151
|
Quantitative trait locus mapping identifies the Gpnmb gene as a modifier of mouse macrophage lysosome function. Sci Rep 2021; 11:10249. [PMID: 33986446 PMCID: PMC8119501 DOI: 10.1038/s41598-021-89800-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/30/2021] [Indexed: 01/28/2023] Open
Abstract
We have previously shown that the DBA/2J versus AKR/J mouse strain is associated with decreased autophagy-mediated lysosomal hydrolysis of cholesterol esters. Our objective was to determine differences in lysosome function in AKR/J and DBA/2J macrophages, and identify the responsible genes. Using a novel dual-labeled indicator of lysosome function, DBA/2J versus AKR/J bone marrow derived macrophages had significantly decreased lysosome function. We performed quantitative trait loci mapping of lysosome function in bone marrow macrophages from an AKR/J × DBA/2J strain intercross. Four distinct lysosome function loci were identified, which we named macrophage lysosome function modifier (Mlfm) Mlfm1 through Mlfm4. The strongest locus Mlfm1 harbors the Gpnmb gene, which has been shown to recruit autophagy protein light chain 3 to autophagosomes for lysosome fusion. The parental DBA/2J strain has a nonsense variant in Gpnmb. siRNA knockdown of Gpnmb in AKR/J macrophages decreased lysosome function, and Gpnmb deletion through CRISP/Cas9 editing in RAW 264.7 mouse macrophages also demonstrated a similar result. Furthermore, a DBA/2 substrain, called DBA/2J-Gpnmb+/SjJ, contains the wildtype Gpnmb gene, and macrophages from this Gpnmb-preserved DBA/2 substrain exhibited recovered lysosome function. In conclusion, we identified Gpnmb as a causal modifier gene of lysosome function in this strain pair.
Collapse
|
152
|
Qin X, Shen Q, Guo Y, Li X, Liu J, Ye M, Wang H, Jia W, Zhang C. Physicochemical properties, digestibility and anti-osteoporosis effect of yak bone powder with different particle sizes. Food Res Int 2021; 145:110401. [PMID: 34112404 DOI: 10.1016/j.foodres.2021.110401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022]
Abstract
As a kind of promising resource, animal bone has been widely processed into functional foods. However, there is little research about the effect of particle size on the physicochemical properties and digestibility of yak bone powder (YBP), as well as its anti-osteoporosis activity. In this study, the YBP with median particle sizes (MPS) ranging from 19.68 to 128.37 μm were prepared, and their digestibility and anti-osteoporosis activity were investigated. The results showed that smaller MPS significantly increased water holding capacity and protein solubility without changing composition. The MPS reduction greatly promoted protein digestion, producing more peptides<3 kDa and free amino acids while decreased Ca2+ and P5+ release during gastrointestinal digestion. The in vivo results revealed the positive effect of YBP on ovariectomy-induced osteoporosis in rats. The bone mineral density of ovariectomized (OVX) rats was obviously improved by regulating bone turnover markers (B-ALP, OCN, S-CTX, ES and TRAP), thus potentially shedding light on osteoporosis remission. However, different MPS exhibited a weak effect on osteoporosis in OVX rats. Therefore, YBP could be produced in relatively large particle size without sacrificing food sensory quality, the processing time of which could also be shortened for higher productivity and lower cost.
Collapse
Affiliation(s)
- Xiaojie Qin
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Biobased Chemistry and Technology, Wageningen University and Research, Wageningen 6700AA, Netherlands
| | - Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xia Li
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiqian Liu
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mengliang Ye
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hang Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Jia
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hulunbuir Muyuankangtai Biotechnology Co. Ltd, Arongqi Logistics Business Park, Hulunbuir, Inner Mongolia, Hulunbuir, 021000, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
153
|
Nnamezie AA, Famuwagun AA, Gbadamosi SO. Characterization of okra seed flours, protein concentrate, protein isolate and enzymatic hydrolysates. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00059-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
The need to feed the increasing world population with high quality protein and the enormous post-harvest losses of okra fruits necessitated the research on okra seeds in this study. Whole flour (WF) of matured okra seed was processed to obtain defatted flour (DF), protein concentrate (PC) and protein isolate (PI), followed by hydrolysis of the protein isolate by three different proteases; pepsin (PHp), pancreatin (PHc) and trypsin (PHT) to produce hydrolysates. The okra seed flours, proteins and the hydrolysates were analyzed for changes in the functional groups using Fourier, Transform Infrared (FTIR), amino acid composition, solubility profile and some functional properties. The FTIR results showed the presence of N-H stretching, C=O stretching, C=N stretching N-H bending and C-N stretching in the samples. Protein hydrolysate had higher essential amino acids (51.32–53.01%) than unhydrolysed samples (36.31–37.99%). PI and WF had the highest water absorption and swelling capacities respectively. The solubility profiles of the samples were minimal at pH 2–4 and then increased after the isoelectric point. The PC was more soluble than PI between pH 2–8. The foaming properties of the samples was least in the absence of salt but high in the presence of 0.5 M sodium chloride. The emulsion capacity of the samples was least in the presence of 1.0 M NaCl. The in-vitro protein digestibility results showed that okra seed protein hydrolysates were more digestible (83.26–86.08%) than unhydrolyzed proteins (36.48–80.90%). The results of the antioxidant properties showed that PHp and PHT exhibited better radical scavenging and metal chelating activities respectively than the other samples. The study concluded that okra seed proteins and hydrolysates demonstrated potentials as ingredients in functional food preparation and this may be considered as a strategy to reducing the post-harvest losses of okra fruit and subsequently feeding the world with quality proteins.
Graphical abstract
Collapse
|
154
|
Influence of preservation methods on biochemical composition and downstream processing of cultivated Saccharina latissima biomass. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
155
|
Rabiei S, Rezaei M, Nikoo M, Khezri M, Rafieian-Kopai M, Anjomshoaa M. Antioxidant properties of Klunzinger's mullet ( Liza klunzingeri) protein hydrolysates prepared with enzymatic hydrolysis using a commercial protease and microbial hydrolysis with Bacillus licheniformis. FOOD SCI TECHNOL INT 2021; 28:233-246. [PMID: 33832340 DOI: 10.1177/10820132211005297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Antioxidant activity of Klunzinger's mullet (Liza klunzingeri) muscle hydrolysates obtained using Bacillus licheniformis fermentation and enzymatic hydrolysis was determined. Hydrolysates obtained after 6 days of fermentation with B. licheniformis showed the highest free radical scavenging activity, metal chelating ability and ferric reducing antioxidant power (FRAP) (P ≤ 0.05). Microbial fermentation led to a higher percentage of small peptides and higher solubility compared with Alcalase hydrolysis (P ≤ 0.05). Hydrolysates showing the highest antioxidant properties attenuated serum, liver, and kidney oxidative stress biomarkers in male Wister rats stressed by carbon tetrachloride (P ≤ 0.05). At 300 mg/kg oral administration, hydrolysates increased serum, renal, and hepatic total antioxidant capacity (TAC) (P ≤ 0.05) and reduced their elevated levels of malondialdehyde (MDA), nitric oxide (NO•), and serum liver enzymes (AST, ALP, and ALT) (P ≤ 0.05). The hydrolysates were able to ameliorate hepatic damage by reducing necrosis, fatty changes, and inflammation. Results showed the antioxidant and hepato-toxic protective activities of Klunzinger's mullet muscle hydrolysates obtained using microbial fermentation, which may, therefore, potentially be considered as a functional food ingredient.
Collapse
Affiliation(s)
- Sana Rabiei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Masoud Rezaei
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, Noor, Iran
| | - Mehdi Nikoo
- Department of Pathobiology and Quality Control, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Mohammad Khezri
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Kurdistan, Iran
| | - Mahmoud Rafieian-Kopai
- Medical Plants Research Center, Basic Health Sciences Institutes, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Anjomshoaa
- Department of Anatomical Sciences, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
156
|
Nikoo M, Regenstein JM, Noori F, Piri Gheshlaghi S. Autolysis of rainbow trout (Oncorhynchus mykiss) by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of protein hydrolysates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110702] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
157
|
Dragić M, Milićević K, Adžić M, Stevanović I, Ninković M, Grković I, Andjus P, Nedeljković N. Trimethyltin Increases Intracellular Ca 2+ Via L-Type Voltage-Gated Calcium Channels and Promotes Inflammatory Phenotype in Rat Astrocytes In Vitro. Mol Neurobiol 2021; 58:1792-1805. [PMID: 33394334 DOI: 10.1007/s12035-020-02273-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 12/29/2022]
Abstract
Astrocytes are the first responders to noxious stimuli by undergoing cellular and functional transition referred as reactive gliosis. Every acute or chronic disorder is accompanied by reactive gliosis, which could be categorized as detrimental (A1) of beneficial (A2) for nervous tissue. Another signature of pathological astrocyte activation is disturbed Ca2+ homeostasis, a common denominator of neurodegenerative diseases. Deregulation of Ca+ signaling further contributes to production of pro-inflammatory cytokines and reactive oxygen species. Trimethyltin (TMT) intoxication is a widely used model of hippocampal degeneration, sharing behavioral and molecular hallmarks of Alzheimer's disease (AD), thus representing a useful model of AD-like pathology. However, the role of astrocyte in the etiopathology of TMT-induced degeneration as well as in AD is not fully understood. In an effort to elucidate the role of astrocytes in such pathological processes, we examined in vitro effects of TMT on primary cortical astrocytes. The application of a range of TMT concentrations (5, 10, 50, and 100 μM) revealed changes in [Ca2+]i in a dose-dependent manner. Specifically, TMT-induced Ca2+ transients were due to L-type voltage-gated calcium channels (VGCC). Additionally, TMT induced mitochondrial depolarization independent of extracellular Ca2+ and disturbed antioxidative defense of astrocyte in several time points (4, 6, and 24 h) after 10 μM TMT intoxication, inducing oxidative and nitrosative stress. Chronic exposure (24 h) to 10 μM TMT induced strong upregulation of main pro-inflammatory factors, components of signaling pathways in astrocyte activation, A1 markers, and VGCC. Taken together, our results provide an insight into cellular and molecular events of astrocyte activation in chronic neuroinflammation.
Collapse
Affiliation(s)
- Milorad Dragić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia.
| | - Katarina Milićević
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Marija Adžić
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanović
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Milica Ninković
- Institute of Medical Research, Military Medical Academy, Belgrade, Serbia
- Medical Faculty of Military Medical Academy, University of Defense, Belgrade, Serbia
| | - Ivana Grković
- Department of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences-National Institute of thе Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Nadežda Nedeljković
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, Serbia
| |
Collapse
|
158
|
Wang C, Wang X, Liu C, Liu C. Application of LF-NMR to the characterization of camellia oil-loaded pickering emulsion fabricated by soy protein isolate. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
159
|
Le Navenant A, Brouchoud C, Capowiez Y, Rault M, Suchail S. How lasting are the effects of pesticides on earwigs? A study based on energy metabolism, body weight and morphometry in two generations of Forficula auricularia from apple orchards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143604. [PMID: 33246715 DOI: 10.1016/j.scitotenv.2020.143604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Widespread use of pesticides to control pests is the dominant system in conventional apple orchards. To avoid adverse side effects, there is a growing interest in promoting alternative methods including biological control based on the use of natural enemies. The European earwig Forficula auricularia L. (Dermaptera: Forficuidae) is an effective predator in apple orchards. Pesticide pressure has been shown to divert energy resources which could have a negative impact on life history traits. In this study we assessed (i) whether variations in pesticide exposure could differentially impact energy reserves, body weight and morphometric parameters of F. auricularia, and (ii) whether these effects persist into the next generation reared under optimal conditions. Individuals from the first generation were collected in late October from organic, IPM and conventional orchards. The next generation was obtained under a rearing program, in the absence of pesticide exposure. Earwigs collected from conventional orchards exhibited lower values for all morphometric parameters compared to those collected in organic orchards. However, a relaxed period without pesticide exposure (in autumn) appears to have allowed the females to recover their energy reserves to ensure reproduction and maternal care. Glycogen contents were the reserves that were more easily restored. However, probably due to the rearing conditions (food ad libitum), all the earwigs from the second generation exhibited higher body weights and energy reserves than their parents.
Collapse
Affiliation(s)
- Adrien Le Navenant
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| | - Corinne Brouchoud
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| | - Yvan Capowiez
- INRAE, UMR 1114 EMMAH Domaine Saint Paul, 84914 Avignon cedex 09, France
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France.
| | - Séverine Suchail
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 rue Baruch de Spinoza, BP 21239, 84916 Avignon, France
| |
Collapse
|
160
|
Udeh C, Ifie I, Akpodiete J, Malomo S. Kidney bean protein products as potential antioxidative and antihypertensive alternatives for non-pharmacological inhibition of angiotensin-converting enzymes. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
161
|
Beltrame G, Hemming J, Yang H, Han Z, Yang B. Effects of supplementation of sea buckthorn press cake on mycelium growth and polysaccharides of Inonotus obliquus in submerged cultivation. J Appl Microbiol 2021; 131:1318-1330. [PMID: 33556214 DOI: 10.1111/jam.15028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/26/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
AIMS Investigation of the influence of cultivation time and sea buckthorn press cake (Hippophaë rhamnoides) dosage on mycelium yield of Inonotus obliquus in submerged cultivation and on the yield, monomer composition, and macromolecular properties of the exopolysaccharides (EPS) from culture media and intracellular polysaccharides (IPS) extracted from mycelia. METHODS AND RESULTS Supplementation at 5 g l-1 combined with cultivation time of 250 h granted highest yield increase in mycelia (by 122%). The supplementation reduced extraction yield and decreased the molecular weight of the main IPS population. The supplementation increased production and molecular weight of EPS. The relative content of arabinose and rhamnose in EPS positively correlated with dosage of the press cake. The press cake supplementation increased the content of galacturonic acid in IPS, but not in EPS. CONCLUSION Sea buckthorn press cake is a food industry fibrous side stream with high oil content. It increases the cultivation yield of Inonotus obliquus mycelium and influences the produced polysaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY Mycelium is a resource of bioactive polysaccharides, attracting the interest of nutraceutical companies. Sea buckthorn press cake is a promising supplement for increasing mycelium production. The utilization of this agricultural side stream would therefore favour circular economy.
Collapse
Affiliation(s)
- G Beltrame
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| | - J Hemming
- Wood and Paper Chemistry, Åbo Akademi University, Turku, Finland
| | - H Yang
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Z Han
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - B Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Turku, Finland
| |
Collapse
|
162
|
Mohammadifar M, Aarabi MH, Aghighi F, Kazemi M, Vakili Z, Memarzadeh MR, Talaei SA. Anti-osteoarthritis potential of peppermint and rosemary essential oils in a nanoemulsion form: behavioral, biochemical, and histopathological evidence. BMC Complement Med Ther 2021; 21:57. [PMID: 33563269 PMCID: PMC7871606 DOI: 10.1186/s12906-021-03236-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the effect of nanoemulsion containing peppermint and rosemary essential oils in rats with osteoarthritis (OA). METHODS In this experimental study, we prepared a nanoemulsion containing peppermint and rosemary essential oils by spontaneous emulsification and evaluated the nanoemulsion's dermal irritation and toxicity. Investigating the analgesic effect of the nanoemulsion, we randomly assigned 36 male rats to 6 groups: Control (saline injection into the knee), osteoarthritis (intra-articular injection of 2 mg monosodium iodoacetate), and four groups of OA treated with nanoemulsion gel, nanoemulsion solution, rosemary and peppermint essential oil gel, or diclofenac sodium. Treatments were administered topically at a dose of 1 ml daily. Using behavioral tests, we assessed pain on days 1, 4, 7, and 14 after injection. Finally, we did the histopathological and biochemical evaluation of rats' knee joints. RESULTS There were no irritation signs on the animals' skin after receiving the nanoemulsion and no changes in the hematological and biochemical parameters of rats' blood compared to the control group. Receiving nanoemulsion decreased the mechanical (P < 0.001) and thermal allodynia (P < 0.05), thermal hyperalgesia (P < 0.05), and ambulatory-evoked pain in comparison with the OA group. Also, the nanoemulsion receiving rats showed an increase in SOD and GPx activity and a decrease in MDA level. Histopathology of synovial tissues confirmed the results of behavioral and biochemical tests. CONCLUSION The nanoemulsion containing essential oils of peppermint and rosemary reduces osteoarthritis pain via increasing antioxidant capacity and improving the histopathological features of the rats' knee joint.
Collapse
Affiliation(s)
- Mojgan Mohammadifar
- Biochemistry and Nutrition in Metabolic Diseases Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Hossein Aarabi
- Department of Biochemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Kazemi
- Biochemistry and Nutrition in Metabolic Diseases Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zarichehr Vakili
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
163
|
Nikoo M, Xu X, Regenstein JM, Noori F. Autolysis of Pacific white shrimp (Litopenaeus vannamei) processing by-products: Enzymatic activities, lipid and protein oxidation, and antioxidant activity of hydrolysates. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100844] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
164
|
Felix M, Puerta E, Bengoechea C, Carrera-Sánchez C. Relationship between interfacial and foaming properties of a Porphyra dioica seaweed protein concentrate. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
165
|
Najafi A, Pourfarzam M, Zadhoush F. Oxidant/antioxidant status in Type-2 diabetes mellitus patients with metabolic syndrome. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2021; 26:6. [PMID: 34084185 PMCID: PMC8103957 DOI: 10.4103/jrms.jrms_249_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 01/21/2023]
Abstract
BACKGROUND The concurrence of metabolic syndrome (MS) and diabetes mellitus (DM) is increasing worldwide. The long-term complications of these chronic diseases are a threat to patients' well-being. Oxidative stress is involved in the pathogenesis of several diseases. To understand the basic pathophysiological mechanisms of Type-2 DM (T2DM) and its related complications, we aimed to investigate the oxidant/antioxidant status and Na+-K+ ATPase activity in T2DM with MS. MATERIALS AND METHODS A population of ninety individuals including fifty patients diagnosed with T2DM and MS, but without overt diabetes complications, and forty individuals without T2DM or MS as control group participated in this study. Plasma malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, total antioxidant capacity (TAC), and Na+-K+ ATPase activity were assessed by standard laboratory methods. RESULTS Plasma MDA in patients group was statistically significantly higher than that of controls (P ≤ 0.05). Whereas, Na+-K+ ATPase activity was statistically significantly lower in patient group (P ≤ 0.05). TAC, CAT, SOD, and GPx enzyme activities were not statistically significantly different between two groups (P > 0.05). Results from the patient group showed positive correlations between CAT activity and triglyceride and positive correlations between GPx activity and weight, body mass index (BMI), and waist circumference. In addition, there was a positive correlation between MDA results with high-density lipoprotein-cholesterol (HDL-C) and total cholesterol and a negative correlation with TAC, BMI, and weight (P ≤ 0.05) in controls. CONCLUSION Because T2DM patients were without any vascular complications, antioxidant defense results may reflect the lack of progression of diabetes complications in these patients. These results emphasize the need for initial and continued assessment of cardiovascular disease risks in diabetic individuals. Implementation of timely interventions may improve the management of diabetes and prevent the progression of diabetes complications.
Collapse
Affiliation(s)
- Ali Najafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Morteza Pourfarzam
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fouzieh Zadhoush
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
166
|
Idowu AO, Alashi AM, Nwachukwu ID, Fagbemi TN, Aluko RE. Functional properties of sesame (Sesamum indicum Linn) seed protein fractions. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-020-00047-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
This work evaluated the functional properties of sesame protein fractions in order to determine their potential in food applications. Sesame seed protein fractions were prepared according to their solubility: water-soluble (albumin), salt-soluble (globulin), alkaline-soluble (glutelin) and ethanol-soluble (prolamin). Globulin was the most abundant fraction, consisting of 91% protein, followed by glutelin, albumin and prolamin in decreasing order. Non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed polypeptides of sizes ≥20 kDa for albumin while glutelin and globulin had similar polypeptide sizes at 19, 85 and 100 kDa. Prolamin had polypeptide sizes 20, 40 and 100 kDa. The albumin and globulin fractions had higher intrinsic fluorescence intensity (FI) values than the glutelin. Albumin had a higher solubility (ranging from 80 to 100%) over a wide pH range when compared with the other fractions. Water holding capacity (g/g) reduced from 2.76 (glutelin) to 1.35 (prolamin) followed by 0.42 (globulin) and 0.08 (albumin). Oil holding capacity (g/g) reduced from: 4.13 (glutelin) to 2.57 (globulin) and 1.56, 1.50 for albumin and prolamin respectively. Gelling ability was stronger for prolamin and glutelin than albumin and globulin, while higher emulsion (p < 0.05) quality was obtained for prolamin and albumin than for glutelin and globulin.
Graphical abstract
Collapse
|
167
|
Wang X, He L, Zhao Q, Chen H, Shi Y, Fan J, Chen Y, Huang A. Protein function analysis of germinated Moringa oleifera seeds, and purification and characterization of their milk-clotting peptidase. Int J Biol Macromol 2021; 171:539-549. [PMID: 33434550 DOI: 10.1016/j.ijbiomac.2021.01.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The present study aimed to investigate the biological functions of germinated M. oleifera seed proteins and to identify the identity of milk-clotting proteases. A total of 963 proteins were identified, and those with molecular weights between 10 and 30 kDa were most abundant. The identified proteins were mainly involved in energy-associated catalytic activity and metabolic processes, and carbohydrate and protein metabolisms. The numbers of proteins associated with the hydrolytic and catalytic activities were higher than the matured dry M. oleifera seeds reported previously. Of the identified proteins, proteases were mainly involved in the milk-clotting activity. Especially, a cysteine peptidase with a molecular mass of 17.727 kDa exhibiting hydrolase and peptidase activities was purified and identified. The identified cysteine peptidase was hydrophilic, and its secondary structure consisted of 27.60% alpha helix, 9.20% beta fold, and 63.20% irregular curl; its tertiary structure was also constructed using M. oleifera seed 2S protein as the protein template. The optimal pH and temperature of the purified protease were pH 4.0 and 60 °C, respectively. The protease had high acidic stability and good thermostability, thus could potentially be applied in the dairy industry.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Li He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Qiong Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Haoran Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yanan Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Jiangping Fan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Yue Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China.
| | - Aixiang Huang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
168
|
Findlay HE, Harris NJ, Booth PJ. Integrating Membrane Transporter Proteins into Droplet Interface Bilayers. Methods Mol Biol 2021; 2315:31-41. [PMID: 34302668 DOI: 10.1007/978-1-0716-1468-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Droplet interface bilayers (DIBs) are an emerging tool within synthetic biology that aims to recreate biological processes in artificial cells. A critical component for the utility of these bilayers is controlled flow between compartments and, notably, uphill transport against a substrate concentration gradient. A versatile method to achieve the desired flow is to exploit the specificity of membrane proteins that regulate the movement of ions and transport of specific metabolic compounds. Methods have been in existence for some time to synthesize proteins within a droplet as well as incorporate membrane proteins into DIBS; however, there have been few reports combining synthesis and DIB incorporation for membrane transporters that demonstrate specific, uphill transport. This chapter presents two methods for the incorporation of a membrane transporter into a simple two-droplet DIB system, with the downhill and uphill transport reaction readily monitored by fluorescence microscopy.
Collapse
Affiliation(s)
| | | | - Paula J Booth
- Department of Chemistry, Kings College London, London, UK.
| |
Collapse
|
169
|
Alloul A, Muys M, Hertoghs N, Kerckhof FM, Vlaeminck SE. Cocultivating aerobic heterotrophs and purple bacteria for microbial protein in sequential photo- and chemotrophic reactors. BIORESOURCE TECHNOLOGY 2021; 319:124192. [PMID: 33039841 DOI: 10.1016/j.biortech.2020.124192] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Aerobic heterotrophic bacteria (AHB) and purple non-sulfur bacteria (PNSB) are typically explored as two separate types of microbial protein, yet their properties as respectively a bulk and added-value feed ingredient make them appealing for combined use. The feasibility of cocultivation in a sequential photo- and chemotrophic approach was investigated. First, mapping the chemotrophic growth kinetics for four Rhodobacter, Rhodopseudomonas and Rhodospirillum species on different carbon sources showed a preference for fructose (µmax 2.4-3.9 d-1 28 °C; protein 36-59%DW). Secondly, a continuous photobioreactor inoculated with Rhodobacter capsulatus (VFA as C-source) delivered the starter culture for an aerobic batch reactor (fructose as C-source). This two-stage system showed an improved nutritional quality compared to AHB production: higher protein content (45-71%DW), more attractive amino/fatty acid profile and contained up to 10% PNSB. The findings strengthen protein production with cocultures and might enable the implementation of the technology for resource recovery on streams such as wastewater.
Collapse
Affiliation(s)
- Abbas Alloul
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Maarten Muys
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Nick Hertoghs
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Frederiek-Maarten Kerckhof
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
170
|
Zaidi SK, Shen WJ, Cortez Y, Bittner S, Bittner A, Arshad S, Huang TT, Kraemer FB, Azhar S. SOD2 deficiency-induced oxidative stress attenuates steroidogenesis in mouse ovarian granulosa cells. Mol Cell Endocrinol 2021; 519:110888. [PMID: 32717420 PMCID: PMC8011630 DOI: 10.1016/j.mce.2020.110888] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the effects of SOD2 (MnSOD)-deficiency-induced excessive oxidative stress on ovarian steroidogenesis in vivo and isolated and cultured granulosa cells using WT and Sod2+/- mice. Basal and 48 h eCG-stimulated plasma progesterone levels were decreased ~50% in female Sod2+/- mice, whereas plasma progesterone levels were decreased ~70% in Sod2+/- mice after sequential stimulation with eCG followed by hCG. Sod2+/- deficiency caused about 50% reduction in SOD2 activity in granulosa cells. SOD2-deficiency also caused a marked reduction in progestins and estradiol in isolated granulosa cells. qRT-PCR measurements indicated that the mRNA expression levels of StAR protein and steroidogenic enzymes are decreased in the ovaries of Sod2+/- mice. Further studies showed a defect in the movement of mobilized cytosolic cholesterol to mitochondria. The ovarian membrane from Sod2+/- mice showed higher susceptibility to lipid peroxidation. These data indicates that SOD2-deficiency induced oxidative stress inhibits ovarian granulosa cell steroidogenesis primarily by interfering with cholesterol transport to mitochondria and attenuating the expression of Star protein gene and key steroidogenic enzyme genes.
Collapse
Affiliation(s)
- Syed Kashif Zaidi
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Wen-Jun Shen
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yuan Cortez
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Stefanie Bittner
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Alex Bittner
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA
| | - Sara Arshad
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Ting-Ting Huang
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fredric B Kraemer
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Salman Azhar
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, 94304, USA; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
171
|
Jouni F, Brouchoud C, Capowiez Y, Sanchez-Hernandez JC, Rault M. Elucidating pesticide sensitivity of two endogeic earthworm species through the interplay between esterases and glutathione S-transferases. CHEMOSPHERE 2021; 262:127724. [PMID: 32805653 DOI: 10.1016/j.chemosphere.2020.127724] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Earthworms are common organisms in soil toxicity-testing framework, and endogeic species are currently recommended due to their ecological role in agroecosystem. However, little is known on their pesticide metabolic capacities. We firstly compared the baseline activity of B-esterases and glutathione-S-transferase in Allolobophora chlorotica and Aporrectodea caliginosa. Secondly, vulnerability of these species to pesticide exposure was assessed by in vitro trials using the organophosphate (OP) chlorpyrifos-ethyl-oxon (CPOx) and ethyl-paraoxon (POx), and by short-term (7 days) in vivo metabolic responses in soil contaminated with pesticides. Among B-esterases, acetylcholinesterase (AChE) activity was abundant in the microsomal fraction (80% and 70% of total activity for A. caliginosa and A. chlorotica, respectively). Carboxylesterase (CbE) activities were measured using three substrates to examine species differences in isoenzyme and sensitivity to both in vitro and in vivo exposure. CbEs were mainly found in the cytosolic fraction (80% and 60% for A. caliginosa and A. chlorotica respectively). GST was exclusively found in the soluble fraction for both species. Both OPs inhibited B-esterases in a concentration-dependent manner. In vitro trials revealed a pesticide-specific response, being A. chlorotica AChE more sensitive to CPOx compared to POx. CbE activity was inhibited at the same extent in both species. The 7-d exposure showed A. chlorotica less sensitive to both OPs, which contrasted with outcomes from in vitro experiments. This non-related functional between both approaches for assessing pesticide toxicity suggests that other mechanisms linked with in vivo OP bioactivation and excretion could have a significant role in the OP toxicity in endogeic earthworms.
Collapse
Affiliation(s)
- Fatina Jouni
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Corinne Brouchoud
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, France
| | - Yvan Capowiez
- INRAE, UMR 1114 EMMAH Domaine Saint Paul, 84914, Avignon Cedex 09, France
| | - Juan C Sanchez-Hernandez
- Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, University of Castilla-La Mancha, Avda. Carlos III S/n, 45071, Toledo, Spain
| | - Magali Rault
- Univ Avignon, Aix Marseille Univ, CNRS, IRD, IMBE, Pôle Agrosciences, 301 Rue Baruch de Spinoza, BP 21239, 84916, Avignon, France.
| |
Collapse
|
172
|
Aondona MM, Ikya JK, Ukeyima MT, Gborigo TWJA, Aluko RE, Girgih AT. In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. J Food Biochem 2020; 45:e13587. [PMID: 33346921 DOI: 10.1111/jfbc.13587] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to determine the in vitro antioxidant and antihypertensive potentials of sesame seed protein hydrolysate and its membrane ultrafiltration peptide fractions in comparison to the unhydrolyzed protein. Sesame seed protein isolate (SESPI) was prepared from the defatted sesame seed meal and then hydrolyzed using consecutive additions of pepsin and pancreatin to yield sesame protein hydrolysate (SESPH). The SESPH was subjected to membrane ultrafiltration consecutively to obtain fractions with peptide sizes of <1, 1-3, 3-5, and 5-10 kDa, respectively, which were then assayed for in vitro antioxidant and antihypertensive properties. The results showed that protein hydrolysis and fractionation led to significant (p < .05) increases in the content of hydrophobic amino acids. Radical scavenging and metal ion chelation were also significantly (p < .05) enhanced by these treatments. Inhibition of linoleic acid oxidation was stronger with the 1.0 mg/ml of sesame peptide samples in comparison to the mild inhibitory effect exhibited by the 0.5 mg/ml of samples. The <1 kDa peptide fraction was the most active inhibitor (81%) against angiotensin converting enzyme, whereas the bigger peptides (>3-5 and 5-10 kDa) were the most effective (75%-85% ) inhibitors against renin. These sesame products could be used as therapeutic agents in the development of health enhancing foods for the prevention and management of chronic diseases. PRACTICAL APPLICATIONS: Bioactive peptides have been produced from plant protein sources through in vitro enzymatic activities. Sesame seed peptides have demonstrated multifunctional potential to act as antioxidative and antihypertensive agents that could be utilized as ingredients for the development of novel functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Magdalene M Aondona
- Department of Food Science and Technology, University of Mkar, Gboko, Nigeria.,Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Julius K Ikya
- Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Moses T Ukeyima
- Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| | - Tsav-Wua J A Gborigo
- Department of Home Economics, College of Education, Katsina-ala, Benue State, Nigeria
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abraham T Girgih
- Department of Food Science and Technology, University of Agriculture, Makurdi, Benue State, Nigeria
| |
Collapse
|
173
|
Cooke AC, Florez C, Dunshee EB, Lieber AD, Terry ML, Light CJ, Schertzer JW. Pseudomonas Quinolone Signal-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in Pseudomonas aeruginosa. mSphere 2020; 5:e01109-20. [PMID: 33239369 PMCID: PMC7690959 DOI: 10.1128/msphere.01109-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 01/15/2023] Open
Abstract
Bacterial biofilms are major contributors to chronic infections in humans. Because they are recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. Identifying factors involved in biofilm development can help uncover novel targets and guide the development of antibiofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, and hospital-acquired infections and is also associated with aggressive biofilm formation in the lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been associated with cell-cell communication, virulence factor delivery, and transfer of antibiotic resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, little is known about their biogenesis and function in biofilms. Several groups have shown that Pseudomonas quinolone signal (PQS) induces OMV formation in P. aeruginosa Our group described a biophysical mechanism for this and recently showed it is operative in biofilms. Here, we demonstrate that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, PQS and OMV synthesis are significantly elevated during dispersion compared to attachment and maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in their ability to disperse, but this phenotype was rescued by genetic complementation or exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled degradation of biofilm matrix components.IMPORTANCE Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant biofilm infections from protected sessile communities into released populations that are orders-of-magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit increased acute virulence and dissemination phenotypes. A thorough understanding of the dispersion process is therefore critical before this promising strategy can be effectively employed. Pseudomonas quinolone signal (PQS) has been implicated in early biofilm development, but we hypothesized that its function as an outer membrane vesicle (OMV) inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs are differentially produced during Pseudomonas aeruginosa biofilm development and provide evidence that effective biofilm dispersion is dependent on the production of PQS-induced OMVs, which likely act as delivery vehicles for matrix-degrading enzymes. These findings lay the groundwork for understanding OMV contributions to biofilm development and suggest a model to explain the controlled matrix degradation that accompanies biofilm dispersion in many species.
Collapse
Affiliation(s)
- Adam C Cooke
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Catalina Florez
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Elise B Dunshee
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| | - Avery D Lieber
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- First-year Research Immersion Program, Binghamton University, Binghamton, New York, USA
| | - Michelle L Terry
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- First-year Research Immersion Program, Binghamton University, Binghamton, New York, USA
| | - Caitlin J Light
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
- First-year Research Immersion Program, Binghamton University, Binghamton, New York, USA
- Summer Research Immersion Program, Binghamton University, Binghamton, New York, USA
| | - Jeffrey W Schertzer
- Department of Biological Sciences, Binghamton University, Binghamton, New York, USA
- Binghamton Biofilm Research Center, Binghamton University, Binghamton, New York, USA
| |
Collapse
|
174
|
Modulation of the mitochondrial voltage-dependent anion channel (VDAC) by hydrogen peroxide and its recovery by curcumin. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2020; 49:661-672. [DOI: 10.1007/s00249-020-01469-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022]
|
175
|
Immunogenicity of Shigella sonnei outer membrane vesicles extracted in different environmental conditions. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00606-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
176
|
Chunkao S, Youravong W, Yupanqui CT, Alashi AM, Aluko RE. Structure and Function of Mung Bean Protein-Derived Iron-Binding Antioxidant Peptides. Foods 2020; 9:foods9101406. [PMID: 33022976 PMCID: PMC7600763 DOI: 10.3390/foods9101406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
An iron-binding mung bean protein hydrolysate (MBPH) was prepared using a continuous enzymatic membrane reactor followed by peptide separation on anion-exchange (AEC) and reverse-phase HPLC (RP-HPLC) columns. Amino acid sequences of peptides present in the RP-HPLC fraction with the strongest iron-binding capacity were identified using mass spectrometry, and ten peptides of 5-8 amino acids synthesized for antioxidant characterization. Five fractions (AF1- AF5) with higher iron-binding capacity (88.86 ± 6.43 to 153.59 ± 2.18 mg/g peptide) when compared to the MBPH (36.81 ± 0.93 mg/g peptide) were obtained from AEC. PAIDL had the significantly (p < 0.05) highest iron-binding capacity, but LLLLG and LLGIL showed the strongest metal chelating activity. However, PAIDL (46.63%) and LLGIL (81.27%) had significantly (p < 0.05) better DPPH radical scavenging activity than the other peptides. PAIDL and LLGIL were also the most effective (p < 0.05) hydroxyl radical neutralizers with an effective concentration that scavenged 50% (EC50) values of 0.09 and 0.37 mM, respectively. PAIDL and AIVIL showed the lowest EC50 values of 0.07 mM each for superoxide radical scavenging activity. We conclude that short chain length in combination with leucine as the C-terminal amino acid residue contributed to the strong antioxidant properties of peptides in this study.
Collapse
Affiliation(s)
- Siriporn Chunkao
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wirote Youravong
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Membrane Science and Technology Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Correspondence: (W.Y.); (R.E.A.); Tel.: +1-204-474-9555 (R.E.A.)
| | - Chutha T. Yupanqui
- Centre of Excellence in Functional Foods and Nutraceuticals, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Correspondence: (W.Y.); (R.E.A.); Tel.: +1-204-474-9555 (R.E.A.)
| |
Collapse
|
177
|
Mora-Gutierrez A, Attaie R, Núñez de González MT, Jung Y, Marquez SA. Interface Compositions as Determinants of Resveratrol Stability in Nanoemulsion Delivery Systems. Foods 2020; 9:foods9101394. [PMID: 33023075 PMCID: PMC7601424 DOI: 10.3390/foods9101394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/07/2023] Open
Abstract
The incorporation of hydrophobic ingredients, such as resveratrol (a fat-soluble phytochemical), in nanoemulsions can increase the water solubility and stability of these hydrophobic ingredients. The nanodelivery of resveratrol can result in a marked improvement in the bioavailability of this health-promoting ingredient. The current study hypothesized that resveratrol can bind to caprine casein, which may result in the preservation of the biological properties of resveratrol. The fluorescence spectra provided proof of this complex formation by demonstrating that resveratrol binds to caprine casein in the vicinity of tryptophan amino acid residues. The caprine casein/resveratrol complex is stabilized by hydrophobic interactions and hydrogen bonds. Hence, to study the rate of resveratrol degradation during processing/storage, resveratrol losses were determined by reversed-phase high performance liquid chromatography (RP-HPLC) in nanoemulsions stabilized by bovine and caprine caseins individually and in combination with polysorbate-20. At 48 h oxidation, 88.33% and 89.08% was left of resveratrol in the nanoemulsions stabilized by caprine casein (αs1-I)/polysorbate-20 complex and caprine (αs1-II)/polysorbate-20 complex, while there was less resveratrol left in the nanoemulsions stabilized by bovine casein/polysorbate-20 complex, suggesting that oxygen degradation was involved. The findings of this study are crucial for the food industry since they imply the potential use of caprine casein/polysorbate-20 complex to preserve the biological properties of resveratrol.
Collapse
Affiliation(s)
- Adela Mora-Gutierrez
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
- Correspondence: ; Fax: +1-936-261-9975
| | - Rahmat Attaie
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Maryuri T. Núñez de González
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Yoonsung Jung
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA; (R.A.); (M.T.N.d.G.); (Y.J.)
| | - Sixto A. Marquez
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA;
| |
Collapse
|
178
|
Oztekin A, Tasbasi S. A novel peroxidase from runner bean (Phaseolus coccineus L.): Enhanced affinity purification, characterization, and dye decolorization activity. J Food Biochem 2020; 44:e13411. [PMID: 32748491 DOI: 10.1111/jfbc.13411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
In this study, a novel runner bean peroxidase (RBP) was purified and characterized. Affinity-based purification was performed with newly synthesized disubstituted 4-aminobenzohydrazides. In the purification results, 253-fold was achieved with a yield of 56.2%. Furthermore, molecular weight and enzyme purity were checked with the SDS-PAGE and observed a single band at 31.2 kDa. Optimum conditions were determined as temperature = 50°C, ionic strength = 0.2 M, and pH 7.0. Enzyme exhibited 31.2% of residual activity in the presence of 20% DMSO. Additionally, the redox-mediated decolorization effect of the enzyme was examined for Reactive Blue 19 and Acid Blue 25 dyes. As a result of 1-hr incubation, the enzyme removal activity of Reactive Blue 19 and Acid Blue 25 dyes was calculated as 47% and 57%, respectively. PRACTICAL APPLICATIONS: Peroxidases (PODs) ability to catalyze various redox reactions for many substrates makes them significant enzymes in industrial sectors. In our current report, a single-step strategy was developed and followed as an alternative to multi-step methods commonly used for the purification of PODs. During this process, high yield was achieved and the separation time was shortened. Also, the purification of RBP that can potentially supplant PODs used in the industrial applications was carried out for the first time. In addition, substrate specificity, catalytic behavior in water-miscible organic solvents, and dye bleaching activity of this enzyme have been determined to evaluate the utilization capacity in various processes.
Collapse
Affiliation(s)
- Aykut Oztekin
- Department of Medical Services and Techniques, Vocational School of Health Services, Agri Ibrahim Cecen University, Agri, Turkey
| | - Seyma Tasbasi
- Department of Chemistry, Science and Literature Faculty, Agri Ibrahim Cecen University, Agri, Turkey
| |
Collapse
|
179
|
Comparative proteome analysis of matured dry and germinating Moringa oleifera seeds provides insights into protease activity during germination. Food Res Int 2020; 136:109332. [DOI: 10.1016/j.foodres.2020.109332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022]
|
180
|
Minimizing lipid oxidation during pH-shift processing of fish by-products by cross-processing with lingonberry press cake, shrimp shells or brown seaweed. Food Chem 2020; 327:127078. [DOI: 10.1016/j.foodchem.2020.127078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022]
|
181
|
Wang Y, Wei W, Wu SL, Ni BJ. Zerovalent Iron Effectively Enhances Medium-Chain Fatty Acids Production from Waste Activated Sludge through Improving Sludge Biodegradability and Electron Transfer Efficiency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10904-10915. [PMID: 32867479 DOI: 10.1021/acs.est.0c03029] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel zerovalent iron (ZVI) technique to simultaneously improve the production of medium-chain fatty acids (MCFAs) from waste activated sludge (WAS) and enhance WAS degradation during anaerobic WAS fermentation was proposed in this study. Experimental results showed that the production and selectivity of MCFAs were effectively promoted when ZVI was added at 1-20 g/L. The maximum MCFAs production of 15.4 g COD (Chemical Oxygen Demand)/L and MCFAs selectivity of 71.7% were both achieved at 20 g/L ZVI, being 5.3 and 4.8 times that without ZVI (2.9 g COD/L and 14.9%). Additionally, ZVI also promoted WAS degradation, which increased from 0.61 to 0.96 g COD/g VS when ZVI increased from 0 to 20 g/L. The microbial community analysis revealed that the ZVI increased the populations of key anaerobes related to hydrolysis, acidification, and chain elongation. Correspondingly, the solubilization, hydrolysis, and acidification processes of WAS were revealed to be improved by ZVI, thereby providing more substrates (short-chain fatty acids (SCFAs)) for producing MCFAs. The mechanism studies showed that ZVI declined the oxidation-reduction potential (ORP), creating a more favorable environment for the anaerobic biological processes. More importantly, ZVI with strong conductivity could act as an electron shuttle, contributing to increasing electron transfer efficiency from electron donor to acceptor. This strategy provides a new paradigm of transforming waste sludge into assets by a low-cost waste to bring significant economic benefits to sludge disposal and wastewater treatment.
Collapse
Affiliation(s)
- Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Lin Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| |
Collapse
|
182
|
Sánchez-López F, Robles-Olvera VJ, Hidalgo-Morales M, Tsopmo A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.103075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
183
|
Effect of protein and oil volume concentrations on emulsifying properties of acorn protein isolate. Food Chem 2020; 324:126894. [DOI: 10.1016/j.foodchem.2020.126894] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
|
184
|
Role of Poly [ADP-ribose] Polymerase 1 in Activating the Kirsten ras ( KRAS) Gene in Response to Oxidative Stress. Int J Mol Sci 2020; 21:ijms21176237. [PMID: 32872305 PMCID: PMC7504130 DOI: 10.3390/ijms21176237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022] Open
Abstract
In pancreatic Panc-1 cancer cells, an increase of oxidative stress enhances the level of 7,8-dihydro-8-oxoguanine (8OG) more in the KRAS promoter region containing G4 motifs than in non-G4 motif G-rich genomic regions. We found that H2O2 stimulates the recruitment to the KRAS promoter of poly [ADP-ribose] polymerase 1 (PARP-1), which efficiently binds to local G4 structures. Upon binding to G4 DNA, PARP-1 undergoes auto PARylation and thus becomes negatively charged. In our view this should favor the recruitment to the KRAS promoter of MAZ and hnRNP A1, as these two nuclear factors, because of their isoelectric points >7, are cationic in nature under physiological conditions. This is indeed supported by pulldown assays which showed that PARP-1, MAZ, and hnRNP A1 form a multiprotein complex with an oligonucleotide mimicking the KRAS G4 structure. Our data suggest that an increase of oxidative stress in Panc-1 cells activates a ROS-G4-PARP-1 axis that stimulates the transcription of KRAS. This mechanism is confirmed by the finding that when PARP-1 is silenced by siRNA or auto PARylation is inhibited by Veliparib, the expression of KRAS is downregulated. When Panc-1 cells are treated with H2O2 instead, a strong up-regulation of KRAS transcription is observed.
Collapse
|
185
|
Interacting Effects of Polystyrene Microplastics and the Antidepressant Amitriptyline on Early Life Stages of Brown Trout (Salmo trutta f. fario). WATER 2020. [DOI: 10.3390/w12092361] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whether microplastics themselves or their interactions with chemicals influence the health and development of aquatic organisms has become a matter of scientific discussion. In aquatic environments, several groups of chemicals are abundant in parallel to microplastics. The tricyclic antidepressant amitriptyline is frequently prescribed, and residues of it are regularly found in surface waters. In the present study, the influence of irregularly shaped polystyrene microplastics (<50 µm), amitriptyline, and their mixture on early life-stages of brown trout were investigated. In a first experiment, the impacts of 100, 104, and 105 particles/L were studied from the fertilization of eggs until one month after yolk-sac consumption. In a second experiment, eggs were exposed in eyed ova stages to 105, 106 particles/L, to amitriptyline (pulse-spiked, average 48 ± 33 µg/L) or to two mixtures for two months. Microplastics alone did neither influence the development of fish nor the oxidative stress level or the acetylcholinesterase activity. Solely, a slight effect on the resting behavior of fry exposed to 106 particles/L was observed. Amitriptyline exposure exerted a significant effect on development, caused elevated acetylcholinesterase activity and inhibition of two carboxylesterases. Most obvious was the severely altered swimming and resting behavior. However, effects of amitriptyline were not modulated by microplastics.
Collapse
|
186
|
Akinyede AI, Fagbemi TN, Osundahunsi OF, Aluko RE. Amino acid composition and antioxidant properties of the enzymatic hydrolysate of calabash nutmeg (Monodora myristica) and its membrane ultrafiltration peptide fractions. J Food Biochem 2020; 45:e13437. [PMID: 32794208 DOI: 10.1111/jfbc.13437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
The aim of this work was to determine amino acid composition and in vitro antioxidant activities of Monodora myristica protein hydrolysate and its membrane ultrafiltration peptide fractions. The Alcalase hydrolysate was fractionated using ultrafiltration membranes to produce peptide sizes of <1, 1-3, 3-5, and 5-10 kDa. The results showed that sequential fractionation resulted in higher glycine and glutamic acid and glutamine contents. Analysis of in vitro antioxidant properties showed that fractionation of the M. myristica hydrolysate led to significant (p < .05) improvements in 2,2-diphenyl-1-picrylhydrazyl radical scavenging, metal chelation activity, ferric reducing antioxidant power (FRAP), and hydroxyl (OH) radical scavenging activity. Linoleic acid oxidation was significantly (p < .05) attenuated by the peptide fractions. We conclude that peptide antioxidant activities were significantly (p < .05) improved by membrane fractionation, especially the 3-5 kDa fraction. PRACTICAL APPLICATIONS: The use of protein hydrolysate fractions with potential to prevent oxidation, which can reduce shelf life of foods and cause degenerate diseases due to cell damage is proposed for Monodora myristica. The demand for natural products and negative health issues associated with artificial food ingredients have led to increased consumer preference for natural sources of antioxidants. The protein hydrolysate and membrane fractions produced in this work showed high antioxidant ability that could qualify them to replace toxic synthetic antioxidants in foods. Peptide fractions had better metal chelation than the hydrolysates, which is important because chelation of metal ions can decrease the amount of free iron available to participate in the Fenton reaction and ultimately decrease the formation of toxic free radicals. Incorporation of the peptides into foods will enhance scavenging of toxic free radicals that may form during storage, thereby improving product freshness and shelf life in addition to preventing human degenerative diseases.
Collapse
Affiliation(s)
- Adedamola I Akinyede
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tayo N Fagbemi
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | | | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
187
|
Olagunju AI, Omoba OS, Enujiugha VN, Alashi AM, Aluko RE. Thermoase-hydrolysed pigeon pea protein and its membrane fractions possess in vitro bioactive properties (antioxidative, antihypertensive, and antidiabetic). J Food Biochem 2020; 45:e13429. [PMID: 32776555 DOI: 10.1111/jfbc.13429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Enzymatic hydrolysis can liberate bioactive peptides from protein materials, thus, pigeon pea was hydrolysed using thermoase. Crude hydrolysate (PPHT) was subjected to ultrafiltration using different molecular weight cutoffs to collect <1, 1-3, 3-5, 5-10, and >10 kDa peptide fractions. Fractions were analysed for in vitro antioxidative, antihypertensive, and antidiabetic properties. The peptide fractions had stronger DPPH• scavenging and renin inhibition when compared to PPHT. In contrast, ACE inhibition was stronger for the PPHT and <1 kDa peptide fraction while activity decreased as peptide size increased. The <1 kDa peptide also showed significantly stronger ferric reducing antioxidant power, OH• scavenging and inhibition of linoleic acid oxidation when compared to PPHT. α-amylase and α-glucosidase were inhibited by all the peptide fractions, though the 3-5 and >10 kDa had higher values. We conclude that the PPHT and peptide fractions could serve as potential ingredients to formulate antihypertensive and antidiabetic functional foods and nutraceuticals. PRACTICAL APPLICATIONS: Oxidative stress promotes the generation of free radicals, which have a significant impact in the pathogenesis of human chronic diseases such as cardiovascular impairment, cancer, and diabetes. Peptides generated from enzymatic hydrolysis of proteins have been identified to impart beneficial health effects. In this work, we showed that a thermoase digest of pigeon pea protein as well as the fractionated peptides had strong antioxidant properties in addition to exhibiting inhibitory activities against renin and angiotensin converting enzyme, the main therapeutic targets for antihypertensive agents. The peptide products also inhibited α-amylase and α-glucosidase activities, providing potential ingredients that can be used to formulate antidiabetic functional foods.
Collapse
Affiliation(s)
- Aderonke I Olagunju
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria.,Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Olufunmilayo S Omoba
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Victor N Enujiugha
- Department of Food Science and Technology, Federal University of Technology, Akure, Nigeria
| | - Adeola M Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
188
|
Vijayakumar S, Vinayagam R, Anand MAV, Venkatachalam K, Saravanakumar K, Wang MH, Casimeer C S, KM G, David E. Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
189
|
Famuwagun AA, Alashi AM, Gbadamosi OS, Taiwo KA, Oyedele D, Adebooye OC, Aluko RE. Antioxidant and enzymes inhibitory properties of Amaranth leaf protein hydrolyzates and ultrafiltration peptide fractions. J Food Biochem 2020; 45:e13396. [PMID: 32692412 DOI: 10.1111/jfbc.13396] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022]
Abstract
Amaranth leaf protein isolate (ALI) was hydrolyzed using four different proteases (alcalase, trypsin, pepsin, and chymotrypsin) followed by fractionation of the pepsin hydrolyzate (PH) into different sizes using ultrafiltration membrane. Gel permeation chromatography showed that all the hydrolyzates had smaller size peptides (<7 kDa) than the protein isolate (>32 kDa). The chymotrypsin hydrolyzate had higher contents of hydrophobic amino acid (44.95%) compared to alcalase (42.72%), pepsin (43.93%), and trypsin (40.95%) hydrolyzates. The PH had stronger DPPH, hydroxyl radical, and superoxide radical scavenging activities than the other protein hydrolyzates but weaker Ferric reducing antioxidant power and metal chelating activities when compared to the peptide fractions. The <1 kDa peptide fraction exhibited stronger DPPH, hydroxyl, and superoxide radicals scavenging activities than the higher molecular weight (>1 kDa) fractions. Fractionation of PH also resulted in enhanced inhibition of α-amylase and ACE activities but weaker α-glucosidase inhibition. PRACTICAL APPLICATIONS: ALI was hydrolyzed using four proteases to produce protein hydrolyzates. The most active of the hydrolyzate was then fractionated to produce fractions of different molecular sizes. The results of the analyses showed that the hydrolyzates and the fractions showed good antioxidant and enzyme inhibitory activities such as the inhibition of ACE, α-amylase, and glucosidase enzymes. The results suggest that the enzymatic hydrolyzates and peptide fractions could be used as ingredients in the nutraceutical and functional food industries to scavenge free radicals and inhibit angiotensin-converting enzyme activity.
Collapse
Affiliation(s)
- Akinsola A Famuwagun
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adeola M Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Kehinde A Taiwo
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Durodoluwa Oyedele
- Department of Soil and Land Resources Management, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Odunayo C Adebooye
- Department of Agronomy, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
190
|
Zhang YT, Wei W, Huang QS, Wang C, Wang Y, Ni BJ. Insights into the microbial response of anaerobic granular sludge during long-term exposure to polyethylene terephthalate microplastics. WATER RESEARCH 2020; 179:115898. [PMID: 32388051 DOI: 10.1016/j.watres.2020.115898] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The negative effects of ubiquitous microplastics on wastewater treatment have attracted increasing attention. However, the potential impacts of microplastics on anaerobic granular sludge (AGS) remain unknown. To fill this knowledge gap, this paper investigated the response of AGS to the exposure of model microplastics (polyethylene terephthalate (PET-MPs)) and provided insights into the mechanisms involved. The 84 days' long-term exposure experiments demonstrated that PET-MPs, at relatively low level (15 MP L-1) did not affect AGS performance during anaerobic wastewater treatment, while 75-300 MP L-1 of PET-MPs caused the decreases of COD removal efficiency and methane yields by 17.4-30.4% and 17.2-28.4%, accompanied with the 119.4-227.8% increase in short-chain fatty acid (SCFA) accumulation and particle breakage. Extracellular polymeric substances (EPS) analysis showed that dosage-dependent tolerance of AGS to PET-MPs was attributed to the induced EPS producing protection role, but PET-MPs at higher concentrations (75-300 MP L-1) suppressed EPS generation. Correspondingly, microbial community analysis revealed that the populations of key acidogens (e.g., Levilinea sp.) and methanogens (e.g., Methanosaeta sp.) decreased after long-term exposure to PET-MPs. Assessment of the toxicity of PET-MPs revealed that the leached di-n-butyl phthalate (DBP) and the induced reactive oxygen species (ROS) by PET-MPs were causing toxicity towards AGS, confirmed by the increases in cell mortality and lactate dehydrogenase (LDH) release. These results provide novel insights into the ecological risk assessment of microplastics in anaerobic wastewater treatment system.
Collapse
Affiliation(s)
- Yu-Ting Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Qi-Su Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Yun Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
191
|
Velliquette RA, Fast DJ, Maly ER, Alashi AM, Aluko RE. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chem 2020; 319:126563. [DOI: 10.1016/j.foodchem.2020.126563] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/12/2020] [Accepted: 03/03/2020] [Indexed: 12/28/2022]
|
192
|
Muys M, Papini G, Spiller M, Sakarika M, Schwaiger B, Lesueur C, Vermeir P, Vlaeminck SE. Dried aerobic heterotrophic bacteria from treatment of food and beverage effluents: Screening of correlations between operation parameters and microbial protein quality. BIORESOURCE TECHNOLOGY 2020; 307:123242. [PMID: 32248065 DOI: 10.1016/j.biortech.2020.123242] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Consortia of aerobic heterotrophic bacteria (AHB) have potential as sustainable microbial protein (MP) source in animal feed. A systematic screening of the nutritional value and safety of AHB biomass from full-scale activated sludge plants from 25 companies in the food sector was performed. The variable protein content (21-49%) was positively correlated with biomass-specific nitrogen loading rate and negatively with sludge retention time (SRT). Compared to the essential amino acid profile of soybean meal protein, AHB displayed an overall surplus of threonine and valine, and deficits in cysteine, histidine, lysine and phenylalanine. Histidine was positively correlated with bCOD/PO43- in the influent and valine, isoleucine and threonine with SRT. Most AHB samples were safe apropos heavy metals, polycyclic aromatic hydrocarbons and antibiotics. Some pesticides exceeded regulatory limits, necessitating mitigation. This work highlighted that the food sector can provide high-quality MP, while retrofitting existing activated sludge plants towards high-rate processes can increase AHB quality and productivity.
Collapse
Affiliation(s)
- Maarten Muys
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, België, Belgium
| | - Gustavo Papini
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, België, Belgium
| | - Marc Spiller
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, België, Belgium
| | - Myrsini Sakarika
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, België, Belgium
| | - Barbara Schwaiger
- Lebensmittel Vertrauen Analysen LVA GmbH, Magdeburggasse 10, 3400 Klosterneuburg 236286 f, HG Wien, Oostenrijk, Austria
| | - Céline Lesueur
- Lebensmittel Vertrauen Analysen LVA GmbH, Magdeburggasse 10, 3400 Klosterneuburg 236286 f, HG Wien, Oostenrijk, Austria
| | - Pieter Vermeir
- Laboratory for Chemical Analysis, Department of Green Chemistry and Technology, Ghent University, Valentin Vaerwyckweg 1, 9000 Gent, België, Belgium
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, België, Belgium.
| |
Collapse
|
193
|
Brenes‐Álvarez M, Minguet M, Vioque A, Muro‐Pastor AM. NsiR1, a smallRNAwith multiple copies, modulates heterocyst differentiation in the cyanobacteriumNostocsp.PCC7120. Environ Microbiol 2020; 22:3325-3338. [DOI: 10.1111/1462-2920.15103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Manuel Brenes‐Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| | - Marina Minguet
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| | - Agustín Vioque
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| | - Alicia M. Muro‐Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis Consejo Superior de Investigaciones Científicas and Universidad de Sevilla Sevilla Spain
| |
Collapse
|
194
|
Machado Braga JR, de Morais-Zani K, Pereira DDS, Sant'Anna SS, da Costa Galizio N, Tanaka-Azevedo AM, Gomes Vilarinho AR, Rodrigues JL, Teixeira da Rocha MM. Sexual and ontogenetic variation of Bothrops leucurus venom. Toxicon 2020; 184:127-135. [PMID: 32553734 DOI: 10.1016/j.toxicon.2020.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 11/19/2022]
Abstract
Various factors, such as geographical origin, climate, sex, age and diet can influence the composition and pathophysiological activities of snake venoms. In this study, we examined the sexual and ontogenetic variations in the venom of Bothrops leucurus, a pitviper responsible for more than 80% of the snakebites in the state of Bahia, northeastern Brazilian. The venoms of 31 snakes were pooled according to sex and age (young, adult and old) and screened by SDS-PAGE (in reducing and non-reducing conditions), reverse-phase high performance liquid chromatography (RP-HPLC), gelatin zymography, and immunoblotting with therapeutic bothropic antivenom (BAV) from the Instituto Butantan. The electrophoretic and chromatographic profiles showed intraspecific ontogenetic variation, whereas sexual variations were less evident. All venoms showed gelatinolytic activity associated with 50-75 kDa protein bands. In addition, all venoms, regardless of the snakes' sex and age, cross-reacted to similar extents with BAV. Our findings show that B. leucurus venom changes during ontogenetic development and demonstrate sexual differences in its composition, indicating differences in biological activity.
Collapse
Affiliation(s)
- Jacqueline Ramos Machado Braga
- Centro de Ciências Agrárias, Ambientais e Biológicas - Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil.
| | - Karen de Morais-Zani
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Diego Dos Santos Pereira
- Centro de Ciências Agrárias, Ambientais e Biológicas - Universidade Federal do Recôncavo da Bahia, Cruz das Almas, Bahia, Brazil
| | | | - Nathália da Costa Galizio
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Interunidades em Biotecnologia, Universidade de São Paulo-Instituto de Pesquisas Tecnológicas-Instituto Butantan, São Paulo, São Paulo, Brazil; Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - José Lucca Rodrigues
- Toxinas de Interesse em Saúde, Casa Afrânio do Amaral, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
195
|
Malomo S, Nwachukwu I, Girgih A, Idowu A, Aluko R, Fagbemi T. Antioxidant and Renin-Angiotensin System Inhibitory Properties of Cashew Nut and Fluted-Pumpkin Protein Hydrolysates. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/122460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
196
|
Famuwagun AA, Alashi AM, Gbadamosi SO, Taiwo KA, Oyedele DJ, Adebooye OC, Aluko RE. Comparative study of the structural and functional properties of protein isolates prepared from edible vegetable leaves. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1772285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Akinsola A. Famuwagun
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Adeola M. Alashi
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Saka O. Gbadamosi
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Kehinde A. Taiwo
- Department of Food Science & Technology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Durodoluwa J. Oyedele
- Department of Soil and Land Resources Management, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Odunayo C. Adebooye
- Department of Agronomy, Faculty of Agriculture, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
197
|
Ruppert PMM, Michielsen CCJR, Hazebroek EJ, Pirayesh A, Olivecrona G, Afman LA, Kersten S. Fasting induces ANGPTL4 and reduces LPL activity in human adipose tissue. Mol Metab 2020; 40:101033. [PMID: 32504883 PMCID: PMC7334813 DOI: 10.1016/j.molmet.2020.101033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023] Open
Abstract
Objective Studies in mice have shown that the decrease in lipoprotein lipase (LPL) activity in adipose tissue upon fasting is mediated by induction of the inhibitor ANGPTL4. Here, we aimed to validate this concept in humans by determining the effect of a prolonged fast on ANGPTL4 and LPL gene and protein expression in human subcutaneous adipose tissue. Methods Twenty-three volunteers ate a standardized meal at 18.00 h and fasted until 20.00 h the next day. Blood was drawn and periumbilical adipose tissue biopsies were collected 2 h and 26 h after the meal. Results Consistent with previous mouse data, LPL activity in human adipose tissue was significantly decreased by fasting (−60%), concurrent with increased ANGPTL4 mRNA (+90%) and decreased ANGPTL8 mRNA (−94%). ANGPTL4 protein levels in adipose tissue were also significantly increased by fasting (+46%), whereas LPL mRNA and protein levels remained unchanged. In agreement with the adipose tissue data, plasma ANGPTL4 levels increased upon fasting (+100%), whereas plasma ANGPTL8 decreased (−79%). Insulin, levels of which significantly decreased upon fasting, downregulated ANGPTL4 mRNA and protein in primary human adipocytes. By contrast, cortisol, levels of which significantly increased upon fasting, upregulated ANGPTL4 mRNA and protein in primary human adipocytes as did fatty acids. Conclusion ANGPTL4 levels in human adipose tissue are increased by fasting, likely via increased plasma cortisol and free fatty acids and decreased plasma insulin, resulting in decreased LPL activity. This clinical trial was registered with identifier NCT03757767. 24-h fast in humans reduces LPL activity in subcutaneous adipose tissue. 24-h fast in humans increases adipose ANGPTL4 mRNA, protein, and plasma ANGPTL4 levels. Cortisol, fatty acids, and insulin regulate ANGPTL4 in vitro. ANGPTL4 mediates the reduction in adipose LPL activity during fasting. 24-h fast in humans decreases adipose ANGPTL8 mRNA and plasma ANGPTL8 levels.
Collapse
Affiliation(s)
- Philip M M Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Charlotte C J R Michielsen
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Eric J Hazebroek
- Department of Bariatric Surgery, Rijnstate Hospital/Vitalys Clinic, Arnhem, the Netherlands; Nutrition and Disease Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Ali Pirayesh
- Amsterdam Plastic Surgery, Amsterdam, the Netherlands
| | - Gunilla Olivecrona
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, Umeå, Sweden
| | - Lydia A Afman
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
198
|
Interfacial/foaming properties and antioxidant activity of a silkworm (Bombyx mori) pupae protein concentrate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105645] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
199
|
Montoni F, Andreotti DZ, Eichler RADS, Santos WDS, Kisaki CY, Arcos SSS, Lima IF, Soares MAM, Nishiyama-Jr MY, Nava-Rodrigues D, Ferro ES, Carvalho VM, Iwai LK. The impact of rattlesnake venom on mice cerebellum proteomics points to synaptic inhibition and tissue damage. J Proteomics 2020; 221:103779. [DOI: 10.1016/j.jprot.2020.103779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
|
200
|
Perez-Puyana V, Jiménez-Rosado M, Romero A, Guerrero A. Fabrication and Characterization of Hydrogels Based on Gelatinised Collagen with Potential Application in Tissue Engineering. Polymers (Basel) 2020; 12:E1146. [PMID: 32429544 PMCID: PMC7284593 DOI: 10.3390/polym12051146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023] Open
Abstract
Regenerative medicine is increasingly focused on the development of biomaterials that facilitate cell adhesion and proliferation through the use of natural polymers, which have better biocompatibility and biodegradability. In this way, the use of hydrogels has been considered as a potential option for tissue engineering due to their physical and chemical characteristics. However, few studies associate the raw materials properties and processing conditions with the final characteristics of hydrogels, which could condition their use as scaffolds for tissue engineering. In this context, the main objective of this work was the evaluation of type I collagen as raw material for the elaboration of hydrogels. In addition, gelation time, pH and temperature were evaluated as the most influential variables in the hydrogel processing method by rheological (time, strain and frequency sweep tests) and microstructural (Cryo-SEM) measurements. The results indicate that it is possible to obtain collagen hydrogels with adequate rheological and microstructural characteristics by selecting optimal processing conditions. However, further studies are necessary to assess their suitability for cell accommodation and growth.
Collapse
Affiliation(s)
- Victor Perez-Puyana
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - Mercedes Jiménez-Rosado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| | - Alberto Romero
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain; (V.P.-P.); (A.R.)
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain;
| |
Collapse
|