151
|
Núñez K, Thevenot P, Alfadhli A, Cohen A. Complement Activation in Liver Transplantation: Role of Donor Macrosteatosis and Implications in Delayed Graft Function. Int J Mol Sci 2018; 19:1750. [PMID: 29899265 PMCID: PMC6032339 DOI: 10.3390/ijms19061750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
The complement system anchors the innate inflammatory response by triggering both cell-mediated and antibody-mediated immune responses against pathogens. The complement system also plays a critical role in sterile tissue injury by responding to damage-associated molecular patterns. The degree and duration of complement activation may be a critical variable controlling the balance between regenerative and destructive inflammation following sterile injury. Recent studies in kidney transplantation suggest that aberrant complement activation may play a significant role in delayed graft function following transplantation, confirming results obtained from rodent models of renal ischemia/reperfusion (I/R) injury. Deactivating the complement cascade through targeting anaphylatoxins (C3a/C5a) might be an effective clinical strategy to dampen reperfusion injury and reduce delayed graft function in liver transplantation. Targeting the complement cascade may be critical in donor livers with mild to moderate steatosis, where elevated lipid burden amplifies stress responses and increases hepatocyte turnover. Steatosis-driven complement activation in the donor liver may also have implications in rejection and thrombolytic complications following transplantation. This review focuses on the roles of complement activation in liver I/R injury, strategies to target complement activation in liver I/R, and potential opportunities to translate these strategies to transplanting donor livers with mild to moderate steatosis.
Collapse
Affiliation(s)
- Kelley Núñez
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Paul Thevenot
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Abeer Alfadhli
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| | - Ari Cohen
- Institute of Translational Research, Ochsner Health System, New Orleans, LA 70121, USA.
| |
Collapse
|
152
|
Liu Y, Liu Q, Hesketh J, Huang D, Gan F, Hao S, Tang S, Guo Y, Huang K. Protective effects of selenium-glutathione-enriched probiotics on CCl 4-induced liver fibrosis. J Nutr Biochem 2018; 58:138-149. [PMID: 29933196 DOI: 10.1016/j.jnutbio.2018.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
Hepatic fibrosis is a common pathological basis of liver cirrhosis and hepatocellular carcinomas. So, prevention and treatment of liver fibrosis is one of the crucial therapeutic goals in hepatology. Organic selenium, glutathione or probiotics supplementation could ameliorate hepatic fibrosis, respectively. The purpose of this study is to develop a novel selenium-glutathione-enriched probiotics (SGP) and to investigate its protective effect on CCl4-induced liver fibrosis in rats. Yeast strains with the high-yield glutathione were isolated and identified by analysis of 26S ribosomal DNA sequences. The fermentation parameters of SGP were optimized through single-factor, Plackett-Burman (PB) design and response surface methodology (RSM). The final SGP contained 38.4 μg/g of organic selenium, 34.1 mg/g of intracellular glutathione, approximately 1×1010 CFU/g live Saccharomyces cerevisiae and 1×1012 CFU/g live Lactobacillus acidophilus. SGP had better protective effects on liver fibrosis than selenium, glutathione or probiotics, respectively. The hepatic silent information regulator 1 (SIRT1) level was down-regulated and oxidative stress, endoplasmic reticulum (ER) stress, inflammation and phosphorylated MAPK was increased in CCl4-treated rats. However, SGP can significantly reverse these changes caused by CCl4. Our findings suggest that SGP was effective in attenuating liver fibrosis by the activation of SIRT1 signaling and attenuating hepatic oxidative stress, ER stress, inflammation and MAPK signaling.
Collapse
Affiliation(s)
- Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Qing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Da Huang
- Department of Chemistry, Department of Electrical and Computer Engineering Laboratory for Nanophotonics, Rice University, Houston, TX 77005, United States
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shu Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shan Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yanxia Guo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
153
|
Xiao W, Zhang J, Chen S, Shi Y, Xiao F, An W. Alleviation of palmitic acid‐induced endoplasmic reticulum stress by augmenter of liver regeneration through IP3R‐controlled Ca
2+
release. J Cell Physiol 2018; 233:6148-6157. [DOI: 10.1002/jcp.26463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/05/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Wei‐chun Xiao
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Jing Zhang
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Si‐li Chen
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Yi‐jun Shi
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Fan Xiao
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| | - Wei An
- Department of Cell Biology and Municipal Laboratory for Liver Protection and Regulation of RegenerationCapital Medical UniversityBeijingChina
| |
Collapse
|
154
|
Sharma RS, Harrison DJ, Kisielewski D, Cassidy DM, McNeilly AD, Gallagher JR, Walsh SV, Honda T, McCrimmon RJ, Dinkova-Kostova AT, Ashford ML, Dillon JF, Hayes JD. Experimental Nonalcoholic Steatohepatitis and Liver Fibrosis Are Ameliorated by Pharmacologic Activation of Nrf2 (NF-E2 p45-Related Factor 2). Cell Mol Gastroenterol Hepatol 2018; 5:367-398. [PMID: 29552625 PMCID: PMC5852394 DOI: 10.1016/j.jcmgh.2017.11.016] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/30/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic steatohepatitis (NASH) is associated with oxidative stress. We surmised that pharmacologic activation of NF-E2 p45-related factor 2 (Nrf2) using the acetylenic tricyclic bis(cyano enone) TBE-31 would suppress NASH because Nrf2 is a transcriptional master regulator of intracellular redox homeostasis. METHODS Nrf2+/+ and Nrf2-/- C57BL/6 mice were fed a high-fat plus fructose (HFFr) or regular chow diet for 16 weeks or 30 weeks, and then treated for the final 6 weeks, while still being fed the same HFFr or regular chow diets, with either TBE-31 or dimethyl sulfoxide vehicle control. Measures of whole-body glucose homeostasis, histologic assessment of liver, and biochemical and molecular measurements of steatosis, endoplasmic reticulum (ER) stress, inflammation, apoptosis, fibrosis, and oxidative stress were performed in livers from these animals. RESULTS TBE-31 treatment reversed insulin resistance in HFFr-fed wild-type mice, but not in HFFr-fed Nrf2-null mice. TBE-31 treatment of HFFr-fed wild-type mice substantially decreased liver steatosis and expression of lipid synthesis genes, while increasing hepatic expression of fatty acid oxidation and lipoprotein assembly genes. Also, TBE-31 treatment decreased ER stress, expression of inflammation genes, and markers of apoptosis, fibrosis, and oxidative stress in the livers of HFFr-fed wild-type mice. By comparison, TBE-31 did not decrease steatosis, ER stress, lipogenesis, inflammation, fibrosis, or oxidative stress in livers of HFFr-fed Nrf2-null mice. CONCLUSIONS Pharmacologic activation of Nrf2 in mice that had already been rendered obese and insulin resistant reversed insulin resistance, suppressed hepatic steatosis, and mitigated against NASH and liver fibrosis, effects that we principally attribute to inhibition of ER, inflammatory, and oxidative stress.
Collapse
Key Words
- ACACA, acetyl-CoA carboxylase alpha
- ACLY, ATP citrate lyase
- ACOT7, acetyl-CoA thioesterase 7
- ACOX2, acetyl-CoA oxidase 2
- ADRP, adipose differentiation-related protein
- AP-1, activator protein 1
- ATF4, activating transcription factor-4
- ATF6, activating transcription factor-6
- ApoB, apolipoprotein B
- BCL-2, B-cell lymphoma
- BIP, binding immunoglobulin protein
- C/EBP, CCAAT/enhancer-binding protein
- CAT, catalase
- CD36, cluster of differentiation 36
- CDDO, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid
- CES1G, carboxylesterase 1g
- CHOP, C/EBP homologous protein
- COL1A1, collagen, type I, alpha-1
- COX2, cyclooxygenase-2
- CPT1A, carnitine palmitoyltransferase 1a
- ChREBP, carbohydrate-responsive element-binding protein
- DGAT2, diacylglycerol acyltransferase-2
- DMSO, dimethyl sulfoxide
- ER, endoplasmic reticulum
- FASN, fatty acid synthase
- FXR, farnesoid X receptor
- GCLC, glutamate-cysteine ligase catalytic
- GCLM, glutamate-cysteine ligase modifier
- GPX2, glutathione peroxidase-2
- GSH, reduced glutathione
- GSSG, oxidized glutathione
- GSTA4, glutathione S-transferase Alpha-4
- GSTM1, glutathione S-transferase Mu-1
- GTT, glucose tolerance test
- H&E, hematoxylin and eosin
- HF, high-fat
- HF30Fr, high-fat diet with 30% fructose in drinking water
- HF55Fr, high-fat diet with 55% fructose in drinking water
- HFFr, high-fat diet with fructose in drinking water
- HMOX1, heme oxygenase-1
- IKK, IκB kinase
- IRE1α, inositol requiring kinase-1α
- ITT, insulin tolerance test
- IκB, inhibitor of NF-κB
- JNK1, c-Jun N-terminal kinase 1
- Keap1, Kelch-like ECH-associated protein-1
- LXRα, liver X receptor α
- MCD, methionine- and choline-deficient
- MCP-1, monocyte chemotactic protein-1
- MGPAT, mitochondrial glycerol-3-phosphate acetyltransferase
- MPO, myeloperoxidase
- MTTP, microsomal triglyceride transfer protein
- NAFLD, non-alcoholic fatty liver disease
- NAS, NAFLD activity score
- NASH
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-κB
- NOS2, nitric oxide synthase-2
- NQO1, NAD(P)H:quinone oxidoreductase 1
- Nrf2
- Nrf2, NF-E2 p45-related factor 2
- PARP, poly ADP ribose polymerase
- PCR, polymerase chain reaction
- PDI, protein disulfide isomerase
- PERK, PRK-like endoplasmic reticulum kinase
- PPARα, peroxisome proliferator-activated receptor α
- PPARγ, peroxisome proliferator-activated receptor γ
- PRDX6, peroxiredoxin 6
- PTGR1, prostaglandin reductase-1
- PTT, pyruvate tolerance test
- RC, regular chow
- SCAD, short-chain acyl-CoA dehydrogenase
- SCD1, stearoyl-CoA desaturase-1
- SFN, sulforaphane
- SHP, small heterodimer partner
- SLC7A11, solute carrier family 7 member 11
- SREBP-1c, sterol regulatory element-binding protein-1c
- TBE-31
- TGFβ, transforming growth factor beta-1
- TNF-α, tumor necrosis factor-α
- TXN1, thioredoxin-1
- TXNRD1, thioredoxin reductase-1
- UPR, unfolded protein response
- XBP1, X-box binding protein-1
- eIf2α, eukaryotic translation initiation factor 2A
- p58IPK, p58 inhibitor of the PKR kinase
- qRT-PCR, quantitative reverse transcriptase PCR
- α-SMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Ritu S. Sharma
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - David J. Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, United Kingdom
| | - Dorothy Kisielewski
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Diane M. Cassidy
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alison D. McNeilly
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Jennifer R. Gallagher
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Shaun V. Walsh
- Department of Pathology, Ninewells Hospital and Medical School, Tayside NHS Trust, Dundee, Scotland, United Kingdom
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York
| | - Rory J. McCrimmon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Albena T. Dinkova-Kostova
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - Michael L.J. Ashford
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - John F. Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| | - John D. Hayes
- Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
155
|
Ho N, Xu C, Thibault G. From the unfolded protein response to metabolic diseases - lipids under the spotlight. J Cell Sci 2018; 131:131/3/jcs199307. [PMID: 29439157 DOI: 10.1242/jcs.199307] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The unfolded protein response (UPR) is classically viewed as a stress response pathway to maintain protein homeostasis at the endoplasmic reticulum (ER). However, it has recently emerged that the UPR can be directly activated by lipid perturbation, independently of misfolded proteins. Comprising primarily phospholipids, sphingolipids and sterols, individual membranes can contain hundreds of distinct lipids. Even with such complexity, lipid distribution in a cell is tightly regulated by mechanisms that remain incompletely understood. It is therefore unsurprising that lipid dysregulation can be a key factor in disease development. Recent advances in analysis of lipids and their regulators have revealed remarkable mechanisms and connections to other cellular pathways including the UPR. In this Review, we summarize the current understanding in UPR transducers functioning as lipid sensors and the interplay between lipid metabolism and ER homeostasis in the context of metabolic diseases. We attempt to provide a framework consisting of a few key principles to integrate the different lines of evidence and explain this rather complicated mechanism.
Collapse
Affiliation(s)
- Nurulain Ho
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Chengchao Xu
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142-1479, USA
| | - Guillaume Thibault
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| |
Collapse
|
156
|
Klumpp K, Shimada T, Allweiss L, Volz T, Lütgehetmann M, Hartman G, Flores OA, Lam AM, Dandri M. Efficacy of NVR 3-778, Alone and In Combination With Pegylated Interferon, vs Entecavir In uPA/SCID Mice With Humanized Livers and HBV Infection. Gastroenterology 2018; 154:652-662.e8. [PMID: 29079518 DOI: 10.1053/j.gastro.2017.10.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS NVR3-778 is a capsid assembly modulator in clinical development. We determined the in vivo antiviral efficacy and effects on innate and endoplasmic reticulum (ER) stress responses of NVR3-778 alone or in combination with pegylated interferon alpha (peg-IFN) and compared with entecavir. METHODS We performed 2 studies, with a total of 61 uPA/SCID mice with humanized livers. Mice were infected with a hepatitis B virus (HBV) genotype C preparation; we waited 8 weeks for persistent infection of the human hepatocytes in livers of mice. Mice were then randomly assigned to groups (5 or 6 per group) given vehicle (control), NVR3-778, entecavir, peg-IFN, NVR3-778 + entecavir, or NVR3-778 + peg-IFN for 6 weeks. We measured levels of HB surface antigen, HB e antigen, HBV RNA, alanine aminotransferase, and human serum albumin at different time points. Livers were collected and analyzed by immunohistochemistry; levels of HBV DNA, covalently closed circular DNA, and HBV RNA, along with markers of ER stress and IFN response, were quantified. RESULTS Mice given NVR3-778 or entecavir alone for 6 weeks had reduced serum levels of HBV DNA compared with controls or mice given peg-IFN. The largest reduction was observed in mice given NVR3-778 + peg-IFN; in all mice in this group, the serum level of HBV DNA was below the limit of quantification. NVR3-778 and peg-IFN, but not entecavir, also reduced serum level of HBV RNA. The largest effect was obtained in the NVR3-778 + peg-IFN group, in which serum level of HBV RNA was below the limit of quantification. Levels of HB surface antigen and HB e antigen were reduced significantly in only the groups that received peg-IFN. Levels of covalently closed circular DNA did not differ significantly among groups. NVR3-778 was not associated with any significant changes in level of alanine aminotransferase, the ER stress response, or IFN-stimulated genes. CONCLUSIONS NVR3-778 has high antiviral activity in mice with humanized livers and stable HBV infection, reducing levels of serum HBV DNA and HBV RNA. Entecavir reduced levels of serum HBV DNA, but had no effect on HBV RNA. The combination of NVR3-778 and peg-IFN prevented viral replication and HBV RNA particle production to a greater extent than each compound alone or entecavir.
Collapse
Affiliation(s)
- Klaus Klumpp
- Novira Therapeutics Inc, part of the Janssen Pharmaceutical Companies, Doylestown, Pennsylvania.
| | | | - Lena Allweiss
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tassilo Volz
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marc Lütgehetmann
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - George Hartman
- Novira Therapeutics Inc, part of the Janssen Pharmaceutical Companies, Doylestown, Pennsylvania
| | - Osvaldo A Flores
- Novira Therapeutics Inc, part of the Janssen Pharmaceutical Companies, Doylestown, Pennsylvania
| | - Angela M Lam
- Novira Therapeutics Inc, part of the Janssen Pharmaceutical Companies, Doylestown, Pennsylvania
| | - Maura Dandri
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research, Hamburg-Lübeck-Borstel Partner Site, Germany
| |
Collapse
|
157
|
Burban A, Sharanek A, Guguen-Guillouzo C, Guillouzo A. Endoplasmic reticulum stress precedes oxidative stress in antibiotic-induced cholestasis and cytotoxicity in human hepatocytes. Free Radic Biol Med 2018; 115:166-178. [PMID: 29191461 DOI: 10.1016/j.freeradbiomed.2017.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/11/2017] [Accepted: 11/22/2017] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress has been associated with various drug-induced liver lesions but its participation in drug-induced cholestasis remains unclear. We first aimed at analyzing liver damage caused by various hepatotoxic antibiotics, including three penicillinase-resistant antibiotics (PRAs), i.e. flucloxacillin, cloxacillin and nafcillin, as well as trovafloxacin, levofloxacin and erythromycin, using human differentiated HepaRG cells and primary hepatocytes. All these antibiotics caused early cholestatic effects typified by bile canaliculi dilatation and reduced bile acid efflux within 2h and dose-dependent enhanced caspase-3 activity within 24h. PRAs induced the highest cholestatic effects at non cytotoxic concentrations. Then, molecular events involved in these lesions were analyzed. Early accumulation of misfolded proteins revealed by thioflavin-T fluorescence and associated with phosphorylation of the unfolded protein response sensors, eIF2α and/or IRE1α, was evidenced with all tested hepatotoxic antibiotics. Inhibition of ER stress markedly restored bile acid efflux and prevented bile canaliculi dilatation. Downstream of ER stress, ROS were also generated with high antibiotic concentrations. The protective HSP27-PI3K-AKT signaling pathway was activated only in PRA-treated cells and its inhibition increased ROS production and aggravated caspase-3 activity. Overall, our results demonstrate that (i) various antibiotics reported to cause cholestasis and hepatocellular injury in the clinic can also induce such effects in in vitro human hepatocytes; (ii) PRAs cause the strongest cholestatic effects in the absence of cytotoxicity; (iii) cholestatic features occur early through ER stress; (iv) cytotoxic lesions are observed later through ER stress-mediated ROS generation; and (v) activation of the HSP27-PI3K-AKT pathway protects from cytotoxic damage induced by PRAs only.
Collapse
Affiliation(s)
- Audrey Burban
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | - Ahmad Sharanek
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France
| | | | - André Guillouzo
- INSERM U991/1241, Numecan, Rennes, France; Rennes 1 University, Rennes, France.
| |
Collapse
|
158
|
Hydrogen-rich saline protects against small-scale liver ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. Life Sci 2018; 194:7-14. [DOI: 10.1016/j.lfs.2017.12.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
|
159
|
Khakurel A, Park PH. Globular adiponectin protects hepatocytes from tunicamycin-induced cell death via modulation of the inflammasome and heme oxygenase-1 induction. Pharmacol Res 2018; 128:231-243. [DOI: 10.1016/j.phrs.2017.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
160
|
Damiano F, Testini M, Tocci R, Gnoni GV, Siculella L. Translational control of human acetyl-CoA carboxylase 1 mRNA is mediated by an internal ribosome entry site in response to ER stress, serum deprivation or hypoxia mimetic CoCl 2. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:388-398. [PMID: 29343429 DOI: 10.1016/j.bbalip.2018.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
Acetyl-CoA carboxylase 1 (ACC1) is a cytosolic enzyme catalyzing the rate limiting step in de novo fatty acid biosynthesis. There is mounting evidence showing that ACC1 is susceptible to dysregulation and that it is over-expressed in liver diseases associated with lipid accumulation and in several cancers. In the present study, ACC1 regulation at the translational level is reported. Using several experimental approaches, the presence of an internal ribosome entry site (IRES) has been established in the 5' untranslated region (5' UTR) of the ACC1 mRNA. Transfection experiments with the ACC1 5' UTR inserted in a dicistronic reporter vector show a remarkable increase in the downstream cistron translation, through a cap-independent mechanism. The endoplasmic reticulum (ER) stress condition and the related unfolded protein response (UPR), triggered by treatment with thapsigargin and tunicamycin, cause an increase of the cap-independent translation of ACC1 mRNA in HepG2 cells, despite the overall reduction in global protein synthesis. Other stress conditions, such as serum starvation and incubation with hypoxia mimetic agent CoCl2, up-regulate ACC1 expression in HepG2 cells at the translational level. Overall, these findings indicate that the presence of an IRES in the ACC1 5' UTR allows ACC1 mRNA translation in conditions that are inhibitory to cap-dependent translation. A potential involvement of the cap-independent translation of ACC1 in several pathologies, such as obesity and cancer, has been discussed.
Collapse
Affiliation(s)
- Fabrizio Damiano
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Mariangela Testini
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Romina Tocci
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), Hammersmith Hospital, London, UK
| | - Gabriele V Gnoni
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luisa Siculella
- Laboratory of Biochemistry and Molecular Biology, Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
161
|
El Hadi H, Vettor R, Rossato M. Vitamin E as a Treatment for Nonalcoholic Fatty Liver Disease: Reality or Myth? Antioxidants (Basel) 2018; 7:antiox7010012. [PMID: 29337849 PMCID: PMC5789322 DOI: 10.3390/antiox7010012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/30/2022] Open
Abstract
Obesity is one of the major epidemics of this millennium, and its incidence is growing worldwide. Following the epidemics of obesity, nonalcoholic fatty liver disease (NAFLD) has become a disease of increasing prevalence and a leading cause of morbidity and mortality closely related to cardiovascular disease, malignancies, and cirrhosis. It is believed that oxidative stress is a main player in the development and progression of NAFLD. Currently, a pharmacological approach has become necessary in NAFLD because of a failure to modify lifestyle and dietary habits in most patients. Vitamin E is a potent antioxidant that has been shown to reduce oxidative stress in NAFLD. This review summarizes the biological activities of vitamin E, with a primary focus on its therapeutic efficacy in NAFLD.
Collapse
Affiliation(s)
- Hamza El Hadi
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Roberto Vettor
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| | - Marco Rossato
- Internal Medicine 3, Department of Medicine-DIMED, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
162
|
|
163
|
Adolph TE, Grabherr F, Mayr L, Grander C, Enrich B, Moschen AR, Tilg H. Weight Loss Induced by Bariatric Surgery Restricts Hepatic GDF15 Expression. J Obes 2018; 2018:7108075. [PMID: 30533221 PMCID: PMC6250003 DOI: 10.1155/2018/7108075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/12/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Obesity and related nonalcoholic fatty liver disease (NAFLD) are an emerging health care issue that imposes substantial morbidity to individuals. Growth and differentiation factor 15 (GDF15) limits food uptake, body weight, and energy balance by modulation of GDNF-family receptor α-like (GFRAL) signalling in the hindbrain. However, the regulation of GDF15 expression in obesity and NAFLD is incompletely understood. We sought to define the impact of weight loss achieved by laparoscopic adjustable gastric banding (LAGB) on hepatic and adipose GDF15 expression in a cohort of severely obese patients. METHODS We analysed GDF15 expression of liver and subcutaneous adipose tissue before and 6 months after LAGB in severely obese patients undergoing LAGB by quantitative real-time PCR. To assess the role of inflammation on GDF15 expression, we analysed Hep G2 hepatocytes stimulated with cytokines such as IL-1β, TNFα, IL-6, LPS, or cellular stressors such as tunicamycin. RESULTS GDF15 expression was mostly confined to the liver compared to adipose tissue in severely obese patients. Weight loss induced by LAGB was associated with reduced hepatic (but not adipose tissue) expression of GDF15. Stimulation with IL-1β or tunicamycin induced hepatic GDF15 expression in hepatocytes. In line with this, hepatic GDF15 expression directly correlated with IL-1β expression and steatosis severity in NAFLD. These data demonstrated that amelioration of metabolic inflammation and weight loss reduced hepatic GDF15 expression. CONCLUSION Based on recent mechanistic findings, our data suggest that hepatic GDF15 may serve as a negative feedback mechanism to control energy balance in NAFLD.
Collapse
Affiliation(s)
- Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Lisa Mayr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Barbara Enrich
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Alexander R. Moschen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck 6020, Austria
| |
Collapse
|
164
|
Dihydroartemisinin inhibits ER stress-mediated mitochondrial pathway to attenuate hepatocyte lipoapoptosis via blocking the activation of the PI3K/Akt pathway. Biomed Pharmacother 2018; 97:975-984. [DOI: 10.1016/j.biopha.2017.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
|
165
|
Zhang J, Zhang H, Deng X, Zhang Y, Xu K. Baicalin protects AML-12 cells from lipotoxicity via the suppression of ER stress and TXNIP/NLRP3 inflammasome activation. Chem Biol Interact 2017; 278:189-196. [DOI: 10.1016/j.cbi.2017.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023]
|
166
|
Kim SY, Kyaw YY, Cheong J. Functional interaction of endoplasmic reticulum stress and hepatitis B virus in the pathogenesis of liver diseases. World J Gastroenterol 2017; 23:7657-7665. [PMID: 29209107 PMCID: PMC5703926 DOI: 10.3748/wjg.v23.i43.7657] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 11/01/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) is a non-cytopathic virus that causes acute and chronic inflammatory liver diseases, often leading to the pathogenesis of hepatocellular carcinoma (HCC). Although many studies for the roles of HBV on pathogenesis of the liver diseases, such as non-alcoholic fatty liver disease (NAFLD), hepatic inflammation, cirrhosis, and HCC, have been reported, the mechanisms are not fully understood. Endoplasmic reticulum (ER) and mitochondria have the protective mechanisms to restore their damaged function by intrinsic or extrinsic stresses, but their chronic dysfunctions are associated with the pathogenesis of the various diseases. Furthermore, HBV can affect intra- or extracellular homeostasis through induction of ER and mitochondrial dysfunctions, leading to liver injury. Therefore, the mechanism by which HBV induces ER or mitochondrial stresses may be a therapeutic target for treatment of liver diseases.
Collapse
Affiliation(s)
- So Young Kim
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Yi Yi Kyaw
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 609-735, South Korea
| |
Collapse
|
167
|
High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver. J Hepatol 2017; 67:1009-1017. [PMID: 28596111 PMCID: PMC6122848 DOI: 10.1016/j.jhep.2017.05.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. METHODS A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. RESULTS Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. CONCLUSIONS Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during administration of dantrolene, a drug that stabilizes ER calcium. The study describes a novel technique for liver research and provides insight into cellular processes that may contribute to the pathogenesis of obesity and fatty liver disease.
Collapse
|
168
|
CISD2 Haploinsufficiency Disrupts Calcium Homeostasis, Causes Nonalcoholic Fatty Liver Disease, and Promotes Hepatocellular Carcinoma. Cell Rep 2017; 21:2198-2211. [DOI: 10.1016/j.celrep.2017.10.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/24/2017] [Accepted: 10/25/2017] [Indexed: 12/12/2022] Open
|
169
|
Liu Y, Pan X, Li S, Yu Y, Chen J, Yin J, Li G. Endoplasmic reticulum stress restrains hepatocyte growth factor expression in hepatic stellate cells and rat acute liver failure model. Chem Biol Interact 2017; 277:43-54. [DOI: 10.1016/j.cbi.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
|
170
|
Impact of intracellular glyceraldehyde-derived advanced glycation end-products on human hepatocyte cell death. Sci Rep 2017; 7:14282. [PMID: 29079763 PMCID: PMC5660208 DOI: 10.1038/s41598-017-14711-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte cell death is a key feature of nonalcoholic steatohepatitis (NASH); however, the pathogenesis of NASH currently remains unclear. We aimed to investigate the effects of intracellular glyceraldehyde (GA)-derived advanced glycation end-products (GA-AGEs) on human hepatocyte cell death. The accumulation of intracellular GA-AGEs has been associated with the induction of DNA damage and hepatocyte necrotic cell death. Among intracellular GA-AGEs, caspase-3 has been identified as a GA-AGE-modified protein with abrogated protein function. Furthermore, the activation of caspase-3 and induction of hepatocyte apoptosis by camptothecin, a DNA-damaging agent, was suppressed by a treatment with GA. These results suggest the inhibitory effects of GA-AGE-modified caspase-3 on the induction of DNA-damage-induced apoptosis, which is associated with hepatocyte necrosis. Therefore, the suppression of necrosis, the inflammatory form of cell death, by the accumulation of GA-AGEs and GA-AGE-modified caspase-3 may represent a novel therapeutic target for the pathogenesis of NASH.
Collapse
|
171
|
Wang S, Sui S, Liu Z, Peng C, Liu J, Luo D, Fan X, Liu C, Lu WY. Protective roles of hepatic gamma-aminobutyric acid signaling in acute ethanol exposure-induced liver injury. J Appl Toxicol 2017; 38:341-350. [PMID: 29044621 DOI: 10.1002/jat.3544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/03/2017] [Accepted: 09/04/2017] [Indexed: 11/06/2022]
Abstract
Alcoholic liver disease (ALD) is a consequence of heavy and prolonged alcohol consumptions. We previously demonstrated a hepatic gamma-aminobutyric acid (GABA) signaling system that protects the liver from toxic injury. The present study was designed to investigate the role of the hepatic GABA signaling system in the process of acute ethanol exposure-induced liver injury. Our results showed that the expression of GABA synthesizing enzyme glutamic acid decarboxylase and type A GABA receptor (GABAA R) subunits was upregulated in ethanol-treated mice compared with saline-treated controls. Remarkably, pretreatment of mice with GABA (1.5 mg kg-1 body weight, intraperitoneal injection [i.p.]) or with the GABAA R agonist muscimol (1.2 mg kg-1 body weight, i.p.) protected the liver against ethanol toxicity and improved liver function, whereas pretreatment of mice with the GABAA R antagonist bicuculline (2.0 mg kg-1 body weight, i.p.) worsened the liver function. Further analyses suggest that GABAA R-mediated signaling protects the liver from ethanol injury by, at least partially, inhibiting the IRE1α-ASK1-JNK pro-apoptotic pathway in hepatocytes in the process of ethanol-induced endoplasmic reticulum stress response.
Collapse
Affiliation(s)
- Shuanglian Wang
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Shaofeng Sui
- Shandong Center for Disease Control and Prevention, Institute of Occupational and Environmental Health, Jinan, Shandong, People's Republic of China
| | - Zhiyan Liu
- Department of Pathology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Cheng Peng
- Shandong University Qi Lu Hospital, Jinan, Shandong, People's Republic of China
| | - Jia Liu
- Xinhua Hospital, Huainan, Anhui, People's Republic of China
| | - Dan Luo
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Xinhuan Fan
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Chuanyong Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | - Wei-Yang Lu
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.,Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
172
|
Ren Z, Chen S, Qing T, Xuan J, Couch L, Yu D, Ning B, Shi L, Guo L. Endoplasmic reticulum stress and MAPK signaling pathway activation underlie leflunomide-induced toxicity in HepG2 Cells. Toxicology 2017; 392:11-21. [PMID: 28988120 DOI: 10.1016/j.tox.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 02/06/2023]
Abstract
Leflunomide, used for the treatment of rheumatoid arthritis, has been reported to cause severe liver problems and liver failure; however, the underlying mechanisms are not clear. In this study, we used multiple approaches including genomic analysis to investigate and characterize the possible molecular mechanisms of the cytotoxicity of leflunomide in hepatic cells. We found that leflunomide caused endoplasmic reticulum (ER) stress and activated an unfolded protein response, as evidenced by increased expression of related genes including CHOP and GADD34; and elevated protein levels of typical ER stress markers including CHOP, ATF-4, p-eIF2α, and spliced XBP1. The secretion of Gaussia luciferase was suppressed in cells treated with leflunomide in an ER stress reporter assay. Inhibition of ER stress with an ER stress inhibitor 4-phenylbutyrate, and knockdown of ATF-4 and CHOP genes partially protected cells upon leflunomide exposure. In addition, both genomic and biochemical analyses revealed that JNK and ERK1/2 of MAPK signaling pathways were activated, and both contributed to the leflunomide-induced cytotoxicity. Inhibiting JNK activation using a JNK inhibitor attenuated the ER stress and cytotoxicity of leflunomide, whereas inhibiting ERK1/2 using an ERK1/2 inhibitor or ERK1/2 siRNA increased the adverse effect caused by leflunomide, suggesting opposite roles for the two pathways. In summary, our data indicate that both ER stress and the activation of JNK and ERK1/2 contribute to leflunomide-induced cytotoxicity.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Tao Qing
- School of Pharmacy and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Letha Couch
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Dianke Yu
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of Systems Biology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | - Leming Shi
- School of Pharmacy and School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA.
| |
Collapse
|
173
|
Shi T, Song W, Xu R. Autophagy and ER stress in LPS/GalN-induced acute liver injury. Mol Med Rep 2017; 16:7001-7005. [DOI: 10.3892/mmr.2017.7409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/08/2017] [Indexed: 11/05/2022] Open
|
174
|
Inceoglu B, Bettaieb A, Haj FG, Gomes AV, Hammock BD. Modulation of mitochondrial dysfunction and endoplasmic reticulum stress are key mechanisms for the wide-ranging actions of epoxy fatty acids and soluble epoxide hydrolase inhibitors. Prostaglandins Other Lipid Mediat 2017; 133:68-78. [PMID: 28847566 DOI: 10.1016/j.prostaglandins.2017.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022]
Abstract
The arachidonic acid cascade is arguably the most widely known biologic regulatory pathway. Decades after the seminal discoveries involving its cyclooxygenase and lipoxygenase branches, studies of this cascade remain an active area of research. The third and less widely known branch, the cytochrome P450 pathway leads to highly active oxygenated lipid mediators, epoxy fatty acids (EpFAs) and hydroxyeicosatetraenoic acids (HETEs), which are of similar potency to prostanoids and leukotrienes. Unlike the COX and LOX branches, no pharmaceuticals currently are marketed targeting the P450 branch. However, data support therapeutic benefits from modulating these regulatory lipid mediators. This is being approached by stabilizing or mimicking the EpFAs or even by altering the diet. These approaches lead to predominantly beneficial effects on a wide range of apparently unrelated states resulting in an enigma of how this small group of natural chemical mediators can have such diverse effects. EpFAs are degraded by soluble epoxide hydrolase (sEH) and stabilized by inhibiting this enzyme. In this review, we focus on interconnected aspects of reported mechanisms of action of EpFAs and inhibitors of soluble epoxide hydrolase (sEHI). The sEHI and EpFAs are commonly reported to maintain homeostasis under pathological conditions while remaining neutral under normal physiological conditions. Here we provide a conceptual framework for the unique and broad range of biological activities ascribed to epoxy fatty acids. We argue that their mechanism of action pivots on their ability to prevent mitochondrial dysfunction, to reduce subsequent ROS formation and to block resulting cellular signaling cascades, primarily the endoplasmic reticulum stress. By stabilizing the mitochondrial - ROS - ER stress axis, the range of activity of EpFAs and sEHI display an overlap with the disease conditions including diabetes, fibrosis, chronic pain, cardiovascular and neurodegenerative diseases, for which the above outlined mechanisms play key roles.
Collapse
Affiliation(s)
- Bora Inceoglu
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States.
| | - Ahmed Bettaieb
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996-0840, United States; Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996-0840, United States.
| | - Fawaz G Haj
- Department of Nutrition, University of California Davis, CA 95616, United States; Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616, United States
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
175
|
Lee HY, Kim SW, Lee GH, Choi MK, Chung HW, Lee YC, Kim HR, Kwon HJ, Chae HJ. Curcumin and Curcuma longa L. extract ameliorate lipid accumulation through the regulation of the endoplasmic reticulum redox and ER stress. Sci Rep 2017; 7:6513. [PMID: 28747775 PMCID: PMC5529367 DOI: 10.1038/s41598-017-06872-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/13/2022] Open
Abstract
For this study, we examined the effects of curcumin against acute and chronic stress, paying specific attention to ROS. We also aimed to clarify the differences between acute and chronic stress conditions. We investigated the effects of curcumin against acute stress (once/1 day CCl4 treatment) and chronic-stress (every other day/4week CCl4 treatment). Compared with acute stress, in which the antioxidant system functioned properly and aspartate transaminase (AST) and ROS production increased, chronic stress increased AST, alanine aminotransferase (ALT), hepatic enzymes, and ROS more significantly, and the antioxidant system became impaired. We also found that ER-originated ROS accumulated in the chronic model, another difference between the two conditions. ER stress was induced consistently, and oxidative intra-ER protein folding status, representatively PDI, was impaired, especially in chronic stress. The PDI-associated client protein hepatic apoB accumulated with the PDI-binding status in chronic stress, and curcumin recovered the altered ER folding status, regulating ER stress and the resultant hepatic dyslipidemia. Throughout this study, curcumin and curcumin-rich Curcuma longa L. extract promoted recovery from CCl4-induced hepatic toxicity in both stress conditions. For both stress-associated hepatic dyslipidemia, curcumin and Curcuma longa L. extract might be recommendable to recover liver activity.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Seung-Wook Kim
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Min-Kyung Choi
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Han-Wool Chung
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Yong-Chul Lee
- Department of Internal Medicine, School of Medicine, Chonbuk National University, Jeonju, 560-182, Republic of Korea
| | - Hyung-Ryong Kim
- Daegu Gyeonbuk Institute of Science & Technology (DGIST) graduate school, Daegu Gyeonbuk Institute of Science & Technology (DGIST) graduate school, Daegu, Gyeonbuk, South Korea
| | - Ho Jeong Kwon
- Chemical Genomics Global Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752, Republic of Korea.
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea.
| |
Collapse
|
176
|
Cai Y, Xu MJ, Koritzinsky EH, Zhou Z, Wang W, Cao H, Yuen PS, Ross RA, Star RA, Liangpunsakul S, Gao B. Mitochondrial DNA-enriched microparticles promote acute-on-chronic alcoholic neutrophilia and hepatotoxicity. JCI Insight 2017; 2:92634. [PMID: 28724791 DOI: 10.1172/jci.insight.92634] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Over the last several years, one of the major advances in the field of alcoholic liver disease research was the discovery that binge alcohol consumption induced neutrophilia and hepatic neutrophil infiltration in chronically ethanol-fed mice and human subjects with excessive alcohol use (EAU); however, the underlying mechanisms remain obscure. Here, we demonstrated that chronic EAU patients with a history of recent excessive drinking (EAU + RD) had higher serum levels of mitochondrial DNA (mtDNA)-enriched microparticles (MPs) than EAU without recent drinking (EAU - RD) and healthy controls, which correlated positively with circulating neutrophils. Similarly, mice with chronic-plus-binge (E10d + 1B) ethanol feeding also had markedly elevated serum levels of mtDNA-enriched MPs, with activation of hepatic ER stress and inflammatory responses. Inhibition of ER stress by gene KO or inhibitors attenuated ethanol-induced elevation of mtDNA-enriched MPs, neutrophilia, and liver injury. The data from the study of hepatocyte-specific deletion of the protein kinase RNA-like ER kinase (Perk) gene in mice and of cultured hepatocytes demonstrated that hepatocytes were the main source of mtDNA-enriched MPs after ethanol feeding. Finally, administration of mtDNA-enriched MPs isolated from E10d+1B-fed mice caused neutrophilia in mice. In conclusion, E10d + 1B ethanol consumption activates hepatic ER stress-dependent mtDNA-enriched MP release, leading to neutrophilia and liver injury.
Collapse
Affiliation(s)
- Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Zhou Zhou
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Wei Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Haixia Cao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| | - Peter St Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Ruth A Ross
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA)
| |
Collapse
|
177
|
Li JQ, Qiu YL, Gong JY, Dou LM, Lu Y, Knisely AS, Zhang MH, Luan WS, Wang JS. Novel NBAS mutations and fever-related recurrent acute liver failure in Chinese children: a retrospective study. BMC Gastroenterol 2017. [PMID: 28629372 PMCID: PMC5477288 DOI: 10.1186/s12876-017-0636-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Underlying causes in Chinese children with recurrent acute liver failure (RALF), including liver crises less than full acute liver failure, are incompletely understood. We sought to address this by searching for genes mutated in such children. Methods Five unrelated Chinese boys presenting between 2012 and 2015 with RALF of unexplained etiology were studied. Results of whole exome sequencing were screened for mutations in candidate genes. Mutations were verified in patients and their family members by Sanger sequencing. All 5 boys underwent liver biopsy. Results NBAS was the only candidate gene mutated in more than one patient (biallelic mutations, 3 of 5 patients; 5 separate mutations). All NBAS mutations were novel and predictedly pathogenic (frameshift insertion mutation c.6611_6612insCA, missense mutations c.2407G > A and c.3596G > A, nonsense mutation c.586C > T, and splicing-site mutation c.5389 + 1G > T). Of these mutations, 3 lay in distal (C-terminal) regions of NBAS, a novel distribution. Unlike the 2 patients without NBAS mutations, the 3 patients with confirmed NBAS mutations all suffered from a febrile illness before each episode of liver crisis (fever-related RALF), with markedly elevated alanine aminotransferase and aspartate aminotransferase activities 24-72 h after elevation of body temperature, succeeded by severe coagulopathy and mild to moderate jaundice. Conclusions As in other countries, so too in China; NBAS disease is a major cause of fever-related RALF in children. The mutation spectrum of NBAS in Chinese children seems different from that described in other populations. Electronic supplementary material The online version of this article (doi:10.1186/s12876-017-0636-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jia-Qi Li
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Li-Min Dou
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - A S Knisely
- Institut für Pathologie, Medizinische Universität Graz, Auenbruggerplatz 25, A-8036, Graz, Austria
| | - Mei-Hong Zhang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Wei-Sha Luan
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
178
|
Yu YC, Mao YM, Chen CW, Chen JJ, Chen J, Cong WM, Ding Y, Duan ZP, Fu QC, Guo XY, Hu P, Hu XQ, Jia JD, Lai RT, Li DL, Liu YX, Lu LG, Ma SW, Ma X, Nan YM, Ren H, Shen T, Wang H, Wang JY, Wang TL, Wang XJ, Wei L, Xie Q, Xie W, Yang CQ, Yang DL, Yu YY, Zeng MD, Zhang L, Zhao XY, Zhuang H. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int 2017; 11:221-241. [PMID: 28405790 PMCID: PMC5419998 DOI: 10.1007/s12072-017-9793-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is an important clinical problem, which has received more attention in recent decades. It can be induced by small chemical molecules, biological agents, traditional Chinese medicines (TCM), natural medicines (NM), health products (HP), and dietary supplements (DS). Idiosyncratic DILI is far more common than intrinsic DILI clinically and can be classified into hepatocellular injury, cholestatic injury, hepatocellular-cholestatic mixed injury, and vascular injury based on the types of injured target cells. The CSH guidelines summarized the epidemiology, pathogenesis, pathology, and clinical manifestation and gives 16 evidence-based recommendations on diagnosis, differential diagnosis, treatment, and prevention of DILI.
Collapse
Affiliation(s)
- Yue-Cheng Yu
- Liver Disease Center of PLA, Bayi Hospital, Nanjing University of Chinese Medicine, Nanjing, 210002, China
| | - Yi-Min Mao
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China.
| | - Cheng-Wei Chen
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China.
| | - Jin-Jun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jun Chen
- Liver Diseases Center, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wen-Ming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 201805, China
| | - Yang Ding
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhong-Ping Duan
- Artificial Liver Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qing-Chun Fu
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China
| | - Xiao-Yan Guo
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xian, 710004, China
| | - Peng Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xi-Qi Hu
- Department of Pathology, School of Medicine, Fudan University, Shanghai, 200433, China
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, 100069, China
| | - Rong-Tao Lai
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Dong-Liang Li
- Department of Hepatobiliary Disease, Fuzhou General Hospital of PLA, Fuzhou, 350025, China
| | - Ying-Xia Liu
- Department of Liver Disease, Shenzhen Third People's Hospital, Shenzhen, 518040, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Shi-Wu Ma
- Department of Infectious Diseases, Kunming General Hospital of PLA, Kunming, 650032, China
| | - Xiong Ma
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang, 050051, China
| | - Hong Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Beijing University, Beijing, 100083, China
| | - Hao Wang
- Institute of Hepatology, People's Hospital, Beijing University, Beijing, 100044, China
| | - Ji-Yao Wang
- Department of Gastroenterology, Zhongshan Hospital, School of Medicine, Fudan University, Shanghai, 200032, China
| | - Tai-Ling Wang
- Department of Pathology, China-Japan Friendship Hospital, Capital Medical University, Beijing, 100029, China
| | - Xiao-Jin Wang
- Shanghai Liver Diseases Research Center, 85th Hospital, Nanjing Military Command, Shanghai, 200235, China
| | - Lai Wei
- Institute of Hepatology, People's Hospital, Beijing University, Beijing, 100044, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100011, China
| | - Chang-Qing Yang
- Department of Gastroenterology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065c, China
| | - Dong-Liang Yang
- Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan-Yan Yu
- Department of Infectious Disease, Beijing University First Hospital, Beijing, 100034, China
| | - Min-de Zeng
- Department of Gastroenterology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200001, China
| | - Li Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078c, China
| | - Xin-Yan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medial University, Beijing, 100069, China
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Beijing University, Beijing, 100083, China
| |
Collapse
|
179
|
Okamura Y, Hata K, Tanaka H, Hirao H, Kubota T, Inamoto O, Kageyama S, Tamaki I, Yermek N, Yoshikawa J, Uemoto S. Impact of Subnormothermic Machine Perfusion Preservation in Severely Steatotic Rat Livers: A Detailed Assessment in an Isolated Setting. Am J Transplant 2017; 17:1204-1215. [PMID: 27860296 DOI: 10.1111/ajt.14110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/09/2016] [Accepted: 10/30/2016] [Indexed: 01/25/2023]
Abstract
The current drastic shortage of donor organs has led to acceptance of extended-criteria donors for transplantation, despite higher risk of primary nonfunction. Here, we report the impact of subnormothermic machine perfusion (SMP) preservation on the protection of >50% macrosteatotic livers. Dietary hepatic steatosis was induced in Wistar rats via 2-day fasting and subsequent 3-day re-feeding with a fat-free, carbohydrate-rich diet. This protocol induces 50-60% macrovesicular steatosis, which should be discarded when preserved via cold storage (CS). The fatty livers were retrieved and preserved for 4 h using either CS in histidine-tryptophan-ketoglutarate or SMP in polysol solution. Graft functional integrity was evaluated via oxygenated ex vivo reperfusion for 2 h at 37°C. SMP resulted in significant reductions in not only parenchymal alanine aminotransferase (p < 0.001), but also mitochondrial glutamate dehydrogenase (p < 0.001) enzyme release. Moreover, portal venous pressure (p = 0.047), tissue adenosine triphosphate (p = 0.001), bile production (p < 0.001), high-mobility group box protein-1 (p < 0.001), lipid peroxidation, and tissue glutathione were all significantly improved by SMP. Electron microscopy revealed that SMP alleviated deleterious alterations of sinusoidal microvasculature and hepatocellular mitochondria, both of which are characteristic disadvantages associated with steatosis. SMP could protect 50-60% macrosteatotic livers from preservation/reperfusion injury, and may thus represent a new means for expanding available donor pools.
Collapse
Affiliation(s)
- Y Okamura
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - K Hata
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Tanaka
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - H Hirao
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - T Kubota
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - O Inamoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Kageyama
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - I Tamaki
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - N Yermek
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Yoshikawa
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - S Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
180
|
Al-Baghdadi RJT, Nikonorova IA, Mirek ET, Wang Y, Park J, Belden WJ, Wek RC, Anthony TG. Role of activating transcription factor 4 in the hepatic response to amino acid depletion by asparaginase. Sci Rep 2017; 7:1272. [PMID: 28455513 PMCID: PMC5430736 DOI: 10.1038/s41598-017-01041-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
The anti-leukemic agent asparaginase activates the integrated stress response (ISR) kinase GCN2 and inhibits signaling via mechanistic target of rapamycin complex 1 (mTORC1). The study objective was to investigate the protective role of activating transcription factor 4 (ATF4) in controlling the hepatic transcriptome and mediating GCN2-mTORC1 signaling during asparaginase. We compared global gene expression patterns in livers from wildtype, Gcn2−/−, and Atf4−/− mice treated with asparaginase or excipient and further explored selected responses in livers from Atf4+/− mice. Here, we show that ATF4 controls a hepatic gene expression profile that overlaps with GCN2 but is not required for downregulation of mTORC1 during asparaginase. Ingenuity pathway analysis indicates GCN2 independently influences inflammation-mediated hepatic processes whereas ATF4 uniquely associates with cholesterol metabolism and endoplasmic reticulum (ER) stress. Livers from Atf4−/− or Atf4+/− mice displayed an amplification of the amino acid response and ER stress response transcriptional signatures. In contrast, reduction in hepatic mTORC1 signaling was retained in Atf4−/− mice treated with asparaginase. Conclusions: GCN2 and ATF4 serve complementary roles in the hepatic response to asparaginase. GCN2 functions to limit inflammation and mTORC1 signaling whereas ATF4 serves to limit the amino acid response and prevent ER stress during amino acid depletion by asparaginase.
Collapse
Affiliation(s)
- Rana J T Al-Baghdadi
- Endocrinology and Animal Biosciences Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, 0890, USA.,Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiayah, Iraq
| | - Inna A Nikonorova
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Emily T Mirek
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Yongping Wang
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jinhee Park
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 0890, USA
| | - William J Belden
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 0890, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Tracy G Anthony
- Department of Nutritional Sciences and the New Jersey Institute for Food, Nutrition and Health, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
181
|
Jegal KH, Park SM, Cho SS, Byun SH, Ku SK, Kim SC, Ki SH, Cho IJ. Activating transcription factor 6-dependent sestrin 2 induction ameliorates ER stress-mediated liver injury. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1295-1307. [PMID: 28433684 DOI: 10.1016/j.bbamcr.2017.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022]
Abstract
Endoplasmic reticulum (ER) stress is characterized by an accumulation of misfolded proteins, and ER stress reduction is essential for maintaining tissue homeostasis. However, the molecular mechanisms that protect cells from ER stress are not completely understood. The present study investigated the role of sestrin 2 (SESN2) on ER stress and sought to elucidate the mechanism responsible for the hepatoprotective effect of SESN2 in vitro and in vivo. Treatment with tunicamycin (Tm) increased SESN2 protein and mRNA levels and reporter gene activity. Activating transcription factor 6 (ATF6) bound to unfolded protein response elements of SESN2 promoter, transactivated SESN2, and increased SESN2 protein expression. In addition, dominant negative mutant of ATF6α and siRNA against ATF6α blocked the ER stress-mediated SESN2 induction, whereas chemical inhibition of PERK or IRE1 did not affect SESN2 induction by Tm. Ectopic expression of SESN2 in HepG2 cells inhibited CHOP and GRP78 expressions by Tm. Moreover, SESN2 decreased the phosphorylations of JNK and p38 and PARP cleavage, and blocked the cytotoxic effect of excessive ER stress. In a Tm-induced liver injury model, adenoviral delivery of SESN2 in mice decreased serum ALT, AST and LDH activities and the mRNA levels of CHOP and GRP78 in hepatic tissues. Moreover, SESN2 reduced numbers of degenerating hepatocytes, and inhibited caspase 3 and PARP cleavages. These results suggest ATF6 is essential for ER stress-mediated SESN2 induction, and that SESN2 acts as a feedback regulator to protect liver from excess ER stress.
Collapse
Affiliation(s)
- Kyung Hwan Jegal
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sang Mi Park
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sam Seok Cho
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Sung Hui Byun
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sang Chan Kim
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| | - Il Je Cho
- College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsangbuk-do 38610, Republic of Korea.
| |
Collapse
|
182
|
Abelaira HM, Réus GZ, Ignácio ZM, Dos Santos MAB, de Moura AB, Matos D, Demo JP, da Silva JBI, Michels M, Abatti M, Sonai B, Dal Pizzol F, Carvalho AF, Quevedo J. Effects of ketamine administration on mTOR and reticulum stress signaling pathways in the brain after the infusion of rapamycin into prefrontal cortex. J Psychiatr Res 2017; 87:81-87. [PMID: 28017918 DOI: 10.1016/j.jpsychires.2016.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/13/2016] [Accepted: 12/01/2016] [Indexed: 12/23/2022]
Abstract
Recent studies show that activation of the mTOR signaling pathway is required for the rapid antidepressant actions of glutamate N-methyl-D-aspartate (NMDA) receptor antagonists. A relationship between mTOR kinase and the endoplasmic reticulum (ER) stress pathway, also known as the unfolded protein response (UPR) has been shown. We evaluate the effects of ketamine administration on the mTOR signaling pathway and proteins of UPR in the prefrontal cortex (PFC), hippocampus, amygdala and nucleus accumbens, after the inhibiton of mTOR signaling in the PFC. Male adult Wistar rats received pharmacological mTOR inhibitor, rapamycin (0.2 nmol), or vehicle into the PFC and then a single dose of ketamine (15 mg/kg, i.p.). The immunocontent of mTOR, eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), eukaryotic elongation factor 2 kinase (eEF2K) homologous protein (CHOP), PKR-like ER kinase (PERK) and inositol-requiring enzyme 1 (IRE1) - alpha were determined in the brain. The mTOR levels were reduced in the rapamycin group treated with saline and ketamine in the PFC; p4EBP1 levels were reduced in the rapamycin group treated with ketamine in the PFC and nucleus accumbens; the levels of peEF2K were increased in the PFC in the vehicle group treated with ketamine and reduced in the rapamycin group treated with ketamine. The PERK and IRE1-alpha levels were decreased in the PFC in the rapamycin group treated with ketamine. Our results suggest that mTOR signaling inhibition by rapamycin could be involved, at least in part, with the mechanism of action of ketamine; and the ketamine antidepressant on ER stress pathway could be also mediated by mTOR signaling pathway in certain brain structures.
Collapse
Affiliation(s)
- Helena M Abelaira
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.
| | - Zuleide M Ignácio
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Maria Augusta B Dos Santos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Airam B de Moura
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Danyela Matos
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Júlia P Demo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Júlia B I da Silva
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Mariane Abatti
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Beatriz Sonai
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Felipe Dal Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, Brazil; Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
183
|
Homocysteine Induces Hepatic Steatosis Involving ER Stress Response in High Methionine Diet-Fed Mice. Nutrients 2017; 9:nu9040346. [PMID: 28368295 PMCID: PMC5409685 DOI: 10.3390/nu9040346] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 12/23/2022] Open
Abstract
Elevated circulating homocysteine (Hcy) has been proposed to be associated with non-alcoholic fatty liver disease (NAFLD). It is also reported that Hcy causes protein misfolding in the endoplasmic reticulum (ER). In this study, we used a high methionine diet (HMD)-fed mouse model and cultured primary hepatocytes to investigate the effects of Hcy on hepatic lipids metabolism. C57BL/6J mice received either standard chow diet (CT, n = 10) or diet supplemented with 2% methionine (MET, n = 10) for 16 weeks. In in vitro experiments, cultured mouse primary hepatocytes were treated with Hcy, or Hcy combined with 4-phenylbutyric acid (4-PBA), or tunicamycin (TM), respectively. HMD-fed mice exhibited a mild increase in plasma Hcy level. There was no significant difference of body weight gain between the two groups. Nevertheless, HMD feeding increased epididymal fat/body weight ratio, elevated plasma triglyceride (TG) level, and decreased high-density lipoprotein cholesterol (HDL) level. Similarly, mice on HMD displayed higher liver/body weight ratio, plasma aspartate aminotransferase (AST) and its ratio to alanine aminotransferase (ALT), which was supported by the morphological observations of hepatic triglyceride accumulation in liver tissue as well as primary hepatocytes. Activation of the sterol response element-binding protein 1c (SREBP1c) in Hcy-treated hepatocytes with increased expression of genes involved in hepatic de novo lipogenesis was partially reduced by pretreatment of 4-PBA. Hcy-induced ER stress was also ameliorated by 4-PBA pretreatment, thus demonstrating an important role of Hcy-induced ER stress response in hepatic steatosis. These findings suggest that elevated Hcy was a critical factor in the pathogenesis of NAFLD. Activation of the ER stress response may be involved in Hcy-induced hepatic steatosis.
Collapse
|
184
|
Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. J Transl Med 2017; 97:289-301. [PMID: 27991906 DOI: 10.1038/labinvest.2016.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease is considered a disorder of the endoplasmic reticulum (ER) and mitochondria. Recent studies have shown that the ER and mitochondrial membranes overlap by 15-20%, a region referred to as the 'mitochondria-associated ER membrane' (MAM). Some proteins, including sarco/ER calcium ATPase (SERCA), are located in the MAM and have an important role in Ca2+ signaling and homeostasis between the ER and the mitochondria. Our previous study showed that hepatic stimulator substance (HSS) inhibits the ER stress induced by reactive oxygen species, thus reducing mitochondrial damage. However, the mechanism underlying the protective effect of HSS on the ER and ER-mitochondrial interaction remains unclear. In this study, we confirmed that the exogenous expression of HSS protected the liver from steatosis in mice with nonalcoholic steatohepatitis. More importantly, the protection provided by HSS allowed SERCA in the MAM compartment to function well, preventing the extensive influx of cytosolic free Ca2+ to the mitochondria, thus preserving the mitochondrial functions from calcium overload and relieving palmitic-acid-induced hepatocyte steatosis. Our results suggest that the protective effect of HSS on SERCA expression is associated with the maintenance of calcium homeostasis within the MAM, thus ameliorating the disordered Ca2+ communication between the ER and mitochondria.
Collapse
|
185
|
French SW, Masouminia M, Samadzadeh S, Tillman BC, Mendoza A, French BA. Role of Protein Quality Control Failure in Alcoholic Hepatitis Pathogenesis. Biomolecules 2017; 7:biom7010011. [PMID: 28208700 PMCID: PMC5372723 DOI: 10.3390/biom7010011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH) including ufmylation, FAT10ylation, metacaspase 1 (Mca1), ERAD (endoplasmic reticulum-associated degradation), JUNQ (juxta nuclear quality control), IPOD (insoluble protein deposit) autophagocytosis, and ER stress are reviewed. The Mallory–Denk body (MDB) formation develops in the hepatocytes in alcoholic hepatitis as a consequence of the failure of these protein quality control mechanisms to remove misfolded and damaged proteins and to prevent MDB aggresome formation within the cytoplasm of hepatocytes. The proteins involved in the quality control pathways are identified, quantitated, and visualized by immunofluorescent antibody staining of liver biopsies from patients with AH. Quantification of the proteins are achieved by measuring the fluorescent intensity using a morphometric system. Ufmylation and FAT10ylation pathways were downregulated, Mca1 pathways were upregulated, autophagocytosis was upregulated, and ER stress PERK (protein kinase RNA-like endoplasmic reticulum kinase) and CHOP (CCAAT/enhancer-binding protein homologous protein) mechanisms were upregulated. In conclusion: Despite the upregulation of several pathways of protein quality control, aggresomes (MDBs) still formed in the hepatocytes in AH. The pathogenesis of AH is due to the failure of protein quality control, which causes balloon-cell change with MDB formation and ER stress.
Collapse
Affiliation(s)
- Samuel W French
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90509, USA.
- LA BioMed Research Institute, Torrance, CA 90502, USA.
| | - Maryam Masouminia
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90509, USA.
| | | | | | - Alejandro Mendoza
- Harbor-UCLA Medical Center, Department of Pathology, Torrance, CA 90509, USA.
| | | |
Collapse
|
186
|
Campos JM, Neves LX, de Paiva NCN, de Oliveira E Castro RA, Casé AH, Carneiro CM, Andrade MHG, Castro-Borges W. Understanding global changes of the liver proteome during murine schistosomiasis using a label-free shotgun approach. J Proteomics 2017; 151:193-203. [PMID: 27427331 DOI: 10.1016/j.jprot.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 12/21/2022]
Abstract
Schistosomiasis is an endemic disease affecting over 207 million people worldwide caused by helminth parasites of the genus Schistosoma. In Brazil the disease is responsible for the loss of up to 800 lives annually, resulting from the desabilitating effects of this chronic condition. In this study, we infected Balb/c mice with Schistosoma mansoni and analysed global changes in the proteomic profile of soluble liver proteins. Our shotgun analyses revealed predominance of up-regulation of proteins at 5weeks of infection, coinciding with the onset of egg laying, and a remarkable down-regulation of liver constituents at 7weeks, when severe tissue damage is installed. Representatives of glycolytic enzymes and stress response (in particular at the endoplasmic reticulum) were among the most differentially expressed molecules found in the infected liver. Collectively, our data contribute over 70 molecules not previously reported to be found at altered levels in murine schistosomiasis to further exploration of their potential as biomarkers of the disease. Moreover, understanding their intricate interaction using bioinformatics approach can potentially bring clarity to unknown mechanisms linked to the establishment of this condition in the vertebrate host. SIGNIFICANCE To our knowledge, this study refers to the first shotgun proteomic analysis to provide an inventory of the global changes in the liver soluble proteome caused by Schistosoma mansoni in the Balb/c model. It also innovates by yielding data on quantification of the identified molecules as a manner to clarify and give insights into the underlying mechanisms for establishment of Schistosomiasis, a neglected tropical disease with historical prevalence in Brazil.
Collapse
Affiliation(s)
- Jonatan Marques Campos
- Programa de Pós Graduação em Bioengenharia, Universidade Federal de São João del Rei, São João del Rei, MG, Brazil; Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Leandro Xavier Neves
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | | | | | - Ana Helena Casé
- Programa de Pós Graduação em Biotecnologia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Cláudia Martins Carneiro
- Departamento de Análises Clínicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Milton Hércules Guerra Andrade
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - William Castro-Borges
- Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
187
|
Akai H, Kiryu S, Ohta Y, Yasaka K, Nakano Y, Inoue Y, Ohtomo K. The natural history of streptozotocin-stimulated non-alcoholic steatohepatitis mice followed by Gd-EOB-DTPA-enhanced MRI: Comparison with simple steatosis mice. Magn Reson Imaging 2017; 38:123-128. [PMID: 28062263 DOI: 10.1016/j.mri.2016.12.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE To clarify the development of HCC, temporal change of steatosis and Gd-EOB-DTPA enhancement of non-alcoholic steatohepatitis (NASH) model mice by magnetic resonance imaging (MRI). MATERIALS AND METHODS All animal experiments were approved by the institution's Animal Research Committee. MRI was performed on six NASH and six simple steatosis (SS) model mice every 2weeks from the ages of 8weeks to 16weeks. The sequential changes in the number and size of the focal liver lesions detected on Gd-EOB-DTPA-enhanced MRI were evaluated. Additionally, the hepatic fat fraction (HFF), contrast-to-noise ratio (CNR) and relative enhancement (RE) were calculated at each time point. The temporal changes and correlations in these parameters were evaluated. RESULTS All alive NASH model mice demonstrated focal liver lesions from week 10, at the latest. Number of the lesions increased with time, and all the lesion enlarged with time. All the lesions larger than 1mm were confirmed as hepatocellular carcinoma (HCC) pathologically. While the HFF remained constant in NASH model mice, HFF in SS model mice dramatically increased with time. CNR of the NASH model mice remained constant through the study period, while CNR in SS model mice decreased with time. Although no correlation was seen in NASH model mice, the HFF showed a negative correlation against CNR and RE in SS model mice. CONCLUSION Development of HCC was observed using Gd-EOB-DTPA-enhanced MRI only in NASH model mice. Degree of steatosis and hepatic enhancement by Gd-EOB-DTPA was both constant in NASH model mice, while steatosis increased and hepatic enhancement decreased with time in SS model mice.
Collapse
Affiliation(s)
- Hiroyuki Akai
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Shigeru Kiryu
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Yasunori Ohta
- Department of Pathology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Koichiro Yasaka
- Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Yoshiyasu Nakano
- Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yusuke Inoue
- Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Kuni Ohtomo
- Department of Radiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
188
|
Yi X, Zhao W, Li J, Zhang B, Yu Q, Li M. Mn3O4nanoparticles cause endoplasmic reticulum stress-dependent toxicity to Saccharomyces cerevisiae. RSC Adv 2017. [DOI: 10.1039/c7ra07458a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Model figure illustrating the toxicity mechanism of Mn3O4NPs to yeast cells.
Collapse
Affiliation(s)
- Xiao Yi
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Weili Zhao
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology
- Ministry of Education
- College of Life Science
- Nankai University
- Tianjin
| |
Collapse
|
189
|
Metabolic Disorders and Cancer: Hepatocyte Store-Operated Ca2+ Channels in Nonalcoholic Fatty Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:595-621. [DOI: 10.1007/978-3-319-57732-6_30] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
190
|
Potential involvement of PPAR α activation in diminishing the hepatoprotective effect of fenofibrate in NAFLD: Accuracy of non- invasive panel in determining the stage of liver fibrosis in rats. Biomed Pharmacother 2016; 85:68-78. [PMID: 27930988 DOI: 10.1016/j.biopha.2016.11.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Although Fenofibrate (FF) is a hypolipedmic drug and one of the PPARα agonists which is a drug target for non alcoholic liver disease (NAFLD), no studies had investigated its potential hepatic effects in such cases. AIM To compare between the effect of FF and Gemfibrozil (GF) on the prognosis of NAFLD in rats. METHODS Sixty four rats were used and classified into two main groups. Group I (treated for 6 weeks): naïve, FF, GF groups and Group II (treated for 14 weeks and drugs were added at the last 6 weeks): Control, high fat diet (HFD) untreated, HFD+FF, HFD+FF+folic acid (FA) and HFD+GF groups. Body weight (BW), liver index (LI), renal perfusion test (RPT), glomerular filtration rate (GFR), serum creatinine (S.cr), plasma homocysteine (Hcy), liver function, non invasive markers of fibrosis and histopathology were done. RESULTS HFD produced significant increase (P<0.05) in BW, LI, S.cr, plasma Hcy, lipid profile and liver enzymes. It showed significant (P<0.05) decrease in GFR and RPT. These findings were correlated to the histopathology. FF through its effect on GFR and renal function induced significant increase in plasma Hcy and that decreased its effectiveness in managing NAFLD associated with hyperlipidemia. The addition of FA improved significantly its hypolipidemic and hepatotoxic effects.GF showed none of the above FF effects and this may be due to its low affinity to PPAR α. CONCLUSIONS There is preference of adding FA to FF or using GF instead in cases of NAFLD. Moreover, this work implies the enhanced liver fibrosis (ELF) panel diagnostic performance in diagnosis of any and moderate degree of fibrosis in rats with NAFLD.
Collapse
|
191
|
Hu W, Ma Z, Di S, Jiang S, Li Y, Fan C, Yang Y, Wang D. Snapshot: implications for melatonin in endoplasmic reticulum homeostasis. Br J Pharmacol 2016; 173:3431-3442. [PMID: 27759160 PMCID: PMC5120159 DOI: 10.1111/bph.13651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important intracellular membranous organelle. Previous studies have demonstrated that the ER is responsible for protein folding and trafficking, lipid synthesis and the maintenance of calcium homeostasis. Interestingly, the morphology and structure of the ER were recently found to be important. Melatonin is a hormone that anticipates the daily onset of darkness in mammals, and it is well known that melatonin acts as an antioxidant by scavenging free radicals and increasing the activity of antioxidant enzymes in the body. Notably, the existing evidence demonstrates that melatonin is involved in ER homeostasis, particularly in the morphology of the ER, indicating a potential protective role of melatonin. This review discusses the existing knowledge regarding the implications for the involvement of melatonin in ER homeostasis.
Collapse
Affiliation(s)
- Wei Hu
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Zhiqiang Ma
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shouyin Di
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Shuai Jiang
- Department of Aerospace MedicineThe Fourth Military Medical UniversityXi'anChina
| | - Yue Li
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Chongxi Fan
- Department of Thoracic SurgeryTangdu Hospital, The Fourth Military Medical UniversityXi'anChina
| | - Yang Yang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
- Department of Biomedical EngineeringThe Fourth Military Medical UniversityXi'anChina
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular SurgeryAffiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
192
|
Lebeau P, Al-Hashimi A, Sood S, Lhoták Š, Yu P, Gyulay G, Paré G, Chen SRW, Trigatti B, Prat A, Seidah NG, Austin RC. Endoplasmic Reticulum Stress and Ca2+ Depletion Differentially Modulate the Sterol Regulatory Protein PCSK9 to Control Lipid Metabolism. J Biol Chem 2016; 292:1510-1523. [PMID: 27909053 DOI: 10.1074/jbc.m116.744235] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence implicates endoplasmic reticulum (ER) stress as a mediator of impaired lipid metabolism, thereby contributing to fatty liver disease and atherosclerosis. Previous studies demonstrated that ER stress can activate the sterol regulatory element-binding protein-2 (SREBP2), an ER-localized transcription factor that directly up-regulates sterol regulatory genes, including PCSK9 Given that PCSK9 contributes to atherosclerosis by targeting low density lipoprotein (LDL) receptor (LDLR) degradation, this study investigates a novel mechanism by which ER stress plays a role in lipid metabolism by examining its ability to modulate PCSK9 expression. Herein, we demonstrate the existence of two independent effects of ER stress on PCSK9 expression and secretion. In cultured HuH7 and HepG2 cells, agents or conditions that cause ER Ca2+ depletion, including thapsigargin, induced SREBP2-dependent up-regulation of PCSK9 expression. In contrast, a significant reduction in the secreted form of PCSK9 protein was observed in the media from both thapsigargin- and tunicamycin (TM)-treated HuH7 cells, mouse primary hepatocytes, and in the plasma of TM-treated C57BL/6 mice. Furthermore, TM significantly increased hepatic LDLR expression and reduced plasma LDL concentrations in mice. Based on these findings, we propose a model in which ER Ca2+ depletion promotes the activation of SREBP2 and subsequent transcription of PCSK9. However, conditions that cause ER stress regardless of their ability to dysregulate ER Ca2+ inhibit PCSK9 secretion, thereby reducing PCSK9-mediated LDLR degradation and promoting LDLR-dependent hepatic cholesterol uptake. Taken together, our studies provide evidence that the retention of PCSK9 in the ER may serve as a potential strategy for lowering LDL cholesterol levels.
Collapse
Affiliation(s)
- Paul Lebeau
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Ali Al-Hashimi
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Sudesh Sood
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Šárka Lhoták
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Pei Yu
- the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2.,the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8
| | - Gabriel Gyulay
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6
| | - Guillaume Paré
- the Population Health Research Institute and the Departments of Medicine, Epidemiology and Pathology, McMaster University, Hamilton, Ontario L8L 2X2
| | - S R Wayne Chen
- the Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 2T9, and
| | - Bernardo Trigatti
- the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2.,the Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4L8
| | - Annik Prat
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated with the University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Richard C Austin
- From the Department of Medicine, Division of Nephrology, McMaster University and St. Joseph's Hamilton Healthcare and Hamilton Centre for Kidney Research, Hamilton, Ontario L8N 4A6, .,the Thrombosis and Atherosclerosis Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario L8L 2X2
| |
Collapse
|
193
|
Kamat PK, Mallonee CJ, George AK, Tyagi SC, Tyagi N. Homocysteine, Alcoholism, and Its Potential Epigenetic Mechanism. Alcohol Clin Exp Res 2016; 40:2474-2481. [PMID: 27805256 PMCID: PMC5133158 DOI: 10.1111/acer.13234] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
Alcohol is the most socially accepted addictive drug. Alcohol consumption is associated with some health problems such as neurological, cognitive, behavioral deficits, cancer, heart, and liver disease. Mechanisms of alcohol-induced toxicity are presently not yet clear. One of the mechanisms underlying alcohol toxicity has to do with its interaction with amino acid homocysteine (Hcy), which has been linked with brain neurotoxicity. Elevated Hcy impairs with various physiological mechanisms in the body, especially metabolic pathways. Hcy metabolism is predominantly controlled by epigenetic regulation such as DNA methylation, histone modifications, and acetylation. An alteration in these processes leads to epigenetic modification. Therefore, in this review, we summarize the role of Hcy metabolism abnormalities in alcohol-induced toxicity with epigenetic adaptation and their influences on cerebrovascular pathology.
Collapse
Affiliation(s)
- Pradip K Kamat
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida
| | - Carissa J Mallonee
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Akash K George
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| | - Neetu Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|
194
|
Soeda J, Cordero P, Li J, Mouralidarane A, Asilmaz E, Ray S, Nguyen V, Carter R, Novelli M, Vinciguerra M, Poston L, Taylor PD, Oben JA. Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity. Int J Food Sci Nutr 2016; 68:455-466. [PMID: 27899042 PMCID: PMC5399811 DOI: 10.1080/09637486.2016.1261086] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis.
Collapse
Affiliation(s)
- Junpei Soeda
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Paul Cordero
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Jiawei Li
- a Institute for Liver and Digestive Health, University College London , London , UK
| | | | - Esra Asilmaz
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Shuvra Ray
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Vi Nguyen
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Rebeca Carter
- a Institute for Liver and Digestive Health, University College London , London , UK
| | - Marco Novelli
- b Department of Pathology , University College London , London , UK
| | - Manlio Vinciguerra
- a Institute for Liver and Digestive Health, University College London , London , UK.,c Fondazione Italiana Fegato , Area Science Park , Basovizza , Trieste , Italy.,d Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital , Brno , Czech Republic
| | - Lucilla Poston
- e Division of Women's Health , King's College London , London , UK
| | - Paul D Taylor
- e Division of Women's Health , King's College London , London , UK
| | - Jude A Oben
- a Institute for Liver and Digestive Health, University College London , London , UK.,f Department of Gastroenterology and Hepatology , Guy's and St Thomas' Hospital, NHS Foundation Trust , London , UK
| |
Collapse
|
195
|
Christen V, Fent K. Silica nanoparticles induce endoplasmic reticulum stress response and activate mitogen activated kinase (MAPK) signalling. Toxicol Rep 2016; 3:832-840. [PMID: 28959611 PMCID: PMC5616204 DOI: 10.1016/j.toxrep.2016.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 01/19/2023] Open
Abstract
Effects of silica nanoparticles (SiO2-NPs) were investigated in Huh7 cells. SiO2-NPs induced ER stress response and activated MAPK pathway. SiO2-NPs induced inflammatory reaction by induction of TNF-α. Activation of MAPK may lead to activation of AP-1 complex.
Humans may be exposed to engineered silica nanoparticles (SiO2-NPs) but potential adverse effects are poorly understood, in particular in relation to cellular effects and modes of action. Here we studied effects of SiO2-NPs on cellular function in human hepatoma cells (Huh7). Exposure for 24 h to 10 and 50 μg/ml SiO2-NPs led to induction of endoplasmic reticulum (ER) stress as demonstrated by transcriptional induction of DNAJB9, GADD34, CHOP, as well as CHOP target genes BIM, CHAC-1, NOXA and PUMA. In addition, CHOP protein was induced. In addition, SiO2-NPs induced an inflammatory response as demonstrated by induction of TNF-α and IL-8. Activation of MAPK signalling was investigated employing a PCR array upon exposure of Huh7 cells to SiO2-NPs. Five of 84 analysed genes, including P21, P19, CFOS, CJUN and KSR1 exhibited significant transcriptional up-regulation, and 18 genes a significant down-regulation. Strongest down-regulation occurred for the proto-oncogene BRAF, MAPK11, one of the four p38 MAPK genes, and for NFATC4. Strong induction of CFOS, CJUN, FRA1 and CMYC was found after exposure to 50 μg/ml SiO2-NPs for 24 h. To analyse for effects derived from up-regulation of TNF-α, Huh7 cells were exposed to SiO2-NPs in the presence of the TNF-α inhibitor sauchinone, which reduced the induction of the TNF-α transcript by about 50%. These data demonstrate that SiO2-NPs induce ER stress, MAPK pathway and lead to inflammatory reaction in human hepatoma cells. Health implications of SiO2-NPs exposure should further be investigated for a risk assessment of these frequently used nanoparticles.
Collapse
Affiliation(s)
- Verena Christen
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland.,Swiss Federal Institute of Technology Zürich (ETH Zürich), Department of Environmental System Sciences, Institute of Biogeochemistry and Pollution Dynamics, CH-8092 Zürich, Switzerland
| |
Collapse
|
196
|
Zhang W, Chen L, Shen Y, Xu J. Rifampicin-induced injury in L02 cells is alleviated by 4-PBA via inhibition of the PERK-ATF4-CHOP pathway. Toxicol In Vitro 2016; 36:186-196. [DOI: 10.1016/j.tiv.2016.07.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/16/2016] [Accepted: 07/24/2016] [Indexed: 02/07/2023]
|
197
|
Kwanten WJ, Vandewynckel YP, Martinet W, De Winter BY, Michielsen PP, Van Hoof VO, Driessen A, Timmermans JP, Bedossa P, Van Vlierberghe H, Francque SM. Hepatocellular autophagy modulates the unfolded protein response and fasting-induced steatosis in mice. Am J Physiol Gastrointest Liver Physiol 2016; 311:G599-G609. [PMID: 27514483 PMCID: PMC5142201 DOI: 10.1152/ajpgi.00418.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/05/2016] [Indexed: 01/31/2023]
Abstract
Autophagy and the unfolded protein response (UPR) are key cellular homeostatic mechanisms and are both involved in liver diseases, including nonalcoholic fatty liver disease (NAFLD). Although increasing but conflicting results link these mechanisms to lipid metabolism, their role and potential cross talk herein have been poorly investigated. Therefore, we assessed the effects of hepatocyte-specific autophagy deficiency on liver parenchyma, the UPR, and lipid metabolism. Adult hepatocellular-specific autophagy-deficient mice (Atg7F/FAlb-Cre+) were compared with their autophagy-competent littermates (Atg7+/+Alb-Cre+). Livers were analyzed by electron microscopy, histology, real-time qPCR, and Western blotting. Atg7F/FAlb-Cre+ mice developed hepatomegaly with significant parenchymal injury, as shown by inflammatory infiltrates, hepatocellular apoptosis, pericellular fibrosis, and a pronounced ductular reaction. Surprisingly, the UPR exhibited a pathway-selective pattern upon autophagy deficiency. The activity of the adaptive activating transcription factor 6 (ATF6) pathway was abolished, whereas the proapoptotic protein kinase RNA-like ER kinase pathway was increased compared with Atg7+/+Alb-Cre+ mice. The inositol-requiring enzyme-1α signal was unaltered. Fasting-induced steatosis was absent in Atg7F/FAlb-Cre+ mice. Remarkably, some isolated islands of fat-containing and autophagy-competent cells were observed in these livers. Hepatocellular autophagy is essential for parenchymal integrity in mice. Moreover, in the case of autophagy deficiency, the three different UPR branches are pathway selectively modulated. Attenuation of the ATF6 pathway might explain the observed impairment of fasting-induced steatosis. Finally, autophagy and lipid droplets are directly linked to each other.
Collapse
Affiliation(s)
- Wilhelmus J Kwanten
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Antwerp, Belgium;
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Antwerp, Belgium
| | - Peter P Michielsen
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem (Antwerp), Belgium
| | - Viviane O Van Hoof
- Department of Clinical Chemistry, Antwerp University Hospital, Edegem (Antwerp), Belgium
| | - Ann Driessen
- Department of Pathology, Antwerp University Hospital/University of Antwerp, Edegem (Antwerp), Belgium
| | | | - Pierre Bedossa
- Department of Pathology, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, Paris University-Denis Diderot, Clichy, France
| | | | - Sven M Francque
- Laboratory of Experimental Medicine and Pediatrics (LEMP), University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem (Antwerp), Belgium
| |
Collapse
|
198
|
Martínez L, Torres S, Baulies A, Alarcón-Vila C, Elena M, Fabriàs G, Casas J, Caballeria J, Fernandez-Checa JC, García-Ruiz C. Myristic acid potentiates palmitic acid-induced lipotoxicity and steatohepatitis associated with lipodystrophy by sustaning de novo ceramide synthesis. Oncotarget 2016; 6:41479-96. [PMID: 26539645 PMCID: PMC4747168 DOI: 10.18632/oncotarget.6286] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Palmitic acid (PA) induces hepatocyte apoptosis and fuels de novo ceramide synthesis in the endoplasmic reticulum (ER). Myristic acid (MA), a free fatty acid highly abundant in copra/palmist oils, is a predictor of nonalcoholic steatohepatitis (NASH) and stimulates ceramide synthesis. Here we investigated the synergism between MA and PA in ceramide synthesis, ER stress, lipotoxicity and NASH. Unlike PA, MA is not lipotoxic but potentiated PA-mediated lipoapoptosis, ER stress, caspase-3 activation and cytochrome c release in primary mouse hepatocytes (PMH). Moreover, MA kinetically sustained PA-induced total ceramide content by stimulating dehydroceramide desaturase and switched the ceramide profile from decreased to increased ceramide 14:0/ceramide16:0, without changing medium and long-chain ceramide species. PMH were more sensitive to equimolar ceramide14:0/ceramide16:0 exposure, which mimics the outcome of PA plus MA treatment on ceramide homeostasis, than to either ceramide alone. Treatment with myriocin to inhibit ceramide synthesis and tauroursodeoxycholic acid to prevent ER stress ameliorated PA plus MA induced apoptosis, similar to the protection afforded by the antioxidant BHA, the pan-caspase inhibitor z-VAD-Fmk and JNK inhibition. Moreover, ruthenium red protected PMH against PA and MA-induced cell death. Recapitulating in vitro findings, mice fed a diet enriched in PA plus MA exhibited lipodystrophy, hepatosplenomegaly, increased liver ceramide content and cholesterol levels, ER stress, liver damage, inflammation and fibrosis compared to mice fed diets enriched in PA or MA alone. The deleterious effects of PA plus MA-enriched diet were largely prevented by in vivo myriocin treatment. These findings indicate a causal link between ceramide synthesis and ER stress in lipotoxicity, and imply that the consumption of diets enriched in MA and PA can cause NASH associated with lipodystrophy.
Collapse
Affiliation(s)
- Laura Martínez
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Sandra Torres
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Anna Baulies
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Cristina Alarcón-Vila
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Montserrat Elena
- Biomedic Diagnosis Center, Hospital Clinic i Provincial de Barcelona, IDIBAPS, Barcelona, Spain
| | - Gemma Fabriàs
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Joan Caballeria
- Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain
| | - Jose C Fernandez-Checa
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain.,Research Center for ALPD, Keck School of Medicine, Univerisity of Southern California, Los Angeles, CA, USA
| | - Carmen García-Ruiz
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), CSIC, Barcelona, Spain.,Liver Unit, Hospital Clinic I Provincial de Barcelona, IDIBAPS and CIBERehd, Barcelona, Spain.,Research Center for ALPD, Keck School of Medicine, Univerisity of Southern California, Los Angeles, CA, USA
| |
Collapse
|
199
|
Kuijper IA, Yang H, Van De Water B, Beltman JB. Unraveling cellular pathways contributing to drug-induced liver injury by dynamical modeling. Expert Opin Drug Metab Toxicol 2016; 13:5-17. [PMID: 27609146 DOI: 10.1080/17425255.2017.1234607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a significant threat to human health and a major problem in drug development. It is hard to predict due to its idiosyncratic nature and which does not show up in animal trials. Hepatic adaptive stress response pathway activation is generally observed in drug-induced liver injury. Dynamical pathway modeling has the potential to foresee adverse effects of drugs before they go in trial. Ordinary differential equation modeling can offer mechanistic insight, and allows us to study the dynamical behavior of stress pathways involved in DILI. Areas covered: This review provides an overview on the progress of the dynamical modeling of stress and death pathways pertinent to DILI, i.e. pathways relevant for oxidative stress, inflammatory stress, DNA damage, unfolded proteins, heat shock and apoptosis. We also discuss the required steps for applying such modeling to the liver. Expert opinion: Despite the strong progress made since the turn of the century, models of stress pathways have only rarely been specifically applied to describe pathway dynamics for DILI. We argue that with minor changes, in some cases only to parameter values, many of these models can be repurposed for application in DILI research. Combining both dynamical models with in vitro testing might offer novel screening methods for the harmful side-effects of drugs.
Collapse
Affiliation(s)
- Isoude A Kuijper
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| | - Huan Yang
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| | - Bob Van De Water
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| | - Joost B Beltman
- a Division of Toxicology, Leiden Academic Centre for Drug Research , Leiden University , Leiden , The Netherlands
| |
Collapse
|
200
|
Ren Z, Chen S, Zhang J, Doshi U, Li AP, Guo L. Endoplasmic Reticulum Stress Induction and ERK1/2 Activation Contribute to Nefazodone-Induced Toxicity in Hepatic Cells. Toxicol Sci 2016; 154:368-380. [PMID: 27613715 DOI: 10.1093/toxsci/kfw173] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nefazodone, an antagonist for the 5-hydroxytryptanine receptor, has been used for the treatment of depression. Acute liver injury has been documented to be associated with the use of nefazodone; however, the mechanisms of nefazodone-induced liver toxicity are not well defined. In this report, using biochemical and molecular analyses, we characterized the molecular mechanisms underlying the hepatotoxicity of nefazodone. We found that nefazodone induced endoplasmic reticulum (ER) stress in HepG2 cells, as the expression of typical ER stress markers, including CHOP, ATF-4, and p-eIF2α, was significantly increased, and splicing of XBP1 was observed. Nefazodone-suppressed protein secretion was evaluated using a Gaussia luciferase reporter assay that measures ER stress. The ER stress inhibitors (4-phenylbutyrate and salubrinal) and knockdown of ATF-4 gene attenuated nefazodone-induced ER stress and cytotoxicity. Nefazodone activated the MAPK signaling pathway, as indicated by increased phosphorylation of JNK, ERK1/2, and p38. Inhibition of ERK1/2 reduced ER stress caused by nefazodone. Taken together, our findings suggest that ER stress contributes to nefazodone-induced toxicity in HepG2 cells and that the MAPK signaling pathway plays an important role in ER stress.
Collapse
Affiliation(s)
- Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | - Jie Zhang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas
| | | | - Albert P Li
- In Vitro ADMET Laboratories LLC, Columbia, Maryland
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas;
| |
Collapse
|