center study, we retrospectively reviewed all adult patients with a history of any bariatric surgery who underwent liver transplant during the period January 2017 to December 2022. We obtained demographic information of donors and recipients. Outcomes of interest included the modality in which the anastomotic biliary complications were managed. RESULTS Of 261 patients who underwent liver transplant at our center during the study period, 9 had a history of bariatric surgery. Anastomotic biliary complications occurred in 3 of 9 patients (33%). No significant differences were shown in donor age, ischemia time, etiology of liver disease, or Model for End-Stage Liver Disease sodium score at time of transplant between the 2 groups. All anastomotic biliary complications occurred in patients with a history of Roux-en-Y gastric bypass or biliopancreatic diversion with duodenal switch. Interventions included advanced endoscopy, endoscopic ultrasonography, and lumen-apposing metal stent to access the remnant stomach and biliopancreatic limb (n = 2) and surgical revision following percutaneous transhepatic biliary drain placement (n = 1). At the end of the study, none experienced recurrent stricture. CONCLUSIONS Anastomotic biliary complications are well-described after liver transplant. A multidisciplinary approach with interventional radiology and inter-ventional gastroenterology can be beneficial to address strictures that arise in recipients with a history of Roux-en-Y gastric bypass or biliopancreatic diversion with duodenal switch.
Collapse
Affiliation(s)
- Melissa E Chen
- >From the Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
169
|
Sánchez MÁN, Martinez-Sanchez MA, Sierra-Cruz M, Lambertos A, Rico-Chazarra S, Oliva-Bolarín A, Román AB, Yuste JE, Martínez CM, Mika A, Frutos MD, Llamoza-Torres CJ, Córdoba-Chacón J, Ramos-Molina B. Increased hepatic putrescine levels as a new potential factor related to the progression of metabolic dysfunction-associated steatotic liver disease. J Pathol 2024; 264:101-111. [PMID: 39022853 PMCID: PMC11300153 DOI: 10.1002/path.6330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/05/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver condition that often progresses to more advanced stages, such as metabolic dysfunction-associated steatohepatitis (MASH). MASH is characterized by inflammation and hepatocellular ballooning, in addition to hepatic steatosis. Despite the relatively high incidence of MASH in the population and its potential detrimental effects on human health, this liver disease is still not fully understood from a pathophysiological perspective. Deregulation of polyamine levels has been detected in various pathological conditions, including neurodegenerative diseases, inflammation, and cancer. However, the role of the polyamine pathway in chronic liver disorders such as MASLD has not been explored. In this study, we measured the expression of liver ornithine decarboxylase (ODC1), the rate-limiting enzyme responsible for the production of putrescine, and the hepatic levels of putrescine, in a preclinical model of MASH as well as in liver biopsies of patients with obesity undergoing bariatric surgery. Our findings reveal that expression of ODC1 and the levels of putrescine, but not spermidine nor spermine, are elevated in hepatic tissue of both diet-induced MASH mice and patients with biopsy-proven MASH compared with control mice and patients without MASH, respectively. Furthermore, we found that the levels of putrescine were positively associated with higher aspartate aminotransferase concentrations in serum and an increased SAF score (steatosis, activity, fibrosis). Additionally, in in vitro assays using human HepG2 cells, we demonstrate that elevated levels of putrescine exacerbate the cellular response to palmitic acid, leading to decreased cell viability and increased release of CK-18. Our results support an association between the expression of ODC1 and the progression of MASLD, which could have translational relevance in understanding the onset of this disease. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | | | - Marta Sierra-Cruz
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana Lambertos
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Sara Rico-Chazarra
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Alba Oliva-Bolarín
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Andrés Balaguer Román
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - José Enrique Yuste
- Metabolomics Platform of CEBAS-CSIC, Campus Universitario de Espinardo, Murcia, Spain
| | - Carlos Manuel Martínez
- Experimental Pathology Platform, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - María Dolores Frutos
- Department of General and Digestive System Surgery, Virgen de la Arrixaca University Hospital, Murcia, Spain
| | - Camilo J. Llamoza-Torres
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
- Division of Liver Diseases, Department of Gastroenterology and Hepatology, University Clinical Hospital Virgen de la Arrixaca, Murcia, Spain
| | - José Córdoba-Chacón
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
170
|
Huang M, Chen H, Wang H, Wang X, Wang D, Li Y, Zhou Q, Zhang D, Li M, Ma L. Worldwide burden of liver cancer due to metabolic dysfunction-associated steatohepatitis from 1990 to 2019: insights from the Global Burden of Disease study. Front Oncol 2024; 14:1424155. [PMID: 39267839 PMCID: PMC11390418 DOI: 10.3389/fonc.2024.1424155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatohepatitis (MASH) is increasingly becoming a prevalent cause of hepatocellular carcinoma (HCC). Our study examines the burden of MASH-related HCC globally, regionally, and nationally, along with associated risk factors from 1990 to 2019, considering variables such as age, sex, and socioeconomic status. Objective We aimed to report the global, regional, and national burden of liver cancer due to MASH and its attributable risk factors between 1990 and 2019, by age, sex, and sociodemographic index (SDI). Methods Utilizing the Global Burden of Disease 2019 project, we analyzed data on prevalence, mortality, and disability-adjusted life years (DALYs) for liver cancer attributable to MASH across 204 countries. We provided counts and rates per 100,000 population, including 95% uncertainty intervals. Results In 2019, there were 46.8 thousand cases of MASH-related HCC, leading to 34.7 thousand deaths, and 795.8 thousand DALYs globally. While the prevalence increased by 19.8% since 1990, the death and DALY rates decreased by 5.3% and 15.1%, respectively. The highest prevalence was in High-income Asia Pacific, with the greatest increases observed in Australasia, Central Asia, and High-income North America. Southern Sub-Saharan Africa reported the highest death rate, while the lowest rates were in parts of Latin America, Central Sub-Saharan Africa, and Eastern Europe. DALY rates were the highest in Southern Sub-Saharan Africa and the lowest in Tropical Latin America. Discussion The burden of MASH-related HCC is expected to rise slightly over the next decade. This disease, which is not associated with the SDI, remains a major public health problem. In addition, the escalating rates of obesity, demographic shifts, and an aging population could position MASH as a leading factor in liver cancer cases, surpassing viral hepatitis. It is imperative, therefore, that the forthcoming years see the implementation of strategic interventions aimed at the early detection and prevention of liver cancer associated with MASH.
Collapse
Affiliation(s)
- Minshan Huang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hang Chen
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Hui Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Xianmei Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Da Wang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Yu Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Qingqing Zhou
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Dan Zhang
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Mengwei Li
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| | - Lanqing Ma
- The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Kunming Medical University, Kunming, China
| |
Collapse
|
171
|
Xia F, Wei W, Wang J, Duan Y, Wang K, Zhang C. Machine learning model for non-alcoholic steatohepatitis diagnosis based on ultrasound radiomics. BMC Med Imaging 2024; 24:221. [PMID: 39164667 PMCID: PMC11334577 DOI: 10.1186/s12880-024-01398-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Non-Alcoholic Steatohepatitis (NASH) is a crucial stage in the progression of Non-Alcoholic Fatty Liver Disease(NAFLD). The purpose of this study is to explore the clinical value of ultrasound features and radiological analysis in predicting the diagnosis of Non-Alcoholic Steatohepatitis. METHOD An SD rat model of hepatic steatosis was established through a high-fat diet and subcutaneous injection of CCl4. Liver ultrasound images and elastography were acquired, along with serum data and histopathological results of rat livers.The Pyradiomics software was used to extract radiomic features from 2D ultrasound images of rat livers. The rats were then randomly divided into a training set and a validation set, and feature selection was performed through dimensionality reduction. Various machine learning (ML) algorithms were employed to build clinical diagnostic models, radiomic models, and combined diagnostic models. The efficiency of each diagnostic model for diagnosing NASH was evaluated using Receiver Operating Characteristic (ROC) curves, Clinical Decision Curve Analysis (DCA), and calibration curves. RESULTS In the machine learning radiomic model for predicting the diagnosis of NASH, the Area Under the Curve (AUC) of ROC curve for the clinical radiomic model in the training set and validation set were 0.989 and 0.885, respectively. The Decision Curve Analysis revealed that the clinical radiomic model had the highest net benefit within the probability threshold range of > 65%. The calibration curve in the validation set demonstrated that the clinical combined radiomic model is the optimal method for diagnosing Non-Alcoholic Steatohepatitis. CONCLUSION The combined diagnostic model constructed using machine learning algorithms based on ultrasound image radiomics has a high clinical predictive performance in diagnosing Non-Alcoholic Steatohepatitis.
Collapse
Affiliation(s)
- Fei Xia
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), NO.2 Zheshan West Road, Wuhu, 241000, China
| | - Junli Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Yayang Duan
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Kun Wang
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People's Hospital, WuHu), No.259 Jiuhuashan Road, Jinghu District, Wuhu, 241001, Anhui, China
| | - Chaoxue Zhang
- Department of Ultrasound, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| |
Collapse
|
172
|
Huang W, Wang H, Shen Z, Wang X, Yu X. Association between TyG index and risk of carotid atherosclerosis in NAFLD patients: a retrospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1448359. [PMID: 39229376 PMCID: PMC11368734 DOI: 10.3389/fendo.2024.1448359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Background The TyG index, or triglyceride-glucose index, is primarily used as a marker to assess insulin resistance and metabolic health. It increases mortality risk in patients with NAFLD, atherosclerosis, ischemic stroke, or heart failure. However, its association with Carotid Atherosclerosis (CAS) risk in NAFLD patients remains uncertain. Methods This retrospective cohort study enrolled 739 individuals who participated comprehensive health evaluations at a large public hospital in Yangzhou, China, between January 2021 and December 2023. Among them, 436 were men and 303 were women, and their mean (SD) age was 51.53 ± 11.46 years. The individuals were categorized into three tertiles (Q1, Q2, and Q3), according to the baseline TyG index. Our investigation focused on exploring the correlativity between the TyG and the occurrence of CAS utilizing Cox regression and RCS analyses. Results During a 3-year follow-up period, 199 patients developed CAS (cumulative incidence rate: 26.93%). A statistical model, adjusted for age, gender, BMI, and other confounders indicated that the HR (95%CI) values for CAS risk in the Q2 and Q3 groups were 3.11(1.87-5.17) and 4.51(2.69-7.56), respectively, with P-values <0.001 for both groups. A sensitivity analysis confirmed these results. Kaplan-Meier survival analysis revealed that CAS risk varied across the groups (P non-linear < 0.05). Conclusion In individuals diagnosed as NAFLD, the possibility for CAS escalates with the elevation of the TyG value. Therefore, the TyG index is an effective marker for assessing the risk of CAS within this demographic. Large-sample prospective studies are needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Wei Huang
- Health Management Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hua Wang
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Zhimei Shen
- Health Management Center, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xu Wang
- Department of Trauma Surgery, Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiaosong Yu
- Department of General Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
173
|
Vu HT, Nguyen VD, Ikenaga H, Matsubara T. Application of PPAR Ligands and Nanoparticle Technology in Metabolic Steatohepatitis Treatment. Biomedicines 2024; 12:1876. [PMID: 39200340 PMCID: PMC11351628 DOI: 10.3390/biomedicines12081876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH) is a major disease worldwide whose effective treatment is challenging. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear receptor superfamily and function as ligand-activated transcription factors. To date, three distinct subtypes of PPARs have been characterized: PPARα, PPARβ/δ, and PPARγ. PPARα and PPARγ are crucial regulators of lipid metabolism that modulate the transcription of genes involved in fatty acid (FA), bile acid, and cholesterol metabolism. Many PPAR agonists, including natural (FAs, eicosanoids, and phospholipids) and synthetic (fibrate, thiazolidinedione, glitazar, and elafibranor) agonists, have been developed. Furthermore, recent advancements in nanoparticles (NPs) have led to the development of new strategies for MASLD/MASH therapy. This review discusses the applications of specific cell-targeted NPs and highlights the potential of PPARα- and PPARγ-targeted NP drug delivery systems for MASLD/MASH treatment.
Collapse
Affiliation(s)
- Hung Thai Vu
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Vien Duc Nguyen
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Osaka, Japan; (H.T.V.); (V.D.N.)
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, Sakai 599-8570, Osaka, Japan
| |
Collapse
|
174
|
Niu MY, Dong GT, Li Y, Luo Q, Cao L, Wang XM, Wang QW, Wang YT, Zhang Z, Zhong XW, Dai WB, Li LY. Fanlian Huazhuo Formula alleviates high-fat diet-induced non-alcoholic fatty liver disease by modulating autophagy and lipid synthesis signaling pathway. World J Gastroenterol 2024; 30:3584-3608. [PMID: 39193572 PMCID: PMC11346146 DOI: 10.3748/wjg.v30.i30.3584] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/08/2024] Open
Abstract
BACKGROUND Fanlian Huazhuo Formula (FLHZF) has the functions of invigorating spleen and resolving phlegm, clearing heat and purging turbidity. It has been identified to have therapeutic effects on type 2 diabetes mellitus (T2DM) in clinical application. Non-alcoholic fatty liver disease (NAFLD) is frequently diagnosed in patients with T2DM. However, the therapeutic potential of FLHZF on NAFLD and the underlying mechanisms need further investigation. AIM To elucidate the effects of FLHZF on NAFLD and explore the underlying hepatoprotective mechanisms in vivo and in vitro. METHODS HepG2 cells were treated with free fatty acid for 24 hours to induce lipid accumulation cell model. Subsequently, experiments were conducted with the different concentrations of freeze-dried powder of FLHZF for 24 hours. C57BL/6 mice were fed a high-fat diet for 8-week to establish a mouse model of NAFLD, and then treated with the different concentrations of FLHZF for 10 weeks. RESULTS FLHZF had therapeutic potential against lipid accumulation and abnormal changes in biochemical indicators in vivo and in vitro. Further experiments verified that FLHZF alleviated abnormal lipid metabolism might by reducing oxidative stress, regulating the AMPKα/SREBP-1C signaling pathway, activating autophagy, and inhibiting hepatocyte apoptosis. CONCLUSION FLHZF alleviates abnormal lipid metabolism in NAFLD models by regulating reactive oxygen species, autophagy, apoptosis, and lipid synthesis signaling pathways, indicating its potential for clinical application in NAFLD.
Collapse
Affiliation(s)
- Meng-Yuan Niu
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Geng-Ting Dong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi Li
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qing Luo
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Liu Cao
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Min Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Qi-Wen Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Yi-Ting Wang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Zhe Zhang
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Xi-Wen Zhong
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Wei-Bo Dai
- Pharmacology Laboratory, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| | - Le-Yu Li
- Department of Endocrinology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, Guangdong Province, China
| |
Collapse
|
175
|
Karnawat K, Parthasarathy R, Sakhrie M, Karthik H, Krishna KV, Balachander GM. Building in vitro models for mechanistic understanding of liver regeneration in chronic liver diseases. J Mater Chem B 2024; 12:7669-7691. [PMID: 38973693 DOI: 10.1039/d4tb00738g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The liver has excellent regeneration potential and attains complete functional recovery from partial hepatectomy. The regenerative mechanisms malfunction in chronic liver diseases (CLDs), which fuels disease progression. CLDs account for 2 million deaths per year worldwide. Pathophysiological studies with clinical correlation have shown evidence of deviation of normal regenerative mechanisms and its contribution to fueling fibrosis and disease progression. However, we lack realistic in vitro models that can allow experimental manipulation for mechanistic understanding of liver regeneration in CLDs and testing of candidate drugs. In this review, we aim to provide the framework for building appropriate organotypic models for dissecting regenerative responses in CLDs, with the focus on non-alcoholic steatohepatitis (NASH). By drawing parallels with development and hepatectomy, we explain the selection of critical components such as cells, signaling, and, substrate-driven biophysical cues to build an appropriate CLD model. We highlight the organoid-based organotypic models available for NASH disease modeling, including organ-on-a-chip and 3D bioprinted models. With the focus on bioprinting as a fabrication method, we prescribe building in vitro CLD models and testing schemes for exploring the regenerative responses in the bioprinted model.
Collapse
Affiliation(s)
- Khushi Karnawat
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Rithika Parthasarathy
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Mesevilhou Sakhrie
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Harikeshav Karthik
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Konatala Vibhuvan Krishna
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| | - Gowri Manohari Balachander
- School of Biomedical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi-221005, India.
| |
Collapse
|
176
|
Ma Q, Huang L, Long C, Lin W. 3D Imaging of Lipid Droplet-Nuclear Membrane Contact Sites and Cirrhotic Lipid Droplet Overexpression. Anal Chem 2024; 96:12908-12915. [PMID: 39066699 DOI: 10.1021/acs.analchem.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
To coordinate cellular physiology, cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Lipid droplets (LDs) and nuclear membrane (NM) contact sites are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites. However, there is still a lack of understanding of the specific morphology of the contact sites. Here, we combine advanced three-dimensional (3D) imaging with a high-brightness fluorescent probe specifically targeting LDs to map the structural landscape of LD-NM contact sites. The probe exhibits exceptional photophysical properties, making it highly suitable for visualizing the changes occurring in LDs during the apoptosis process. In addition, we utilize the advantages of the probe to accurately monitor the overexpression of abnormal LDs in cirrhosis by 3D imaging for the first time. The outcomes of this investigation highlight that the probe has potential as a robust imaging tool to investigate intricate biological functions of LDs and their implications in related diseases.
Collapse
Affiliation(s)
- Qingqing Ma
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ling Huang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chenyuan Long
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
177
|
Zhang J, Wang Y, Fan M, Guan Y, Zhang W, Huang F, Zhang Z, Li X, Yuan B, Liu W, Geng M, Li X, Xu J, Jiang C, Zhao W, Ye F, Zhu W, Meng L, Lu S, Holmdahl R. Reactive oxygen species regulation by NCF1 governs ferroptosis susceptibility of Kupffer cells to MASH. Cell Metab 2024; 36:1745-1763.e6. [PMID: 38851189 DOI: 10.1016/j.cmet.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 05/13/2024] [Indexed: 06/10/2024]
Abstract
Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yu Wang
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Meiyang Fan
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Yanglong Guan
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Wentao Zhang
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Fumeng Huang
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhengqiang Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaomeng Li
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Bingyu Yuan
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Wenbin Liu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Manman Geng
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Xiaowei Li
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Jing Xu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China
| | - Congshan Jiang
- Shaanxi Institute for Pediatric Diseases, Xi'an Children's Hospital, Xi'an 710003, Shaanxi, China
| | - Wenjuan Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Feng Ye
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Liesu Meng
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Shemin Lu
- Institute of Molecular and Translational Medicine and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Rikard Holmdahl
- Department of Infectious Diseases and National-Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China; Medical Inflammation Research Group, Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
178
|
Ustsinau U, Kulterer OC, Rausch I, Krššák M, Kiefer FW, Hacker M, Philippe C. A PET/MRI study on the effect of obesity and NAFLD on hepatic [ 18F]FDG uptake. Eur J Radiol 2024; 177:111552. [PMID: 38861905 DOI: 10.1016/j.ejrad.2024.111552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/25/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE The potential limitations of hepatic [18F]FDG-PET imaging for individuals with obesity and excessive liver fat (NAFLD) are being investigated. In this study, we aim to determine the reliability of standardized uptake values (SUVs) focusing on adjustment for liver fat content (LFC) derived from DIXON images and the effects of whole-body normalizations. METHODS Lean and with obesity volunteers who underwent [18F]FDG-PET/MRI were reviewed retrospectively. DIXON fat images were used to determine LFC and for adjustment of SUVmean. The hepatic SUVs (mean, fat adjusted mean and max) were normalized to body weight, lean body mass and body surface area. Blood samples were analysed for glucose, serological liver enzymes and lipoproteins for further correlation of [18F]FDG uptake. RESULTS Out of 11 volunteers with obesity (M:8, F:3, BMI:30-39 kg/m2), 9 confirmed the presence of NAFLD (>5.6 % fat). 22 age-matched lean volunteers (M:10, F:11, BMI:19-26 kg/m2) were used as control group. Both SUVmean, before and after adjustment to LFC, did not provide any difference between lean and with obesity groups under BW, LBM and BSA. SUVmax BW showed a difference between groups (p = 0.05). SUVs were independent of levels of GPT, GOT, gGT, insulin, HOMA-IR, triglycerides, cholesterol and LDL. Volunteers with low HDL were clustered with an increased hepatic [18F]FDG uptake. CONCLUSION Our method for adjustment of hepatic [18F]FDG-PET with DIXON fat images allows to achieve accurate results for individuals with NAFLD and obesity. For homogenic results, raw SUVmean should be combined with adjustment for liver fat, appropriate normalization and consideration of HDL levels.
Collapse
Affiliation(s)
- Usevalad Ustsinau
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oana C Kulterer
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
179
|
Yang J, Huang LJ, Ren TY, Zeng J, Shi YW, Fan JG. Insight into the therapeutic effects of artesunate in relieving metabolic-associated steatohepatitis from transcriptomic and lipidomics analyses. J Dig Dis 2024; 25:490-503. [PMID: 39252399 DOI: 10.1111/1751-2980.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVES Artesunate (ART) is a water-soluble derivative of artemisinin, which has shown anti-inflammatory, anti-tumor, and immunomodulating effects. We aimed to investigate the potential therapeutic effects and mechanisms of ART in metabolic dysfunction-associated steatohepatitis (MASH). METHODS The mice were randomly divided into the control group, high-fat, high-cholesterol diet-induced MASH group, and the MASH treated with ART (30 mg/kg once daily) group. Liver enzymes, lipids, and histological features were compared among groups. The molecular mechanisms were studied by transcriptomic and lipidomics analyses of liver tissues. RESULTS The mice of the MASH group had significantly increased hepatic fat deposition and inflammation in terms of biochemical indicators and pathological manifestations than the control group. The ART-treated group had improved plasma liver enzymes and hepatic cholesterol, especially at week 4 of intervention (p < 0.05). A total of 513 differentially expressed genes and 59 differentially expressed lipids were identified in the MASH group and the MASH+ART group. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment test showed that ART regulated glycerolipid metabolism pathway and enhanced fatty acid degradation. Peroxisome proliferator-activated receptor (PPAR)-α acted as a key transcription factor in the treatment of MASH with ART, which was confirmed by cell experiment. CONCLUSIONS ART significantly improved fat deposition and inflammatory manifestations in MASH mice, with potential therapeutic effects. The mechanism of artemisinin treatment for MASH may involve extensive regulation of downstream genes by upstream transcription factors, such as PPAR-α, to restore hepatic lipid homeostasis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Lei Jie Huang
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Gastroenterology, Ningbo No. 2 Hospital, Ningbo, Zhejiang Province, China
| | - Tian Yi Ren
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Yi Wen Shi
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jian Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
180
|
Fan W, Bradford TM, Török NJ. Metabolic dysfunction-associated liver disease and diabetes: Matrix remodeling, fibrosis, and therapeutic implications. Ann N Y Acad Sci 2024; 1538:21-33. [PMID: 38996214 DOI: 10.1111/nyas.15184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Metabolic dysfunction-associated liver disease (MASLD) and steatohepatitis (MASH) are becoming the most common causes of chronic liver disease in the United States and worldwide due to the obesity and diabetes epidemics. It is estimated that by 2030 close to 100 million people might be affected and patients with type 2 diabetes are especially at high risk. Twenty to 30% of patients with MASLD can progress to MASH, which is characterized by steatosis, necroinflammation, hepatocyte ballooning, and in advanced cases, fibrosis progressing to cirrhosis. Clinically, it is recognized that disease progression in diabetic patients is accelerated and the role of various genetic and epigenetic factors, as well as cell-matrix interactions in fibrosis and stromal remodeling, have recently been recognized. While there has been great progress in drug development and clinical trials for MASLD/MASH, the complexity of these pathways highlights the need to improve diagnosis/early detection and develop more successful antifibrotic therapies that not only prevent but reverse fibrosis.
Collapse
Affiliation(s)
- Weiguo Fan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| | - Toby M Bradford
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
| | - Natalie J Török
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, California, USA
- Palo Alto VA Medical Center, Palo Alto, California, USA
| |
Collapse
|
181
|
Xu Z, Amakye WK, Ren Z, Xu Y, Liu W, Gong C, Wong C, Gao L, Zhao Z, Wang M, Yan T, Ye Z, Zhong J, Hou C, Zhao M, Qiu C, Tan J, Xu X, Liu G, Yao M, Ren J. Soy Peptide Supplementation Mitigates Undernutrition through Reprogramming Hepatic Metabolism in a Novel Undernourished Non-Human Primate Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306890. [PMID: 38816931 PMCID: PMC11304262 DOI: 10.1002/advs.202306890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
In spite of recent advances in the field of undernutrition, current dietary therapy relying on the supply of high protein high calorie formulas is still plagued with transient recovery of impaired organs resulting in significant relapse of cases. This is partly attributed to the inadequacy of current research models in recapitulating clinical undernutrition for mechanistic exploration. Using 1636 Macaca fascicularis monkeys, a human-relevant criterion for determining undernutrition weight-for-age z-score (WAZ), with a cutoff point of ≤ -1.83 is established as the benchmark for identifying undernourished nonhuman primates (U-NHPs). In U-NHPs, pathological anomalies in multi-organs are revealed. In particular, severe dysregulation of hepatic lipid metabolism characterized by impaired fatty acid oxidation due to mitochondria dysfunction, but unlikely peroxisome disorder, is identified as the anchor metabolic aberration in U-NHPs. Mitochondria dysfunction is typified by reduced mito-number, accumulated long-chain fatty acids, and disruption of OXPHOS complexes. Soy peptide-treated U-NHPs increase in WAZ scores, in addition to attenuated mitochondria dysfunction and restored OXPHOS complex levels. Herein, innovative criteria for identifying U-NHPs are developed, and unknown molecular mechanisms of undernutrition are revealed hitherto, and it is further proved that soypeptide supplementation reprogramed mitochondrial function to re-establish lipid metabolism balance and mitigated undernutrition.
Collapse
Affiliation(s)
- Zhenzhen Xu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - William Kwame Amakye
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhengyu Ren
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences (ICMS)University of MacauMacau999078China
| | - Yongzhao Xu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Wei Liu
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
- Huazhen Laboratory Animal Breeding CenterGuangzhou510900China
| | - Congcong Gong
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chiwai Wong
- Huazhen Laboratory Animal Breeding CenterGuangzhou510900China
| | - Li Gao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zikuan Zhao
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Min Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Tao Yan
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Zhiming Ye
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
| | - Jun Zhong
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Chuanli Hou
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| | - Miao Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Can Qiu
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical GeneticsSchool of Life ScienceCentral South UniversityChangsha410013P. R. China
| | - Xin Xu
- College of Food Science and EngineeringYangzhou UniversityYangzhou225127China
| | - Guoyan Liu
- College of Food Science and EngineeringYangzhou UniversityYangzhou225127China
| | - Maojin Yao
- The First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Institute of Respiratory Disease & China State Key Laboratory of Respiratory DiseaseGuangzhou510182China
| | - Jiaoyan Ren
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640China
| |
Collapse
|
182
|
Huang W, Peng Y, Kang L. Advancements of non‐invasive imaging technologies for the diagnosis and staging of liver fibrosis: Present and future. VIEW 2024; 5. [DOI: 10.1002/viw.20240010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/28/2024] [Indexed: 01/04/2025] Open
Abstract
AbstractLiver fibrosis is a reparative response triggered by liver injury. Non‐invasive assessment and staging of liver fibrosis in patients with chronic liver disease are of paramount importance, as treatment strategies and prognoses depend significantly on the degree of fibrosis. Although liver fibrosis has traditionally been staged through invasive liver biopsy, this method is prone to sampling errors, particularly when biopsy sizes are inadequate. Consequently, there is an urgent clinical need for an alternative to biopsy, one that ensures precise, sensitive, and non‐invasive diagnosis and staging of liver fibrosis. Non‐invasive imaging assessments have assumed a pivotal role in clinical practice, enjoying growing popularity and acceptance due to their potential for diagnosing, staging, and monitoring liver fibrosis. In this comprehensive review, we first delved into the current landscape of non‐invasive imaging technologies, assessing their accuracy and the transformative impact they have had on the diagnosis and management of liver fibrosis in both clinical practice and animal models. Additionally, we provided an in‐depth exploration of recent advancements in ultrasound imaging, computed tomography imaging, magnetic resonance imaging, nuclear medicine imaging, radiomics, and artificial intelligence within the field of liver fibrosis research. We summarized the key concepts, advantages, limitations, and diagnostic performance of each technique. Finally, we discussed the challenges associated with clinical implementation and offer our perspective on advancing the field, hoping to provide alternative directions for the future research.
Collapse
Affiliation(s)
- Wenpeng Huang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Yushuo Peng
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| | - Lei Kang
- Department of Nuclear Medicine Peking University First Hospital Beijing China
| |
Collapse
|
183
|
Guo R, Wang L, Liu T, Li S, Liu Y, Yang H, Chen L, Ji C, Xia Y. Pulmonary function, genetic predisposition, and the risk of cirrhosis: A prospective cohort study. Prev Med 2024; 185:108030. [PMID: 38849058 DOI: 10.1016/j.ypmed.2024.108030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE Pulmonary function is associated with the development of chronic liver disease. However, evidence of the association between pulmonary function and cirrhosis risk is still lacking. This study aimed to investigate the longitudinal associations of pulmonary function with the development of cirrhosis, and to explore whether genetic predisposition to cirrhosis could modify these associations. METHODS Of 294,835 participants free of cirrhosis and had undergone spirometry at baseline from the UK Biobank were included. Cirrhosis diagnoses were ascertained through linked hospital records and death registries. Cox proportional hazard models were employed to investigate the longitudinal associations between pulmonary function, genetic predisposition, and cirrhosis risk. RESULTS During a median follow-up of 12.0 years, 2598 incident cirrhosis cases were documented. Compared to individuals with normal spirometry findings, those with preserved ratio impaired spirometry (PRISm) findings (hazard ratio [HR] and 95% confidence interval [CI]: 1.32 [1.18, 1.48]) and airflow obstruction (HR [95%CI]: 1.19 [1.07, 1.31]) had a higher risk of developing cirrhosis after adjustments. These associations were consistent across all categories of genetic predisposition, with no observed modifying effect of genetic predisposition. In joint exposure analyses, the highest risk was observed in individuals with both a high genetic predisposition for cirrhosis and PRISm findings (HR [95% CI]: 1.74 [1.45, 2.08]). CONCLUSIONS Our findings indicate that worse pulmonary function is a significant risk factor of cirrhosis, irrespective of genetic predisposition. Early identification and appropriate intervention for pulmonary function may lead to more effective healthcare resource utilization and reduce the burden associated with cirrhosis.
Collapse
Affiliation(s)
- Rongchang Guo
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tiancong Liu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiwen Li
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yashu Liu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Honghao Yang
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Ji
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China.
| | - Yang Xia
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China.
| |
Collapse
|
184
|
Yong Q, Huang C, Chen B, An J, Zheng Y, Zhao L, Peng C, Liu F. Gentiopicroside improves NASH and liver fibrosis by suppressing TLR4 and NLRP3 signaling pathways. Biomed Pharmacother 2024; 177:116952. [PMID: 38917754 DOI: 10.1016/j.biopha.2024.116952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) and liver fibrosis are progressive conditions associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatocyte pyroptosis and hepatic stellate cell (HSC) activation. Gentiopicroside (GPS) has emerged as a potential treatment for NASH, yet its underlying mechanism remains unclear. AIM To confirm that GPS can improve NASH and liver fibrosis by blocking the NLRP3 signaling pathway STUDY DESIGN: Initially, different animal models were used to study the effects and mechanisms of GPS on NASH and fibrosis. Subsequent in vitro experiments utilized co-cultures and other techniques to delve deeper into its mechanism, followed by validation of the findings in mouse liver tissues. METHODS C57BL/6 mice were fed high-fat, high-cholesterol (HFHC), or methionine-choline-deficient (MCD) diets to induce NASH and fibrosis. RAW264.7 cells and born marrow bone marrow-derived macrophages (BMDMs) were stimulated with LPS and ATP to induce inflammation, then co-cultured with primary hepatocytes and HSCs, treated with GPS, and its efficacy and mechanism were analyzed. RESULTS In vivo, GPS alleviated NASH and liver fibrosis by inhibiting the NLRP3 pathway. In vitro, GPS attenuated inflammation induced by BMDMs by inhibiting TLR4 and NLRP3 signaling pathways, and Co-culture studies suggested that GPS reduced hepatocyte pyroptosis and HSC activation, which was also confirmed in liver tissues CONCLUSION: GPS improves NASH and liver fibrosis by inhibiting the TLR4 and NLRP3 signaling pathways. The specific mechanism may be related to the suppression of macrophage-mediated inflammatory responses, thereby reducing hepatocyte pyroptosis and HSC activation.
Collapse
Affiliation(s)
- Qiuhong Yong
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chaoyuan Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinqi An
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiyuan Zheng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lina Zhao
- Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Chong Peng
- Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Hepatobiliary of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Fengbin Liu
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Lingnan Institute of Spleen and Stomach Diseases, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
185
|
Hu Q, Zhang L, Tao Y, Xie S, Wang A, Luo C, Yang R, Shen Z, He B, Fang Y, Chen P. Semaglutide Ameliorates Hepatocyte Steatosis in a Cell Co-Culture System by Downregulating the IRE1α-XBP1-C/EBPα Signaling Pathway in Macrophages. Pharmacology 2024; 110:26-35. [PMID: 39089233 DOI: 10.1159/000540654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) is currently the most common type of chronic liver disease. Semaglutide is a glucose-lowering drug administered for the treatment of type 2 diabetes mellitus (T2DM) and is clinically effective in the treatment of NAFLD. X-box binding protein 1 (XBP1) is related to the pathogenesis of both NAFLD and T2DM. The aim of the present study was to demonstrate whether the underlying mechanism of semaglutide treatment for NAFLD is via downregulation of the inositol-requiring transmembrane kinase/endonuclease-1α (IRE1α)-XBP1-CCAAT/enhancer binding protein α (C/EBPα) signaling pathway in macrophages. METHODS In the present study, NAFLD cell modeling was induced by oleic acid (0.4 mm) and palmitic acid (0.2 mm). Hepatocytes (AML12) and macrophages (RAW264.7) were co-cultured in 6-well Transwell plates. Semaglutide (60 or 140 nm) was administrated for 24 h, while pioglitazone (2 μm) and toyocamycin (200 nm) were used as a positive control drug and a XBP1 inhibitor, respectively. Autophagy and apoptosis of AML12 cells were detected by transmission electron microscopy and Western blotting (WB). Hepatocyte steatosis was evaluated by adopting total intracellular triglyceride determination, analysis of the relative expression of proteins and genes associated with lipid metabolism and hepatocyte Oil red O staining. Detection of inflammation factors was conducted by ELISA and WB. To explore the underlying mechanism of NAFLD treatment with semaglutide, the relative expression of related proteins and genes were tested. RESULTS Our study demonstrated that semaglutide treatment improved autophagy and inhibited apoptosis of hepatocytes, while notably ameliorating steatosis of hepatocytes. In addition, inflammation was attenuated in the NAFLD cell co-culture model after semaglutide administration. Semaglutide also significantly reduced the protein and gene expression levels of the IRE1α-XBP1-C/EBPα signaling pathway in macrophages. CONCLUSION Semaglutide partially ameliorated NAFLD by downregulating the IRE1α-XBP1-C/EBPα signaling pathway in macrophages. These findings may provide a potential theoretical basis for semaglutide therapy for NAFLD.
Collapse
Affiliation(s)
- Qin Hu
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
- Department of Endocrinology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Zhang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - YiTing Tao
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - ShuangLin Xie
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - AiYun Wang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Caiying Luo
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - RenHua Yang
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Zhiqiang Shen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Bo He
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
| | - Yu Fang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Peng Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, China
- College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| |
Collapse
|
186
|
Jing X, Zhou G, Zhu A, Jin C, Li M, Ding K. RG-I pectin-like polysaccharide from Rosa chinensis inhibits inflammation and fibrosis associated to HMGB1/TLR4/NF-κB signaling pathway to improve non-alcoholic steatohepatitis. Carbohydr Polym 2024; 337:122139. [PMID: 38710550 DOI: 10.1016/j.carbpol.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024]
Abstract
A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked β-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.
Collapse
Affiliation(s)
- Xiaoqi Jing
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Guangqin Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China
| | - Can Jin
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
187
|
Tsuchiya T, Kim SY, Matsuda M, Kim J, Stotland A, Naiki M, Seki E. Repurposing of the analgesic Neurotropin for MASLD/MASH treatment. Hepatol Commun 2024; 8:e0480. [PMID: 39023282 PMCID: PMC11262822 DOI: 10.1097/hc9.0000000000000480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/15/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased in recent decades. Approximately 25% of patients with MASLD progress to metabolic dysfunction-associated steatohepatitis, which is characterized by hepatic steatosis plus hepatocyte damage, inflammation, and fibrosis. We previously reported that Neurotropin (NTP), a drug used for relieving pain in Japan and China, inhibits lipid accumulation in hepatocytes by preventing mitochondrial dysfunction. We hypothesized that inhibiting hepatic steatosis and inflammation by NTP can be an effective strategy for treating MASLD and tested this hypothesis in a MASLD mouse model. METHODS Six-week-old C57BL/6NJ male mice were fed a normal diet and normal drinking water or a high-fat diet with high fructose/glucose water for 12 weeks. During the last 6 weeks, the mice were also given high-dose NTP, low-dose NTP, or control treatment. Histologic, biochemical, and functional tests were conducted. MitoPlex, a new proteomic platform, was used to measure mitochondrial proteins, as mitochondrial dysfunction was previously reported to be associated with MASLD progression. RESULTS NTP inhibited the development of hepatic steatosis, injury, inflammation, and fibrosis induced by feeding a high-fat diet plus high fructose/glucose in drinking water. NTP also inhibited HSC activation. MitoPlex analysis revealed that NTP upregulated the expression of mitochondrial proteins related to oxidative phosphorylation, the tricarboxylic acid cycle, mitochondrial dynamics, and fatty acid transport. CONCLUSIONS Our results indicate that NTP prevents the development of hepatic steatosis, injury, and inflammation by preserving mitochondrial function in the liver and inhibits liver fibrosis by suppressing HSC activation. Thus, repurposing NTP may be a beneficial option for treating MASLD/metabolic dysfunction-associated steatohepatitis.
Collapse
Affiliation(s)
- Takashi Tsuchiya
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - So Yeon Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michitaka Matsuda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jieun Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexsandr Stotland
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mitsuru Naiki
- Department of Pharmacological Research, Institute of Bio-Active Science, Nippon Zoki Pharmaceutical Company Ltd., Osaka, Japan
| | - Ekihiro Seki
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
188
|
Ni K, Meng L. Mechanism of PANoptosis in metabolic dysfunction-associated steatotic liver disease. Clin Res Hepatol Gastroenterol 2024; 48:102381. [PMID: 38821484 DOI: 10.1016/j.clinre.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
In recent years, the incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been steadily rising, emerging as a major chronic liver disease of global concern. The course of MASLD is varied, spanning from MASLD to metabolic dysfunction associated steatohepatitis (MASH). MASH is an important contributor to cirrhosis, which may subsequently lead to hepatocellular carcinoma. It has been found that PANoptosis, an emerging inflammatory programmed cell death (PCD), is involved in the pathogenesis of MASLD and facilitates the development of NASH, eventually resulting in inflammatory fibrosis and hepatocyte death. This paper reviews the latest research progress on PANoptosis and MASLD to understand the mechanism of MASLD and provide new directions for future treatment and drug development.
Collapse
Affiliation(s)
- Keying Ni
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou, China
| | - Lina Meng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medical), Key Laboratory of Digestive Pathophysiology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
189
|
Kumar P, Banik SP, Ohia SE, Moriyama H, Chakraborty S, Wang CK, Song YS, Goel A, Bagchi M, Bagchi D. Current Insights on the Photoprotective Mechanism of the Macular Carotenoids, Lutein and Zeaxanthin: Safety, Efficacy and Bio-Delivery. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2024; 43:505-518. [PMID: 38393321 DOI: 10.1080/27697061.2024.2319090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/07/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Ocular health has emerged as one of the major issues of global health concern with a decline in quality of life in an aging population, in particular and rise in the number of associated morbidities and mortalities. One of the chief reasons for vision impairment is oxidative damage inflicted to photoreceptors in rods and cone cells by blue light as well as UV radiation. The scenario has been aggravated by unprecedented rise in screen-time during the COVID and post-COVID era. Lutein and Zeaxanthin are oxygenated carotenoids with proven roles in augmentation of ocular health largely by virtue of their antioxidant properties and protective effects against photobleaching of retinal pigments, age-linked macular degeneration, cataract, and retinitis pigmentosa. These molecules are characterized by their characteristic yellow-orange colored pigmentation and are found in significant amounts in vegetables such as corn, spinach, broccoli, carrots as well as fish and eggs. Unique structural signatures including tetraterpenoid skeleton with extensive conjugation and the presence of hydroxyl groups at the end rings have made these molecules evolutionarily adapted to localize in the membrane of the photoreceptor cells and prevent their free radical induced peroxidation. Apart from the benefits imparted to ocular health, lutein and zeaxanthin are also known to improve cognitive function, cardiovascular physiology, and arrest the development of malignancy. Although abundant in many natural sources, bioavailability of these compounds is low owing to their long aliphatic backbones. Under the circumstances, there has been a concerted effort to develop vegetable oil-based carriers such as lipid nano-emulsions for therapeutic administration of carotenoids. This review presents a comprehensive update of the therapeutic potential of the carotenoids along with the challenges in achieving an optimized delivery tool for maximizing their effectiveness inside the body.
Collapse
Affiliation(s)
- Pawan Kumar
- R&D Department, Chemical Resources (CHERESO), Panchkula, India
| | - Samudra P Banik
- Department of Microbiology, Maulana Azad College, Kolkata, India
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Hiroyoshi Moriyama
- Department of Scientific Affairs, The Japanese Institute for Health Food Standards, Tokyo, Japan
| | - Sanjoy Chakraborty
- Department of Biological Sciences, New York City College of Technology/CUNY, Brooklyn, NY, USA
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, Taichung, Taiwan
| | - Yong Sang Song
- Department of Obstetrics and Gynaecology, Seoul National University Hospital, Seoul, South Korea
| | - Apurva Goel
- Regulation Department, Chemical Resources (CHERESO), Panchkula, India
| | | | - Debasis Bagchi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
- Department of Biology, College of Arts and Sciences, and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
190
|
Wang A, Zhang Y, Lv X, Liang G. Therapeutic potential of targeting protein tyrosine phosphatases in liver diseases. Acta Pharm Sin B 2024; 14:3295-3311. [PMID: 39220870 PMCID: PMC11365412 DOI: 10.1016/j.apsb.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Protein tyrosine phosphorylation is a post-translational modification that regulates protein structure to modulate demic organisms' homeostasis and function. This physiological process is regulated by two enzyme families, protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs). As an important regulator of protein function, PTPs are indispensable for maintaining cell intrinsic physiology in different systems, as well as liver physiological and pathological processes. Dysregulation of PTPs has been implicated in multiple liver-related diseases, including chronic liver diseases (CLDs), hepatocellular carcinoma (HCC), and liver injury, and several PTPs are being studied as drug therapeutic targets. Therefore, given the regulatory role of PTPs in diverse liver diseases, a collated review of their function and mechanism is necessary. Moreover, based on the current research status of targeted therapy, we emphasize the inclusion of several PTP members that are clinically significant in the development and progression of liver diseases. As an emerging breakthrough direction in the treatment of liver diseases, this review summarizes the research status of PTP-targeting compounds in liver diseases to illustrate their potential in clinical treatment. Overall, this review aims to support the development of novel PTP-based treatment pathways for liver diseases.
Collapse
Affiliation(s)
- Ao Wang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Yi Zhang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinting Lv
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
191
|
Liu B, Nguyen PL, Yu H, Li X, Wang H, Nguyen TGB, Sahoo PK, Sur M, Reddy J, Sillman S, Kachman SD, Altartouri B, Lu G, Natarajan SK, Pattabiraman M, Yu J. Honey vesicle-like nanoparticles protect aged liver from non-alcoholic steatohepatitis. Acta Pharm Sin B 2024; 14:3661-3679. [PMID: 39220874 PMCID: PMC11365403 DOI: 10.1016/j.apsb.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 09/04/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH), an advanced form of non-alcoholic fatty liver disease (NAFLD), has emerged as the leading cause of liver failure and related death. Currently, no medication is specifically approved to treat NAFLD or NASH. Here we report that oral administration of honey vesicle-like nanoparticles (H-VLNs) to naturally aged mice protects the liver from NASH development. H-VLNs are dominantly taken up by Kupffer cells in the liver and suppress hepatic chronic inflammation and further development of fibrosis and nodule formation in aged mice. Besides their reported anti-inflammasome function, H-VLNs are found to inhibit the transcriptional activities of C-JUN and nuclear factor-kappa B (NF-κB). MicroRNAs miR5119 and miR5108 and phenolic compound luteolin in H-VLNs are identified in suppressing both the C-JUN and NF-κB pathways. Collectively, oral intake of H-VLNs represents a promising new user-friendly modality to prevent the development of NASH.
Collapse
Affiliation(s)
- Baolong Liu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Phuong Linh Nguyen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Han Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xingzhi Li
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Huiren Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Tram Gia Bao Nguyen
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Prakash Kumar Sahoo
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sarah Sillman
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Stephen D. Kachman
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Bara Altartouri
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Guoqing Lu
- Department of Biology, University of Nebraska Omaha, Omaha, NE 68182, USA
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mahesh Pattabiraman
- Department of Chemistry, University of Nebraska-Kearney, Kearney, NE 68849, USA
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
192
|
Xu T, Chen J, Shao Q, Ji J, Wang Q, Ma C, Wang X, Cheng F. The Coptidis Rhizoma and Bovis Calculus herb pair attenuates NASH and inhibits the NLRP3 inflammasome activation. Heliyon 2024; 10:e34718. [PMID: 39149083 PMCID: PMC11324969 DOI: 10.1016/j.heliyon.2024.e34718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
The Coptidis Rhizoma and Bovis Calculus herb pair possesses clearing heat and detoxifying effects. The aim of this study was to reveal the effects and mechanisms of the herb pair in the treatment of NASH by network pharmacology and experimental verification. A network pharmacology-based approach was employed to predict the putative mechanism of the herb pair against NASH. The high-fat diet (HFD) and methionine/choline deficient (MCD) diet induced NASH models were used to evaluate efficacy and mechanism of the herb pair. Network pharmacological analysis showed that the herb pair modulated NOD-like receptor pathway. In the HFD mice, herb pair reduced body weight, blood sugar, serum ALT, AST, TBA, TC, TG and LDL-C contents, also improved the general morphology and pathological manifestations. Hepatic transcriptomics study showed that herb pair attenuated NASH by regulating NOD-like receptor signaling pathway. Western blotting showed that herb pair reduced the protein expression levels of NLRP3, cleaved Caspase-1 and cleaved IL-1β. In the MCD mice, herb pair also reduced serum ALT, ALT and TBA levels, improved liver pathological manifestations, inhibited the protein expression levels of NLRP3, cleaved Caspase-1 and cleaved IL-1β. Our findings proved that the Coptidis Rhizoma and Bovis Calculus herb pair attenuates NASH through suppression of NLRP3 inflammasome activation. This will demonstrate effective pharmacological evidence for the clinical application of herb pair.
Collapse
Affiliation(s)
- Tian Xu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahui Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Shao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Ji
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chongyang Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xueqian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
193
|
Mei XL, Wu SY, Wu SL, Luo XL, Huang SX, Liu R, Qiang Z. Hepatoprotective effects of Xiaoyao San formula on hepatic steatosis and inflammation via regulating the sex hormones metabolism. World J Hepatol 2024; 16:1051-1066. [PMID: 39086531 PMCID: PMC11287615 DOI: 10.4254/wjh.v16.i7.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024] Open
Abstract
BACKGROUND The modified Xiaoyao San (MXS) formula is an adjuvant drug recommended by the National Health Commission of China for the treatment of liver cancer, which has the effect of preventing postoperative recurrence and metastasis of hepatocellular carcinoma and prolonging patient survival. However, the molecular mechanisms underlying that remain unclear. AIM To investigate the role and mechanisms of MXS in ameliorating hepatic injury, steatosis and inflammation. METHODS A choline-deficient/high-fat diet-induced rat nonalcoholic steatohepatitis (NASH) model was used to examine the effects of MXS on lipid accumulation in primary hepatocytes. Liver tissues were collected for western blotting and immunohistochemistry (IHC) assays. Lipid accumulation and hepatic fibrosis were detected using oil red staining and Sirius red staining. The serum samples were collected for biochemical assays and NMR-based metabonomics analysis. The inflammation/lipid metabolism-related signaling and regulators in liver tissues were also detected to reveal the molecular mechanisms of MXS against NASH. RESULTS MXS showed a significant decrease in lipid accumulation and inflammatory response in hepatocytes under metabolic stress. The western blotting and IHC results indicated that MXS activated AMPK pathway but inhibited the expression of key regulators related to lipid accumulation, inflammation and hepatic fibrosis in the pathogenesis of NASH. The metabonomics analysis systemically indicated that the arachidonic acid metabolism and steroid hormone synthesis are the two main target metabolic pathways for MXS to ameliorate liver inflammation and hepatic steatosis. Mechanistically, we found that MXS protected against NASH by attenuating the sex hormone-related metabolism, especially the metabolism of male hormones. CONCLUSION MXS ameliorates inflammation and hepatic steatosis of NASH by inhibiting the metabolism of male hormones. Targeting male hormone related metabolic pathways may be the potential therapeutic approach for NASH.
Collapse
Affiliation(s)
- Xiao-Li Mei
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Shu-Yi Wu
- College of Chinese Medicine, Chongqing College of Traditional Chinses Medicine, Chongqing 402760, China
| | - Si-Lan Wu
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Xiao-Lin Luo
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Si-Xing Huang
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
| | - Rui Liu
- Department of Oncology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhe Qiang
- Department of Pharmacology and Toxicology, Sichuan-Chongqing Joint Key Laboratory of New Chinese Medicine Creation Laboratory, Chongqing Academy of Chinese Materia Medica, Chongqing 400061, China
- College of Chinese Medicine, Chongqing College of Traditional Chinses Medicine, Chongqing 402760, China
- College of Pharmacy, Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
194
|
Wang Y, Hu J, Shen H, Liu C, Yang L. Crosstalk between skeletal muscle ratio and cholesterol metabolism disorders: a cross-section study. BMC Endocr Disord 2024; 24:123. [PMID: 39044230 PMCID: PMC11267780 DOI: 10.1186/s12902-024-01660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Dysfunction of cholesterol metabolism may be associated with low skeletal muscle mass. This study aimed to explore the relationship between skeletal muscle mass and cholesterol metabolic disorders in adults. METHODS The data of a total of 5949 people with complete medical history data, biochemical data and body composition analysis were recruited. According to the serum cholesterol, low density lipoprotein (LDL), high density lipoprotein (HDL) and nonHDL, the population was divided into a disorder group and a normal group. Independent sample t tests, chi-square tests, Pearson's correlation analyses and binary logistic regression analyses were used to study the effect of body composition on abnormal cholesterol metabolism. According to BMI and sex, the population was divided into different subgroups, and binary logistic regression analysis was used to study the effect of the skeletal mass ratio on cholesteral metabolic disorders in different subgroups. RESULTS There were significant differences in sex, alcohol consumption, body weight, BMI, skeletal muscle mass index (SMI) [total skeletal muscle mass (kg)/height 2 (m2)] and skeletal muscle mass ratio (SMR) [total skeletal muscle mass (kg)/weight (kg) *100] between the disorder group (hypercholesterolemia, hyper-LDL, lower-HDL and hyper-nonHDL) and the normal group. Pearson correlation analysis revealed that the SMR was negatively correlated, while the SMI was positively correlated with cholesterol metabolic disorders in both sexes. The overweight group was older and had a greater SMI, abnormal cholesteral metabolism ratio and lower SMR than the normal-weight group. In the normal-weight group, the SMR was an independent protective factor against different kinds of cholesteral metabolic disorders in both sexes, while the SMI was a risk factor. In the overweight subgroup, the protective effect on HDL and nonHDL metabolism remained in the male subgroup but disappeared in the female subgroup. However, the SMI was an independent risk factor for different kinds of cholesteral metabolic disorders in both sexes. CONCLUSIONS SMR was an independent protective factor against cholesterol metabolic disorders in both males and females, especially in the normal weight group. SMI was an independent risk factor, especially in the overweight group.
Collapse
Affiliation(s)
- Yunle Wang
- Geriatrics Department, Shanghai Health and Medical Center, 67 Dajishan, Wuxi, Jiangsu, 214000, China
| | - Jun Hu
- Health Care Center, Shanghai Health and Medical Center, Wuxi, China
| | - Hui Shen
- Nutritional Department, Shanghai Health and Medical Center, Wuxi, China
| | - Chunxing Liu
- Medical Laboratory Department, Shanghai Health and Medical Center, Wuxi, China
| | - Lijuan Yang
- Geriatrics Department, Shanghai Health and Medical Center, 67 Dajishan, Wuxi, Jiangsu, 214000, China.
| |
Collapse
|
195
|
Husseini AA. Genotypic variation in CYP2E1, GCKR, and PNPLA3 among nonalcoholic steatohepatitis patients of Turkish origin. Mol Biol Rep 2024; 51:845. [PMID: 39042259 DOI: 10.1007/s11033-024-09787-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND This study examines genetic variations in CYP2E1 (rs6413432, rs3813867), GCKR (rs780094, rs1260326), and PNPLA3 (rs738409) among Turkish patients to assess their influence on nonalcoholic steatohepatitis. METHODS Allele and genotype frequencies were compared between 245 NASH patients and 120 healthy controls using SNP genotyping via polymerase chain reaction-restriction fragment length polymorphism. Additionally, the deviation of the observed genotype frequencies from Hardy-Weinberg proportion was examined. RESULTS No significant differences were found in the allelic and genotypic distributions of rs6413432, rs3813867, and rs780094 between NASH patients and healthy controls. However, significant disparities were noted for rs1260326 and rs738409. Gender and age-specific distributions showed no notable differences. The only observed deviation from Hardy-Weinberg proportion was in the genotype frequency of rs738409. CONCLUSIONS Variants in GCKR (rs1260326) and PNPLA3 (rs738409) are significantly associated with increased NASH risk in the Turkish population, with the rs738409 variant potentially playing a more prominent role in NASH development.
Collapse
Affiliation(s)
- Abbas Ali Husseini
- Life Science, and Biomedical Engineering Application and Research Center, Istanbul Gelisim University, Istanbul, 34310, Turkey.
- Vocational School of health services, Istanbul Gelisim University, Istanbul, 34310, Turkey.
| |
Collapse
|
196
|
Yan G, Zhang L, Wu D, Jiang S, Wu Q, Dai M. Paeonol attenuates nonalcoholic steatohepatitis by regulating intestinal flora and AhR/NLRP3/Caspase-1 metabolic pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118147. [PMID: 38574779 DOI: 10.1016/j.jep.2024.118147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Non-alcoholic steatohepatitis (NASH) is a common metabolic liver injury disease that is closely associated with obesity and metabolic disorders. Paeonol, an active ingredient found in Moutan Cortex, a traditional Chinese medicine which exhibits significant therapeutic effect on liver protection, has shown promising effects in treating liver diseases, particularly NASH. However, the specific intervention mechanism of paeonol on NASH is still unknown. AIM OF THE STUDY Our objective is to elucidate the pharmacological mechanism of paeonol in intervening NASH at the in vivo level, focusing on the impact on intestinal flora, tryptophan-related targeted metabolome, and related Aryl hydrocarbon receptor (AhR) pathways. MATERIALS AND METHODS Here, we explored the intervention effect of paeonol on NASH by utilizing the NASH mouse model. The Illumina highthroughput sequencing technology was preformed to determine the differences of gut microbiota of model and paeonol treatment group. The concentration of Indoleacetic acid is determined by ELISA. The intervention effect of NASH mouse and AhR/NLRP3/Caspase-1 metabolic pathway is analyzed by HE staining, oil red O staining, Immunohistochemistry, Immunofluorescence, Western blot and qRT-PCR assays. Fecal microbiota transplantation experiment also was performed to verify the intervention effect of paeonol on NASH by affecting gut microbiota. RESULTS Firstly, we discovered that paeonol effectively reduced liver pathology and blood lipid levels in NASH mice, thereby intervening in the progression of NASH. Subsequently, through 16S meta-analysis, we identified that paeonol can effectively regulate the composition of intestinal flora in NASH mice, transforming it to resemble that of normal mice. Specifically, paeonol decreased the abundance of certain Gram-negative tryptophan-metabolizing bacteria. Moreover, we discovered that paeonol significantly increased the levels of metabolites Indoleacetic acid, subsequently enhancing the expression of AhR-related pathway proteins. This led to the inhibition of the NOD-like receptor protein 3 (NLRP3) inflammasome production and inflammation generation in NASH. Lastly, we verified the efficacy of paeonol in intervening NASH by conducting fecal microbiota transplantation experiments, which confirmed its role in promoting the AhR/NLRP3/cysteinyl aspartate specific proteinase (Caspase-1) pathway. CONCLUSIONS Our findings suggest that paeonol can increase the production of Indoleacetic acid by regulating the gut flora, and promote the AhR/NLRP3/Caspase-1 metabolic pathway to intervene NASH.
Collapse
Affiliation(s)
- Guiming Yan
- College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China
| | - Luning Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Shengnan Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Qifeng Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China
| | - Min Dai
- College of Pharmacy, Anhui University of Chinese Medicine, 350 Longzihu Road, Hefei, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
197
|
Pei Y, He Y, Wang X, Xie C, Li L, Sun Q, Liu L, Shan S, Wang P, Liu T, Fan X, Cong M, Jia J. Tartaric acid ameliorates experimental non-alcoholic fatty liver disease by activating the AMP-activated protein kinase signaling pathway. Eur J Pharmacol 2024; 975:176668. [PMID: 38788791 DOI: 10.1016/j.ejphar.2024.176668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/01/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
Tartaric acid (TA) has been shown beneficial effects on blood pressure and lipid levels. However, its effect on non-alcoholic fatty liver disease (NAFLD) remains unknown. This study aimed to investigate the role of TA in experimental NAFLD. Mice were fed a Western diet for 8 weeks, followed by administration of TA or a vehicle for an additional 12 weeks while continuing on the Western diet. Blood biochemistry including transaminases and glucose tolerance test and liver tissue RNA sequencing (RNA-seq), lipid content, and histology were investigated. The HepG2 cell line was used to explore the mechanism by which TA regulates lipid metabolism. We found that TA significantly improved weight gain, insulin resistance, hepatic steatosis, inflammation and fibrosis in Western diet-fed mice. By comparing gene expression differences, we found that TA affects pathways related to lipid metabolism, inflammatory response, and fibrosis. Furthermore, TA effectively reduced oleic acid-induced lipid accumulation in HepG2 cells and downregulated the genes associated with fatty acid synthesis, which were enriched in the AMP-activated protein kinase (AMPK) signaling pathway. TA also enhanced the phosphorylation of AMPK which could be reverted by the AMPK inhibitor Compound C in HepG2 cells. Our study suggests that TA improves experimental NAFLD by activating the AMPK signaling pathway. These findings indicate that TA may serve as a potential therapy for the human NAFLD.
Collapse
Affiliation(s)
- Yufeng Pei
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Yu He
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Xiaofan Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Chao Xie
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Li Li
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Qingyun Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Shan Shan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center for Digestive Diseases, State Key Lab of Digestive Health, Beijing, China.
| |
Collapse
|
198
|
Liu Y, Wang R. Association between serum selenium and non-alcoholic fatty liver disease: Results from NHANES: An observational study. Medicine (Baltimore) 2024; 103:e38845. [PMID: 38996172 PMCID: PMC11245274 DOI: 10.1097/md.0000000000038845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of diseases and stands as the second most prevalent liver disorder in the 21st century. Advanced hepatic fibrosis (AHF) is a crucial indicator of the progression of NAFLD. Selenium (Se) is an indispensable trace element for human physiology; however, excessive intake can lead to poisoning and detrimental effects. Notably, males exhibit significantly higher serum Se levels compared to females. To investigate the correlation between serum Se levels and the prevalence of NAFLD and AHF across different genders. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020, 7271 participants were included. Through descriptive analysis, multivariable logistic regression, subgroup analysis, interaction, and restricted cubic spline regression analysis, the relationship between serum Se levels and the prevalence of NAFLD and AHF was investigated. serum Se levels were significantly higher in both male and female NAFLD groups compared to the non-NAFLD groups (Males: 187.570 vs 183.300, Z = -16.169, P < .001; Females: 184.780 vs 180.130, Z = -4.102, P < .001). After adjusting for confounders, an increase in one quartile of serum Se was associated with a 17.60% increase in NAFLD prevalence in males (OR, 1.176; 95% CI: 1.052-1.315) and a 38.50% decrease in AHF prevalence (OR, 0.615; 95% CI: 0.479-0.789). In females, each quartile increase in serum Se was associated with a 29.10% increase in NAFLD prevalence (OR,1.291;95%CI: 1.155-1.442) and a 51.60% decrease in AHF prevalence (OR, 0.484; 95% CI: 0.344-0.682). serum Se levels are positively correlated with the prevalence of NAFLD and negatively correlated with the prevalence of AHF in both males and females.
Collapse
Affiliation(s)
- Yajie Liu
- Department of Spleen, Stomach, Liver and Gallbladder Diseases, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine and Liver Diseases, Fifth Medical Center, PLA General Hospital, Beijing, China
| |
Collapse
|
199
|
Alam N, Jia L, Cheng A, Ren H, Fu Y, Ding X, Haq IU, Liu E. Global research trends on gut microbiota and metabolic dysfunction-associated steatohepatitis: Insights from bibliometric and scientometric analysis. Front Pharmacol 2024; 15:1390483. [PMID: 39070791 PMCID: PMC11273336 DOI: 10.3389/fphar.2024.1390483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Background Metabolic dysfunction-associated steatohepatitis (MASH) is an inflammatory subtype of metabolic dysfunction-associated steatotic liver disease (MASLD) has recently been proposed as a replacement term for NAFLD, a common, multifactorial and poorly understood liver disease whose incidence is increasing worldwide. In recent years, there has been increasing scientific interest in exploring the relationship between gut microbiota and MASH. To learn more about the gut microbiota in MASH, this study aims to provide a comprehensive analysis of the knowledge structure and research hotspots from a bibliometric perspective. Methods We searched the Web of Science Core Collection for articles and reviews that covered the connections between gut microbiota and MASH over the last decade. The Online Analysis Platforms, VOSviewer, CiteSpace, the R tool "bibliometrix" were used to analyzed existing publications trends and hotspots. Results A total of 4,069 documents related to the interaction between gut microbiota and MASH were retrieved from 2014 to 2023. The number of annual publications increased significantly over the last decade, particularly in the United States and China. The University of California-San Diego was the most productive institution, while researcher Rohit Loomba published the most papers in the field. Younossi ZM was ranked as the first co-cited author and largest contributor of highly cited articles in the field. Gastroenterology and hepatology were the most common specialty category. The most cited journal in the last decade was Hepatology. The Keyword Bursts analysis highlighted the importance of studying the association between gut microbiota and MASH, as well as related factors such as metabolic syndrome, insulin resistance, endotoxemia and overgrowth of gut bacteria. Keyword clusters with co-citation were used to illustrate important topics including intestinal permeability, insulin sensitivity and liver immunology. The most common keywords include insulin resistance, obesity, dysbiosis, inflammation and oxidative stress, which are current hotspots. Conclusion Our analysis highlights key aspects of this field and emphasizes multiorgan crosstalk in MASLD/MASH pathogenesis. In particular, the central role of the gut-liver axis and the significant influence of gut microbiota dysbiosis on disease progression are highlighted. Furthermore, our results highlight the transformative potential of microbiota-specific therapies and cover the way for innovative healthcare and pharmaceutical strategies.
Collapse
Affiliation(s)
- Naqash Alam
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Linying Jia
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ao Cheng
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Honghao Ren
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Yu Fu
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Xinhua Ding
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Ihtisham Ul Haq
- Department of Neurobiology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Enqi Liu
- Laboratory Animal Center, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
200
|
Wang J, Jia B, Miao J, Li D, Wang Y, Han L, Yuan Y, Zhang Y, Wang Y, Guo L, Jia J, Zheng F, Lai S, Niu K, Li W, Bian Y, Wang Y. An novel effective and safe model for the diagnosis of nonalcoholic fatty liver disease in China: gene excavations, clinical validations, and mechanism elucidation. J Transl Med 2024; 22:624. [PMID: 38965537 PMCID: PMC11225259 DOI: 10.1186/s12967-024-05315-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. NAFLD leads to liver fibrosis and hepatocellular carcinoma, and it also has systemic effects associated with metabolic diseases, cardiovascular diseases, chronic kidney disease, and malignant tumors. Therefore, it is important to diagnose NAFLD early to prevent these adverse effects. METHODS The GSE89632 dataset was downloaded from the Gene Expression Omnibus database, and then the optimal genes were screened from the data cohort using lasso and Support Vector Machine Recursive Feature Elimination (SVM-RFE). The ROC values of the optimal genes for the diagnosis of NAFLD were calculated. The relationship between optimal genes and immune cells was determined using the DECONVOLUTION algorithm CIBERSORT. Finally, the specificity and sensitivity of the diagnostic genes were verified by detecting the expression of the diagnostic genes in blood samples from 320 NAFLD patients and liver samples from 12 mice. RESULTS Through machine learning we identified FOSB, GPAT3, RGCC and RNF43 were the key diagnostic genes for NAFLD, and they were further demonstrated by a receiver operating characteristic curve analysis. We found that the combined diagnosis of the four genes identified NAFLD samples well from normal samples (AUC = 0.997). FOSB, GPAT3, RGCC and RNF43 were strongly associated with immune cell infiltration. We also experimentally examined the expression of these genes in NAFLD patients and NAFLD mice, and the results showed that these genes are highly specific and sensitive. CONCLUSIONS Data from both clinical and animal studies demonstrate the high sensitivity, specificity and safety of FOSB, GPAT3, RGCC and RNF43 for the diagnosis of NAFLD. The relationship between diagnostic key genes and immune cell infiltration may help to understand the development of NAFLD. The study was reviewed and approved by Ethics Committee of Tianjin Second People's Hospital in 2021 (ChiCTR1900024415).
Collapse
Affiliation(s)
- Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Beitian Jia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jing Miao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Dun Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Lu Han
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yin Yuan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuan Zhang
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liying Guo
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Jianwei Jia
- Tianjin Second People's Hospital, Department of Integrated Traditional Chinese and Western Medicine, Tianjin, 300192, People's Republic of China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Sizhen Lai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Kaijun Niu
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Yaogang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|