151
|
Bergwerff CE, Luman M, Blom HJ, Oosterlaan J. No Tryptophan, Tyrosine and Phenylalanine Abnormalities in Children with Attention-Deficit/Hyperactivity Disorder. PLoS One 2016; 11:e0151100. [PMID: 26938936 PMCID: PMC4777504 DOI: 10.1371/journal.pone.0151100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/23/2016] [Indexed: 01/18/2023] Open
Abstract
Background The aim of the current study was to explore the role of aromatic amino acids (AAAs) in blood in relation to attention-deficit/hyperactivity disorder (ADHD). Given their impact on the synthesis of serotonin and dopamine, decreased concentrations of the AAAs tryptophan, tyrosine and phenylalanine in blood may contribute to the expression of ADHD symptoms. Decreased AAA blood concentrations, in turn, may be related to lowered dietary protein intake or to abnormal AAA catabolism, as evidenced by increased urinary AAA concentrations. Methods Eighty-three children with ADHD (75% males) and 72 typically developing (TD) children (51% males), aged 6 to 13 years, participated in the study. AAA concentrations were assessed in blood spots and an 18-hour urinary sample. A nutritional diary was filled out by parents to calculate dietary protein intake. Parent and teacher questionnaires assessed symptoms of ADHD, oppositional defiant disorder, conduct disorder, and autism spectrum disorder. Results Children with ADHD showed normal AAA concentrations in blood spots and urine, as well as normal protein intake compared to controls. No associations between AAA concentrations and symptoms of ADHD or comorbid psychiatric disorders were found. Conclusions This study is the first to explore AAA metabolism in children with ADHD using a well-defined and relatively large sample. We found that AAA deficiencies are not related to ADHD. The results do not support treatment with AAA supplements in children with ADHD. Future studies regarding the cause of serotonin and dopamine alterations in ADHD should focus on other explanations, such as effects of altered transport of AAAs.
Collapse
Affiliation(s)
| | - Marjolein Luman
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Henk J. Blom
- Center for Pediatrics and Adolescent Medicine, Medical Center–University of Freiburg, Freiburg, Germany
- Department of Clinical Chemistry, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Jaap Oosterlaan
- Clinical Neuropsychology section, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
152
|
Hényková E, Vránová HP, Amakorová P, Pospíšil T, Žukauskaitė A, Vlčková M, Urbánek L, Novák O, Mareš J, Kaňovský P, Strnad M. Stable isotope dilution ultra-high performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan-related neuroactive substances in human serum and cerebrospinal fluid. J Chromatogr A 2016; 1437:145-157. [PMID: 26879452 DOI: 10.1016/j.chroma.2016.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Many compounds related to L-tryptophan (L-TRP) have interesting biological or pharmacological activity, and their abnormal neurotransmission seems to be linked to a wide range of neurodegenerative and psychiatric diseases. A high-throughput method based on ultra-high performance liquid chromatography connected to electrospray tandem mass spectrometry (UHPLC-ESI-MS/MS) was developed for the quantitative analysis of L-TRP and 16 of its metabolites in human serum and cerebrospinal fluid (CSF), representing both major and minor routes of L-TRP catabolism. The combination of a fast LC gradient with selective tandem mass spectrometry enabled accurate analysis of almost 100 samples in 24h. The standard isotope dilution method was used for quantitative determination. The method's lower limits of quantification for serum and cerebrospinal fluid ranged from 0.05 to 15nmol/L and 0.3 to 45nmol/L, respectively. Analytical recoveries ranged from 10.4 to 218.1% for serum and 22.1 to 370.0% for CSF. The method's accuracy ranged from 82.4 to 128.5% for serum matrix and 90.7 to 127.7% for CSF matrix. All intra- and inter-day coefficients of variation were below 15%. These results demonstrate that the new method is capable of quantifying endogenous serum and CSF levels of a heterogeneous group of compounds spanning a wide range of concentrations. The method was used to determine the physiological levels of target analytes in serum and CSF samples from 18 individuals, demonstrating its reliability and potential usefulness in large-scale epidemiological studies.
Collapse
Affiliation(s)
- Eva Hényková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Hana Přikrylová Vránová
- Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20 Olomouc, Czech Republic
| | - Petra Amakorová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; Department of Biology, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, CZ-775 15 Olomouc, Czech Republic
| | - Magdaléna Vlčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Lubor Urbánek
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Jan Mareš
- Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20 Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital in Olomouc, I. P. Pavlova 6, CZ-775 20 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany CAS, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
153
|
Tryptophan protects hepatocytes against reactive oxygen species-dependent cell death via multiple pathways including Nrf2-dependent gene induction. Amino Acids 2016; 48:1263-74. [DOI: 10.1007/s00726-016-2175-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/08/2016] [Indexed: 01/05/2023]
|
154
|
Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. JOURNAL OF AMINO ACIDS 2016; 2016:8952520. [PMID: 26881063 PMCID: PMC4737446 DOI: 10.1155/2016/8952520] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/06/2015] [Indexed: 12/27/2022]
Abstract
L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.
Collapse
|
155
|
Bouma G, van Faassen M, Kats-Ugurlu G, de Vries EGE, Kema IP, Walenkamp AME. Niacin (Vitamin B3) Supplementation in Patients with Serotonin-Producing Neuroendocrine Tumor. Neuroendocrinology 2016; 103:489-94. [PMID: 26335390 DOI: 10.1159/000440621] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS Tryptophan is the precursor of serotonin and niacin (vitamin B3). The latter is critical for normal cellular metabolism. Tryptophan and niacin can be deficient in patients with serotonin-producing neuroendocrine tumors (NETs). Niacin deficiency may lead to severe symptoms including pellagra. In patients with serotonin-producing NET, data on niacin status are scarce and niacin supplementation hardly receives attention. We aimed to assess the niacin status before and after supplementation in these patients. METHODS We identified serotonin-producing NET patients who had received oral niacin supplementation (mean dose 144 mg daily) for tryptophan deficiency and/or pellagra-associated symptoms. Presupplementation plasma tryptophan levels and niacin status based on the urinary niacin metabolite N1-methylnicotinamide (N1-MN) before (n = 42) and after the start of the supplementation (in 34 paired samples) were assessed. Reference values for urinary N1-MN levels were established in 133 healthy individuals. RESULTS The mean presupplementation plasma tryptophan level was 31.8 ± 9.7 µmol/l (reference value 40.0-70.0). Presupplementation urinary N1-MN levels were lower in patients (median 17.9 µmol/24 h, range 2.6-70.3) compared to healthy controls (median 43.7 µmol/24 h, range 9.5-169.3, p < 0.0001) and below normal in 45% of the patients. Niacin supplementation increased urinary N1-MN levels to high normal levels (median 55.5 µmol/24 h, range 7.4-489.0) in 86% of the niacin-deficient patients. CONCLUSION In serotonin-producing NET patients, niacin deficiency is prevalent. Therefore, urinary N1-MN deserves to be included in their standard biochemical evaluation. Niacin supplementation normalizes the niacin status in most niacin-deficient serotonin-producing NET patients. A prospective study is warranted.
Collapse
|
156
|
Veen C, Myint AM, Burgerhout KM, Schwarz MJ, Schütze G, Kushner SA, Hoogendijk WJ, Drexhage HA, Bergink V. Tryptophan pathway alterations in the postpartum period and in acute postpartum psychosis and depression. J Affect Disord 2016; 189:298-305. [PMID: 26454336 DOI: 10.1016/j.jad.2015.09.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Women are at very high risk for the first onset of acute and severe mood disorders the first weeks after delivery. Tryptophan breakdown is increased as a physiological phenomenon of the postpartum period and might lead to vulnerability for affective psychosis (PP) and severe depression (PD). The aim of the current study was to investigate alterations in tryptophan breakdown in the physiological postpartum period compared to patients with severe postpartum mood disorders. METHODS We included 52 patients (29 with PP, 23 with PD), 52 matched healthy postpartum women and 29 healthy non-postpartum women. Analyzes of serum tryptophan metabolites were performed using LC-MS/MS system for tryptophan, kynurenine, 3-hydroxykynurenine, kynurenic acid and 5-hydroxyindoleacetic acid. RESULTS The first two months of the physiological postpartum period were characterized by low tryptophan levels, increased breakdown towards kynurenine and a downstream shift toward the 3-OH-kynurenine arm, away from the kynurenic acid arm. Kynurenine was significantly lower in patients with PP and PD as compared to healthy postpartum women (p=0.011 and p=0.001); the remaining tryptophan metabolites demonstrated few differences between patients and healthy postpartum women. LIMITATION Low prevalence of the investigated disorders and strict exclusion criteria to obtain homogenous groups, resulted in relatively small sample sizes. CONCLUSION The high kynurenine levels and increased tryptophan breakdown as a phenomenon of the physiological postpartum period was not present in patients with severe postpartum mood disorders. No differences were observed in the levels of the 'neurotoxic' 3-OH-kynurenine and the 'neuroprotective' kynurenic acid arms between patients and healthy postpartum women.
Collapse
Affiliation(s)
- Cato Veen
- Department of Psychiatry, Erasmus Medical Centre, 's Gravendijkwal 230, Rotterdam, The Netherlands.
| | - Aye Mu Myint
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | - Karin M Burgerhout
- Department of Psychiatry, Erasmus Medical Centre, 's Gravendijkwal 230, Rotterdam, The Netherlands
| | - Markus J Schwarz
- Institute for Laboratory Medicine of Munich University, Ludwig-Maximilian University, Munich, Germany
| | - Gregor Schütze
- Institute for Laboratory Medicine of Munich University, Ludwig-Maximilian University, Munich, Germany
| | - Steven A Kushner
- Department of Psychiatry, Erasmus Medical Centre, 's Gravendijkwal 230, Rotterdam, The Netherlands
| | - Witte J Hoogendijk
- Department of Psychiatry, Erasmus Medical Centre, 's Gravendijkwal 230, Rotterdam, The Netherlands
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus University Medical Centre, 's Gravendijkwal 230, Rotterdam, The Netherlands
| | - Veerle Bergink
- Department of Psychiatry, Erasmus Medical Centre, 's Gravendijkwal 230, Rotterdam, The Netherlands; National Center for Register-Based Research, Aarhus School of Business and Social Sciences Aarhus University, Fuglesangs Allé 4, Aarhus, Denmark
| |
Collapse
|
157
|
Abstract
Reversible acetylation was initially described as an epigenetic mechanism regulating DNA accessibility. Since then, this process has emerged as a controller of histone and nonhistone acetylation that integrates key physiological processes such as metabolism, circadian rhythm and cell cycle, along with gene regulation in various organisms. The widespread and reversible nature of acetylation also revitalized interest in the mechanisms that regulate lysine acetyltransferases (KATs) and deacetylases (KDACs) in health and disease. Changes in protein or histone acetylation are especially relevant for many common diseases including obesity, diabetes mellitus, neurodegenerative diseases and cancer, as well as for some rare diseases such as mitochondrial diseases and lipodystrophies. In this Review, we examine the role of reversible acetylation in metabolic control and how changes in levels of metabolites or cofactors, including nicotinamide adenine dinucleotide, nicotinamide, coenzyme A, acetyl coenzyme A, zinc and butyrate and/or β-hydroxybutyrate, directly alter KAT or KDAC activity to link energy status to adaptive cellular and organismal homeostasis.
Collapse
Affiliation(s)
- Keir J Menzies
- Interdisciplinary School of Health Sciences, University of Ottawa, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Hongbo Zhang
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland
| | - Elena Katsyuba
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, Station 15, 1015 Lausanne, Switzerland
| |
Collapse
|
158
|
García-Gómez D, Gaisl T, Bregy L, Martínez-Lozano Sinues P, Kohler M, Zenobi R. Secondary electrospray ionization coupled to high-resolution mass spectrometry reveals tryptophan pathway metabolites in exhaled human breath. Chem Commun (Camb) 2016; 52:8526-8. [DOI: 10.1039/c6cc03070j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A real-time non-invasive breath analysis technique (secondary ESI-HRMS) reveals the hitherto unknown occurrence of tryptophan pathway metabolites in breath.
Collapse
Affiliation(s)
| | - Thomas Gaisl
- Department of Pulmonology
- University Hospital Zurich
- 8091 Zurich
- Switzerland
| | - Lukas Bregy
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| | | | - Malcolm Kohler
- Department of Pulmonology
- University Hospital Zurich
- 8091 Zurich
- Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences
- 8093 Zurich
- Switzerland
| |
Collapse
|
159
|
Badawy AAB. Tryptophan metabolism, disposition and utilization in pregnancy. Biosci Rep 2015; 35:e00261. [PMID: 26381576 PMCID: PMC4626867 DOI: 10.1042/bsr20150197] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/27/2015] [Accepted: 09/16/2015] [Indexed: 12/26/2022] Open
Abstract
Tryptophan (Trp) requirements in pregnancy are several-fold: (1) the need for increased protein synthesis by mother and for fetal growth and development; (2) serotonin (5-HT) for signalling pathways; (3) kynurenic acid (KA) for neuronal protection; (4) quinolinic acid (QA) for NAD(+) synthesis (5) other kynurenines (Ks) for suppressing fetal rejection. These goals could not be achieved if maternal plasma [Trp] is depleted. Although plasma total (free + albumin-bound) Trp is decreased in pregnancy, free Trp is elevated. The above requirements are best expressed in terms of a Trp utilization concept. Briefly, Trp is utilized as follows: (1) In early and mid-pregnancy, emphasis is on increased maternal Trp availability to meet the demand for protein synthesis and fetal development, most probably mediated by maternal liver Trp 2,3-dioxygenase (TDO) inhibition by progesterone and oestrogens. (2) In mid- and late pregnancy, Trp availability is maintained and enhanced by the release of albumin-bound Trp by albumin depletion and non-esterified fatty acid (NEFA) elevation, leading to increased flux of Trp down the K pathway to elevate immunosuppressive Ks. An excessive release of free Trp could undermine pregnancy by abolishing T-cell suppression by Ks. Detailed assessment of parameters of Trp metabolism and disposition and related measures (free and total Trp, albumin, NEFA, K and its metabolites and pro- and anti-inflammatory cytokines in maternal blood and, where appropriate, placental and fetal material) in normal and abnormal pregnancies may establish missing gaps in our knowledge of the Trp status in pregnancy and help identify appropriate intervention strategies.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K.
| |
Collapse
|
160
|
NAD⁺-Metabolizing Ectoenzymes in Remodeling Tumor-Host Interactions: The Human Myeloma Model. Cells 2015; 4:520-37. [PMID: 26393653 PMCID: PMC4588049 DOI: 10.3390/cells4030520] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 11/17/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD⁺) is an essential co-enzyme reported to operate both intra- and extracellularly. In the extracellular space, NAD⁺ can elicit signals by binding purinergic P2 receptors or it can serve as the substrate for a chain of ectoenzymes. As a substrate, it is converted to adenosine (ADO) and then taken up by the cells, where it is transformed and reincorporated into the intracellular nucleotide pool. Nucleotide-nucleoside conversion is regulated by membrane-bound ectoenzymes. CD38, the main mammalian enzyme that hydrolyzes NAD⁺, belongs to the ectoenzymatic network generating intracellular Ca(2+)-active metabolites. Within this general framework, the extracellular conversion of NAD⁺ can vary significantly according to the tissue environment or pathological conditions. Accumulating evidence suggests that tumor cells exploit such a network for migrating and homing to protected areas and, even more importantly, for evading the immune response. We report on the experience of this lab to exploit human multiple myeloma (MM), a neoplastic expansion of plasma cells, as a model to investigate these issues. MM cells express high levels of surface CD38 and grow in an environment prevalently represented by closed niches hosted in the bone marrow (BM). An original approach of this study derives from the recent use of the clinical availability of therapeutic anti-CD38 monoclonal antibodies (mAbs) in perturbing tumor viability and enzymatic functions in conditions mimicking what happens in vivo.
Collapse
|
161
|
Tsang F, Lin SJ. Less is more: Nutrient limitation induces cross-talk of nutrient sensing pathways with NAD + homeostasis and contributes to longevity. ACTA ACUST UNITED AC 2015; 10:333-357. [PMID: 27683589 DOI: 10.1007/s11515-015-1367-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrient sensing pathways and their regulation grant cells control over their metabolism and growth in response to changing nutrients. Factors that regulate nutrient sensing can also modulate longevity. Reduced activity of nutrient sensing pathways such as glucose-sensing PKA, nitrogen-sensing TOR and S6 kinase homolog Sch9 have been linked to increased life span in the yeast, Saccharomyces cerevisiae, and higher eukaryotes. Recently, reduced activity of amino acid sensing SPS pathway was also shown to increase yeast life span. Life span extension by reduced SPS activity requires enhanced NAD+ (nicotinamide adenine dinucleotide, oxidized form) and nicotinamide riboside (NR, a NAD+ precursor) homeostasis. Maintaining adequate NAD+ pools has been shown to play key roles in life span extension, but factors regulating NAD+ metabolism and homeostasis are not completely understood. Recently, NAD+ metabolism was also linked to the phosphate (Pi)-sensing PHO pathway in yeast. Canonical PHO activation requires Pi-starvation. Interestingly, NAD+ depletion without Pi-starvation was sufficient to induce PHO activation, increasing NR production and mobilization. Moreover, SPS signaling appears to function in parallel with PHO signaling components to regulate NR/NAD+ homeostasis. These studies suggest that NAD+ metabolism is likely controlled by and/or coordinated with multiple nutrient sensing pathways. Indeed, cross-regulation of PHO, PKA, TOR and Sch9 pathways was reported to potentially affect NAD+ metabolism; though detailed mechanisms remain unclear. This review discusses yeast longevity-related nutrient sensing pathways and possible mechanisms of life span extension, regulation of NAD+ homeostasis, and cross-talk among nutrient sensing pathways and NAD+ homeostasis.
Collapse
Affiliation(s)
- Felicia Tsang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
162
|
Badawy AAB, Bano S. Elevation of Kynurenine Metabolites in Rat Liver and Serum: A Potential Additional Mechanism of the Alcohol Aversive and Anti-cancer Effects of Disulfiram? Alcohol Alcohol 2015. [PMID: 26224731 PMCID: PMC4678950 DOI: 10.1093/alcalc/agv085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aims The tryptophan metabolites 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) inhibit the liver mitochondrial low Km aldehyde dehydrogenase and possess alcohol-aversive and immunosuppressant properties. As the disulfiram (DS) metabolite carbon disulphide activates enzymes forming 3-HK and 3-HAA, we investigated if repeated disulfiram treatment increases the hepatic and serum levels of these 2 metabolites. Methods Livers and sera of male Wistar rats were analysed for tryptophan and kynurenine metabolites after repeated DS treatment for 7 days. Results DS increased liver and serum [3-HK] and [3-HAA] possibly by increasing the flux of tryptophan down the hepatic kynurenine pathway and activation of kynurenine hydroxylase and kynureninase. Conclusions We provisionally suggest that elevation of some kynurenine metabolites may be an additional mechanism of the alcohol-aversive and anticancer effects of disulfiram.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, UK
| | - Samina Bano
- Present address: Department of Biochemistry, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
163
|
Cantó C, Menzies KJ, Auwerx J. NAD(+) Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab 2015; 22:31-53. [PMID: 26118927 PMCID: PMC4487780 DOI: 10.1016/j.cmet.2015.05.023] [Citation(s) in RCA: 1121] [Impact Index Per Article: 112.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD(+) has emerged as a vital cofactor that can rewire metabolism, activate sirtuins, and maintain mitochondrial fitness through mechanisms such as the mitochondrial unfolded protein response. This improved understanding of NAD(+) metabolism revived interest in NAD(+)-boosting strategies to manage a wide spectrum of diseases, ranging from diabetes to cancer. In this review, we summarize how NAD(+) metabolism links energy status with adaptive cellular and organismal responses and how this knowledge can be therapeutically exploited.
Collapse
Affiliation(s)
- Carles Cantó
- Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Keir J Menzies
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
164
|
Curto M, Lionetto L, Fazio F, Mitsikostas DD, Martelletti P. Fathoming the kynurenine pathway in migraine: why understanding the enzymatic cascades is still critically important. Intern Emerg Med 2015; 10:413-21. [PMID: 25708356 DOI: 10.1007/s11739-015-1208-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/27/2015] [Indexed: 12/11/2022]
Abstract
Kynurenine pathway, the quantitatively main branch of tryptophan metabolism, has been long been considered a source of nicotinamide adenine dinucleotide, although several of its products, the so-called kynurenines, are endowed with the capacity to activate glutamate receptors, thus potentially influencing a large group of functions in the central nervous system (CNS). Migraine, a largely unknown pathology, is strictly related to the glutamate system in the CNS pathologic terms. Despite the large number of studies conducted on migraine etio-pathology, the kynurenine pathway has been only recently linked to this disease. Nonetheless, some evidence suggests an intriguing role for some kynurenines, and an exploratory study on the serum kynurenine level might be helpful to better understand possible alterations of the kynurenine pathway in patients suffering from migraine.
Collapse
Affiliation(s)
- Martina Curto
- Psychiatric Unit, Neurosciences, Mental Health and Sensory Organs (NESMOS) Department, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
165
|
Wang H, Ji Y, Wu G, Sun K, Sun Y, Li W, Wang B, He B, Zhang Q, Dai Z, Wu Z. l-Tryptophan Activates Mammalian Target of Rapamycin and Enhances Expression of Tight Junction Proteins in Intestinal Porcine Epithelial Cells. J Nutr 2015; 145:1156-62. [PMID: 25878205 DOI: 10.3945/jn.114.209817] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/23/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Besides serving as a substrate for protein synthesis, L-tryptophan (L-Trp) is used via serotonin-, kynurenine-, and niacin-synthetic pathways to produce bioactive compounds crucial for whole-body homeostasis. It is unknown whether L-Trp itself can regulate metabolic pathways in animal cells. OBJECTIVE This study tested the hypothesis that L-Trp may activate mammalian target of rapamycin (mTOR) complex 1 and enhance expression of tight junction (TJ) proteins in intestinal porcine epithelial cells. METHODS Jejunal enterocytes, intestinal porcine epithelial cell line 1 (IPEC-1) isolated from newborn pigs, were cultured in customized Dulbecco's modified Eagle medium (DMEM) supplemented with or without L-Trp for the indicated time periods. Cell proliferation, L-Trp metabolism, protein turnover, mRNA abundance for L-Trp transporters [solute carrier family 3 member 1 (SLC3A1), solute carrier family 6 member 14 (SLC6A14), solute carrier family 6 member 19 (SLC6A19), and Na(+)/K(+) ATPase subunit-α1 (ATP1A1)], abundance of proteins involved in mTOR signaling, and TJ proteins were determined. RESULTS L-Trp was not degraded in IPEC-1 cells. Compared with basal medium containing 0.04 mmol/L L-Trp, 0.4 and 0.8 mmol/L L-Trp enhanced (P < 0.05) protein synthesis by 45-52% and cell growth by 17% and 25% on day 1 and 72% and 51% on day 2, respectively, while reducing (P < 0.05) protein degradation by 12% and 22%, respectively. These effects of L-Trp were associated with mTOR activation and increased (P < 0.05) mRNA abundance for L-Trp transporters (SLC6A19, SLC6A14, and SLC3A1) by 1.5-2.7 fold and ATP1A1 by 3 fold. L-Trp also upregulated (P < 0.05) the abundance of occludin, claudin-4, zonula occludens (ZO) 1 and 2 by 0.5-2 fold but did not affect expression of claudin-1 or ZO-3 in IPEC-1 cells. CONCLUSION L-Trp is not catabolized by pig small intestinal epithelial cells but can regulate intracellular protein turnover and expression of TJ proteins in these cells.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and Department of Animal Science, Texas A&M University, College Station, TX
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Wei Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Bin Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Beibei He
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Qing Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; and
| |
Collapse
|
166
|
Badawy AAB, Dougherty DM. Standardization of formulations for the acute amino acid depletion and loading tests. J Psychopharmacol 2015; 29:363-71. [PMID: 25586395 PMCID: PMC5516789 DOI: 10.1177/0269881114565141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The acute tryptophan depletion and loading and the acute tyrosine plus phenylalanine depletion tests are powerful tools for studying the roles of cerebral monoamines in behaviour and symptoms related to various disorders. The tests use either amino acid mixtures or proteins. Current amino acid mixtures lack specificity in humans, but not in rodents, because of the faster disposal of branched-chain amino acids (BCAAs) by the latter. The high content of BCAA (30-60%) is responsible for the poor specificity in humans and we recommend, in a 50g dose, a control formulation with a lowered BCAA content (18%) as a common control for the above tests. With protein-based formulations, α-lactalbumin is specific for acute tryptophan loading, whereas gelatine is only partially effective for acute tryptophan depletion. We recommend the use of the whey protein fraction glycomacropeptide as an alternative protein. Its BCAA content is ideal for specificity and the absence of tryptophan, tyrosine and phenylalanine render it suitable as a template for seven formulations (separate and combined depletion or loading and a truly balanced control). We invite the research community to participate in standardization of the depletion and loading methodologies by using our recommended amino acid formulation and developing those based on glycomacropeptide.
Collapse
Affiliation(s)
| | - Donald M Dougherty
- Department of Psychiatry, University of Texas Health Sciences Center at San Antonio, 7703 Floyd Curl Drive, Mail Code 7793, San Antonio, Texas, 78229, USA
| |
Collapse
|
167
|
Badawy AAB, Lake SL, Dougherty DM. Mechanisms of the pellagragenic effect of leucine: stimulation of hepatic tryptophan oxidation by administration of branched-chain amino acids to healthy human volunteers and the role of plasma free tryptophan and total kynurenines. Int J Tryptophan Res 2014; 7:23-32. [PMID: 25520560 PMCID: PMC4259507 DOI: 10.4137/ijtr.s18231] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/12/2014] [Accepted: 10/03/2014] [Indexed: 01/23/2023] Open
Abstract
The pellagragenic effect of leucine (Leu) has been proposed to involve modulation of L-tryptophan (Trp) metabolism along the hepatic kynurenine pathway. Here, we discuss some of the mechanisms suggested and report the effects in healthy volunteers of single doses of Leu (4.05-6.75 g) administered in a 16-amino acid mixture on concentrations of plasma Trp and its kynurenine metabolites. Flux of Trp through Trp 2,3-dioxygenase (TDO) is dose-dependently enhanced most probably by Leu and can be attributed to TDO activation. Trp oxidation is better expressed using plasma total kynure-nines, rather than kynurenine, and free, rather than total, Trp. Increased hepatic Trp oxidation may be an additional mechanism of action of branched-chain amino acids in the acute Trp depletion test. Inhibition of intestinal absorption or hepatic uptake of Trp by Leu can be excluded. Potential mechanisms of the aggravation of pellagra symptoms by Leu are discussed.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, Wales, UK
| | - Sarah L Lake
- Department of Psychiatry, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Donald M Dougherty
- Department of Psychiatry, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
168
|
Dabrowski W, Kocki T, Pilat J, Parada-Turska J, Malbrain MLNG. Changes in plasma kynurenic acid concentration in septic shock patients undergoing continuous veno-venous haemofiltration. Inflammation 2014; 37:223-34. [PMID: 24043287 PMCID: PMC3929023 DOI: 10.1007/s10753-013-9733-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Kynurenic acid (KYNA) is one of the end products of tryptophan metabolism. The aim of this study was to analyse plasma KYNA concentration in septic shock patients (SSP) with acute kidney injury (AKI) undergoing continuous veno-venous haemofiltration (CVVH). Changes in KYNA content were compared to alterations in the levels of procalcitonin (PCT), C-reactive protein and lactate. Adult SSP with AKI were examined. Measurements were conducted at seven time points: before beginning CVVH and at 6, 12, 24, 48, 72 and 96 h after the beginning of CVVH. Based on clinical outcomes, the data were analysed separately for survivors and non-survivors. Twenty-seven patients were studied. CVVH was associated with reduced plasma KYNA concentration only in survivors. Plasma KYNA concentration correlated with the levels of lactate and PCT only in survivors. (1) CVVH reduced plasma KYNA concentration only in survivors; (2) lack of this reduction may predict fatal outcomes in SSP.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Jaczewskiego Street 8, 20-954, Lublin, Poland,
| | | | | | | | | |
Collapse
|
169
|
Regulation of rat hepatic α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme in the tryptophan- NAD pathway, by dietary cholesterol and sterol regulatory element-binding protein-2. Eur J Nutr 2014; 53:469-77. [PMID: 25289390 DOI: 10.1007/s00394-013-0547-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Nicotinic acid is one of the older drugs used to treat hyperlipidemia, the greatest risk factor of coronary heart disease. Nicotinic acid is also a precursor of the coenzyme nicotinamide adenine dinucleotide (NAD). In mammals, α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) plays a key role in NAD biosynthesis from tryptophan. However, the relationship between ACMSD and cholesterol metabolism has not been clarified enough yet. The present study was performed to make clear the relationship between ACMSD and cholesterol metabolism using hypercholesterolemic rats and rat primary hepatocytes. METHODS Male Sprague-Dawley rats were fed a diet containing cholesterol for 10 days to induce hypercholesterolemia. The NAD levels in the plasma and liver and hepatic ACMSD activity were determined. In vitro study, the expression of ACMSD and the transcriptional factors that regulate cholesterol metabolism were determined using rat primary hepatocytes treated with cholesterol and 25-hydroxycholesterol or simvastatin, a statin medication, by quantitative real-time PCR analysis and Western blotting analysis. RESULTS The hepatic NAD level of the hypercholesterolemic group was significantly higher than the control, and the hepatic ACMSD activity of this group was significantly suppressed. There was a significant negative correlation between the hepatic ACMSD activity and liver cholesterol levels. Additionally, in primary rat hepatocytes treated with cholesterol and 25-hydroxycholesterol or simvastatin, ACMSD gene and protein expression was subjected to sterol-dependent regulation. This gene expression changed in parallel to sterol regulatory element-binding protein (SREBP)-2 expression. CONCLUSION These results provide the first evidence that ACMSD is associated with cholesterol metabolism, and ACMSD gene expression may be upregulated by SREBP-2.
Collapse
|
170
|
Plasma kynurenic acid concentration in patients undergoing cardiac surgery: effect of anaesthesia. Arch Immunol Ther Exp (Warsz) 2014; 63:129-37. [PMID: 25205210 PMCID: PMC4359282 DOI: 10.1007/s00005-014-0312-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/20/2014] [Indexed: 11/13/2022]
Abstract
Increases in plasma kynurenic acid (KYNA) concentration relate to the severity of inflammation. The aim of this study was to analyse changes in plasma KYNA concentration and neutrophil/lymphocyte ratio (NLR) in cardiac surgery patients. Additionally, the effect of anaesthesia was analysed. Adult cardiac surgery patients under intravenous general anaesthesia were studied. Additionally, some patients received sevoflurane (SEV) prior to cardiopulmonary bypass. Plasma KYNA concentration and NLR were measured before anaesthesia, just after surgery and on postoperative days 1, 2 and 3. Patients were assigned to two groups: patients who did not receive SEV (NonSEV group) and patients who received SEV (SEV group). Forty-three patients were studied. Twenty-four of them received SEV. KYNA increased immediately after surgery and remained elevated through postoperative day 3 in the NonSEV group, whereas it was similar to the preoperative concentration in the SEV group. NLR increased immediately after surgery in both groups, and higher values were noted in the NonSEV group than in the SEV group at postoperative days 2 and 3. Plasma KYNA concentration correlated with NLR in the NonSEV group. Cardiac surgery caused an increase in NLR. Plasma KYNA increased in the NonSEV group and correlated with NLR. Administration of SEV inhibited the increase in KYNA, most likely due to its anti-inflammatory properties.
Collapse
|
171
|
Supplementation of nicotinic acid with NAMPT inhibitors results in loss of in vivo efficacy in NAPRT1-deficient tumor models. Neoplasia 2014; 15:1314-29. [PMID: 24403854 DOI: 10.1593/neo.131718] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 09/30/2013] [Accepted: 11/13/2013] [Indexed: 01/29/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a metabolite essential for cell survival and generated de novo from tryptophan or recycled from nicotinamide (NAM) through the nicotinamide phosphoribosyltransferase (NAMPT)-dependent salvage pathway. Alternatively, nicotinic acid (NA) is metabolized to NAD through the nicotinic acid phosphoribosyltransferase domain containing 1 (NAPRT1)-dependent salvage pathway. Tumor cells are more reliant on the NAMPT salvage pathway making this enzyme an attractive therapeutic target. Moreover, the therapeutic index of NAMPT inhibitors may be increased by in NAPRT-deficient tumors by NA supplementation as normal tissues may regenerate NAD through NAPRT1. To confirm the latter, we tested novel NAMPT inhibitors, GNE-617 and GNE-618, in cell culture- and patient-derived tumor models. While NA did not protect NAPRT1-deficient tumor cell lines from NAMPT inhibition in vitro, it rescued efficacy of GNE-617 and GNE-618 in cell culture- and patient-derived tumor xenografts in vivo. NA co-treatment increased NAD and NAM levels in NAPRT1-deficient tumors to levels that sustained growth in vivo. Furthermore, NAM co-administration with GNE-617 led to increased tumor NAD levels and rescued in vivo efficacy as well. Importantly, tumor xenografts remained NAPRT1-deficient in the presence of NA, indicating that the NAPRT1-dependent pathway is not reactivated. Protection of NAPRT1-deficient tumors in vivo may be due to increased circulating levels of metabolites generated by mouse liver, in response to NA or through competitive reactivation of NAMPT by NAM. Our results have important implications for the development of NAMPT inhibitors when considering NA co-treatment as a rescue strategy.
Collapse
|
172
|
Kato M, Lin SJ. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 23:49-58. [PMID: 25096760 DOI: 10.1016/j.dnarep.2014.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 07/11/2014] [Indexed: 12/21/2022]
Abstract
Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates shuttle between different cellular compartments. Together, these studies provide a molecular basis for how NAD(+) homeostasis factors and the interacting signaling pathways confer metabolic flexibility and contribute to maintaining cell fitness and genome stability.
Collapse
Affiliation(s)
- Michiko Kato
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
173
|
The tryptophan utilization concept in pregnancy. Obstet Gynecol Sci 2014; 57:249-59. [PMID: 25105097 PMCID: PMC4124085 DOI: 10.5468/ogs.2014.57.4.249] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/14/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022] Open
Abstract
The decrease in maternal plasma total (free + albumin-bound) tryptophan (Trp) during the third pregnancy trimester is attributed to induction of indoleamine 2,3-dioxygenase (IDO). When measured, free [Trp] is increased because of albumin depletion and non-esterified fatty acid elevation. The Trp depletion concept in pregnancy is therefore not supported because of incorrect interpretation of changes in Trp disposition and also for not addressing mouse strain differences in Trp-related responses and potential inhibition of Trp transport by the IDO inhibitor 1-methyl tryptophan. Application of the Trp utilization concept in pregnancy offers several physiological advantages favoring fetal development and successful outcome, namely provision of Trp for fetal protein synthesis and growth, serotonin for signaling pathways, kynurenic acid for neuroprotection, quinolinic acid for NAD+ synthesis, and other kynurenines for suppression of T cell responses. An excessive increase in Trp availability could compromise pregnancy by undermining T cell suppression, e.g., in pre-eclampsia.
Collapse
|
174
|
Terlecki P, Pawlik P, Iwaniuk A, Kocki T, Przywara S, Ilzecki M, Zubilewicz T, Kowalczyk M, Parada-Turska J, Dąbrowski W. Carotid surgery affects plasma kynurenic acid concentration: a pilot study. Med Sci Monit 2014; 20:303-10. [PMID: 24561546 PMCID: PMC3937007 DOI: 10.12659/msm.890212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/06/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND An increase in plasma kynurenic acid (KYNA) concentration has been observed following surgery, inflammation, and cerebral pathologies. The aim of the present study was to analyze the changes in plasma KYNA concentration in patients undergoing carotid surgery (CS). MATERIAL AND METHODS Adult patients undergoing elective carotid endarterectomy (CEA) or carotid angioplasty with stent placement (CAS) were studied. Plasma KYNA concentrations were analyzed before surgery and at 4 time points after CS. The amount of inflammation was measured as neutrophil-lymphocyte ratio (NLR). RESULTS Forty patients (10 female and 30 male) aged 55-86 years of age were evaluated in this study. In patients with unstable carotid plaque, the plasma KYNA concentration was higher than in patients with stable carotid plaque. Moreover, the NLR was significantly higher in patients with unstable carotid plaque undergoing CEA than in patients undergoing CAS. Plasma KYNA concentration increased after surgery in patients undergoing CEA and CAS. There was a strong correlation between plasma KYNA concentration and NLR in patients with postoperative neurological disorders. CONCLUSIONS CS increases plasma KYNA concentration, and changes in plasma KYNA concentration can indicate neurologic outcomes in patients undergoing CS.
Collapse
Affiliation(s)
- Piotr Terlecki
- Department of Vascular Surgery and Angiology Medical University of Lublin, Lublin, Poland
| | - Paulina Pawlik
- Department of Anesthesiology and Intensive Therapy Medical University of Lublin, Lublin, Poland
| | - Adam Iwaniuk
- Department of Clinical and Experimental Pharmacology Medical University of Lublin, Lublin, Poland
| | - Tomasz Kocki
- Department of Clinical and Experimental Pharmacology Medical University of Lublin, Lublin, Poland
| | - Stanisław Przywara
- Department of Vascular Surgery and Angiology Medical University of Lublin, Lublin, Poland
| | - Marek Ilzecki
- Department of Vascular Surgery and Angiology Medical University of Lublin, Lublin, Poland
| | - Tomasz Zubilewicz
- Department of Vascular Surgery and Angiology Medical University of Lublin, Lublin, Poland
| | - Michał Kowalczyk
- Department of Anesthesiology and Intensive Therapy Medical University of Lublin, Lublin, Poland
| | - Jolanta Parada-Turska
- Department of Rheumatology and Connective Tissue Diseases Medical University of Lublin, Lublin, Poland
| | - Wojciech Dąbrowski
- Department of Anesthesiology and Intensive Therapy Medical University of Lublin, Lublin, Poland
| |
Collapse
|
175
|
Badawy AAB. Tryptophan and inhibitors of tryptophan 2,3-dioxygenase as antidepressants: reply. J Psychopharmacol 2014; 28:169-72. [PMID: 24449217 DOI: 10.1177/0269881113512044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
176
|
Stavrum AK, Heiland I, Schuster S, Puntervoll P, Ziegler M. Model of tryptophan metabolism, readily scalable using tissue-specific gene expression data. J Biol Chem 2013; 288:34555-66. [PMID: 24129579 DOI: 10.1074/jbc.m113.474908] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tryptophan is utilized in various metabolic routes including protein synthesis, serotonin, and melatonin synthesis and the kynurenine pathway. Perturbations in these pathways have been associated with neurodegenerative diseases and cancer. Here we present a comprehensive kinetic model of the complex network of human tryptophan metabolism based upon existing kinetic data for all enzymatic conversions and transporters. By integrating tissue-specific expression data, modeling tryptophan metabolism in liver and brain returned intermediate metabolite concentrations in the physiological range. Sensitivity and metabolic control analyses identified expected key enzymes to govern fluxes in the branches of the network. Combining tissue-specific models revealed a considerable impact of the kynurenine pathway in liver on the concentrations of neuroactive derivatives in the brain. Moreover, using expression data from a cancer study predicted metabolite changes that resembled the experimental observations. We conclude that the combination of the kinetic model with expression data represents a powerful diagnostic tool to predict alterations in tryptophan metabolism. The model is readily scalable to include more tissues, thereby enabling assessment of organismal tryptophan metabolism in health and disease.
Collapse
|
177
|
Abstract
It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.
Collapse
|
178
|
Badawy A. Novel nutritional treatment for manic and psychotic disorders: a review of tryptophan and tyrosine depletion studies and the potential of protein-based formulations using glycomacropeptide. Psychopharmacology (Berl) 2013; 228:347-58. [PMID: 23828158 DOI: 10.1007/s00213-013-3191-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/08/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE Current amino acid (AA) mixtures used in acute tryptophan (Trp) and tyrosine (Tyr) plus phenylalanine (Phe) depletion and loading tests are unpalatable and lack specificity. Specificity is improved by reducing content of branched-chain amino acids (BCAA) and palatability to a certain extent by dose reduction. OBJECTIVES This study aims to identify a palatable naturally occurring alternative(s) to amino acids with the desired BCAA content for use in the above tests. METHODS A palatable alternative lacking in Trp, Tyr and Phe has been identified in the whey protein fraction caseino-glycomacropeptide (c-GMP). The absence of these three aromatic amino acids renders GMP suitable as a template for seven formulations for separate and combined depletion or loading and a placebo control. The absence of Phe and Tyr enables GMP to provide a unique nutritional therapy of manic and psychotic disorders by inhibition of cerebral dopamine synthesis and release and possibly also by enhancing glutamatergic function, in general, and in patients resistant to anti-psychotic medication, in particular. RESULTS Seven GMP-based formulations for the above tests are proposed, two of which can be used in the above nutritional therapy and a third formulation as a placebo control in clinical trials. CONCLUSIONS Development of these formulations should advance the above research and diagnostic tests, open new avenues for neuroscience research on monoamine function, and improve the therapy of bipolar and psychotic disorders and enhance the quality of life of sufferers.
Collapse
Affiliation(s)
- Abdulla Badawy
- School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff, CF5 2YB, Wales, UK.
| |
Collapse
|
179
|
Blankfield A. Kynurenine Pathway Pathologies: do Nicotinamide and Other Pathway Co-Factors have a Therapeutic Role in Reduction of Symptom Severity, Including Chronic Fatigue Syndrome (CFS) and Fibromyalgia (FM). Int J Tryptophan Res 2013; 6:39-45. [PMID: 23922501 PMCID: PMC3729338 DOI: 10.4137/ijtr.s11193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The definition of dual tryptophan pathways has increased the understanding of the mind-body, body-mind dichotomy. The serotonergic pathway highlights the primary (endogenous) psychiatric disorders. The up-regulation of the kynurenine pathway by physical illnesses can cause neuropathic and immunological disorders1 associated with secondary neuropsychiatric symptoms. Tryptophan and nicotinamide deficiencies fall within the protein energy malnutrition (PEM) spectrum. They can arise if the kynurenine pathway is stressed by primary or secondary inflammatory conditions and the consequent imbalance of available catabolic/anabolic substrates may adversely influence convalescent phase efficiency. The replacement of depleted or reduced NAD+ levels and other cofactors can perhaps improve the clinical management of these disorders. Chronic fatigue syndrome (CFS) and fibromyalgia (FM) appear to meet the criteria of a tryptophan-kynurenine pathway disorder with potential neuroimmunological sequelae. Aspects of some of the putative precipitating factors have been previously outlined.2,3 An analysis of the areas of metabolic dysfunction will focus on future directions for research and management.
Collapse
|
180
|
Effect of dietary phytol on the expression of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase, a key enzyme of tryptophan-niacin metabolism, in rats. Biosci Biotechnol Biochem 2013; 77:1416-9. [PMID: 23832361 DOI: 10.1271/bbb.130029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
α-Amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) plays a key role in the regulation of NAD biosynthesis or the production of quinolinate from tryptophan (Trp). We investigated in this study the effect of phytol, a phytochemical known as a peroxisome proliferator-activated receptor α (PPARα) ligand, on NAD synthesis and ACMSD expression in rats. Male Sprague-Dawley rats were fed a diet containing 0.5%, 1%, or 2% phytol for 7 d. Phytol decreased the ACMSD activity and its mRNA expression in a dose-dependent manner in the liver. Phytol similarly and significantly suppressed ACMSD mRNA expression in primary rat hepatocytes. However, the mRNA expression of ACO (a known PPARα target gene) was higher in the low-phytol groups than in the high-phytol group in vivo and in vitro. Phytol increased the blood NAD level by suppressing ACMSD mRNA expression in the liver of the rats. It is possible that this mechanism occurred by the activation of PPARα and also of other transcriptional factors.
Collapse
|
181
|
Jacobsen JPR, Medvedev IO, Caron MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439His knockin mouse. Philos Trans R Soc Lond B Biol Sci 2012; 367:2444-59. [PMID: 22826344 DOI: 10.1098/rstb.2012.0109] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A decreased level of brain 5-hydroxytryptamine (5-HT) has been theorized to be a core pathogenic factor in depression for half a century. The theory arose from clinical observations that drugs enhancing extracellular levels of 5-HT (5-HT(Ext)) have antidepressant effects in many patients. However, whether such drugs indeed correct a primary deficit remains unresolved. Still, a number of anomalies in putative biomarkers of central 5-HT function have been repeatedly reported in depression patients over the past 40 years, collectively indicating that 5-HT deficiency could be present in depression, particularly in severely ill and/or suicidal patients. This body of literature on putative 5-HT biomarker anomalies and depression has recently been corroborated by data demonstrating that such anomalies indeed occur consequent to severely reduced 5-HT(Ext) levels in a mouse model of naturalistic 5-HT deficiency, the tryptophan hydroxylase 2 His(439) knockin (Tph2KI) mouse. In this review, we will critically assess the evidence for 5-HT deficiency in depression and the possible role of polymorphisms in the Tph2 gene as a causal factor in 5-HT deficiency, the latter investigated from a clinical as well as preclinical angle.
Collapse
Affiliation(s)
- Jacob P R Jacobsen
- Department of Cell Biology, Duke University Medical Center, , Durham, NC 27710, USA.
| | | | | |
Collapse
|
182
|
Shell WE, May LA, Bullias DH, Pavlik SL, Silver DS. Sentra PM (a Medical Food) and Trazodone in the Management of Sleep Disorders. J Cent Nerv Syst Dis 2012; 4:65-72. [PMID: 23650468 PMCID: PMC3619436 DOI: 10.4137/jcnsd.s9381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sleep disorders are a common and poorly treated disease state. This double blind, four arm placebo-controlled, randomized trial compared (1) low dose trazodone, (2) Sentra PM, a neurotransmitter based medical food, (3) the joint administration of trazodone and the medical food Sentra PM and (4) placebo. There were 111 subjects studied in 12 independent sites. Subjects underwent baseline screening, informed consent and an initial sleep questionnaire. After 14 days subjects underwent a second evaluation by questionnaire. At baseline and Day 14 the subjects underwent 24 hour ECG recordings that were analyzed in the frequency domain of heart rate variability. The specific high frequency parasympathetic autonomic nervous system activity was analyzed. The primary endpoints were sleep latency and parasympathetic autonomic nervous system improvement in sleeping hours. The results showed improvement in sleep latency for the Sentra PM and combination of Sentra PM and trazodone (−41 and −56 minutes P < 0.001). There was an improvement in quality of sleep for the amino acid formulation Sentra PM and the combination (3.86 and 6.48 Likert units on a 10 point scale P < 0.001). There was an activation of circadian activity percent at night in the medical food and combination groups while there was no change in parasympathetic activity in either the placebo or trazodone group. These data indicate that Sentra PM can improve the quality of sleep, the response to trazodone as a sleep medication and parasympathetic autonomic nervous system activity.
Collapse
|
183
|
Zuwała-Jagiello J, Pazgan-Simon M, Simon K, Warwas M. Picolinic acid in patients with chronic hepatitis C infection: a preliminary report. Mediators Inflamm 2012; 2012:762863. [PMID: 22701277 PMCID: PMC3368595 DOI: 10.1155/2012/762863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/09/2012] [Accepted: 03/26/2012] [Indexed: 12/30/2022] Open
Abstract
Macrophage activation seems to be a feature of chronic liver diseases. Picolinic acid (PA) as a macrophage secondary signal causes the activation of interferon-gamma- (IFN-γ-) prime macrophage and triggers cytokine-driven inflammatory reactions. The rationale for seeking increased PA formation in chronic viral hepatitis is based on the involvement of activated macrophages in chronic viral hepatitis-associated inflammation. The aim of this study was to determine serum PA levels in patients with chronic hepatitis C infection, taking into account the presence of diabetes. We assessed PA and high-sensitivity C-reactive protein (hsCRP) as a marker of inflammation in 51 patients with chronic hepatitis C infection (CHC), both with and without diabetes and 40 controls. Compared with the controls, the patients with CHC showed a significant increase in plasma concentrations of PA and hsCRP (P < 0.01 and P < 0.05, resp.). The values of PA and hsCRP were more elevated in patients with diabetes than without diabetes (both P < 0.01). The positive relationships were between PA and hsCRP levels (P < 0.05) and the presence of diabetes (P < 0.001). We documented that significant elevation in serum PA levels is associated with diabetes prevalence and increased inflammatory response reflected in hsCRP levels in CHC patients.
Collapse
|
184
|
Badawy AAB, Bano S, Steptoe A. Tryptophan in alcoholism treatment II: inhibition of the rat liver mitochondrial low Km aldehyde dehydrogenase activity, elevation of blood acetaldehyde concentration and induction of aversion to alcohol by combined administration of tryptophan and benserazide. Alcohol Alcohol 2011; 46:661-71. [PMID: 21896551 PMCID: PMC3196367 DOI: 10.1093/alcalc/agr135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 07/01/2011] [Accepted: 07/27/2011] [Indexed: 11/12/2022] Open
Abstract
AIMS The aims were to provide proofs of mechanism and principle by establishing the ability of the amino acid L-tryptophan (Trp) combined with the kynureninase inhibitor benserazide (BSZ) to inhibit the liver mitochondrial low K(m) aldehyde dehydrogenase (ALDH) activity after administration and in vivo and to induce aversion to alcohol. METHODS Trp, BSZ or both were administered to male Wistar rats and ALDH activity was determined both in vitro in liver homogenates and in vivo (by measuring acetaldehyde accumulation in blood after ethanol administration). Alcohol consumption was studied in an aversion model in rats and in alcohol-preferring C57 mice. RESULTS Combined administration of Trp + BSZ, but neither compound alone, produced a strong inhibition of ALDH activity and an increase in blood acetaldehyde concentration after ethanol, and induced aversion to alcohol in rats and decreased preference in mice. Another kynureninase inhibitor, carbidopa, induced aversion to alcohol by itself, which was reversed by Trp co-administration. CONCLUSIONS The present results establish a prior art for the use of a combination of Trp plus BSZ in the treatment of alcoholism by aversion, which merits rapid clinical development.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- The Cardiff School of Health Sciences, University of Wales Institute Cardiff, Western Avenue, Cardiff, Wales, UK.
| | | | | |
Collapse
|
185
|
van Donkelaar EL, Blokland A, Ferrington L, Kelly PAT, Steinbusch HWM, Prickaerts J. Mechanism of acute tryptophan depletion: is it only serotonin? Mol Psychiatry 2011; 16:695-713. [PMID: 21339754 DOI: 10.1038/mp.2011.9] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of acute tryptophan depletion (ATD), which reduces the availability of the essential amino acid tryptophan (TRP), the dietary serotonin (5-hydroxytryptamine (5-HT)) precursor, has been applied in many experimental studies. ATD application leads to decreased availability of TRP in the brain and its synthesis into 5-HT. It is therefore assumed that a decrease in 5-HT release and subsequent blunted neurotransmission is the underlying mechanism for the behavioural effects of ATD. However, direct evidence that ATD decreases extracellular 5-HT concentrations is lacking. Furthermore, several studies provide support for alternative underlying mechanisms of ATD. This may question the utility of the method as a selective serotonergic challenge tool. As ATD is extensively used for investigating the role of 5-HT in cognitive functions and psychiatric disorders, the potential of alternative mechanisms and possible confounding factors should be taken into account. It is suggested that caution is required when interpreting ATD effects in terms of a selective serotonergic effect.
Collapse
Affiliation(s)
- E L van Donkelaar
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
Amino acids are essential building blocks of all mammalian cells. In addition to their role in protein synthesis, amino acids play an important role as energy fuels, precursors for a variety of metabolites and as signalling molecules. Disorders associated with the malfunction of amino acid transporters reflect the variety of roles that they fulfil in human physiology. Mutations of brain amino acid transporters affect neuronal excitability. Mutations of renal and intestinal amino acid transporters affect whole-body homoeostasis, resulting in malabsorption and renal problems. Amino acid transporters that are integral parts of metabolic pathways reduce the function of these pathways. Finally, amino acid uptake is essential for cell growth, thereby explaining their role in tumour progression. The present review summarizes the involvement of amino acid transporters in these roles as illustrated by diseases resulting from transporter malfunction.
Collapse
|
187
|
Abstract
There is good agreement concerning average requirements and reference intakes for vitamin B6 but less agreement over safe upper levels from supplements. High-dose supplements cause sensory nerve damage. Supplements of vitamin B6 have been advocated for treatment of the premenstrual syndrome, with little evidence of efficacy. There are plausible mechanisms for an antidepressant action and protection against steroid hormone—dependent cancers but no evidence from clinical trials. Pyridoxamine reduces the glycation of proteins and so could be beneficial in preventing the adverse effects of poor glycemic control in diabetes. There are plausible mechanisms for an antihypertensive action but only suggestive evidence from small intervention trials. There is no evidence that supplements of vitamin B6 have any beneficial effect in hyperhomocysteinemia. There is neither a plausible mechanism nor any evidence from controlled trials for any effect of supplements of vitamin B6 in preventing a decline in cognitive function with aging, amelioration of dementia or autism, or improvement of the carpal tunnel syndrome.
Collapse
|
188
|
Abstract
Niacin is required for a host of critical redox and adenosine diphosphate-ribosylation reactions in metabolism. Niacin deficiency leads to the distinctive signs and symptoms of pellagra, but these can happen in an unpredictable progression and can be altered in patients with polymorphisms in any of the hundreds of niacin-dependent enzymes. The symptomatology of niacin deficiency is becoming a forgotten knowledge base, and niacin deficiency is likely underdiagnosed. Additionally, high levels of niacin and niacinamide have pharmacological effects distinct from their role as sources of vitamin B3, allowing a wide range of effects on processes such as blood flow and lipid metabolism, which can be used to treat or prevent a variety of disease processes.
Collapse
Affiliation(s)
- Jonathan Prousky
- The Canadian College of Naturopathic Medicine, Toronto, Ontario, Canada
| | | | | |
Collapse
|
189
|
Christmas DM, Potokar J, Davies SJ. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase. Neuropsychiatr Dis Treat 2011; 7:431-9. [PMID: 21792309 PMCID: PMC3140295 DOI: 10.2147/ndt.s17573] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.
Collapse
Affiliation(s)
- David M Christmas
- Academic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | | |
Collapse
|
190
|
Badawy AAB, Morgan CJ. Rapid Isocratic Liquid Chromatographic Separation and Quantification of Tryptophan and Six kynurenine Metabolites in Biological Samples with Ultraviolet and Fluorimetric Detection. Int J Tryptophan Res 2010; 3:175-86. [PMID: 22084598 PMCID: PMC3195243 DOI: 10.4137/ijtr.s6225] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A simple, rapid isocratic liquid chromatographic procedure with ultraviolet and fluorimetric detection is described for the separation and quantification of L-tryptophan (Trp) and six of its kynurenine metabolites (kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic, kynurenic, xanthurenic and anthranilic acids). Using the Perkin Elmer LC 200 system, a reverse phase Synergi 4 μ fusion-RP80 A column (250 × 4.6 mm) (Phenomenex), and a mobile phase of 10 mM sodium dihydrogen phosphate: methanol (73:27, by vol) at pH 2.8 and a flow rate of 1.0-1.2 ml/min at 37 °C, a run took ∼13 min. The run took <7 min at 40 °C and a 1.4 ml/min flow rate. Limits of detection of all 7 analytes were 5-72 nM and their recoveries from human plasma and rat serum and liver varied between 62% and 111%. This simple method is suitable for high throughput work and can be further developed to include quinolinic acid and other Trp metabolites.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- The Cardiff School of Health Sciences, University of Wales Institute Cardiff (UWIC), Western Avenue, Cardiff CF5 2YB, Wales, UK
| | - Christopher J Morgan
- Department of Medical Biochemistry, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, Wales, UK
| |
Collapse
|
191
|
Christmas DM, Badawy AAB, Hince D, Davies SJ, Probert C, Creed T, Smithson J, Afzal M, Nutt DJ, Potokar JP. Increased serum free tryptophan in patients with diarrhea-predominant irritable bowel syndrome. Nutr Res 2010; 30:678-88. [DOI: 10.1016/j.nutres.2010.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 12/15/2022]
|
192
|
Shell W, Bullias D, Charuvastra E, May LA, Silver DS. A randomized, placebo-controlled trial of an amino acid preparation on timing and quality of sleep. Am J Ther 2010; 17:133-9. [PMID: 19417589 DOI: 10.1097/mjt.0b013e31819e9eab] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This study was an outpatient, randomized, double-blind, placebo-controlled trial of a combination amino acid formula (Gabadone) in patients with sleep disorders. Eighteen patients with sleep disorders were randomized to either placebo or active treatment group. Sleep latency and duration of sleep were measured by daily questionnaires. Sleep quality was measured using a visual analog scale. Autonomic nervous system function was measured by heart rate variability analysis using 24-hour electrocardiographic recordings. In the active group, the baseline time to fall asleep was 32.3 minutes, which was reduced to 19.1 after Gabadone administration (P = 0.01, n = 9). In the placebo group, the baseline latency time was 34.8 minutes compared with 33.1 minutes after placebo (P = nonsignificant, n = 9). The difference was statistically significant (P = 0.02). In the active group, the baseline duration of sleep was 5.0 hours (mean), whereas after Gabadone, the duration of sleep increased to 6.83 (P = 0.01, n = 9). In the placebo group, the baseline sleep duration was 7.17 +/- 7.6 compared with 7.11 +/- 3.67 after placebo (P = nonsignificant, n = 9). The difference between the active and placebo groups was significant (P = 0.01). Ease of falling asleep, awakenings, and am grogginess improved. Objective measurement of parasympathetic function as measured by 24-hour heart rate variability improved in the active group compared with placebo. An amino acid preparation containing both GABA and 5-hydroxytryptophan reduced time to fall asleep, decreased sleep latency, increased the duration of sleep, and improved quality of sleep.
Collapse
|
193
|
Houtkooper RH, Cantó C, Wanders RJ, Auwerx J. The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 2010; 31:194-223. [PMID: 20007326 PMCID: PMC2852209 DOI: 10.1210/er.2009-0026] [Citation(s) in RCA: 692] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A century after the identification of a coenzymatic activity for NAD(+), NAD(+) metabolism has come into the spotlight again due to the potential therapeutic relevance of a set of enzymes whose activity is tightly regulated by the balance between the oxidized and reduced forms of this metabolite. In fact, the actions of NAD(+) have been extended from being an oxidoreductase cofactor for single enzymatic activities to acting as substrate for a wide range of proteins. These include NAD(+)-dependent protein deacetylases, poly(ADP-ribose) polymerases, and transcription factors that affect a large array of cellular functions. Through these effects, NAD(+) provides a direct link between the cellular redox status and the control of signaling and transcriptional events. Of particular interest within the metabolic/endocrine arena are the recent results, which indicate that the regulation of these NAD(+)-dependent pathways may have a major contribution to oxidative metabolism and life span extension. In this review, we will provide an integrated view on: 1) the pathways that control NAD(+) production and cycling, as well as its cellular compartmentalization; 2) the signaling and transcriptional pathways controlled by NAD(+); and 3) novel data that show how modulation of NAD(+)-producing and -consuming pathways have a major physiological impact and hold promise for the prevention and treatment of metabolic disease.
Collapse
Affiliation(s)
- Riekelt H Houtkooper
- Ecole Polytechnique Fédérale de Lausanne, Laboratory for Integrative and Systems Physiology, Building AI, Station 15, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
194
|
Abstract
Acute and chronic alcohol (ethanol) intake and subsequent withdrawal exert major effects on tryptophan (Trp) metabolism and disposition in human subjects and experimental animals. In rats, activity of the rate-limiting enzyme of Trp degradation, liver Trp pyrrolase (TP), is enhanced by acute, but inhibited after chronic, ethanol administration, then enhanced during withdrawal. These changes lead to alterations in brain serotonin synthesis and turnover mediated by corresponding changes in circulating Trp availability to the brain. A low brain-serotonin concentration characterizes the alcohol-preferring C57BL/6J mouse strain and many alcohol-preferring rat lines. In this mouse strain, liver TP enhancement causes the serotonin decrease. In man, acute ethanol intake inhibits brain serotonin synthesis by activating liver TP. This may explain alcohol-induced depression, aggression and loss of control in susceptible individuals. Chronic alcohol intake in dependent subjects may be associated with liver TP inhibition and a consequent enhancement of brain serotonin synthesis, whereas subsequent withdrawal may induce the opposite effects. The excitotoxic Trp metabolite quinolinate may play a role in the behavioural disturbances of the alcohol-withdrawal syndrome. Some abstinent alcoholics may have a central serotonin deficiency, which they correct by liver TP inhibition through drinking. Further studies of the Trp and serotonin metabolic status in long-term abstinence in general and in relation to personality characteristics, alcoholism typology and genetic factors in particular may yield important information which should facilitate the development of more effective screening, and preventative and therapeutic strategies in this area of mental health.
Collapse
Affiliation(s)
- Abdulla A-B Badawy
- Cardiff and Vale NHS Trust, Biomedical Research Laboratory, Whitchurch Hospital, Cardiff CF14 7XB, UK.
| |
Collapse
|
195
|
Keszthelyi D, Troost FJ, Masclee AAM. Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroenterol Motil 2009; 21:1239-49. [PMID: 19650771 DOI: 10.1111/j.1365-2982.2009.01370.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tryptophan is the precursor of a wide array of metabolites, which are involved in a variety of aspects of human nutrition and metabolism. Accumulating evidence suggests a role of tryptophan metabolites, especially serotonin (5-hydroxytryptamin) in intestinal (patho) physiology, although mechanisms of action are still poorly understood. Alterations of serotonin metabolism may give rise to gastrointestinal dysfunction. Recently, it has been postulated that other metabolites of tryptophan, mostly of the kynurenine pathway, also play a role in regulating gut function. This review analyses the current knowledge of the interrelationship between tryptophan metabolic pathways and summarizes the existing scientific evidence regarding the role of tryptophan metabolites in intestinal function and in the pathogenesis of gastrointestinal diseases.
Collapse
Affiliation(s)
- D Keszthelyi
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands.
| | | | | |
Collapse
|
196
|
Steinhart H, Kirchgessner M. Zur Wechselwirkung einer unterschiedlichen Versorgung mit Tryptophan und neutralen Aminosäuren beim Wachstum von Broilern. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1439-0396.1984.tb01425.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
197
|
Bröer S. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition. IUBMB Life 2009; 61:591-9. [PMID: 19472175 PMCID: PMC7165679 DOI: 10.1002/iub.210] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hartnup disorder (OMIM 234500) is an autosomal recessive disorder, which was first described in 1956 as an aminoaciduria of neutral amino acids accompanied by a variety of symptoms, such as a photo‐sensitive skin‐rash and cerebellar ataxia. The disorder is caused by mutations in the neutral amino acid transporter B0AT1 (SLC6A19)1. To date 21 mutations have been identified in more than twenty families. SLC6A19 requires either collectrin or angiotensin‐converting enzyme 2 for surface expression in the kidney and intestine, respectively. This ties SLC6A19 together with more complex functions such as blood‐pressure control, glomerular structure, and exocytosis. © 2009 IUBMB IUBMB Life, 61(6): 591–599, 2009
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
198
|
Jenny M, Santer E, Klein A, Ledochowski M, Schennach H, Ueberall F, Fuchs D. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 122:261-267. [PMID: 19330924 DOI: 10.1016/j.jep.2009.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Theobroma cacao L. (Sterculiaceae) have been used as food and a remedy for more than 4000 years. Today, about 100 therapeutic applications of cacao are described involving the gastrointestinal, nervous, cardiovascular and immune systems. Pro-inflammatory cytokine interferon-gamma and related biochemical pathways like tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin formation are closely associated with the pathogenesis of such disorders. AIM OF THE STUDY To determine the anti-inflammatory effect of cacao extracts on interferon-gamma and biochemical consequences in immunocompetent cells. MATERIALS AND METHODS Effects of aqueous or ethanolic extracts of cacao were examined on mitogen-induced human peripheral blood mononuclear cells (PBMC) of healthy donors and on lipopolysaccharide-stimulated myelomonocytic THP-1 cells. Antioxidant activity of extracts was determined by oxygen radical absorption capacity (ORAC) assay. RESULTS In mitogen-stimulated PBMC, enhanced degradation of tryptophan, formation of neopterin and interferon-gamma were almost completely suppressed by the cacao extracts at doses of > or = 5 microg/mL. Cacao extracts had no effect on tryptophan degradation in lipopolysaccharide-stimulated THP-1 cells. CONCLUSIONS There is a significant suppressive effect of cacao extracts on pro-inflammatory pathways in activated T-cells. Particularly the influence on indoleamine 2,3-dioxygenase could relate to some of the beneficial health effects ascribed to cacao.
Collapse
Affiliation(s)
- M Jenny
- Division of Biological Chemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Str. 3, 6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
199
|
Gätjens J, Mullins CS, Kampf JW, Thuéry P, Pecoraro VL. Corroborative cobalt and zinc model compounds of alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD). Dalton Trans 2008:51-62. [PMID: 19081971 DOI: 10.1039/b809453e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have synthesised and characterised a series of new Co(II) complexes (1-4, 6, 7) and one new Zn(II) complex (5) employing N(3)- and N(3)O-donor ligands [biap: N,N-bis(2-ethyl-5-methyl-imidazol-4-ylmethyl)amino-propane, KBPZG: potassium N,N-bis(3,5-dimethylpyrazolylmethyl) glycinate, KBPZA: potassium N,N-bis(3,5-dimethylpyrazolylmethyl) alaninate, KB(i)PrPZG: potassium N,N-bis(3,5-di-iso-propylpyrazolylmethyl) glycinate, and KB((t)BuM)PZG: potassium N,N-bis(3-methyl-5-tert-butyl-pyrazolylmethyl)glycinate] as structural models of the metalloenzyme alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD). These complexes were characterised by several techniques including X-ray crystallographic analysis, X-band EPR, and mass spectrometry (ESI-MS). The crystal structures of 1, 2, 6,7 revealed that they exist as mononuclear Co(II) complexes with trigonal-bipyramidal geometry in the solid state. Compounds 3 and 5 form infinite polymeric chains of Co(II) or Zn(II) complexes, respectively, linked by the pendant carboxylate arms of the BPZG(-) ligand. By comparing the degree of distortion in the penta-coordinate complexes, defined by the Addison-parameter tau, with the value determined for the five-coordinate centres found in the active site of ACMSD, it could be seen that complexes 5 and 7 are very good matches for the geometry of the zinc(II) centre in monomer A of the native enzyme. All complexes could be seen as model compounds for the active site of the enzyme ACMSD, where the Co(II) complexes reflected the structural flexibility found in case of two histidine (His177 and His228) residues found in the active site of the enzyme.
Collapse
Affiliation(s)
- Jessica Gätjens
- University of Michigan, Department of Chemistry, Willard H. Dow Laboratories, 930 North University Ave, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
200
|
Müller AC, Daya S. Acyclovir inhibits rat liver tryptophan-2,3-dioxygenase and induces a concomitant rise in brain serotonin and 5-hydroxyindole acetic acid levels. Metab Brain Dis 2008; 23:351-60. [PMID: 18665439 DOI: 10.1007/s11011-008-9095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
Viral diseases of the brain may induce changes in neurotransmitter synthesis and metabolism. In experimental herpes simplex encephalitis, brain serotonin is reduced, whilst it's major metabolite, 5-hydroxyindole acetic acid and turnover is increased. It is well established that reduced levels of brain monoamines, serotonin and norepinephrine may contribute to the symptoms of clinical depression, which raises the possibility that this condition is prevalent in herpes simplex encephalitis. An inverse relationship exists between liver tryptophan-2,3-dioxygenase activity and brain serotonin levels and there is an interdependency between serotonin and norepinephrine levels. The aim of this study is to determine the effect of acyclovir, an antiviral used in the treatment of herpes simplex encephalitis, on rat liver tryptophan-2,3-dioxygenase activity in vitro and in vivo as well as on rat forebrain serotonin, 5-hydroxyindole acetic acid and norepinephrine levels. The results show that acyclovir inhibits tryptophan-2,3-dioxygenase activity in vitro and in vivo, with a concomitant rise in serotonin and 5-hydroxyindole acetic acid levels. However, acyclovir reduces the turnover of serotonin to 5-hydroxyindole acetic acid, without any effect on norepinephrine levels. It appears that acyclovir may have the potential to reduce the clinical symptoms of depression in herpes simplex encephalitis. However, a greater turnover of serotonin to 5-hydroxyindole acetic acid could possibly be masked by conversion of serotonin to 5-hydroxytryptophol, which needs to be investigated further.
Collapse
Affiliation(s)
- Adrienne C Müller
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, P.O. Box 94, Grahamstown, 6140 Eastern Cape, South Africa
| | | |
Collapse
|