151
|
Christiaens O, Swevers L, Smagghe G. DsRNA degradation in the pea aphid (Acyrthosiphon pisum) associated with lack of response in RNAi feeding and injection assay. Peptides 2014; 53:307-14. [PMID: 24394433 DOI: 10.1016/j.peptides.2013.12.014] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 12/21/2022]
Abstract
Over the past decade, RNA interference (RNAi), the sequence-specific suppression of gene expression, has proven very promising for molecular research in many species, including model insects as Tribolium castaneum and Apis mellifera. It showed its usefulness to analyze gene function and its potential to manage pest populations and reduce disease pathogens. However, in several insects, the efficiency of RNAi is low or very variable at best. One of the factors that could influence RNAi efficiency in insects is degradation of dsRNA after administration to the insect. In this paper, we report on the importance of dsRNA breakdown in the pea aphid (Acyrthosiphon pisum) associated with the absence of an RNAi response upon oral feeding and injection with dsRNA targeting different genes such as the ecdysone hormone receptor and ultraspiracle. In essence, we discovered that both the salivary secretions of aphids and the hemolymph were able to degrade the dsRNA. In parallel, introduction of dsRNA in the aphid body was not able to provoke a response in the expression of the siRNA core machinery genes.
Collapse
Affiliation(s)
- Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, NCSR "Demokritos", Aghia Paraskevi, Athens, Greece
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
152
|
Xuan N, Bu X, Liu YY, Yang X, Liu GX, Fan ZX, Bi YP, Yang LQ, Lou QN, Rajashekar B, Leppik G, Kasvandik S, Picimbon JF. Molecular evidence of RNA editing in Bombyx chemosensory protein family. PLoS One 2014; 9:e86932. [PMID: 24551045 PMCID: PMC3923736 DOI: 10.1371/journal.pone.0086932] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022] Open
Abstract
Chemosensory proteins (CSPs) are small scavenger proteins that are mainly known as transporters of pheromone/odor molecules at the periphery of sensory neurons in the insect antennae and in the producing cells from the moth female pheromone gland. Sequencing cDNAs of RNA encoding CSPs in the antennae, legs, head, pheromone gland and wings from five single individual adult females of the silkworm moth Bombyx mori showed that they differed from genomic sequences by subtle nucleotide replacement (RDD). Both intronless and intronic CSP genes expressed RDDs, although in different rates. Most interestingly, in our study the degree of RDDs in CSP genes were found to be tissue-specific. The proportion of CSP-RDDs was found to be significantly much higher in the pheromone gland. In addition, Western blot analysis of proteins in different tissues showed existence of multiple CSP protein variant chains particularly found in the pheromone gland. Peptide sequencing demonstrated the occurrence of a pleiad of protein variants for most of all BmorCSPs from the pheromone gland. Our findings show that RNA editing is an important feature in the expression of CSPs and that a high variety of RDDs is found to expand drastically thus altering the repertoire of CSP proteins in a tissue-specific manner.
Collapse
Affiliation(s)
- Ning Xuan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Xun Bu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Yan Yan Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Xue Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Guo Xia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Zhong Xue Fan
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Yu Ping Bi
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Lian Qun Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| | - Qi Nian Lou
- Shandong Silkworm Institute, Shandong Academy of Agricultural Sciences, Yantai, Shandong Province, China
| | - Balaji Rajashekar
- Institute of Computer Science, University of Tartu, Tartu, Tartumaa Province, Estonia
| | - Getter Leppik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Tartumaa Province, Estonia
| | - Sergo Kasvandik
- Proteomics Core Facility, Institute of Technology, University of Tartu, Tartu, Tartumaa Province, Estonia
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, China
| |
Collapse
|
153
|
Zhang YN, Ye ZF, Yang K, Dong SL. Antenna-predominant and male-biased CSP19 of Sesamia inferens is able to bind the female sex pheromones and host plant volatiles. Gene 2014; 536:279-86. [DOI: 10.1016/j.gene.2013.12.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/07/2013] [Accepted: 12/09/2013] [Indexed: 11/25/2022]
|
154
|
Identification of a novel interacting partner of the chemosensory protein 1 from Plutella xylostella L. Int J Biol Macromol 2014; 63:233-9. [DOI: 10.1016/j.ijbiomac.2013.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/27/2013] [Accepted: 09/24/2013] [Indexed: 11/24/2022]
|
155
|
A proteomic investigation of soluble olfactory proteins in Anopheles gambiae. PLoS One 2013; 8:e75162. [PMID: 24282496 PMCID: PMC3839933 DOI: 10.1371/journal.pone.0075162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.
Collapse
|
156
|
Comparative transcriptome analysis of salivary glands of two populations of rice brown planthopper, Nilaparvata lugens, that differ in virulence. PLoS One 2013; 8:e79612. [PMID: 24244529 PMCID: PMC3828371 DOI: 10.1371/journal.pone.0079612] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/23/2013] [Indexed: 01/07/2023] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens (Stål), a destructive rice pest in Asia, can quickly overcome rice resistance by evolving new virulent populations. Herbivore saliva plays an important role in plant–herbivore interactions, including in plant defense and herbivore virulence. However, thus far little is known about BPH saliva at the molecular level, especially its role in virulence and BPH–rice interaction. Methodology/Principal Findings Using cDNA amplification in combination with Illumina short-read sequencing technology, we sequenced the salivary-gland transcriptomes of two BPH populations with different virulence; the populations were derived from rice variety TN1 (TN1 population) and Mudgo (M population). In total, 37,666 and 38,451 unigenes were generated from the salivary glands of these populations, respectively. When combined, a total of 43,312 unigenes were obtained, about 18 times more than the number of expressed sequence tags previously identified from these glands. Gene ontology annotations and KEGG orthology classifications indicated that genes related to metabolism, binding and transport were significantly active in the salivary glands. A total of 352 genes were predicted to encode secretory proteins, and some might play important roles in BPH feeding and BPH–rice interactions. Comparative analysis of the transcriptomes of the two populations revealed that the genes related to ‘metabolism,’ ‘digestion and absorption,’ and ‘salivary secretion’ might be associated with virulence. Moreover, 67 genes encoding putative secreted proteins were differentially expressed between the two populations, suggesting these genes may contribute to the change in virulence. Conclusions/Significance This study was the first to compare the salivary-gland transcriptomes of two BPH populations having different virulence traits and to find genes that may be related to this difference. Our data provide a rich molecular resource for future functional studies on salivary glands and will be useful for elucidating the molecular mechanisms underlying BPH feeding and virulence differences.
Collapse
|
157
|
Flenniken ML, Andino R. Non-specific dsRNA-mediated antiviral response in the honey bee. PLoS One 2013; 8:e77263. [PMID: 24130869 PMCID: PMC3795074 DOI: 10.1371/journal.pone.0077263] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/01/2013] [Indexed: 12/22/2022] Open
Abstract
Honey bees are essential pollinators of numerous agricultural crops. Since 2006, honey bee populations have suffered considerable annual losses that are partially attributed to Colony Collapse Disorder (CCD). CCD is an unexplained phenomenon that correlates with elevated incidence of pathogens, including RNA viruses. Honey bees are eusocial insects that live in colonies of genetically related individuals that work in concert to gather and store nutrients. Their social organization provides numerous benefits, but also facilitates pathogen transmission between individuals. To investigate honey bee antiviral defense mechanisms, we developed an RNA virus infection model and discovered that administration of dsRNA, regardless of sequence, reduced virus infection. Our results suggest that dsRNA, a viral pathogen associated molecular pattern (PAMP), triggers an antiviral response that controls virus infection in honey bees.
Collapse
Affiliation(s)
- Michelle L. Flenniken
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- * E-mail: (MLF); (RA)
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (MLF); (RA)
| |
Collapse
|
158
|
Yin XW, Iovinella I, Marangoni R, Cattonaro F, Flamini G, Sagona S, Zhang L, Pelosi P, Felicioli A. Odorant-binding proteins and olfactory coding in the solitary bee Osmia cornuta. Cell Mol Life Sci 2013; 70:3029-39. [PMID: 23512006 PMCID: PMC11113457 DOI: 10.1007/s00018-013-1308-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/13/2013] [Accepted: 02/18/2013] [Indexed: 10/27/2022]
Abstract
Solitary bees are major pollinators but their chemical communication system has been poorly studied. We investigated olfactory coding in Osmia cornuta from two perspectives, chemical and biochemical. We identified (E)-geranyl acetone and 2-hexyl-1,3-dioxolane, specifically secreted by females and males, respectively. A transcriptome analysis of antennae revealed 48 ORs (olfactory receptors), six OBPs (odorant-binding proteins), five CSPs (chemosensory proteins), and a single SNMP (sensory neuron membrane protein). The numbers of ORs and OBPs are much lower than in the honeybee, in particular, C-minus OBPs are lacking in the antennae of O. cornuta. We have expressed all six OBPs of O. cornuta and studied their binding specificities. The best ligands are common terpene plant odorants and both volatiles produced by the bee and identified in this work.
Collapse
Affiliation(s)
- Xue-Wei Yin
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Immacolata Iovinella
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | | | | - Guido Flamini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Simona Sagona
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Long Zhang
- Key Lab for Biological Control of the Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | | |
Collapse
|
159
|
Zhang YN, Jin JY, Jin R, Xia YH, Zhou JJ, Deng JY, Dong SL. Differential expression patterns in chemosensory and non-chemosensory tissues of putative chemosensory genes identified by transcriptome analysis of insect pest the purple stem borer Sesamia inferens (Walker). PLoS One 2013; 8:e69715. [PMID: 23894529 PMCID: PMC3722147 DOI: 10.1371/journal.pone.0069715] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 06/11/2013] [Indexed: 11/21/2022] Open
Abstract
Background A large number of insect chemosensory genes from different gene subfamilies have been identified and annotated, but their functional diversity and complexity are largely unknown. A systemic examination of expression patterns in chemosensory organs could provide important information. Methodology/Principal Findings We identified 92 putative chemosensory genes by analysing the transcriptome of the antennae and female sex pheromone gland of the purple stem borer Sesamia inferens, among them 87 are novel in this species, including 24 transcripts encoding for odorant binding proteins (OBPs), 24 for chemosensory proteins (CSPs), 2 for sensory neuron membrane proteins (SNMPs), 39 for odorant receptors (ORs) and 3 for ionotropic receptors (IRs). The transcriptome analyses were validated and quantified with a detailed global expression profiling by Reverse Transcription-PCR for all 92 transcripts and by Quantitative Real Time RT-PCR for selected 16 ones. Among the chemosensory gene subfamilies, CSP transcripts are most widely and evenly expressed in different tissues and stages, OBP transcripts showed a clear antenna bias and most of OR transcripts are only detected in adult antennae. Our results also revealed that some OR transcripts, such as the transcripts of SNMP2 and 2 IRs were expressed in non-chemosensory tissues, and some CSP transcripts were antenna-biased expression. Furthermore, no chemosensory transcript is specific to female sex pheromone gland and very few are found in the heads. Conclusion Our study revealed that there are a large number of chemosensory genes expressed in S. inferens, and some of them displayed unusual expression profile in non-chemosensory tissues. The identification of a large set of putative chemosensory genes of each subfamily from a single insect species, together with their different expression profiles provide further information in understanding the functions of these chemosensory genes in S. inferens as well as other insects.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
160
|
Qiao HL, Deng PY, Li DD, Chen M, Jiao ZJ, Liu ZC, Zhang YZ, Kan YC. Expression analysis and binding experiments of chemosensory proteins indicate multiple roles in Bombyx mori. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:667-675. [PMID: 23624070 DOI: 10.1016/j.jinsphys.2013.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Chemosensory proteins (CSPs) are a family of small soluble proteins that, in addition to the odorant-binding proteins (OBPs), are involved in chemical communication. To understand the physiological function of the 16 known CSPs in the silkworm Bombyx mori, we investigated the expression patterns in different tissues and developmental stages using quantitative real-time RT-PCR (Q-PCR) and Western blot analysis. The results indicated that most CSPs were widely expressed in embryos, larvae, pupae and adults but were developmentally regulated. Such broad spatial and temporal expression was inconsistent with a specific association with chemosensory function. We conclude that CSPs are multifunctional proteins that are involved in diverse cellular processes and that can play non-chemosensory as well as chemosensory roles. Binding experiments revealed different binding characteristics of CSP1 and CSP2, with retinal being the best ligand, suggesting a putative function of these CSPs as carriers.
Collapse
Affiliation(s)
- Hui-Li Qiao
- China-UK-NYNU-Rres Joint Libratory of Insect Biology, Nanyang Normal University, Nanyang, 473061 Henan, China
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Kulmuni J, Havukainen H. Insights into the evolution of the CSP gene family through the integration of evolutionary analysis and comparative protein modeling. PLoS One 2013; 8:e63688. [PMID: 23723994 PMCID: PMC3665776 DOI: 10.1371/journal.pone.0063688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/05/2013] [Indexed: 01/10/2023] Open
Abstract
Insect chemical communication and chemosensory systems rely on proteins coded by several gene families. Here, we have combined protein modeling with evolutionary analysis in order to study the evolution and structure of chemosensory proteins (CSPs) within arthropods and, more specifically, in ants by using the data available from sequenced genomes. Ants and other social insects are especially interesting model systems for the study of chemosensation, as they communicate in a highly complex social context and much of their communication relies on chemicals. Our ant protein models show how this complexity has shaped CSP evolution; the proteins are highly modifiable by their size, surface charge and binding pocket. Based on these findings, we divide ant CSPs into three groups: typical insect CSPs, an ancient 5-helical CSP and hymenopteran CSPs with a small binding pocket, and suggest that these groups likely serve different functions. The hymenopteran CSPs have duplicated repeatedly in individual ant lineages. In these CSPs, positive selection has driven surface charge changes, an observation which has possible implications for the interaction between CSPs and ligands or odorant receptors. Our phylogenetic analysis shows that within the Arthropoda the only highly conserved gene is the ancient 5-helical CSP, which is likely involved in an essential ubiquitous function rather than chemosensation. During insect evolution, the 6-helical CSPs have diverged and perform chemosensory functions among others. Our results contribute to the general knowledge of the structural differences between proteins underlying chemosensation and highlight those protein properties which have been affected by adaptive evolution.
Collapse
Affiliation(s)
- Jonna Kulmuni
- Department of Biology and Biocenter Oulu, University of Oulu, Oulu, Finland.
| | | |
Collapse
|
162
|
Iovinella I, Bozza F, Caputo B, della Torre A, Pelosi P. Ligand-Binding Study of Anopheles gambiae Chemosensory Proteins. Chem Senses 2013; 38:409-19. [DOI: 10.1093/chemse/bjt012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
163
|
Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity (Edinb) 2013; 110:538-47. [PMID: 23403962 DOI: 10.1038/hdy.2012.122] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication.
Collapse
|
164
|
Molecular cloning, expression and molecular modeling of chemosensory protein from Spodoptera litura and its binding properties with Rhodojaponin III. PLoS One 2012; 7:e47611. [PMID: 23133516 PMCID: PMC3485014 DOI: 10.1371/journal.pone.0047611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/19/2012] [Indexed: 11/19/2022] Open
Abstract
Insects stimulate specific behaviors by the correct recognition of the chemicals in the external environment. Rhodojaponin III is a botanical grayanoid diterpenid oviposition deterrent isolated from Rhododendron molle. In this study we aimed to determine whether the CSPs involved in the recognition of Rhodojaponin III. A full-length cDNA encoding chemosensory protein was isolated from the antennae of Spodoptera litura Fabricius (CSPSlit, GenBank Accession No. DQ007458). The full-length cDNA of NlFoxA is 1789 bp and has an open reading frame (ORF) of 473 bp, encoding a protein of 126 amino acids, Northern blot analysis revealed that CSPSlit mRNA was mainly expressed in the antennae, legs, wings and female abdomens. A three-dimensional model of CSPSlit was constructed using homology modeling method, and its reliability was evaluated. The active site of CSPSlit was calculated using CDOCKER program indicated that the Tyr24, Ile45, Leu49, Thr64, Leu68, Trp79 and Leu82 were responsible ligand-binding active site on identifying Rhodojaponin III in the CSPSlit. The recombinant CSPSlit protein was expressed in Escherichia coli and purified using single-step Ni-NTA affinity chromatography. Fluorescence emission spectra revealed that the CSPSlit protein had significant affinity to rhodojaponin III. These results mean that CSPSlit is critical for insects identify the Rhodojaponin III.
Collapse
|
165
|
Gong L, Luo Q, Rizwan-ul-Haq M, Hu MY. Cloning and characterization of three chemosensory proteins from Spodoptera exigua and effects of gene silencing on female survival and reproduction. BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:600-609. [PMID: 22475511 DOI: 10.1017/s0007485312000168] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Insect chemosensory proteins (CSPs) are supposed to transport hydrophobic chemicals to receptors on sensory neurons. However, CSPs are broadly expressed in various insect tissues, suggesting their involvement in the physiological processes beyond chemoreception. So, the exact physiological roles of CSPs in insects still need to be unraveled. In this study, three full-length of CSP genes from Spodoptera exigua have been cloned and characterized. The deduced amino acid sequences of SexiCSP1, SexiCSP2 and SexiCSP3 revealed open reading frames of 128, 128 and 126 amino acids, respectively, with four conserved cysteine residues. The expression patterns of the three SexiCSPs were further investigated by real-time PCR. Three SexiCSPs were expressed in antennae, heads, legs, wings, thoraxes, abdomens, testes and ovaries, with the highest expression level in female and male antennae. Furthermore, all three SexiCSPs mRNA were distributed extensively in the tested development stages with the highest expression level in pupae. RNAi-based gene silencing study resulted in a dramatic reduction of corresponding mRNA in female S. exigua after injection with dsRNA of all three SexiCSPs. Consequentially, 42.5% of mortalities, 68.3% (compare to DEPC water injected control) and 71.4% (compare to uninjected control) oviposition inhibition, and significantly effected egg hatching were observed in the female S. exigua injected with dsSexiCSP3 as compared to control treatments. On the other hand, dsSexiCSP1 and dsSexiCSP2 injected female adults did not show effects on survival and reproduction. Our study confirms the utility of RNAi approach to functional characterization of CSP genes in S. exigua and provides a starting point for further studies on female survival and reproduction in this insect. It also reveals the potential pest controlling method, as insect behavior regulation agent that disrupts the expression of chemosensory proteins.
Collapse
Affiliation(s)
- L Gong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, P.R. China, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - Q Luo
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, P.R. China, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - M Rizwan-ul-Haq
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, P.R. China, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| | - M-Y Hu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, P.R. China, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, Guangdong Province, China
| |
Collapse
|
166
|
Li KM, Ren LY, Zhang YJ, Wu KM, Guo YY. Knockdown of Microplitis mediator Odorant Receptor Involved in the Sensitive Detection of Two Chemicals. J Chem Ecol 2012; 38:287-94. [DOI: 10.1007/s10886-012-0085-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/13/2012] [Accepted: 02/17/2012] [Indexed: 11/28/2022]
|
167
|
Yoshizawa Y, Sato R, Tsuchihara K, Ozaki K, Mita K, Asaoka K, Taniai K. Ligand carrier protein genes expressed in larval chemosensory organs of Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2011; 41:545-562. [PMID: 21459142 DOI: 10.1016/j.ibmb.2011.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2011] [Accepted: 03/20/2011] [Indexed: 05/30/2023]
Abstract
Expressed sequence tags (ESTs) of the maxillary galea of the silkworm were analyzed to identify proteins involved in food selection systems. From the 1251 redundant genes of the ESTs, we identified 7 odorant-binding protein-like genes (bmObpL), 6 takeout-like genes (bmToL), and 6 chemosensory protein genes (bmCsp). Quantitative RT-PCR analysis indicated that bmObpL1, bmObpL2, bmObpL3, bmObpL5, bmToL1, bmToL3, and bmorCsp15 were predominantly expressed in the larval oral appendages, such as the maxilla, labrum, labium and antenna. Immunocytochemical analysis indicated that the proteins of bmObpL1, bmObpL3, and bmToL1 were localized in the gustatory chemosensilla on the maxillary galea and olfactory sensilla in the antenna. The proteins encoded by bmObpL1 and bmObpL3 were detected in the gustatory chemosensilla of the epipharynx. However, bmObpL1 and bmToL1 were also detected in tactile hairs and in the epidermis of several chemosensory organs. The bmObpL2 protein was localized inside and in the epidermis around the chemosensilla, tactile hairs, and wide surface of the epipharynx. From these results, bmObpL3 is the most likely to have a dedicated role in chemoreception in the silkworm, Bombyx mori.
Collapse
Affiliation(s)
- Yasutaka Yoshizawa
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
168
|
Jarosch A, Moritz RFA. Systemic RNA-interference in the honeybee Apis mellifera: tissue dependent uptake of fluorescent siRNA after intra-abdominal application observed by laser-scanning microscopy. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:851-857. [PMID: 21439290 DOI: 10.1016/j.jinsphys.2011.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 03/10/2011] [Accepted: 03/15/2011] [Indexed: 05/30/2023]
Abstract
RNA interference has been successfully used in adult honeybees, but there are only few reports about abdominal application of dsRNA/siRNA which have reached more distant tissues than the fat body. We studied systemic RNAi in honeybees by injecting fluorescent siRNA of the ubiquitously expressed honeybee homologue of the Glycerol-3-Phosphate Dehydrogenase (amGpdh) into the abdomens of adult bees and followed them by laser scanning microscopy and qPCR. The fat body was the sole tissue emitting fluorescence and showing a decreased gene expression, whereas the siRNA had apparently not reached the other tissues. Therefore, we conclude that certain genes in other tissues than the fat body cannot be easily reached by injecting siRNA into the body cavity. In particular, the lack of amGpdh knock down in ovaries after amGpdh dsRNA injection, supports that in some cases it may be particularly difficult to interfere with gene expression in ovaries by intra-abdominal injection. In these cases alternative inhibition techniques may be required to achieve an organismic non-lethal disruption of transcription.
Collapse
Affiliation(s)
- A Jarosch
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 4, 06120 Halle (Saale), Germany.
| | | |
Collapse
|
169
|
Guo W, Wang X, Ma Z, Xue L, Han J, Yu D, Kang L. CSP and takeout genes modulate the switch between attraction and repulsion during behavioral phase change in the migratory locust. PLoS Genet 2011; 7:e1001291. [PMID: 21304893 PMCID: PMC3033386 DOI: 10.1371/journal.pgen.1001291] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 01/05/2011] [Indexed: 11/25/2022] Open
Abstract
Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleotide microarray analysis. Data analysis revealed that several gene categories relevant to peripheral olfactory perception are strongly regulated in a total of 1,444 differentially expressed genes during both time courses. Among these candidate genes, several CSP (chemosensory protein) genes and one takeout gene, LmigTO1, showed higher expression in gregarious and solitarious locusts, respectively, and displayed opposite expression trends during solitarization and gregarization. qRT-PCR experiments revealed that most CSP members and LmigTO1 exhibited antenna-rich expressions. RNA interference combined with olfactory behavioral experiments confirmed that the CSP gene family and one takeout gene, LmigTO1, are involved in the shift from repulsion to attraction between individuals during gregarization and in the reverse transition during solitarization. These findings suggest that the response to locust-emitted olfactory cues regulated by CSP and takeout genes is involved in the behavioral phase change in the migratory locust and provide a previously undescribed molecular mechanism linked to the formation of locust aggregations. The migratory locust, Locusta migratoria, is a worldwide agricultural pest whose outbreaks can result in plagues during which locusts mass migrate in marching bands and flying swarms. They exhibit striking phenotypic plasticity depending on the population density. They can transform between the barely-visible solitarious phase and the swarm-forming gregarious phase. A key step in the formation of large aggregation is the initial shift from the strong mutual aversion in solitarious locusts to the attraction to each other in gregarious locusts. Previous genomics studies have revealed 532 differentially expressed genes and many regulating small RNAs between the two phases of the migratory locust. Here, we developed a large-scale oligonucleotide microarray to quantify the expression of 9,154 genes during the time courses of isolating gregarious locusts and crowding solitarious locusts. We found that several olfaction-related genes, several CSPs and one takeout, are strongly regulated during both processes and display opposite expression trends in response to population density change. We then identified that these genes mediate the rapid switch of attraction/repulsion behaviors in the migratory locust. Our findings are particularly significant for understanding the process of locust aggregation and may provide new targets to manipulate locust behavior as part of novel management strategies.
Collapse
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zongyuan Ma
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Xue
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jingyao Han
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dan Yu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
170
|
Dani FR, Michelucci E, Francese S, Mastrobuoni G, Cappellozza S, La Marca G, Niccolini A, Felicioli A, Moneti G, Pelosi P. Odorant-binding proteins and chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 2011; 36:335-44. [PMID: 21220518 DOI: 10.1093/chemse/bjq137] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genome of the silkmoth Bombyx mori contains 44 genes encoding odorant-binding proteins (OBPs) and 20 encoding chemosensory proteins (CSPs). In this work, we used a proteomic approach to investigate the expression of proteins of both classes in the antennae of adults and in the female pheromone glands. The most abundant proteins found in the antennae were the 4 OBPs (PBP, GOBP1, GOBP2, and ABP) and the 2 CSPs (CSP1 and CSP2) previously identified and characterized. In addition, we could detect only 3 additional OBPs and 2 CSPs, with clearly different patterns of expression between the sexes. Particularly interesting, on the other hand, is the relatively large number of binding proteins (1 OBP and 7 CSPs) expressed in the female pheromone glands, some of them not present in the antennae. In the glands, these proteins could be likely involved in the solubilization of pheromonal components and their delivery in the environment.
Collapse
Affiliation(s)
- Francesca R Dani
- Centro Interdipartimentale di Spettrometria di Massa, University of Firenze, Viale G. Pieraccini no. 6, Florence, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Hu L, Shen J, Hu M, Rizwan-ul-Haq M, Hao W. Screening of T7 phage displayed Bactrocera dorsalis (Hendel) antenna cDNA library against chemosensory protein. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 75:174-186. [PMID: 20936641 DOI: 10.1002/arch.20374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recent studies have shown that chemosensory proteins (CSPs) were involved in diverse life activities such as insect feeding, development, mating, immune regulation, as well as other important circadian rhythms, etc. To screen the proteins involved in the BdorCSP-related physiological activity, a cDNA library of the Bactrocera dorsalis (Hendel) antenna expressed on the surface of T7 phage was screened against BdorCSP. After four rounds of screening, ELISA-positive samples of selected phages were sequenced and identified as protein disulfide isomerase (PDI), trypsin-like serine protease (Ser), TakeOut (TO), and a new protein by GenBank blast, respectively. Real-time quantitative PCR results showed that the expression levels of Ser, TO, and the new protein were the highest in antenna, sharing similar expression pattern with BdorCSP. These results reveal that these proteins might be involved in the BdorCSP-related physiological or metabolic activities. This work paves a new way for exploring the function of CSPs.
Collapse
Affiliation(s)
- Liming Hu
- South China Agriculture University, Guangzhou, People's Republic of China
| | | | | | | | | |
Collapse
|
172
|
Olafson PU, Lohmeyer KH, Dowd SE. Analysis of expressed sequence tags from a significant livestock pest, the stable fly (Stomoxys calcitrans), identifies transcripts with a putative role in chemosensation and sex determination. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2010; 74:179-204. [PMID: 20572127 DOI: 10.1002/arch.20372] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The stable fly, Stomoxys calcitrans L. (Diptera: Muscidae), is one of the most significant pests of livestock in the United States. The identification of targets for the development of novel control for this pest species, focusing on those molecules that play a role in successful feeding and reproduction, is critical to mitigating its impact on confined and rangeland livestock. A database was developed representing genes expressed at the immature and adult life stages of the stable fly, comprising data obtained from pyrosequencing both immature and adult stages and from small-scale sequencing of an antennal/maxillary palp-expressed sequence tag library. The full-length sequence and expression of 21 transcripts that may have a role in chemosensation is presented, including 13 odorant-binding proteins, 6 chemosensory proteins, and 2 odorant receptors. Transcripts with potential roles in sex determination and reproductive behaviors are identified, including evidence for the sex-specific expression of stable fly doublesex- and transformer-like transcripts. The current database will be a valuable tool for target identification and for comparative studies with other Diptera.
Collapse
Affiliation(s)
- Pia Untalan Olafson
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory, Kerrville, Texas 78028, USA.
| | | | | |
Collapse
|
173
|
Dani FR, Iovinella I, Felicioli A, Niccolini A, Calvello MA, Carucci MG, Qiao H, Pieraccini G, Turillazzi S, Moneti G, Pelosi P. Mapping the Expression of Soluble Olfactory Proteins in the Honeybee. J Proteome Res 2010; 9:1822-33. [DOI: 10.1021/pr900969k] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Francesca Romana Dani
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Immacolata Iovinella
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Antonio Felicioli
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Alberto Niccolini
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Maria Antonietta Calvello
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Maria Giovanna Carucci
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Huili Qiao
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Giuseppe Pieraccini
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Stefano Turillazzi
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Gloriano Moneti
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| | - Paolo Pelosi
- CISM, University of Firenze, Firenze, Italy, Department of Agricultural Chemistry and Biotechnologies, University of Pisa, Pisa, Italy, and Department of Physiological Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
174
|
Gong L, Zhong GH, Hu MY, Luo Q, Ren ZZ. Molecular cloning, expression profile and 5' regulatory region analysis of two chemosensory protein genes from the diamondback moth, Plutella xylostella. JOURNAL OF INSECT SCIENCE (ONLINE) 2010; 10:143. [PMID: 21073345 PMCID: PMC3016857 DOI: 10.1673/031.010.14103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 06/09/2009] [Indexed: 05/30/2023]
Abstract
Chemosensory proteins play an important role in transporting chemical compounds to their receptors on dendrite membranes. In this study, two full-length cDNA codings for chemosensory proteins of Plutella xylostella (Lepidoptera: Plutellidae) were obtained by RACE-PCR. PxylCSP3 and Pxyl-CSP4, with GenBank accession numbers ABM92663 and ABM92664, respectively, were cloned and sequenced. The gene sequences both consisted of three exons and two introns. RT-PCR analysis showed that Pxyl-CSP3 and Pxyl-CSP4 had different expression patterns in the examined developmental stages, but were expressed in all larval stages. Phylogenetic analysis indicated that lepidopteran insects consist of three branches, and Pxyl-CSP3 and Pxyl-CSP4 belong to different branches. The 5'regulatory regions of Pxyl-CSP3 and Pxyl-CSP4 were isolated and analyzed, and the results consist of not only the core promoter sequences (TATA-box), but also several transcriptional elements (BR-C Z4, Hb, Dfd, CF2-II, etc.). This study provides clues to better understanding the various physiological functions of CSPs in P. xylostella and other insects.
Collapse
Affiliation(s)
- Liang Gong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education of P.R. China. South China Agricultural University, Guang Zhou, 510642, Guangdong, China
| | - Guo-Hua Zhong
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education of P.R. China. South China Agricultural University, Guang Zhou, 510642, Guangdong, China
| | - Mei-Ying Hu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education of P.R. China. South China Agricultural University, Guang Zhou, 510642, Guangdong, China
| | - Qian Luo
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education of P.R. China. South China Agricultural University, Guang Zhou, 510642, Guangdong, China
| | - Zhen-Zhen Ren
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education of P.R. China. South China Agricultural University, Guang Zhou, 510642, Guangdong, China
| |
Collapse
|
175
|
González D, Zhao Q, McMahan C, Velasquez D, Haskins WE, Sponsel V, Cassill A, Renthal R. The major antennal chemosensory protein of red imported fire ant workers. INSECT MOLECULAR BIOLOGY 2009; 18:395-404. [PMID: 19523071 PMCID: PMC2771726 DOI: 10.1111/j.1365-2583.2009.00883.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Some chemosensory proteins (CSPs) are expressed in insect sensory appendages and are thought to be involved in chemical signalling by ants. We identified 14 unique CSP sequences in expressed sequence tag (EST) libraries of the red imported fire ant, Solenopsis invicta. One member of this group (Si-CSP1) is highly expressed in worker antennae, suggesting an olfactory function. A shotgun proteomic analysis of antennal proteins confirmed the high level of Si-CSP1 expression, and also showed expression of another CSP and two odorant-binding proteins (OBPs). We cloned and expressed the coding sequence for Si-CSP1. We used cyclodextrins as solubilizers to investigate ligand binding. Fire ant cuticular lipids strongly inhibited Si-CSP1 binding to the fluorescent dye N-phenyl-naphthylamine, suggesting cuticular substances are ligands for Si-CSP1. Analysis of the cuticular lipids showed that the endogenous ligands of Si-CSP1 are not cuticular hydrocarbons.
Collapse
Affiliation(s)
| | - Qi Zhao
- Department of Biology, University of Texas at San Antonio
| | - Cody McMahan
- Department of Biology, University of Texas at San Antonio
| | | | - William E. Haskins
- Department of Biology, University of Texas at San Antonio
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| | | | - Aaron Cassill
- Department of Biology, University of Texas at San Antonio
| | - Robert Renthal
- Department of Biology, University of Texas at San Antonio
- Department of Biochemistry, University of Texas Health Science Center at San Antonio
| |
Collapse
|
176
|
Analysis and comparison of a set of expressed sequence tags of the parthenogenetic water flea Daphnia carinata. Mol Genet Genomics 2009; 282:197-203. [DOI: 10.1007/s00438-009-0459-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Accepted: 05/10/2009] [Indexed: 10/20/2022]
|
177
|
Nunes FMF, Simões ZLP. A non-invasive method for silencing gene transcription in honeybees maintained under natural conditions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:157-160. [PMID: 19049870 DOI: 10.1016/j.ibmb.2008.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 10/14/2008] [Accepted: 10/24/2008] [Indexed: 05/27/2023]
Abstract
In the Apis mellifera post-genomic era, RNAi protocols have been used in functional approaches. However, sample manipulation and invasive methods such as injection of double-stranded RNA (dsRNA) can compromise physiology and survival. To circumvent these problems, we developed a non-invasive method for honeybee gene knockdown, using a well-established vitellogenin RNAi system as a model. Second instar larvae received dsRNA for vitellogenin (dsVg-RNA) in their natural diet. For exogenous control, larvae received dsRNA for GFP (dsGFP-RNA). Untreated larvae formed another control group. Around 60% of the treated larvae naturally developed until adult emergence when 0.5 microg of dsVg-RNA or dsGFP-RNA was offered while no larvae that received 3.0 microg of dsRNA reached pupal stages. Diet dilution did not affect the removal rates. Viability depends not only on the delivered doses but also on the internal conditions of colonies. The weight of treated and untreated groups showed no statistical differences. This showed that RNAi ingestion did not elicit drastic collateral effects. Approximately 90% of vitellogenin transcripts from 7-day-old workers were silenced compared to controls. A large number of samples are handled in a relatively short time and smaller quantities of RNAi molecules are used compared to invasive methods. These advantages culminate in a versatile and a cost-effective approach.
Collapse
Affiliation(s)
- Francis Morais Franco Nunes
- Departamento de Biologia Aplicada a Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, SP, Brazil.
| | | |
Collapse
|
178
|
Sant’ Anna MRV, Alexander B, Bates PA, Dillon RJ. Gene silencing in phlebotomine sand flies: Xanthine dehydrogenase knock down by dsRNA microinjections. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:652-60. [PMID: 18510977 PMCID: PMC2677462 DOI: 10.1016/j.ibmb.2008.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 03/25/2008] [Accepted: 03/29/2008] [Indexed: 05/16/2023]
Abstract
Lutzomyia longipalpis are vectors of medically important visceral leishmaniasis in South America. Blood-fed adult females digest large amounts of protein, and xanthine dehydrogenase is thought to be a key enzyme involved in protein catabolism through the production of urate. Large amounts of heme are also released during digestion with potentially damaging consequences, as heme can generate oxygen radicals that damage lipids, proteins and nucleic acids. However, urate is an antioxidant that may prevent such oxidative damage produced by heme. We investigated xanthine dehydrogenase by developing the RNAi technique for sand flies and used this technique to knock down the Lu. longipalpis xanthine dehydrogenase gene to evaluate its role in survival of adult females after blood feeding. The gene sequence of Lu. longipalpis xanthine dehydrogenase is described together with expression in different life cycle stages and RNAi knock down. Semi-quantitative RT-PCR of xanthine dehydrogenase expression showed a significant increase in expression after bloodmeal ingestion. Microinjection of dsRNA via the thorax of 1-day-old adult female sand flies resulted in approximately 40% reduction of xanthine dehydrogenase gene expression in comparison to flies injected with a control dsRNA. A significant reduction of urate in the whole body and excretions of Lu. longipalpis was observed after dsRNA xanthine dehydrogenase microinjection and feeding 96h later on rabbit blood. Sand flies injected with XDH dsRNA also exhibit significantly reduced life span in comparison with the mock-injected group when fed on sucrose or when rabbit blood fed, showing that urate could be indeed an important free radical scavenger in Lu. longipalpis. The demonstration of xanthine dehydrogenase knock down by dsRNA microinjection, low mortality of microinjected insects and the successful bloodfeeding of injected insects demonstrated the utility of RNAi as a tool for functional analysis of genes in phlebotomine sand flies.
Collapse
Affiliation(s)
| | - Bruce Alexander
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Paul A Bates
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Rod J Dillon
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
179
|
Kucharski R, Maleszka J, Foret S, Maleszka R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 2008; 319:1827-30. [PMID: 18339900 DOI: 10.1126/science.1153069] [Citation(s) in RCA: 695] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fertile queens and sterile workers are alternative forms of the adult female honeybee that develop from genetically identical larvae following differential feeding with royal jelly. We show that silencing the expression of DNA methyltransferase Dnmt3, a key driver of epigenetic global reprogramming, in newly hatched larvae led to a royal jelly-like effect on the larval developmental trajectory; the majority of Dnmt3 small interfering RNA-treated individuals emerged as queens with fully developed ovaries. Our results suggest that DNA methylation in Apis is used for storing epigenetic information, that the use of that information can be differentially altered by nutritional input, and that the flexibility of epigenetic modifications underpins, profound shifts in developmental fates, with massive implications for reproductive and behavioral status.
Collapse
Affiliation(s)
- R Kucharski
- Molecular Genetics and Evolution, ARC Centre for the Molecular Genetics of Development, Research School of Biological Sciences, Australian National University, Canberra ACT 0200, Australia
| | | | | | | |
Collapse
|
180
|
Jansen S, Chmelík J, Zídek L, Padrta P, Novák P, Zdráhal Z, Picimbon JF, Löfstedt C, Sklenár V. Structure of Bombyx mori chemosensory protein 1 in solution. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 66:135-145. [PMID: 17966128 DOI: 10.1002/arch.20205] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chemosensory Proteins (CSPs) represent a family of conserved proteins found in insects that may be involved in chemosensory functions. BmorCSP1 is expressed mainly in antennae and legs of the silkworm moth Bombyx mori and was cloned from antennal cDNA. Here we report the determination of the structure of Bombyx mori CSP1 (BmorCSP1) by NMR. The overall fold of BmorCSP1 is globular and comprises six alpha-helices. These helices span residues 10-14, 17-27, 35-49, 57-72, 75-85, and 92-100. The internal hydrophobic sides of the helices are formed mostly by leucine and isoleucine residues and, therefore, well suited to constitute a binding site for hydrophobic ligands.
Collapse
|
181
|
Li H, Lou B, Cheng J, Gao Q. The chemosensory protein of Chinese honeybee, Apis cerana cerana: Molecular cloning of cDNA, immunocytochemical localization and expression. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0210-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|