151
|
Daniel R, Greger JG, Katz RA, Taganov KD, Wu X, Kappes JC, Skalka AM. Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. J Virol 2004; 78:8573-81. [PMID: 15280466 PMCID: PMC479090 DOI: 10.1128/jvi.78.16.8573-8581.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
We have previously reported several lines of evidence that support a role for cellular DNA repair systems in completion of the retroviral DNA integration process. Failure to repair an intermediate in the process of integrating viral DNA into host DNA appears to trigger growth arrest or death of a large percentage of infected cells. Cellular proteins involved in the nonhomologous end joining (NHEJ) pathway (DNA-PK(CS)) and the damage-signaling kinases (ATM and ATR) have been implicated in this process. However, some studies have suggested that NHEJ proteins may not be required for the completion of lentiviral DNA integration. Here we provide additional evidence that NHEJ proteins are required for stable transduction by human immunodeficiency type 1 (HIV-1)-based vectors. Our analyses with two different reporters show that the number of stably transduced DNA-PK(CS)-deficient scid fibroblasts was reduced by 80 to 90% compared to the number of control cells. Furthermore, transduction efficiency can be restored to wild-type levels in scid cells that are complemented with a functional DNA-PK(CS) gene. The efficiency of stable transduction by an HIV-1-based vector is also reduced upon infection of Xrcc4 and ligase IV-deficient cells, implying a role for these components of the NHEJ repair pathway. Finally, we show that cells deficient in ligase IV are killed by infection with an integrase-competent but not an integrase-deficient HIV-1 vector. Results presented in this study lend further support to a general role for the NHEJ DNA repair pathway in completion of the retroviral DNA integration process.
Collapse
Affiliation(s)
- René Daniel
- Fox Chase Cancer Center, Institute for Cancer Research, 333 Cottman Ave., Philadelphia, PA 19111-2497, USA
| | | | | | | | | | | | | |
Collapse
|
152
|
Talukder SR, Dudley DD, Alt FW, Takahama Y, Akamatsu Y. Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice. Nucleic Acids Res 2004; 32:4539-49. [PMID: 15328366 PMCID: PMC516053 DOI: 10.1093/nar/gkh778] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RAG1 and RAG2 play a central role in V(D)J recombination, a process for antigen receptor gene assembly. The truncated 'core' regions of RAGs are sufficient to catalyze the recombination reaction, although with lower joining efficiency than full-length proteins. To investigate the role of the non-core regions of RAGs in the end-joining phase of antigen receptor rearrangement, we analyzed recombination products isolated from core RAG1 and core RAG2 knock-in mice. Here, we report that the truncation of RAGs increases the frequency of aberrant recombination in vivo. Signal joints (SJs) associated with V-to-D recombination of core RAG1 knock-in mice were normal, whereas those of core RAG2 knock-in mice were highly imprecise, containing large deletions and additions, and in some cases coding sequences. In contrast, we found an elevated level of imprecise D-to-J associated SJs for both core RAG1- and RAG2-expressing mice. Likewise, sequences of coding joints (CJs) were also affected by the expression of core RAGs. Finally, sequences found at the junctions of rearranged T-cell receptor loci were highly influenced by differences in rearranging recombination signal sequence pairs. We provide the first evidence that the non-core regions of RAGs have critical functions in the proper assembly and resolution of recombination intermediates in endogenous antigen receptor loci.
Collapse
Affiliation(s)
- Sadiqur R Talukder
- Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan and Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
153
|
Abstract
One of the most toxic insults a cell can incur is a disruption of its linear DNA in the form of a double-strand break (DSB). Left unrepaired, or repaired improperly, these lesions can result in cell death or neoplastic transformation. Despite these dangers, lymphoid cells purposely introduce DSBs into their genome to maximize the diversity and effector functions of their antigen receptor genes. While the generation of breaks requires distinct lymphoid-specific factors, their resolution requires various ubiquitously expressed DNA-repair proteins, known collectively as the non-homologous end-joining pathway. In this review, we discuss the factors that constitute this pathway as well as the evidence of their involvement in two lymphoid-specific DNA recombination events.
Collapse
Affiliation(s)
- Sean Rooney
- Howard Hughes Medical Institute, The Children's Hospital, The Department of Genetics, Harvard Medical School and The Center for Blood Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
154
|
Le Deist F, Poinsignon C, Moshous D, Fischer A, de Villartay JP. Artemis sheds new light on V(D)J recombination. Immunol Rev 2004; 200:142-55. [PMID: 15242402 DOI: 10.1111/j.0105-2896.2004.00169.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
V(D)J recombination represents one of the three mechanisms that contribute to the diversity of the immune repertoire of B lymphocytes and T lymphocytes. It also constitutes a major checkpoint during the development of the immune system. Indeed, any V(D)J recombination deficiency leads to a block of B-cell and T-cell maturation in humans and animal models, leading to severe combined immunodeficiency (T-B-SCID). Nine factors have been identified so far to participate in V(D)J recombination. The discovery of Artemis, mutated in a subset of T-B-SCID, provided some new information regarding one of the missing V(D)J recombinase activities: hairpin opening at coding ends prior to DNA repair of the recombination activating genes 1/2-generated DNA double-strand break. New conditions of immune deficiency in humans are now under investigations and should lead to the identification of additional V(D)J recombination/DNA repair factors.
Collapse
Affiliation(s)
- Françoise Le Deist
- Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Paris, France
| | | | | | | | | |
Collapse
|
155
|
Abstract
Genome stability is of primary importance for the survival and proper functioning of all organisms. Double-strand breaks (DSBs) arise spontaneously during growth, or can be created by external insults. In response to even a single DSB, organisms must trigger a series of events to promote repair of the DNA damage in order to survive and restore chromosomal integrity. In doing so, cells must regulate a fine balance between potentially competing DSB repair pathways. These are generally classified as either homologous recombination (HR) or non-homologous end joining (NHEJ). The yeast Saccharomyces cerevisiae is an ideal model organism for studying these repair processes. Indeed, much of what we know today on the mechanisms of repair in eukaryotes come from studies carried out in budding yeast. Many of the proteins involved in the various repair pathways have been isolated and the details of their mode of action are currently being unraveled at the molecular level. In this review, we focus on exciting new work eminating from yeast research that provides fresh insights into the DSB repair process. This recent work supplements and complements the wealth of classical genetic research that has been performed in yeast systems over the years. Given the conservation of the repair mechanisms and genes throughout evolution, these studies have profound implications for other eukaryotic organisms.
Collapse
Affiliation(s)
- Yael Aylon
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| | | |
Collapse
|
156
|
Yu Y, Wang W, Ding Q, Ye R, Chen D, Merkle D, Schriemer D, Meek K, Lees-Miller SP. DNA-PK phosphorylation sites in XRCC4 are not required for survival after radiation or for V(D)J recombination. DNA Repair (Amst) 2004; 2:1239-52. [PMID: 14599745 DOI: 10.1016/s1568-7864(03)00143-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nonhomologous end joining (NHEJ) is a major pathway for the repair of DNA double-strand breaks (DSBs) in higher eukaryotes. Several proteins, including the DNA-dependent protein kinase (DNA-PK), XRCC4 and DNA ligase IV, are required for nonhomologous end joining both in vitro and in vivo. Since XRCC4 is recruited to the DNA double-strand break with DNA-PK, and because the protein kinase activity of DNA-PK is required for its in vivo function, we reasoned that XRCC4 could be a potential physiological substrate of DNA-PK. Here, we have used mass spectrometry to map the DNA-PK phosphorylation sites in XRCC4. Two major phosphorylation sites (serines 260 and 318), as well as several minor sites were identified. All of the identified sites lie within the carboxy-terminal 100 amino acids of XRCC4. Substitution of each of these sites to alanine (in combination) reduced the ability of DNA-PK to phosphorylate XRCC4 in vitro by at least two orders of magnitude. However, XRCC4-deficient cells that were complemented with XRCC4 lacking DNA-PK phosphorylation sites were analogous to wild type XRCC4 with respect to survival after ionizing radiation and ability to repair DSBs introduced during V(D)J recombination.
Collapse
Affiliation(s)
- Yaping Yu
- Department of Biochemistry & Molecular Biology, University of Calgary, 3330 Hospital Drive, NW, Calgary, Alta, Canada T2N 1N4
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Donahue SL, Campbell C. A Rad50-dependent pathway of DNA repair is deficient in Fanconi anemia fibroblasts. Nucleic Acids Res 2004; 32:3248-57. [PMID: 15199173 PMCID: PMC434453 DOI: 10.1093/nar/gkh649] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 05/20/2004] [Indexed: 01/07/2023] Open
Abstract
Fanconi anemia (FA) is a fatal genetic disorder associated with pancytopenia and cancer. Cells lacking functional FA genes are hypersensitive to bifunctional alkylating agents, and are deficient in DNA double-strand break repair. Multiple genes with FA-causing mutations have been cloned, however, the molecular basis for FA remains obscure. The results presented herein indicate that a Rad50-dependent end-joining process is non-functional in diploid fibroblasts from FA patients. Introduction of anti-Rad50 antibody into normal fibroblasts sensitized them to DNA damaging agents, whereas this treatment had no effect on fibroblasts from FA patients. The DNA end-joining process deficient in FA cells also requires the Mre11, Nbs1 and DNA ligase IV proteins. These data reveal the existence of a previously uncharacterized Rad50-dependent DNA double-strand break repair pathway in mammalian somatic cells, and suggest that failure to activate this pathway is responsible, at least in part, for the defective DNA end-joining observed in FA cells.
Collapse
Affiliation(s)
- Sarah L Donahue
- Department of Pharmacology, University of Minnesota Medical School, 6-120 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
158
|
Nishihara T, Nagawa F, Nishizumi H, Kodama M, Hirose S, Hayashi R, Sakano H. In vitro processing of the 3'-overhanging DNA in the postcleavage complex involved in V(D)J joining. Mol Cell Biol 2004; 24:3692-702. [PMID: 15082765 PMCID: PMC387758 DOI: 10.1128/mcb.24.9.3692-3702.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The postcleavage complex involved in V(D)J joining is known to possess a transpositional strand transfer activity, whose physiological role is yet to be clarified. Here we report that RAG1 and RAG2 proteins in the signal end (SE) complex cleave the 3'-overhanging structure of the synthetic coding-end (CE) DNA in two successive steps in vitro. The 3'-overhanging structure is attacked by the SE complex imprecisely, near the double-stranded/single-stranded (ds/ss) junction, and transferred to the SE. The transferred overhang is then resolved and cleaved precisely at the ds/ss junction, generating either the linear or the circular cleavage products. Thus, the blunt-end structure is restored for the SE and variably processed ends are generated for the synthetic CE. This 3'-processing activity is observed not only with the core RAG2 but also with the full-length protein.
Collapse
Affiliation(s)
- Tadashi Nishihara
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | | | |
Collapse
|
159
|
Borghesi L, Hsu LY, Miller JP, Anderson M, Herzenberg L, Herzenberg L, Schlissel MS, Allman D, Gerstein RM. B lineage-specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. ACTA ACUST UNITED AC 2004; 199:491-502. [PMID: 14769852 PMCID: PMC2211824 DOI: 10.1084/jem.20031800] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Expression of V(D)J recombinase activity in developing lymphocytes is absolutely required for initiation of V(D)J recombination at antigen receptor loci. However, little is known about when during hematopoietic development the V(D)J recombinase is first active, nor is it known what elements activate the recombinase in multipotent hematopoietic progenitors. Using mice that express a fluorescent transgenic V(D)J recombination reporter, we show that the V(D)J recombinase is active as early as common lymphoid progenitors (CLPs) but not in the upstream progenitors that retain myeloid lineage potential. Evidence of this recombinase activity is detectable in all four progeny lineages (B, T, and NK, and DC), and rag2 levels are the highest in progenitor subsets immediately downstream of the CLP. By single cell PCR, we demonstrate that V(D)J rearrangements are detectable at IgH loci in ∼5% of splenic natural killer cells. Finally, we show that recombinase activity in CLPs is largely controlled by the Erag enhancer. As activity of the Erag enhancer is restricted to the B cell lineage, this provides the first molecular evidence for establishment of a lineage-specific transcription program in multipotent progenitors.
Collapse
Affiliation(s)
- Lisa Borghesi
- Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Tippin B, Pham P, Bransteitter R, Goodman MF. Somatic Hypermutation: A Mutational Panacea. ACTA ACUST UNITED AC 2004; 69:307-35. [PMID: 15588848 DOI: 10.1016/s0065-3233(04)69011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- Brigette Tippin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
161
|
Modesti M, Junop MS, Ghirlando R, van de Rakt M, Gellert M, Yang W, Kanaar R. Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. J Mol Biol 2003; 334:215-28. [PMID: 14607114 DOI: 10.1016/j.jmb.2003.09.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The XRCC4 protein is of critical importance for the repair of broken chromosomal DNA by non-homologous end joining (NHEJ). The absence of XRCC4 abolishes chromosomal NHEJ almost completely. One reason for this severe phenotype is that XRCC4 binds and modulates the stability and activity of the NHEJ-specific ligase, DNA ligase IV. XRCC4 in solution is in equilibrium between the dimeric and tetrameric forms. Previous structural studies have shown that the interface between dimers is located in the same region as that implicated in DNA ligase IV interaction. With the use of equilibrium sedimentation analysis, we show here that only the XRCC4 dimer can associate with DNA ligase IV, forming a monodisperse complex of 2:1 stoichiometry in solution. In addition, physical analysis of XRCC4/DNA ligase IV complex formation, combined with mutational analysis of XRCC4, indicates that tetramerization and DNA ligase IV binding are mutually exclusive. We propose that the putative function of the XRCC4 tetramer is distinct from its DNA ligase IV-associated function.
Collapse
Affiliation(s)
- Mauro Modesti
- Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
162
|
Itsukaichi H, Mori M, Nakamura A, Sato K. Identification of a new G-to-A transition mutation at nucleotide position 129 of the Xrcc4 gene in ionizing radiation-hypersensitive mutant LX830 cells. JOURNAL OF RADIATION RESEARCH 2003; 44:353-358. [PMID: 15031562 DOI: 10.1269/jrr.44.353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mouse lymphoma cell line LX830 is an X-ray-hypersensitive mutant. Complementation tests between LX830 cells and radiation-sensitive mutants of M10 (Xrcc4 deficient cells) or SX10 (DNA ligase IV deficient cells) cells showed that M10 cells did not complement LX830 cells, but SX10 cells did, suggesting that LX830 cells would belong to the X-ray-cross complementation group (XRCC4). A sequence analysis of Xrcc4 cDNA in LX830 cells disclosed a transition of G to A at nucleotide position 129, which resulted in a change of tryptophan (43) to a termination codon. Transfection of the mouse Xrcc4 cDNA rescued the X-ray sensitivity of the mutant cells. LX830 is an Xrcc4-deficient cell line bearing a termination codon in exon 2 of the Xrcc4 gene and no wild-type Xrcc4 gene.
Collapse
Affiliation(s)
- Hiromi Itsukaichi
- Radiation Hazards Research Group, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | |
Collapse
|
163
|
Clatworthy AE, Valencia MA, Haber JE, Oettinger MA. V(D)J recombination and RAG-mediated transposition in yeast. Mol Cell 2003; 12:489-99. [PMID: 14536087 DOI: 10.1016/s1097-2765(03)00305-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antigen receptor genes are assembled during lymphoid development by a specialized recombination reaction normally observed only in cells of the vertebrate immune system. Here, we show that expression in Saccharomyces cerevisiae of murine RAG1 and RAG2, the lymphoid-specific components of the V(D)J recombinase, is sufficient to induce V(D)J cleavage and rejoining in this lower eukaryote. The RAG proteins cleave recombination substrates introduced into yeast cells, generating signal ends that can be joined to form signal joints. These signal joints are precise, as in mammalian cells, and their formation is dependent on a yeast nonhomologous end-joining protein, the XRCC4 homolog LIF1. Moreover, joining of SmaI-generated blunt ends is generally imprecise in the yeast strain used here, suggesting that the RAG proteins influence signal-end joining. Cleaved signal ends are also transposed into new sites in DNA, allowing RAG-induced transposition to be studied in vivo.
Collapse
Affiliation(s)
- Anne E Clatworthy
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
164
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
165
|
Abstract
DNA double-strand breaks (DSBs) represent dangerous chromosomal lesions that can lead to mutation, neoplastic transformation, or cell death. DSBs can occur by extrinsic insult from environmental sources or may occur intrinsically as a result of cellular metabolism or a genetic program. Mammalian cells possess potent and efficient mechanisms to repair DSBs, and thus complete normal development as well as mitigate oncogenic potential and prevent cell death. When DSB repair (DSBR) fails, chromosomal instability results and can be associated with tumor formation or progression. Studies of mice deficient in various components of the non-homologous end joining pathway of DSBR have revealed key roles in both the developmental program of B and T lymphocytes as well as in the maintenance of general genome stability. Here, we review the current thinking about DSBs and DSBR in chromosomal instability and tumorigenesis, and we highlight the implications for understanding the karyotypic features associated with human tumors.
Collapse
|
166
|
Ding Q, Reddy YVR, Wang W, Woods T, Douglas P, Ramsden DA, Lees-Miller SP, Meek K. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 2003; 23:5836-48. [PMID: 12897153 PMCID: PMC166339 DOI: 10.1128/mcb.23.16.5836-5848.2003] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the DNA-PK catalytic subunit (DNA-PKcs) may be critical for subsequent steps in DNA repair. Recently, we defined seven autophosphorylation sites within DNA-PKcs. Six of these are tightly clustered within 38 residues of the 4,127-residue protein. Here, we show that while phosphorylation at any single site within the major cluster is not critical for DNA-PK's function in vivo, mutation of several sites abolishes the ability of DNA-PK to function in NHEJ. This is not due to general defects in DNA-PK activity, as studies of the mutant protein indicate that its kinase activity and ability to form a complex with DNA-bound Ku remain largely unchanged. However, analysis of rare coding joints and ends demonstrates that nucleolytic end processing is dramatically reduced in joints mediated by the mutant DNA-PKcs. We therefore suggest that autophosphorylation within the major cluster mediates a conformational change in the DNA-PK complex that is critical for DNA end processing. However, autophosphorylation at these sites may not be sufficient for kinase disassembly.
Collapse
Affiliation(s)
- Qi Ding
- College of Veterinary Medicine and Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
167
|
van Attikum H, Bundock P, Overmeer RM, Lee LY, Gelvin SB, Hooykaas PJJ. The Arabidopsis AtLIG4 gene is required for the repair of DNA damage, but not for the integration of Agrobacterium T-DNA. Nucleic Acids Res 2003; 31:4247-55. [PMID: 12853643 PMCID: PMC165973 DOI: 10.1093/nar/gkg458] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Revised: 02/06/2003] [Accepted: 05/13/2003] [Indexed: 11/13/2022] Open
Abstract
The joining of breaks in the chromosomal DNA backbone by ligases in processes of replication, recombination and repair plays a crucial role in the maintenance of genomic stability. Four ATP-dependent ligases, designated DNA ligases I-IV, have been identified in higher eukaryotes, and each one has distinct functions. In mammals and yeast, DNA ligase IV is exclusively involved in the repair of DNA double-strand breaks by non-homologous end joining. Recently, an Arabidopsis thaliana orthologue of the yeast and mammalian DNA ligase IV gene was found and termed AtLIG4. Here we describe the isolation and functional characterisation of a plant line with a T-DNA insertion in the AtLIG4 gene. Plants homozygous for the T-DNA insertion did not display any growth or developmental defects and were fertile. However, mutant seedlings were hypersensitive to the DNA-damaging agents methyl methanesulfonate and X-rays, demonstrating that AtLIG4 is required for the repair of DNA damage. Recently, we showed that a yeast lig4 mutant is deficient in Agrobacterium T-DNA integration. However, using tumorigenesis and germline transformation assays, we found that the plant AtLIG4 mutant is not impaired in T-DNA integration. Thus, in contrast to yeast, DNA ligase IV is not required for T-DNA integration in plants.
Collapse
Affiliation(s)
- Haico van Attikum
- Institute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
168
|
Lucero H, Gae D, Taccioli GE. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem 2003; 278:22136-43. [PMID: 12672807 DOI: 10.1074/jbc.m301579200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increased sensitivity to ionizing radiation (IR) has been shown to be due to defects in DNA double-strand break repair machinery. The major pathway in mammalian cells dedicated to the repair of DNA double-strand breaks is by the nonhomologous end-joining machinery. Six components function in this pathway, of which three (Ku70, Ku86, and DNA-PKcs) constitute a protein complex known as DNA-dependent protein kinase (DNA-PK). However, it is now recognized that the cellular radiation response is complex, and radiosensitivity may be also regulated at different levels in the radiation signal transduction pathway. In addition to DNA damage, exposure to IR triggers intracellular signaling cascades that overlap with pathways initiated by ligand engagement to a receptor. In this study, we provide evidence for the novel localization of the DNA-PK complex in lipid rafts. We also show this property is not a generalized characteristic of all DNA repair proteins. Furthermore, we have detected Ku86 in yeast lipid rafts. Our results suggest that the components of this complex might be recruited separately to the plasma membrane by tethering with raft-resident proteins. In addition, we found an irradiation-induced differential protein phosphorylation pattern dependent upon DNA-PKcs in lipid rafts. Thus, we speculate that another role for the DNA-PKcs subunit and perhaps for the holoenzyme is in the signal transduction of IR response.
Collapse
Affiliation(s)
- Hector Lucero
- Departments of Molecular and Cellular Biology, Goldman School of Dental Medicine, Boston University, Boston, MA 02118, USA
| | | | | |
Collapse
|
169
|
Thacker J, Zdzienicka MZ. The mammalian XRCC genes: their roles in DNA repair and genetic stability. DNA Repair (Amst) 2003; 2:655-72. [PMID: 12767346 DOI: 10.1016/s1568-7864(03)00062-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Analysis of the XRCC genes has played an important part in understanding mammalian DNA repair processes, especially those involved in double-strand break (DSB) repair. Most of these genes were identified through their ability to correct DNA damage hypersensitivity in rodent cell lines, and they represent components of several different repair pathways including base-excision repair, non-homologous end joining, and homologous recombination. We document the phenotypic effects of mutation of the XRCC genes, and the current state of our knowledge of their functions. In addition to their continuing importance in discovering mechanisms of DNA repair, analysis of the XRCC genes is making a substantial contribution to the understanding of specific human disorders, including cancer.
Collapse
Affiliation(s)
- John Thacker
- Medical Research Council, Radiation and Genome Stability Unit, Harwell, Oxfordshire OX11 0RD, UK.
| | | |
Collapse
|
170
|
Fujita K, Shimazaki N, Ohta Y, Kubota T, Ibe S, Toji S, Tamai K, Fujisaki S, Hayano T, Koiwai O. Terminal deoxynucleotidyltransferase forms a ternary complex with a novel chromatin remodeling protein with 82 kDa and core histone. Genes Cells 2003; 8:559-71. [PMID: 12786946 DOI: 10.1046/j.1365-2443.2003.00656.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Terminal deoxynucleotidyltransferase (TdT) is a DNA polymerase that enhances the Ig and TcR gene diversity in the N region at the junctions of variable (V), diversity (D) and joining (J) segments in B- and T-cells. TdT synthesizes the N region in concert with many proteins including DNA-PKcs, Ku70 and Ku86. To elucidate the molecular mechanism of the N region synthesis, we first attempted to isolate the genes with products that directly interact with TdT. RESULTS Using a yeast two-hybrid system, we isolated a cDNA clone encoding a novel nuclear protein that interacts with TdT. This protein was designated as TdT interacting factor 2 (TdIF2). The confined region of the C-terminal in TdIF2 is involved in specific interaction with the entire C-terminal in TdT. TdIF2 contains an acidic region comprised of 42 residues. TdIF2 was shown to bind specifically to a core histone by pull down assay using specific antibodies against TdIF2. When a TdT/TdIF2 complex was applied on to a DNA-cellulose column, only TdT bound to the column while TdIF2 passed through. TdIF2 reduces the TdT activity to 46% of its maximum value in vitro assay system using activated DNA as primer. CONCLUSIONS TdIF2 binds directly to TdT and core histone. Furthermore, TdT, TdIF2 and core histone form a ternary complex. TdIF2 liberates H2A/H2B from a core histone in correlation with PCNA. The enzymatic consequence of the TdIF2/TdT complex is the reduction of TdT activity in vitro. TdIF2 would function as a chromatin remodeling protein at the N region synthesis.
Collapse
Affiliation(s)
- Kiyoko Fujita
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Moshous D, Callebaut I, de Chasseval R, Poinsignon C, Villey I, Fischer A, de Villartay JP. The V(D)J recombination/DNA repair factor artemis belongs to the metallo-beta-lactamase family and constitutes a critical developmental checkpoint of the lymphoid system. Ann N Y Acad Sci 2003; 987:150-7. [PMID: 12727634 DOI: 10.1111/j.1749-6632.2003.tb06043.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
V(D)J recombination constitutes a critical checkpoint in the development of the immune system as shown in several animal models as well as severe combined immune deficiency (SCID) condition in humans. We recently cloned the Artemis gene, whose mutations are responsible for RS-SCID, a condition characterized by an absence of both B and T lymphocytes and associated with increased sensitivity to ionizing radiations. Artemis is ubiquitously expressed and is localized in the nucleus. Artemis belongs to the metallo-beta-lactamase superfamily and defines a new group, beta-CASP, within this family. beta-CASP proteins are beta-lactamases acting on nucleic acids. While RS-SCID patients harbor Artemis loss-of-function mutations, we identified four patients with a combined immunodeficiency characterized by a low but detectable number of both B and T lymphocytes caused by hypomorphic mutations in the Artemis gene. Two of these patients developed aggressive B cell lymphomas, a condition that suggests Artemis may be considered a "caretaker" factor, similarly to the other V(D)J recombination/DNA repair actors.
Collapse
Affiliation(s)
- Despina Moshous
- Unité Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Hôpital Necker Enfants-Malades, Paris, France
| | | | | | | | | | | | | |
Collapse
|
172
|
Kim DR. Recombination activating gene 1 product alone possesses endonucleolytic activity. JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 36:201-6. [PMID: 12689520 DOI: 10.5483/bmbrep.2003.36.2.201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two lymphoid-specific proteins, RAG1 and RAG2, are required for the initiation of the V(D)J recombination in vitro. The V(D)J cleavage that is mediated by RAG proteins at the border between the coding and signal sequences results in the production of a hairpin at the coding end and a double-stranded break at the signal end. Two hairpin coding ends are re-opened, modified, and sealed; whereas, the signal ends are directly ligated. Here I report that only RAG1 can carry out a distinct endonucleolytic activity in vitro using an oligonucleotide substrate that is tethered by a short single-stranded DNA. The purified RAG1 protein alone formed a nick at the near position to the recombination signal sequence. This endonucleolytic activity was eliminated by immunoprecipitation using the RAG1-specific antibody, and required the 3'-hydroxy group. All of the RAG1 mutants that were incapable of the nick and hairpin formation in the V(D)J cleavage analysis also showed this new endonucleolytic activity. This suggests that the nicking activity that was observed might be functionally different from the nick formation in the V(D)J cleavage.
Collapse
Affiliation(s)
- Deok Ryong Kim
- Department of Biochemistry, College of Medicine, Gyeongsang National University, 92 Chilam-dong, Jinju 660-751, Korea.
| |
Collapse
|
173
|
Dai Y, Kysela B, Hanakahi LA, Manolis K, Riballo E, Stumm M, Harville TO, West SC, Oettinger MA, Jeggo PA. Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 2003; 100:2462-7. [PMID: 12604777 PMCID: PMC151363 DOI: 10.1073/pnas.0437964100] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA nonhomologous end-joining (NHEJ) is the major pathway for repairing DNA double-strand breaks in mammalian cells. It also functions to carry out rearrangements at the specialized breaks introduced during V(D)J recombination. Here, we describe a patient with T(-)B(-) severe combined immunodeficiency, whose cells have defects closely resembling those of NHEJ-defective rodent cells. Cells derived from this patient show dramatic radiosensitivity, decreased double-strand break rejoining, and reduced fidelity in signal and coding joint formation during V(D)J recombination. Detailed examination indicates that the patient is defective neither in the known factors involved in NHEJ in mammals (Ku70, Ku80, DNA-dependent protein kinase catalytic subunit, Xrcc4, DNA ligase IV, or Artemis) nor in the Mre11/Rad50/Nbs1 complex, whose homologue in Saccharomyces cerevisiae functions in NHEJ. These results provide strong evidence that additional activities are crucial for NHEJ and V(D)J recombination in mammals.
Collapse
Affiliation(s)
- Y Dai
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Wang X, Wang H, Iliakis G, Wang Y. Caffeine-induced radiosensitization is independent of nonhomologous end joining of DNA double-strand breaks. Radiat Res 2003; 159:426-32. [PMID: 12600246 DOI: 10.1667/0033-7587(2003)159[0426:ciriio]2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
After exposure to ionizing radiation, proliferating cells actively slow down progression through the cell cycle through the activation of checkpoints to provide time for repair. Two major complementary DNA double-strand break (DSB) repair pathways exist in mammalian cells, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). The relationship between checkpoint activation and these two types of DNA DSB repair pathways is not clear. Caffeine, as a nonspecific inhibitor of ATM and ATR, abolishes multi-checkpoint responses and sensitizes cells to radiation-induced killing. However, it remains unknown which DNA repair process, NHEJ or HRR, or both, is affected by caffeine-abolished checkpoint responses. We report here that caffeine abolishes the radiation-induced G(2)-phase checkpoint and efficiently sensitizes both NHEJ-proficient and NHEJ-deficient mammalian cells to radiation-induced killing without affecting NHEJ. Our results indicate that caffeine-induced radiosensitization occurs by affecting an NHEJ-independent process, possibly HRR.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
175
|
Martina C, Wayne J, Bell A, Chang Y. In vivo ligation of CD3 on neonatal scid thymocytes blocks gamma-irradiation-induced TCRbeta rearrangements and thymic lymphomagenesis. Immunol Lett 2003; 85:279-86. [PMID: 12663144 DOI: 10.1016/s0165-2478(02)00256-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Several studies have shown that the developmental arrest of severe combined immune deficiency (scid) thymocytes during the CD4(-)CD8(-) double negative (DN) to CD4(+)CD8(+) double positive (DP) transition can be overcome by a sub-lethal dose of ionizing radiation (IR). Concurrent with this developmental progression, IR also induces variable (diversity) joining (V(D)J) recombination at T cell receptor (TCR), delta, beta, and gamma, but not alpha loci. In addition, all irradiated scid mice succumb to thymic lymphoma. In this study, we demonstrate that scid neonates treated with anti-CD3 epsilon antibody become more resistant to the development of thymoma upon exposure to IR. It is known that the anti-CD3 epsilon antibody treatment induces T cell progression to the DP stage bypassing TCRbeta rearrangement. We show here that the resistance to tumor development is correlated with a reduction of TCRbeta rearrangements that are induced by IR. However, TCRgamma rearrangements were not altered by the antibody treatment. The particular effect of anti-CD3 epsilon antibody on TCRbeta rearrangements is likely attributed to a decline of the double negative thymocyte subset (DN3), in which TCRbeta rearrangements predominantly occur. These results suggest that the developmental stage of scid thymocytes can influence the effect of IR on TCR rearrangements as well as lymphomagenesis.
Collapse
Affiliation(s)
- Cherie Martina
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ, 85287-2701, USA
| | | | | | | |
Collapse
|
176
|
Krejci L, Chen L, Van Komen S, Sung P, Tomkinson A. Mending the break: two DNA double-strand break repair machines in eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 74:159-201. [PMID: 14510076 DOI: 10.1016/s0079-6603(03)01013-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lumir Krejci
- Department of Molecular Medicine and Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | |
Collapse
|
177
|
Woods T, Wang W, Convery E, Errami A, Zdzienicka MZ, Meek K. A single amino acid substitution in DNA-PKcs explains the novel phenotype of the CHO mutant, XR-C2. Nucleic Acids Res 2002; 30:5120-8. [PMID: 12466535 PMCID: PMC137947 DOI: 10.1093/nar/gkf625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We recently described a CHO DSBR mutant belonging to the XRCC7 complementation group (XR-C2) that has the interesting phenotype of being radiosensitive, but having only a modest defect in VDJ recombination. This cell line expresses only slightly reduced levels of DNA-PKcs but has undetectable DNA-PK activity. Limited sequence analyses of DNA-PKcs transcripts from XR-C2 revealed a point mutation that results in an amino acid substitution of glutamic acid for glycine six residues from the C-terminus. To determine whether this single substitution was responsible for the phenotype in XR-C2 cells, we introduced the mutation into a DNA-PKcs expression vector. Whereas transfection of this expression vector significantly restores the VDJ recombination deficits in DNA-PKcs-deficient cells, radioresistance is not restored. Thus, expression of this mutant form of DNA-PKcs in DNA-PKcs- deficient cells substantially recapitulates the phenotype observed in XR-C2, and we conclude that this single amino acid substitution is responsible for the non-homologous end joining deficits observed in XR-C2.
Collapse
Affiliation(s)
- Timothy Woods
- College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, Michigan State University, 350 FST, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
178
|
Abstract
V(D)J recombination is the specialized DNA rearrangement used by cells of the immune system to assemble immunoglobulin and T-cell receptor genes from the preexisting gene segments. Because there is a large choice of segments to join, this process accounts for much of the diversity of the immune response. Recombination is initiated by the lymphoid-specific RAG1 and RAG2 proteins, which cooperate to make double-strand breaks at specific recognition sequences (recombination signal sequences, RSSs). The neighboring coding DNA is converted to a hairpin during breakage. Broken ends are then processed and joined with the help of several factors also involved in repair of radiation-damaged DNA, including the DNA-dependent protein kinase (DNA-PK) and the Ku, Artemis, DNA ligase IV, and Xrcc4 proteins, and possibly histone H2AX and the Mre11/Rad50/Nbs1 complex. There may be other factors not yet known. V(D)J recombination is strongly regulated by limiting access to RSS sites within chromatin, so that particular sites are available only in certain cell types and developmental stages. The roles of enhancers, histone acetylation, and chromatin remodeling factors in controlling accessibility are discussed. The RAG proteins are also capable of transposing RSS-ended fragments into new DNA sites. This transposition helps to explain the mechanism of RAG action and supports earlier proposals that V(D)J recombination evolved from an ancient mobile DNA element.
Collapse
Affiliation(s)
- Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892-0540, USA.
| |
Collapse
|
179
|
Mauldin SK, Getts RC, Liu W, Stamato TD. DNA-PK-dependent binding of DNA ends to plasmids containing nuclear matrix attachment region DNA sequences: evidence for assembly of a repair complex. Nucleic Acids Res 2002; 30:4075-87. [PMID: 12235392 PMCID: PMC137113 DOI: 10.1093/nar/gkf529] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7-21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.
Collapse
Affiliation(s)
- Stanley K Mauldin
- Lankenau Institute for Medical Research, 100 Lancaster Avenue, Wynnewood, PA 19096, USA and Genisphere, Incorporated, 4170 City Avenue, Philadelphia, PA 19131-1694, USA
| | | | | | | |
Collapse
|
180
|
Nakajima PB, Bosma MJ. Variable diversity joining recombination: nonhairpin coding ends in thymocytes of SCID and wild-type mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3094-104. [PMID: 12218126 DOI: 10.4049/jimmunol.169.6.3094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Initiation of V(D)J recombination results in broken DNA molecules with blunt recombination signal ends and covalently sealed (hairpin) coding ends. In SCID mice, coding joint formation is severely impaired and hairpin coding ends accumulate as a result of a deficiency in the catalytic subunit of DNA-dependent protein kinase, an enzyme involved in the repair of DNA double-strand breaks. In this study, we report that not all SCID coding ends are hairpinned. We have detected open Jdelta1 and Ddelta2 coding ends at the TCRdelta locus in SCID thymocytes. Approximately 25% of 5'Ddelta2 coding ends were found to be open. Large deletions and abnormally long P nucleotide additions typical of SCID Ddelta2-Jdelta1 coding joints were not observed. Most Jdelta1 and Ddelta2 coding ends exhibited 3' overhangs, but at least 20% had unique 5' overhangs not previously detected in vivo. We suggest that the SCID DNA-dependent protein kinase deficiency not only reduces the efficiency of hairpin opening, but also may affect the specificity of hairpin nicking, as well as the efficiency of joining open coding ends.
Collapse
Affiliation(s)
- Pamela B Nakajima
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| | | |
Collapse
|
181
|
Bedford JS, Dewey WC. Radiation Research Society. 1952-2002. Historical and current highlights in radiation biology: has anything important been learned by irradiating cells? Radiat Res 2002; 158:251-91. [PMID: 12175305 DOI: 10.1667/0033-7587(2002)158[0251:hachir]2.0.co;2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Around 30 years ago, a very prominent molecular biologist confidently proclaimed that nothing of fundamental importance has ever been learned by irradiating cells! The poor man obviously did not know about discoveries such as DNA repair, mutagenesis, connections between mutagenesis and carcinogenesis, genomic instability, transposable genetic elements, cell cycle checkpoints, or lines of evidence historically linking the genetic material with nucleic acids, or origins of the subject of oxidative stress in organisms, to name a few things of fundamental importance learned by irradiating cells that were well known even at that time. Early radiation studies were, quite naturally, phenomenological. They led to the realization that radiations could cause pronounced biological effects. This was followed by an accelerating expansion of investigations of the nature of these radiobiological phenomena, the beginnings of studies aimed toward better understanding the underlying mechanisms, and a better appreciation of the far-reaching implications for biology, and for society in general. Areas of principal importance included acute tissue and tumor responses for applications in medicine, whole-body radiation effects in plants and animals, radiation genetics and cytogenetics, mutagenesis, carcinogenesis, cellular radiation responses including cell reproductive death, cell cycle effects and checkpoint responses, underlying molecular targets leading to biological effects, DNA repair, and the genetic control of radiosensitivity. This review summarizes some of the highlights in these areas, and points to numerous examples where indeed, many things of considerable fundamental importance have been learned by irradiating cells.
Collapse
Affiliation(s)
- Joel S Bedford
- Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523-1673, USA.
| | | |
Collapse
|
182
|
Abstract
Mice doubly deficient for either XRCC4 or DNA ligase IV and p53 invariably develop lymphomas bearing characteristic chromosome translocations with gene amplification. A recent study highlights the importance of nonclassical end joining mechanisms in the formation of these oncogenic DNA rearrangements.
Collapse
Affiliation(s)
- David B Roth
- Howard Hughes Medical Institute and Department of Immunology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
183
|
Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, Gao Y, Morton CC, Alt FW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 2002; 109:811-21. [PMID: 12110179 DOI: 10.1016/s0092-8674(02)00770-5] [Citation(s) in RCA: 351] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amplification of large genomic regions associated with complex translocations (complicons) is a basis for tumor progression and drug resistance. We show that pro-B lymphomas in mice deficient for both p53 and nonhomologous end-joining (NHEJ) contain complicons that coamplify c-myc (chromosome 15) and IgH (chromosome 12) sequences. While all carry a translocated (12;15) chromosome, coamplified sequences are located within a separate complicon that often involves a third chromosome. Complicon formation is initiated by recombination of RAG1/2-catalyzed IgH locus double-strand breaks with sequences downstream of c-myc, generating a dicentric (15;12) chromosome as an amplification intermediate. This recombination event employs a microhomology-based end-joining repair pathway, as opposed to classic NHEJ or homologous recombination. These findings suggest a general model for oncogenic complicon formation.
Collapse
Affiliation(s)
- Chengming Zhu
- Howard Hughes Medical Institute, The Children's Hospital and The Center for Blood Research, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The catalytic subunit of DNA-dependent protein kinase (DNA-PK(CS)) is required for a non-homologous end-joining pathway that repairs DNA double-strand breaks produced by ionizing radiation or V(D)J recombination; however, its role in this pathway has remained obscure. Using a neutravidin pull-down assay, we found that DNA-PK(CS) mediates formation of a synaptic complex containing two DNA molecules. Furthermore, kinase activity was cooperative with respect to DNA concentration, suggesting that activation of the kinase occurs only after DNA synapsis. Electron microscopy revealed complexes of two DNA ends brought together by two DNA-PK(CS) molecules. Our results suggest that DNA-PK(CS) brings DNA ends together and then undergoes activation of its kinase, presumably to regulate subsequent steps for processing and ligation of the ends.
Collapse
Affiliation(s)
| | - Rachel M. Stansel
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA 94305 and
Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA Present address: Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Jack D. Griffith
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA 94305 and
Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA Present address: Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| | - Gilbert Chu
- Departments of Medicine and Biochemistry, Stanford University, Stanford, CA 94305 and
Lineberger Comprehensive Cancer Center and the Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA Present address: Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA Corresponding author e-mail:
| |
Collapse
|
185
|
Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV. DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 2002; 31:159-65. [PMID: 12006980 DOI: 10.1038/ng898] [Citation(s) in RCA: 330] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long interspersed elements (LINE-1s) are abundant retrotransposons in mammalian genomes that probably retrotranspose by target site-primed reverse transcription (TPRT). During TPRT, the LINE-1 endonuclease cleaves genomic DNA, freeing a 3' hydroxyl that serves as a primer for reverse transcription of LINE-1 RNA by LINE-1 reverse transcriptase. The nascent LINE-1 cDNA joins to genomic DNA, generating LINE-1 structural hallmarks such as frequent 5' truncations, a 3' poly(A)+ tail and variable-length target site duplications (TSDs). Here we describe a pathway for LINE-1 retrotransposition in Chinese hamster ovary (CHO) cells that acts independently of endonuclease but is dependent upon reverse transcriptase. We show that endonuclease-independent LINE-1 retrotransposition occurs at near-wildtype levels in two mutant cell lines that are deficient in nonhomologous end-joining (NHEJ). Analysis of the pre- and post-integration sites revealed that endonuclease-independent retrotransposition results in unusual structures because the LINE-1s integrate at atypical target sequences, are truncated predominantly at their 3' ends and lack TSDs. Moreover, two of nine endonuclease-independent retrotranspositions contained cDNA fragments at their 3' ends that are probably derived from the reverse transcription of endogenous mRNA. Thus, our results suggest that LINE-1s can integrate into DNA lesions, resulting in retrotransposon-mediated DNA repair in mammalian cells.
Collapse
Affiliation(s)
- Tammy A Morrish
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine Street, Ann Arbor, Michigan 48105-0618, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Huye LE, Purugganan MM, Jiang MM, Roth DB. Mutational analysis of all conserved basic amino acids in RAG-1 reveals catalytic, step arrest, and joining-deficient mutants in the V(D)J recombinase. Mol Cell Biol 2002; 22:3460-73. [PMID: 11971977 PMCID: PMC133788 DOI: 10.1128/mcb.22.10.3460-3473.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although both RAG-1 and RAG-2 are required for all steps of V(D)J recombination, little is known about the specific contribution of either protein to these steps. RAG-1 contains three acidic active-site amino acids that are thought to coordinate catalytic metal ions. To search for additional catalytic amino acids and to better define the functional anatomy of RAG-1, we mutated all 86 conserved basic amino acids to alanine and evaluated the mutant proteins for DNA binding, nicking, hairpin formation, and joining. We found several amino acids outside of the canonical nonamer-binding domain that are critical for DNA binding, several step arrest mutants with defects in nicking or hairpin formation, and four RAG-1 mutants defective specifically for joining. Analysis of coding joints formed by some of these mutants revealed excessive deletions, frequent use of short sequence homologies, and unusually long palindromic junctional inserts, known as P nucleotides, that result from aberrant hairpin opening. These features characterize junctions found in scid mice, which are deficient for the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), suggesting that the RAG proteins and DNA-PKcs perform overlapping functions in coding joint formation. Interestingly, the amino acids that are altered in 12 of our mutants are also mutated in human inherited immunodeficiency syndromes. Our analysis of these mutants provides insights into the molecular mechanisms underlying these disorders.
Collapse
Affiliation(s)
- Leslie E Huye
- Department of Immunolog, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
187
|
Braastad CD, Leguia M, Hendrickson EA. Ku86 autoantigen related protein-1 transcription initiates from a CpG island and is induced by p53 through a nearby p53 response element. Nucleic Acids Res 2002; 30:1713-24. [PMID: 11937624 PMCID: PMC113227 DOI: 10.1093/nar/30.8.1713] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2002] [Accepted: 02/27/2002] [Indexed: 12/31/2022] Open
Abstract
The human Ku86 gene and an isoform, KARP-1 (Ku86 autoantigen related protein-1), encode overlapping, but differentially regulated, transcripts. Ku86 is constitutively transcribed at high levels and, although it plays a seminal role in DNA double-strand break repair, its expression is not induced by DNA damage. KARP-1, in contrast, is expressed constitutively only at low levels and its expression is induced by DNA damage in a p53-dependent fashion. The regulatory elements promoting KARP-1 gene expression and p53 responsiveness, however, were unknown. Here, we report that a strong DNase I hypersensitive site (DHS) resides approximately 25 kb upstream from the Ku86 promoter. This DHS is encompassed by a hypomethylated CpG island. Reporter assays demonstrated that this region corresponded to a promoter(s), which promoted transcription of peroxisomal trans-2-enoyl CoA reductase in the centromeric direction and KARP-1 in the telomeric direction. KARP-1 primer extension products were mapped to this CpG island in the correct transcriptional orientation confirming that KARP-1 transcription initiates from this site. Moreover, a p53 response element within the first intron of the KARP-1 transcriptional unit was identified using chromatin immunoprecipitation and antibodies specific to activated forms of p53. These data expand our understanding of this important DNA repair locus.
Collapse
Affiliation(s)
- Corey D Braastad
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
188
|
Brown ML, Franco D, Burkle A, Chang Y. Role of poly(ADP-ribosyl)ation in DNA-PKcs- independent V(D)J recombination. Proc Natl Acad Sci U S A 2002; 99:4532-7. [PMID: 11930007 PMCID: PMC123682 DOI: 10.1073/pnas.072495299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2001] [Indexed: 11/18/2022] Open
Abstract
V(D)J recombination is critical to the generation of a functional immune system. Intrinsic to the assembly of antigen receptor genes is the formation of endogenous DNA double-strand breaks, which normally are excluded from the cellular surveillance machinery because of their sequestration in a synaptic complex and/or rapid resolution. In cells deficient in double-strand break repair, such recombination-induced breaks fail to be joined promptly and therefore are at risk of being recognized as DNA damage. Poly(ADP-ribose) polymerase-1 is an important factor in the maintenance of genomic integrity and is believed to play a central role in DNA repair. Here we provide visual evidence that in a recombination inducible severe combined immunodeficient cell line poly(ADP-ribose) formation occurs during the resolution stage of V(D)J recombination where nascent opened coding ends are generated. Poly(ADP-ribose) formation appears to facilitate coding end resolution. Furthermore, formation of Mre11 foci coincide with these areas of poly(ADP-ribosyl)ation. In contrast, such a response is not observed in wild-type cells possessing a functional catalytic subunit of DNA-dependent protein kinase (DNA-PK(cs)). Thus, V(D)J recombination invokes a DNA damage response in cells lacking DNA-PK(cs) activity, which in turn promotes DNA-PK(cs)-independent resolution of recombination intermediates.
Collapse
Affiliation(s)
- Matthew L Brown
- Department of Microbiology, Molecular and Cellular Biology Program, Arizona State University, Tempe, AZ 85287-2701, USA
| | | | | | | |
Collapse
|
189
|
Neiditch MB, Lee GS, Huye LE, Brandt VL, Roth DB. The V(D)J recombinase efficiently cleaves and transposes signal joints. Mol Cell 2002; 9:871-8. [PMID: 11983177 DOI: 10.1016/s1097-2765(02)00494-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
V(D)J recombination generates two types of products: coding joints, which constitute the rearranged variable regions of antigen receptor genes, and signal joints, which often form on immunologically irrelevant, excised circular molecules that are lost during cell division. It has been widely believed that signal joints simply convert reactive broken DNA ends into safe, inert products. Yet two curious in vivo observations made us question this assumption: signal ends are far more abundant than coding ends, and signal joints form only after RAG expression is downregulated. In fact, we find that signal joints are not at all inert; they are cleaved quite efficiently in vivo and in vitro by a nick-nick mechanism and form an excellent substrate for RAG-mediated transposition in vitro, possibly explaining how genomic stability in lymphocytes may be compromised.
Collapse
Affiliation(s)
- Matthew B Neiditch
- Department of Immunology, Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
190
|
Abstract
V(D)J recombination is of fundamental importance to the generation of diverse antigen receptor repertoires. We review our current understanding of the V(D)J recombination reaction and how it is regulated during lymphocyte development. We also discuss how defects in the mechanism or regulation of V(D)J recombination can lead to human disease.
Collapse
Affiliation(s)
- Craig H Bassing
- Howard Hughes Medical Institute, The Children's Hospital, The Center for Blood Research, Boston, MA 02115, USA
| | | | | |
Collapse
|
191
|
Abstract
Ku86 plays a key role in nonhomologous end joining in mammals. Functional inactivation in rodents of either Ku86 or Ku70, which form the heterodimeric DNA end-binding subunit of the DNA-dependent protein kinase complex, is nevertheless compatible with viability. In contrast, no human patient has been described with mutations in either Ku86 or Ku70. This has led to the hypotheses that either these genes are performing an additional essential role(s) and/or redundant pathways exist that mask the phenotypic expression of these genes when they are mutated in humans. To address this issue, we describe here the construction of human somatic cell lines containing a targeted disruption of the Ku86 locus. Human HCT116 colon cancer cells heterozygous for Ku86 were haploinsufficient with an increase in polyploid cells, a reduction in cell proliferation, elevated p53 levels, and a slight hypersensitivity to ionizing radiation. Functional inactivation of the second Ku86 allele resulted in cells with a drastically reduced doubling time. These cells were capable of undergoing only a limited number of cell divisions, after which they underwent apoptosis. These experiments demonstrate that the Ku86 locus is essential in human somatic tissue culture cells.
Collapse
Affiliation(s)
- Gang Li
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, RI 02912, USA>
| | | | | |
Collapse
|
192
|
Davila M, Foster S, Kelsoe G, Yang K. A role for secondary V(D)J recombination in oncogenic chromosomal translocations? Adv Cancer Res 2002; 81:61-92. [PMID: 11430596 DOI: 10.1016/s0065-230x(01)81002-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chromosomal translocations are hallmarks of certain lymphoproliferative disorders. Indeed, in many leukemias and lymphomas, translocations are the transforming event that brings about malignancy. Recurrence of the immunoglobulin (Ig) and T-cell receptor (Tcr) loci at the breakpoints of oncogenic chromosomal translocations has led to speculation that the lymphocyte-specific process of V(D)J rearrangement, which is necessary for the generation of functional Ig and TCR antigen receptors on B and T lymphocytes, mediates translocation. Recent studies have led to a fuller understanding of the molecular mechanisms of V(D)J rearrangement and have revealed that the V(D)J recombinase possesses latent transposase activity. These studies have led to plausible models of illegitimate V(D)J recombination producing chromosomal translocations consistent with those present in lymphomas and leukemias. Errors of V(D)J recombination may even generate lymphomas with the phenotypes of mature cells. For example, follicular and Burkitt's lymphomas have been classified by phenotype and somatic genotype as malignant germinal center (GC) B or post-GC B cells. The GC is a site of affinity maturation where B cells undergo V(D)J hypermutation and Ig class switch; in addition, much evidence has accumulated to suggest that GC B cells may also support secondary V(D)J recombination. Interestingly, all three of these elements, genomic plasticity, mutation, and translocation breakpoints near switch sites or recombinational elements, are characteristic of certain lymphomas. The high frequency of lymphomas carrying these GC markers suggests that the GC reaction may play a significant role in lymphomagenesis.
Collapse
Affiliation(s)
- M Davila
- Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
193
|
Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA. Completion of base excision repair by mammalian DNA ligases. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:151-64. [PMID: 11554294 DOI: 10.1016/s0079-6603(01)68097-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three mammalian genes encoding DNA ligases--LIG1, LIG3, and LIG4--have been identified. Genetic, biochemical, and cell biology studies indicate that the products of each of these genes play a unique role in mammalian DNA metabolism. Interestingly, cell lines deficient in either DNA ligase I (46BR.1G1) or DNA ligase III (EM9) are sensitive to simple alkylating agents. One interpretation of these observations is that DNA ligases I and III participate in functionally distinct base excision repair (BER) subpathways. In support of this idea, extracts from both DNA ligase-deficient cell lines are defective in catalyzing BER in vitro and both DNA ligases interact with other BER proteins. DNA ligase I interacts directly with proliferating cell nuclear antigen (PCNA) and DNA polymerase beta (Pol beta), linking this enzyme with both short-patch and long-patch BER. In somatic cells, DNA ligase III alpha forms a stable complex with the DNA repair protein Xrcc1. Although Xrcc1 has no catalytic activity, it also interacts with Pol beta and poly(ADP-ribose) polymerase (PARP), linking DNA ligase III alpha with BER and single-strand break repair, respectively. Biochemical studies suggest that the majority of short-patch base excision repair events are completed by the DNA ligase III alpha/Xrcc1 complex. Although there is compelling evidence for the participation of PARP in the repair of DNA single-strand breaks, the role of PARP in BER has not been established.
Collapse
Affiliation(s)
- A E Tomkinson
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78245, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Mori M, Itsukaichi H, Nakamura A, Sato K. Molecular characterization of ionizing radiation-hypersensitive mutant M10 cells. Mutat Res 2001; 487:85-92. [PMID: 11738935 DOI: 10.1016/s0921-8777(01)00107-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An ionizing radiation-sensitive mutant derivative of mouse lymphoma L5178Y cell, M10, is defective in rejoining DNA double-strand breaks (DSBs). The complementation test and the results of chromosome transfer suggested that M10 may belong to X-ray cross-complementation (XRCC) group 4. In the present study, sequence analysis of Xrcc4 cDNA in M10 cells disclosed a transversion of A (370) to T, which results in a change of arginine (124) to a termination codon. Interestingly, the mutation occurred in one allele and the transcripts of the Xrcc4 gene were expressed exclusively from the mutant allele. Transfection of M10 cells with the murine Xrcc4 cDNA completely rescued X-ray sensitivity of the mutant cells. M10 is a novel Xrcc4-deficient cell line.
Collapse
Affiliation(s)
- M Mori
- Radiation Hazard Research Group, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-Ku, Chiba 263-8555, Japan.
| | | | | | | |
Collapse
|
195
|
Sekiguchi JA, Whitlow S, Alt FW. Increased accumulation of hybrid V(D)J joins in cells expressing truncated versus full-length RAGs. Mol Cell 2001; 8:1383-90. [PMID: 11779512 DOI: 10.1016/s1097-2765(01)00423-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RAG1 and RAG2 (RAGs) initiate V(D)J recombination by introducing breaks between two coding segments and flanking recombination signals (RSs). Nonhomologous end-joining (NHEJ) proteins then join the coding segments and join the RSs. In wild-type cells, both full-length and truncated ("core") RAGs lead to accumulation of "hybrid" V(D)J joins, in which an RS is appended to a different coding sequence. We now show that while hybrid joins do not accumulate in NHEJ-deficient cells that express full-length RAGs, they do accumulate in NHEJ-deficient cells that express the core RAGS; like those catalyzed by core RAGs in vitro, however, they are sealed on just one DNA strand. These results suggest a potential role for the non-core regions in repressing potentially harmful transposition events.
Collapse
Affiliation(s)
- J A Sekiguchi
- Howard Hughes Medical Institute, Harvard University Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
196
|
Fukushima T, Takata M, Morrison C, Araki R, Fujimori A, Abe M, Tatsumi K, Jasin M, Dhar PK, Sonoda E, Chiba T, Takeda S. Genetic analysis of the DNA-dependent protein kinase reveals an inhibitory role of Ku in late S-G2 phase DNA double-strand break repair. J Biol Chem 2001; 276:44413-8. [PMID: 11577093 DOI: 10.1074/jbc.m106295200] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two major complementary double-strand break (DSB) repair pathways exist in vertebrates, homologous recombination (HR), which involves Rad54, and non-homologous end-joining, which requires the DNA-dependent protein kinase (DNA-PK). DNA-PK comprises a catalytic subunit (DNA-PKcs) and a DNA-binding Ku70 and Ku80 heterodimer. To define the activities of individual DNA-PK components in DSB repair, we targeted the DNA-PKcs gene in chicken DT40 cells. DNA-PKcs deficiency caused a DSB repair defect that was, unexpectedly, suppressed by KU70 disruption. We have shown previously that genetic ablation of Ku70 confers RAD54-dependent radioresistance on S-G(2) phase cells, when sister chromatids are available for HR repair. To test whether direct interference by Ku70 with HR might explain the Ku70(-/-)/DNA-PKcs(-/-/-) radioresistance, we monitored HR activities directly in Ku- and DNA-PKcs-deficient cells. The frequency of intrachromosomal HR induced by the I-SceI restriction enzyme was increased in the absence of Ku but not of DNA-PKcs. Significantly, abrogation of HR activity by targeting RAD54 in Ku70(-/-) or DNA-PKcs(-/-/-) cells caused extreme radiosensitivity, suggesting that the relative radioresistance seen with loss of Ku70 was because of HR-dependent repair pathways. Our findings suggest that Ku can interfere with HR-mediated DSB repair, perhaps competing with HR for DSB recognition.
Collapse
Affiliation(s)
- T Fukushima
- CREST Research Project, Radiation Genetics, Faculty of Medicine, Kyoto University, Konoe Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Ibe S, Fujita K, Toyomoto T, Shimazaki N, Kaneko R, Tanabe A, Takebe I, Kuroda S, Kobayashi T, Toji S, Tamai K, Yamamoto H, Koiwai O. Terminal deoxynucleotidyltransferase is negatively regulated by direct interaction with proliferating cell nuclear antigen. Genes Cells 2001; 6:815-24. [PMID: 11554927 DOI: 10.1046/j.1365-2443.2001.00460.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The repertoires of Ig and TcR are generated by a combinatorial rearrangement of variable (V), diversity (D), and joining (J) segments (V(D)J recombination) in B- and T-cells. Terminal deoxynucleotidyltransferase (TdT) adds extra nucleotides (N nucleotides) at the junctions of the gene segments to enhance the Ig and TcR genes diversity. Using an anti-TdT antibody column, TdT has been purified as a member of a megadalton protein complex from rat thymus. The N region would be synthesized with the large protein complex. RESULTS The cDNAs for proliferating cell nuclear antigen (PCNA) were isolated by yeast two-hybrid screening as the gene products which directly interacted with TdT. The interaction between PCNA and TdT was confirmed by co-immunoprecipitation, both in vitro and in vivo. TdT binds directly to a PCNA trimer, as shown by gel filtration. TdT interacts with PCNA in its DNA polymerization domain (DPD), but not in its BRCA-1 C-terminal (BRCT) domain. TdT activity was reduced to 17% of the maximum value by TdT/PCNA complex formation. CONCLUSION TdT interacts directly with PCNA through its DPD. A functional consequence of this interaction is the negative regulation of TdT activity. These findings suggest that TdT catalyses the addition of N nucleotides under the negative control of PCNA during V(D)J recombination.
Collapse
Affiliation(s)
- S Ibe
- Faculty of Science and Technology, Department of Applied Biological Science, Science University of Tokyo, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Pospiech H, Rytkönen AK, Syväoja JE. The role of DNA polymerase activity in human non-homologous end joining. Nucleic Acids Res 2001; 29:3277-88. [PMID: 11470886 PMCID: PMC55831 DOI: 10.1093/nar/29.15.3277] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In mammalian cells, DNA double-strand breaks are repaired mainly by non-homologous end joining, which modifies and ligates two DNA ends without requiring extensive base pairing interactions for alignment. We investigated the role of DNA polymerases in DNA-PK-dependent end joining of restriction-digested plasmids in vitro and in vivo. Rejoining of DNA blunt ends as well as those with partially complementary 5' or 3' overhangs was stimulated by 20-53% in HeLa cell-free extracts when dNTPs were included, indicating that part of the end joining is dependent on DNA synthesis. This DNA synthesis-dependent end joining was sensitive to aphidicolin, an inhibitor of alpha-like DNA polymerases. Furthermore, antibodies that neutralize the activity of DNA polymerase alpha were found to strongly inhibit end joining in vitro, whereas neutralizing antibodies directed against DNA polymerases beta and epsilon did not. DNA sequence analysis of end joining products revealed two prominent modes of repair, one of which appeared to be dependent on DNA synthesis. Identical products of end joining were recovered from HeLa cells after transfection with one of the model substrates, suggesting that the same end joining mechanisms also operate in vivo. Fractionation of cell extracts to separate PCNA as well as depletion of cell extracts for PCNA resulted in a moderate but significant reduction in end joining activity, suggesting a potential role in a minor repair pathway.
Collapse
Affiliation(s)
- H Pospiech
- Biocenter Oulu and Department of Biochemistry, PO Box 3000, FIN-90014 University of Oulu, Finland
| | | | | |
Collapse
|
199
|
Anderson CW, Dunn JJ, Freimuth PI, Galloway AM, Allalunis-Turner MJ. Frameshift mutation in PRKDC, the gene for DNA-PKcs, in the DNA repair-defective, human, glioma-derived cell line M059J. Radiat Res 2001; 156:2-9. [PMID: 11418067 DOI: 10.1667/0033-7587(2001)156[0002:fmiptg]2.0.co;2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anderson, C. W., Dunn, J. J., Freimuth, P. I., Galloway, A. M. and Allalunis-Turner, M. J. Frameshift Mutation in PRKDC, the Gene for DNA-PKcs, in the DNA Repair-Defective, Human, Glioma-Derived Cell Line M059J. Radiat. Res. 156, 2-9 (2001). The glioma-derived cell line M059J is hypersensitive to ionizing radiation, lacks DNA-PK activity, and fails to express protein for the catalytic subunit, DNA-PKcs, while a sister cell line, M059K, derived from the same tumor, has normal DNA-PK activity. Both cell lines are near pentaploid and have multiple copies of chromosome 8, the chromosome on which the DNA-PKcs gene, PRKDC, is located. Sequence analysis of PCR-amplified exons revealed the loss in M059J cells of a single "A" nucleotide in exon 32, corresponding to the first nucleotide of codon 1351 (ACC, Thr) of PRKDC. Loss of the "A" nucleotide would terminate the DNA-PKcs reading frame early in exon 33. DNA from M059K cells had only the wild-type sequence. An analysis of sequences surrounding PRKDC exon 32 from 87 unrelated individuals revealed no polymorphic nucleotides except for a triplet repeat near the 3' end of this exon; no individual had a frameshift mutation in exon 32. No other sequence differences in PRKDC between M059J and M059K cells were observed in approximately 15,000 bp of genomic sequence including the sequences of exons 5 through 38 and surrounding intron sequence, suggesting a possible reduction to homozygosity at this locus prior to acquisition of the mutation leading to the M059J cell line.
Collapse
Affiliation(s)
- C W Anderson
- Biology Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA.
| | | | | | | | | |
Collapse
|
200
|
Goytisolo FA, Samper E, Edmonson S, Taccioli GE, Blasco MA. The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 2001; 21:3642-51. [PMID: 11340158 PMCID: PMC86989 DOI: 10.1128/mcb.21.11.3642-3651.2001] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major pathway in mammalian cells for repairing DNA double-strand breaks (DSB) is via nonhomologous end joining. Five components function in this pathway, of which three (Ku70, Ku80, and the DNA-dependent protein kinase catalytic subunit [DNA-PKcs]) constitute a complex termed DNA-dependent protein kinase (DNA-PK). Mammalian Ku proteins bind to DSB and recruit DNA-PKcs to the break. Interestingly, besides their role in DSB repair, Ku proteins bind to chromosome ends, or telomeres, protecting them from end-to-end fusions. Here we show that DNA-PKcs(-/-) cells display an increased frequency of spontaneous telomeric fusions and anaphase bridges. However, DNA-PKcs deficiency does not result in significant changes in telomere length or in deregulation of the G-strand overhang at the telomeres. Although less severe, this phenotype is reminiscent of the one recently described for Ku86-defective cells. Here we show that, besides DNA repair, a role for DNA-PKcs is to protect telomeres, which in turn are essential for chromosomal stability.
Collapse
Affiliation(s)
- F A Goytisolo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain
| | | | | | | | | |
Collapse
|