151
|
Ang CW, Carlson GC, Coulter DA. Hippocampal CA1 circuitry dynamically gates direct cortical inputs preferentially at theta frequencies. J Neurosci 2006; 25:9567-80. [PMID: 16237162 PMCID: PMC2048747 DOI: 10.1523/jneurosci.2992-05.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hippocampal CA1 pyramidal neurons receive intrahippocampal and extrahipppocampal inputs during theta cycle, whose relative timing and magnitude regulate the probability of CA1 pyramidal cell spiking. Extrahippocampal inputs, giving rise to the primary theta dipole in CA1 stratum lacunosum moleculare, are conveyed by the temporoammonic pathway. The temporoammonic pathway impinging onto the CA1 distal apical dendritic tuft is the most electrotonically distant from the perisomatic region yet is critical in regulating CA1 place cell activity during theta cycles. How does local hippocampal circuitry regulate the integration of this essential, but electrotonically distant, input within the theta period? Using whole-cell somatic recording and voltage-sensitive dye imaging with simultaneous dendritic recording of CA1 pyramidal cell responses, we demonstrate that temporoammonic EPSPs are normally compartmentalized to the apical dendritic tuft by feedforward inhibition. However, when this input is preceded at a one-half theta cycle interval by proximally targeted Schaffer collateral activity, temporoammonic EPSPs propagate to the soma through a joint, codependent mechanism involving activation of Schaffer-specific NMDA receptors and presynaptic inhibition of GABAergic terminals. These afferent interactions, tuned for synaptic inputs arriving one-half theta interval apart, are in turn modulated by feedback inhibition initiated via axon collaterals of pyramidal cells. Therefore, CA1 circuit integration of excitatory inputs endows the CA1 principal cell with a novel property: the ability to function as a temporally specific "AND" gate that provides for sequence-dependent readout of distal inputs.
Collapse
Affiliation(s)
- Chyze W Ang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
152
|
Lipski J, Park TIH, Li D, Lee SCW, Trevarton AJ, Chung KKH, Freestone PS, Bai JZ. Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 2006; 1077:187-99. [PMID: 16483552 DOI: 10.1016/j.brainres.2006.01.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/03/2006] [Accepted: 01/06/2006] [Indexed: 10/25/2022]
Abstract
During a period of acute ischemia in vivo or oxygen-glucose deprivation (OGD) in vitro, CA1 neurons depolarize, swell and become overloaded with calcium. Our aim was to test the hypothesis that the initial responses to OGD are at least partly due to transient receptor potential (TRP) channel activation. As some TRP channels are temperature-sensitive, we also compared the effects of pharmacological blockade of the channels with the effects of reducing temperature. Acute hippocampal slices (350 mum) obtained from Wistar rats were submerged in ACSF at 36 degrees C. CA1 neurons were monitored electrophysiologically using extracellular, intracellular or whole-cell patch-clamp recordings. Cell swelling was assessed by recording changes in relative tissue resistance, and changes in intracellular calcium were measured after loading neurons with fura-2 dextran. Blockers of TRP channels (ruthenium red, La3+, Gd3+, 2-APB) or lowering temperature by 3 degrees C reduced responses to OGD. This included: (a) an increased delay to negative shifts of extracellular DC potential; (b) reduction in rate of the initial slow membrane depolarization, slower development of OGD-induced increase in cell input resistance and slower development of whole-cell inward current; (c) reduced tissue swelling; and (d) a smaller rise in intracellular calcium. Mild hypothermia (33 degrees C) and La3+ or Gd3+ (100 microM) showed an occlusion effect when delay to extracellular DC shifts was measured. Expression of TRPM2/TRPM7 (oxidative stress-sensitive) and TRPV3/TRPV4 (temperature-sensitive) channels was demonstrated in the CA1 subfield with RT-PCR. These results indicate that TRP or TRP-like channels are activated by cellular stress and contribute to ischemia-induced membrane depolarization, intracellular calcium accumulation and cell swelling. We also hypothesize that closing of some TRP channels (TRPV3 and/or TRPV4) by lowering temperature may be partly responsible for the neuroprotective effect of hypothermia.
Collapse
Affiliation(s)
- Janusz Lipski
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, 92-019 Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Mahmoud GS, Grover LM. Growth hormone enhances excitatory synaptic transmission in area CA1 of rat hippocampus. J Neurophysiol 2006; 95:2962-74. [PMID: 16481459 DOI: 10.1152/jn.00947.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The hippocampus produces growth hormone (GH) and contains GH receptors, suggesting a potential role for GH signaling in the regulation of hippocampal function. In agreement with this possibility, previous investigations have found altered hippocampal function and hippocampal-dependent learning and memory after chronic GH administration or deficiency. In this study we applied GH to in vitro rat hippocampal brain slices, to determine whether GH has short-term effects on hippocampal function in addition to previously documented chronic effects. We found that GH enhanced both AMPA- and NMDA-receptor-mediated excitatory postsynaptic potentials (EPSPs) in hippocampal area CA1, but did not alter GABA(A)-receptor-mediated inhibitory synaptic transmission. GH enhancement of excitatory synaptic transmission was gradual, requiring 60-70 min to reach maximum, and occurred without any change in paired-pulse facilitation, suggesting a possible postsynaptic site of action. In CA1 pyramidal neurons, GH enhancement of EPSPs was correlated with significant hyperpolarization and decreased input resistance. GH enhancement of EPSPs required Janus kinase 2 (JAK2), phosphatidylinositol-3 (PI3) kinase, mitogen-activated protein (MAP) kinase kinase (MEK), and synthesis of new proteins. Although PI3 kinase and MEK were required for initiation of GH effects on excitatory synaptic transmission, they were not required for maintained enhancement of EPSPs. GH treatment and tetanus-induced long-term potentiation were mutually occluding, suggesting a common mechanism or mechanisms in both forms of synaptic enhancement. Our results demonstrate that GH has powerful short-term effects on hippocampal function, and extend the timescale for potential roles of GH in regulating hippocampal function and hippocampal-dependent behaviors.
Collapse
Affiliation(s)
- Ghada S Mahmoud
- Department of Physiology, Pharmacology and Toxicology, Marshall University School of Medicine, 1542 Spring Valley Drive, Huntington, WV 25704, USA
| | | |
Collapse
|
154
|
Ariel M. Modulation of visual inputs to accessory optic system by theophylline during hypoxia. Exp Brain Res 2006; 172:351-60. [PMID: 16432694 DOI: 10.1007/s00221-005-0342-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 12/18/2005] [Indexed: 10/25/2022]
Abstract
Neural tissues from fresh water turtles have been electrophysiologically studied in vitro due to their significant resistance to hypoxia. Such neurons have resting membrane potentials that are similar to intact animals and receive similar synaptic inputs evoked by sensory stimuli. One mechanism to reduce the brain's metabolic requirement in the absence of oxygenated blood flow was investigated by blocking adenosine receptors before and during hypoxia. Extracellular and whole-cell patch recordings were made from the basal optic nucleus, whose neurons respond to visual stimuli in vitro. While the addition of the adenosine antagonist theophylline to oxygenated superfusate had minimal effect on the neural activity, theophylline in superfusate bubbled with nitrogen strongly increased activity compared to either oxygenated theophylline or control superfusate bubbled with nitrogen. The increase in spontaneous activity was due to increases to both amplitude and frequency of excitatory synaptic events. Even during these increases, the neurons continued to exhibit their direction-sensitive responses. These results indicate that adenosine may play a role in protecting the viability of the brainstem during hypoxia without reducing visually mediated brainstem reflex control.
Collapse
Affiliation(s)
- Michael Ariel
- Department of Pharmacological and Physiological Science School of Medicine, Saint Louis University, Saint Louis, MO 63104, USA.
| |
Collapse
|
155
|
Davie JT, Kole MHP, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Häusser M. Dendritic patch-clamp recording. Nat Protoc 2006; 1:1235-47. [PMID: 17406407 PMCID: PMC7616975 DOI: 10.1038/nprot.2006.164] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The patch-clamp technique allows investigation of the electrical excitability of neurons and the functional properties and densities of ion channels. Most patch-clamp recordings from neurons have been made from the soma, the largest structure of individual neurons, while their dendrites, which form the majority of the surface area and receive most of the synaptic input, have been relatively neglected. This protocol describes techniques for recording from the dendrites of neurons in brain slices under direct visual control. Although the basic technique is similar to that used for somatic patching, we describe refinements and optimizations of slice quality, microscope optics, setup stability and electrode approach that are required for maximizing the success rate for dendritic recordings. Using this approach, all configurations of the patch-clamp technique (cell-attached, inside-out, whole-cell, outside-out and perforated patch) can be achieved, even for relatively distal dendrites, and simultaneous multiple-electrode dendritic recordings are also possible. The protocol--from the beginning of slice preparation to the end of the first successful recording--can be completed in 3 h.
Collapse
Affiliation(s)
- Jenny T Davie
- Wolfson Institute for Biomedical Research and Department of Physiology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | | | |
Collapse
|
156
|
Wong TP, Marchese G, Casu MA, Ribeiro-da-Silva A, Cuello AC, De Koninck Y. Imbalance towards inhibition as a substrate of aging-associated cognitive impairment. Neurosci Lett 2005; 397:64-8. [PMID: 16378682 DOI: 10.1016/j.neulet.2005.11.055] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 11/26/2022]
Abstract
The number of synapses in the cerebral cortex decreases with aging. However, how this structural change translates into the cognitive impairment observed in aged animals remains unknown. Aged animals are not a homogenous group with respect to their cognitive performances; but instead, they can be separated into aged cognitively unimpaired ("normal") and aged cognitively impaired groups using a spatial memory task such as the Morris water maze. These two aged groups provide an unprecedented opportunity to isolate synaptic properties that relate to cognitive impairment from unrelated factors associated with normal aging. Using such classification, we conducted whole-cell patch-clamp recordings to measure basal spontaneous miniature excitatory (mEPSCs) and inhibitory synaptic currents (mIPSCs) bombarding layer V pyramidal neurons in the parietal cortex. We found that the frequencies of both mEPSC and mIPSC were lower in aged normal rats when compared with young rats. In contrast, aged cognitively impaired rats displayed a reduction in mEPSC frequency only. This results in an imbalance towards inhibition that may be an important substrate of the cognitive impairment in aged animals. We also found that pyramidal neurons in both aged normal and aged cognitively impaired rats exhibit similar structural attritions. Thus, cognitive impairment may be more related to an altered balance between different neurotransmitter systems than a mere reduction in synaptic structures.
Collapse
Affiliation(s)
- Tak Pan Wong
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Que., Canada H3G 1Y6
| | | | | | | | | | | |
Collapse
|
157
|
Solis MM, Perkel DJ. Noradrenergic modulation of activity in a vocal control nucleus in vitro. J Neurophysiol 2005; 95:2265-76. [PMID: 16371453 PMCID: PMC1409810 DOI: 10.1152/jn.00836.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Norepinephrine (NE) can profoundly modulate sensory processing, but its effect on motor function is less well understood. Birdsong is a learned behavior involving sensory and motor processes that are influenced by NE. A potential site of NE action is the robust nucleus of the arcopallium (RA): RA receives noradrenergic inputs and has adrenergic receptors, and it is a sensorimotor area instrumental to song production. We hypothesized that NE modulates RA neurons, and as a first test, we examined the effect of NE on RA activity in vitro. We recorded spontaneous activity extracellularly from isolated RA neurons in brain slices made from adult male zebra finches. These neurons exhibited regular tonic activity with firing rates averaging 5.5 Hz. Bath application of NE rapidly and reversibly decreased firing for the majority of neurons, to the extent that spontaneous activity was often abolished. This was likely a direct effect on the cell recorded, because it occurred with blockade of fast excitatory and inhibitory synaptic transmission or of all synaptic transmission. The NE-induced suppression involved alpha2-adrenergic receptors: yohimbine, an antagonist, completely reversed the suppression, and clonidine, an agonist, partially mimicked it. Perforated patch recordings revealed that NE induced a conductance increase in RA neurons; however, this did not prevent cells from firing when stimulated by afferents in HVC. For some neurons, NE application resulted in an increase in signal-to-noise ratio for spikes evoked by HVC stimulation. Thus NE could strongly modulate the spontaneous activity of RA cells, potentially enhancing signals relayed through RA.
Collapse
Affiliation(s)
- Michele M Solis
- Department of Biology, University of Washington, Seattle, WA 98195-6515, USA.
| | | |
Collapse
|
158
|
Pedarzani P, McCutcheon JE, Rogge G, Jensen BS, Christophersen P, Hougaard C, Strøbaek D, Stocker M. Specific Enhancement of SK Channel Activity Selectively Potentiates the Afterhyperpolarizing Current IAHP and Modulates the Firing Properties of Hippocampal Pyramidal Neurons. J Biol Chem 2005; 280:41404-11. [PMID: 16239218 DOI: 10.1074/jbc.m509610200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SK channels are Ca2+-activated K+ channels that underlie after hyperpolarizing (AHP) currents and contribute to the shaping of the firing patterns and regulation of Ca2+ influx in a variety of neurons. The elucidation of SK channel function has recently benefited from the discovery of SK channel enhancers, the prototype of which is 1-EBIO. 1-EBIO exerts profound effects on neuronal excitability but displays a low potency and limited selectivity. This study reports the effects of DCEBIO, an intermediate conductance Ca2+-activated K+ channel modulator, and the effects of the recently identified potent SK channel enhancer NS309 on recombinant SK2 channels, neuronal apamin-sensitive AHP currents, and the excitability of CA1 neurons. NS309 and DCEBIO increased the amplitude and duration of the apamin-sensitive afterhyperpolarizing current without affecting the slow afterhyperpolarizing current in contrast to 1-EBIO. The potentiation by DCEBIO and NS309 was reversed by SK channel blockers. In current clamp experiments, NS309 enhanced the medium afterhyperpolarization (but not the slow afterhyperpolarization sAHP) and profoundly affected excitability by facilitating spike frequency adaptation in a frequency-independent manner. The potent and specific effect of NS309 on the excitability of CA1 pyramidal neurons makes this compound an ideal tool to assess the role of SK channels as possible targets for the treatment of disorders linked to neuronal hyperexcitability.
Collapse
Affiliation(s)
- Paola Pedarzani
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Shin DSH, Wilkie MP, Pamenter ME, Buck LT. Calcium and protein phosphatase 1/2A attenuate N-methyl-D-aspartate receptor activity in the anoxic turtle cortex. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:50-7. [PMID: 16139540 DOI: 10.1016/j.cbpa.2005.07.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 07/20/2005] [Accepted: 07/24/2005] [Indexed: 11/24/2022]
Abstract
Excitotoxic cell death (ECD) is characteristic of mammalian brain following min of anoxia, but is not observed in the western painted turtle following days to months without oxygen. A key event in ECD is a massive increase in intracellular Ca(2+) by over-stimulation of N-methyl-d-aspartate receptors (NMDARs). The turtle's anoxia tolerance may involve the prevention of ECD by attenuating NMDAR-induced Ca(2+) influx. The goal of this study was to determine if protein phosphatases (PPs) and intracellular calcium mediate reductions in turtle cortical neuron whole-cell NMDAR currents during anoxia, thereby preventing ECD. Whole-cell NMDAR currents did not change during 80 min of normoxia, but decreased 56% during 40 min of anoxia. Okadaic acid and calyculin A, inhibitors of serine/threonine PP1 and PP2A, potentiated NMDAR currents during normoxia and prevented anoxia-mediated attenuation of NMDAR currents. Decreases in NMDAR activity during anoxia were also abolished by inclusion of the Ca(2+) chelator -- BAPTA and the calmodulin inhibitor -- calmidazolium. However, cypermethrin, an inhibitor of the Ca(2+)/calmodulin-dependent PP2B (calcineurin), abolished the anoxic decrease in NMDAR activity at 20, but not 40 min suggesting that this phosphatase might play an early role in attenuating NMDAR activity during anoxia. Our results show that PPs, Ca(2+) and calmodulin play an important role in decreasing NMDAR activity during anoxia in the turtle cortex. We offer a novel mechanism describing this attenuation in which PP1 and 2A dephosphorylate the NMDAR (NR1 subunit) followed by calmodulin binding, a subsequent dissociation of alpha-actinin-2 from the NR1 subunit, and a decrease in NMDAR activity.
Collapse
|
160
|
Tu B, Timofeeva O, Jiao Y, Nadler JV. Spontaneous release of neuropeptide Y tonically inhibits recurrent mossy fiber synaptic transmission in epileptic brain. J Neurosci 2005; 25:1718-29. [PMID: 15716408 PMCID: PMC6725947 DOI: 10.1523/jneurosci.4835-04.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the pilocarpine model of temporal lobe epilepsy, mossy fibers coexpress the inhibitory transmitter neuropeptide Y (NPY) with glutamate. The effects of endogenous and applied NPY on recurrent mossy fiber synaptic transmission were investigated with the use of whole-cell voltage-clamp and field recordings in rat hippocampal slices. Applied NPY reversibly inhibited synaptic transmission at recurrent mossy fiber synapses on dentate granule cells but not at perforant path or associational-commissural synapses. It also reduced the frequency of miniature EPSCs (mEPSCs) in granule cells from epileptic, but not control, rats and depressed granule cell epileptiform activity dependent on the recurrent mossy fiber pathway. These actions of NPY were mediated by activation of presynaptic Y2 receptors. The Y2 receptor antagonist (S)-N2-[[1-[2-[4-[(R,S)-5,11-dihydro-6(6H)-oxodibenz[b,e]azepin-11-yl]-1-piperazinyl]-2-oxoethyl]cyclopentyl]acetyl]-N-[2-[1,2-dihydro-3,5(4H)-dioxo-1,2-diphenyl-3H-1,2,4-triazol-4-yl]ethyl]argininamide (BIIE0246) not only blocked the effects of NPY but also enhanced recurrent mossy fiber synaptic transmission, the frequency of mEPSCs, and the magnitude of mossy fiber-evoked granule cell epileptiform activity when applied by itself. Several observations supported the selectivity of BIIE0246. These results suggest that even the spontaneous release of NPY (or an active metabolite) from recurrent mossy fibers is sufficient to depress glutamate release from this pathway. Tonic release of NPY accounts at least partially for the low probability of glutamate release from recurrent mossy fiber terminals, impedes the ability of these fibers to synchronize granule cell discharge, and may protect the hippocampus from seizures that involve the entorhinal cortex. This pathway may synchronize granule cell discharge more effectively in human brain than in rat because of its lower expression of NPY.
Collapse
Affiliation(s)
- Bin Tu
- Department of Pharmacology and Cancer Biolog, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
161
|
Fatehi M, Kombian SB, Saleh TM. 17beta-estradiol inhibits outward potassium currents recorded in rat parabrachial nucleus cells in vitro. Neuroscience 2005; 135:1075-86. [PMID: 16165285 DOI: 10.1016/j.neuroscience.2005.07.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 07/18/2005] [Accepted: 07/19/2005] [Indexed: 11/15/2022]
Abstract
Evidence is increasingly accumulating in support of a role for the steroid hormone 17beta-estradiol to modify neuronal functions in the mammalian CNS, especially in autonomic centers. In addition to its well known slowly developing and long lasting actions (genomic), estrogen can also rapidly modulate cell signaling events by affecting membrane excitability (non-genomic). Little, however, is known regarding the mechanism(s) by which 17beta-estradiol produces its rapid effects on neuronal membrane excitability. As potassium channels play a crucial role in cell excitability, we hypothesized that 17beta-estradiol caused excitability by modulating potassium flux through the neuronal cell membrane. We tested this hypothesis by examining the effects of 17beta-estradiol on outward potassium currents recorded in cells from the parabrachial nucleus of rats, in vitro. Bath application of 17beta-estradiol (10-100 microM) reversibly reduced voltage-activated outward potassium currents in a concentration-dependent manner. This effect was mimicked by BSA-17beta-estradiol but not mimicked by 17alpha-estradiol and was significantly reduced by ICI 182,780, a selective estrogen receptor antagonist. The inhibitory effect of 17beta-estradiol was dependent on extracellular potassium concentration, with more profound effects observed at lower concentrations. The 17beta-estradiol-induced inhibition of the outward current was blocked by pretreatment with the potassium channel blockers tetraethylammonium and 4-aminopyridine. The time constants of deactivation of tail currents were decreased by 17beta-estradiol over a range of test potentials (-140 to -80 mV). Finally, the inhibitory effect of 17beta-estradiol on the outward potassium currents was blocked following pre-incubation of slices in lavendustin A, a tyrosine kinase inhibitor. Taken together, these results suggest that 17beta-estradiol acts rapidly at an extracellular membrane receptor to reduce tetraethylammonium- and 4-aminopyridine-sensitive outward potassium currents by accelerating the closure of potassium channels. This may be the ionic basis of 17beta-estradiol-induced enhancement of neuronal excitability.
Collapse
Affiliation(s)
- M Fatehi
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, P.E.I., Canada C1A 4P3
| | | | | |
Collapse
|
162
|
Orozco-Cabal L, Pollandt S, Liu J, Vergara L, Shinnick-Gallagher P, Gallagher JP. A novel rat medial prefrontal cortical slice preparation to investigate synaptic transmission from amygdala to layer V prelimbic pyramidal neurons. J Neurosci Methods 2005; 151:148-58. [PMID: 16154203 DOI: 10.1016/j.jneumeth.2005.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 06/30/2005] [Accepted: 07/10/2005] [Indexed: 11/24/2022]
Abstract
Electrophysiological recordings from identified synapses in CNS slice preparations in vitro provide important information regarding the connectivity of neuronal circuits and the underlying cellular mechanisms responsible for neuronal excitability and synaptic transmission. We present an anatomical, electrophysiological, and pharmacological characterization of a novel brain slice preparation (BLA-mPFC) to investigate basolateral amygdala synaptic input to rat layer V medial prefrontal cortex pyramidal neurons. A fluorescent tracer (DiI) unilaterally infused in vivo into the basolateral amygdala was used to detect amygdala efferent fibers innervating layer V of the prelimbic and infralimbic cortices within prefrontal cortex slices. In vitro, evoked synaptic responses elicited by stimulating identified basolateral amygdala pathway terminals within the acute BLA-mPFC slice preparation yielded monosynaptic excitatory postsynaptic responses in layer V pyramidal neurons from the prelimbic cortex as determined by extracellular and intracellular recordings. The BLA-mPFC preparation provides essential knowledge of amygdaloid input to the medial prefrontal cortex where information from various brain areas is integrated and returned to subcortical structures, such as the amygdala itself. In addition to investigating normal synaptic function, this preparation provides opportunities to investigate this synapse in animals which have received drugs chronically or have been manipulated genetically to model specific mental diseases known to involve prefrontal cortex and/or amygdala pathology (e.g., schizophrenia, addiction, anxiety, and depression).
Collapse
Affiliation(s)
- Luis Orozco-Cabal
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1031, USA.
| | | | | | | | | | | |
Collapse
|
163
|
Garraway SM, Anderson AJ, Mendell LM. BDNF-Induced Facilitation of Afferent-Evoked Responses in Lamina II Neurons Is Reduced After Neonatal Spinal Cord Contusion Injury. J Neurophysiol 2005; 94:1798-804. [PMID: 15901762 DOI: 10.1152/jn.00179.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We previously reported that brain-derived neurotrophic factor (BDNF), a pronociceptive neurotransmitter, induces synaptic facilitation of excitatory postsynaptic current (EPSC) in lamina II neurons of neonatal rats up to P14 in a N-methyl-d-aspartate (NMDA) receptor-dependent manner. Here we used the patch-clamp technique to study synaptic and NMDA-evoked responses in transverse spinal slices in the lumbar enlargement as well as the ability of BDNF to modify these responses from 1 day to 6 wk after neonatal contusion. In older uninjured animals (>P14), BDNF continued to evoke synaptic facilitation although superfusion of NMDA (in TTX) induced inward current of significantly smaller amplitude than that observed in younger rats. After contusion injury, BDNF was unable to facilitate dorsal root-evoked EPSCs in lamina II neurons despite the finding that NMDA-evoked currents were only slightly smaller than those observed in age-matched uninjured animals. These findings suggest that although BDNF-induced facilitation of the AMPA/kainate receptor-mediated response to dorsal root stimulation is maintained in the mature dorsal horn from intact rats, BDNF may no longer elicit these pronociceptive actions after neonatal contusion injury. The lack of change in NMDA-evoked currents in contused cords suggests that diminished NMDA receptor function is not the major cause of the decline in BDNF action after contusion. It seems more likely that diminished trkB expression and enhanced expression of truncated trkB receptors in the contused cord play a significant role in determining the reduced effect of BDNF under these conditions.
Collapse
Affiliation(s)
- Sandra M Garraway
- Department of Neurobiology and Behavior, 550 Life Sciences Bldg., State University of New York, Stony Brook, New York 11794-5230, USA
| | | | | |
Collapse
|
164
|
Haj-Dahmane S, Shen RY. The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. J Neurosci 2005; 25:896-905. [PMID: 15673670 PMCID: PMC6725638 DOI: 10.1523/jneurosci.3258-04.2005] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The wake-promoting neuropeptides orexins (hypocretins) play a crucial role in controlling neuronal excitability and synaptic transmission in the CNS. In this study, using whole-cell patch-clamp recordings in an acute dorsal raphe nucleus (DRN) slice preparation, we report that orexin B (Orx-B) depresses the evoked glutamate-mediated synaptic currents in DRN 5-HT neurons. The Orx-B-induced depression is accompanied by an increase in the paired-pulse ratio and the coefficient of variance, suggesting a presynaptic site of action. Orx-B also reduces the frequency but not the amplitude of miniature EPSCs, indicating that depression of glutamatergic transmission is mediated by a decrease in glutamate release. Surprisingly, the Orx-B-induced inhibition of glutamatergic transmission is abolished by postsynaptic inhibition of G-protein signaling with GDPbetaS, suggesting that this effect is signaled by postsynaptic orexin receptors and expressed presynaptically, presumably through a retrograde messenger. Interestingly, the Orx-B-induced depression of glutamate release is mimicked and occluded by the cannabinoid receptor agonist WIN 55,212-2, and is abolished by the CB1 cannabinoid receptor antagonist AM 251. These results imply that the Orx-B-induced depression of glutamatergic transmission to DRN 5-HT neurons is mediated by retrograde endocannabinoid release. Examination of downstream signaling pathways involved in this response indicates that the effect of Orx-B requires the activation of phospholipase C and DAG lipase enzymatic pathways but not a rise in postsynaptic intracellular calcium. Therefore, our findings reveal a previously unsuspected mechanism by which postsynaptic orexin receptors can modulate glutamatergic synaptic transmission to DRN 5-HT neurons.
Collapse
Affiliation(s)
- Samir Haj-Dahmane
- Research Institute on Addictions, University at Buffalo, State University of New York, Buffalo, New York 14203, USA.
| | | |
Collapse
|
165
|
Schneider SP. Mechanosensory afferent input and neuronal firing properties in rodent spinal laminae III-V: re-examination of relationships with analysis of responses to static and time-varying stimuli. Brain Res 2005; 1034:71-89. [PMID: 15713261 DOI: 10.1016/j.brainres.2004.11.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2004] [Indexed: 10/25/2022]
Abstract
Relationships between neuronal firing pattern and mechanosensory input in the deep dorsal horn were investigated using whole-cell recordings from isolated hamster spinal cord with innervation from an attached skin patch. Neurons that fired repetitively to depolarizing current (tonic cells) responded to both moving and static stimulation of their cutaneous receptive fields, and discharged continuously for the duration of stimulus application. Neurons responding to depolarizing current with transient, rapidly adapting firing (phasic cells) were significantly more responsive to stimulus movement than to static skin contact. Phasic cells typically issued a brief discharge at the onset or termination of a stimulus; their responses during static skin contact were weaker than tonic cells. Tonic cells were activated during both ramp and steady-state skin indentations, whereas phasic cells responded with their strongest excitation to displacement velocities exceeding 8 microm/ms. Mechanosensory input to phasic cells originated primarily from low threshold receptors, whereas tonic cells demonstrated a mixture of inputs from both low and high threshold sources. A third class of neurons responded to depolarizing current with a pronounced firing delay and displayed a sensitivity to cutaneous stimuli that was similar to tonic cells except they showed a modest decrease in firing as skin indentation velocity increased. The results suggest a correlation between functional properties of mechanoreceptive afferent fibers and intrinsic discharge properties of laminae III-V neurons that may significantly influence integration of cutaneous mechanosensory information at the first spinal relay.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, 2196 Biomedical Physical Sciences, Michigan State University, E. Lansing, MI 48824-3320, USA.
| |
Collapse
|
166
|
Manseau F, Danik M, Williams S. A functional glutamatergic neurone network in the medial septum and diagonal band area. J Physiol 2005; 566:865-84. [PMID: 15919710 PMCID: PMC1464770 DOI: 10.1113/jphysiol.2005.089664] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The medial septum and diagonal band complex (MS/DB) is important for learning and memory and is known to contain cholinergic and GABAergic neurones. Glutamatergic neurones have also been recently described in this area but their function remains unknown. Here we show that local glutamatergic neurones can be activated using 4-aminopyridine (4-AP) and the GABA(A) receptor antagonist bicuculline in regular MS/DB slices, or mini-MS/DB slices. The spontaneous glutamatergic responses were mediated by AMPA receptors and, to a lesser extend, NMDA receptors, and were characterized by large, sometimes repetitive activity that elicited bursts of action potentials postsynaptically. Similar repetitive AMPA receptor-mediated bursts were generated by glutamatergic neurone activation within the MS/DB in disinhibited organotypic MS/DB slices, suggesting that the glutamatergic responses did not originate from extrinsic glutamatergic synapses. It is interesting that glutamatergic neurones were part of a synchronously active network as large repetitive AMPA receptor-mediated bursts were generated concomitantly with extracellular field potentials in intact half-septum preparations in vitro. Glutamatergic neurones appeared important to MS/DB activation as strong glutamatergic responses were present in electrophysiologically identified putative cholinergic, GABAergic and glutamatergic neurones. In agreement with this, we found immunohistochemical evidence that vesicular glutamate-2 (VGLUT2)-positive puncta were in proximity to choline acetyltransferase (ChAT)-, glutamic acid decarboxylase 67 (GAD67)- and VGLUT2-positive neurones. Finally, MS/DB glutamatergic neurones could be activated under more physiological conditions as a cholinergic agonist was found to elicit rhythmic AMPA receptor-mediated EPSPs at a theta relevant frequency of 6-10 Hz. We propose that glutamatergic neurones within the MS/DB can excite cholinergic and GABAergic neurones, and that they are part of a connected excitatory network, which upon appropriate activation, may contribute to rhythm generation.
Collapse
Affiliation(s)
- F Manseau
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875, Lasalle Boulevard, Montreal, Quebec, Canada H4H 1R3
| | | | | |
Collapse
|
167
|
Person AL, Perkel DJ. Unitary IPSPs drive precise thalamic spiking in a circuit required for learning. Neuron 2005; 46:129-40. [PMID: 15820699 DOI: 10.1016/j.neuron.2004.12.057] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/03/2004] [Accepted: 12/09/2004] [Indexed: 11/30/2022]
Abstract
Song learning in birds requires a basal ganglia-thalamo-pallial loop that contains a calyceal GABAergic synapse in the thalamus. Information processing within this circuit is critical for proper song development; however, it is unclear whether activation of the inhibitory output of the basal ganglia structure Area X can drive sustained activity in its thalamic target, the medial portion of the dorsolateral thalamic nucleus (DLM). We show that high-frequency, random activation of this GABAergic synapse can drive precisely timed firing in DLM neurons in brain slices in the absence of excitatory input. Complex IPSP trains, including spike trains recorded in vivo, drive spiking in slices with high reproducibility, even between animals. Using a simple model, we can predict much of DLM's response to natural stimulus trains. These data elucidate basic rules by which thalamic relay neurons translate IPSPs into suprathreshold output and demonstrate extrathalamic GABAergic activation of thalamus.
Collapse
Affiliation(s)
- Abigail L Person
- Graduate Program in Neurobiology and Behavior, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
168
|
Kuzmiski JB, Barr W, Zamponi GW, MacVicar BA. Topiramate Inhibits the Initiation of Plateau Potentials in CA1 Neurons by Depressing R-type Calcium Channels. Epilepsia 2005; 46:481-9. [PMID: 15816941 DOI: 10.1111/j.0013-9580.2005.35304.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Cholinergic-dependent plateau potentials (PPs) are intrinsically generated conductances that can elicit ictal-type seizure activity. The aim of this study was to investigate the actions of topiramate (TPM) on the generation of PPs. METHODS We used whole-cell patch-clamp recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the effects of TPM on the PPs. RESULTS In current-clamp mode, action potentials evoked PPs after cholinergic receptor stimulation. Therapeutically relevant concentrations of TPM (50 microM) depressed the PPs evoked by action potentials. Surprisingly, in voltage-clamp mode, we discovered that the cyclic nucleotide-gated (CNG) current that underlies PP generation (denoted as I(tail)) was not depressed. However, significantly longer depolarizing voltage steps were required to elicit I(tail). This suggested that the calcium entry trigger for evoking PPs was depressed by TPM and not I(tail) itself. TPM had no effect on calcium spikes in control conditions; however, TPM did reduce calcium spikes after cholinergic-receptor stimulation. We recently found that R-type calcium spikes are enhanced by cholinergic-receptor stimulation. Therefore we isolated R-type calcium spikes with a cocktail containing tetrodotoxin, omega-conotoxin MVIIC, omega-conotoxin-GVIA, omega-agatoxin IVA, and nifedipine. R-type calcium spikes were significantly depressed by TPM. We also examined the effects of TPM on recombinant Ca(V)2.3 calcium channels expressed in tsA-201 cells. TPM depressed currents mediated by Ca(V)2.3 subunits by a hyperpolarizing shift in steady-state inactivation. CONCLUSIONS We have found that TPM reduces ictal-like activity in CA1 hippocampal neurons through a novel inhibitory action of R-type calcium channels.
Collapse
Affiliation(s)
- Joseph Brent Kuzmiski
- Brain Research Centre, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
169
|
Farries MA, Meitzen J, Perkel DJ. Electrophysiological properties of neurons in the basal ganglia of the domestic chick: conservation and divergence in the evolution of the avian basal ganglia. J Neurophysiol 2005; 94:454-67. [PMID: 15772239 DOI: 10.1152/jn.00539.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the basal ganglia of birds and mammals share an enormous number of anatomical, histochemical, and electrophysiological characteristics, studies in songbirds have revealed some important differences. Specifically, a specialized region of songbird striatum (the input structure of the basal ganglia) has an anatomical projection and a physiologically defined cell type that are characteristic of the globus pallidus. At present, it is not clear if these differences result from adaptations specific to songbirds and perhaps a few other avian taxa or are common to all birds. We shed some light on this issue by characterizing the morphology and electrophysiological properties of basal ganglia neurons in an avian species that is only distantly related to songbirds: the domestic chick. We recorded neurons in chick basal ganglia in a brain slice preparation, using the whole cell technique. We found that chick striatum, like songbird striatum, contains a pallidum-like cell type never reported in mammalian striatum, supporting the hypothesis that this feature is common to all birds. We also discovered that spiny neurons, the most common cell type in the striatum of all amniotes, possess a diverse set of physiological properties in chicks that distinguish them from both mammals and songbirds. This study revealed an unexpectedly complex pattern of conservation and divergence in the properties of neurons recorded in avian striatum.
Collapse
Affiliation(s)
- Michael A Farries
- Department of Biology and Otolaryngology, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
170
|
Hickmott PW. Changes in intrinsic properties of pyramidal neurons in adult rat S1 during cortical reorganization. J Neurophysiol 2005; 94:501-11. [PMID: 15758053 DOI: 10.1152/jn.00924.2004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Peripheral denervation causes significant changes in the organization of developing or adult primary somatosensory cortex (S1). However, the basic mechanisms that underlie reorganization are not well understood. Most attention has been focused on possible synaptic mechanisms associated with reorganization. However, another important determinant of cortical circuit function is the intrinsic membrane properties of neurons in the circuit. Here we document changes in the intrinsic properties of pyramidal neurons in cortical layer 2/3 in adult rat primary somatosensory cortex (S1) after varying durations of forepaw denervation. Denervation of the forepaw induced a rapid and sustained shift in the location of the border between the forepaw and lower jaw representations of adult S1 (reorganization). Coronal slices from the reorganized region were maintained in vitro and the intrinsic properties of layer 2/3 pyramidal neurons of S1 were determined using whole cell recordings. In general, passive membrane properties were not affected by denervation; however, a variety of active properties were. The most robust changes were increases in the amplitudes of the fast and medium afterhyperpolarization (AHP) and an increase in the interval between action potentials (APs). Additional changes at some durations of denervation were observed for the AP threshold. These observations indicate that changes in intrinsic properties, mostly reflecting a decrease in overall excitation, may play a role in changes in cortical circuit properties during reorganization in adult S1, and suggest a possible role for AHPs in some of those changes.
Collapse
Affiliation(s)
- Peter W Hickmott
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, OLMH 1344, Riverside, California 92521, USA.
| |
Collapse
|
171
|
Pierson PM, Liu X, Raggenbass M. Suppression of potassium channels elicits calcium-dependent plateau potentials in suprachiasmatic neurons of the rat. Brain Res 2005; 1036:50-9. [PMID: 15725401 DOI: 10.1016/j.brainres.2004.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 11/30/2004] [Accepted: 12/04/2004] [Indexed: 11/22/2022]
Abstract
By using whole-cell recordings in acute and organotypic hypothalamic slices, we found that following K+ channel blockade, sustained plateau potentials can be elicited by current injection in suprachiasmatic neurons. In an attempt to determine the ionic basis of these potentials, ion-substitution experiments were carried out. It appeared that to generate plateau potentials, calcium influx was required. Plateau potentials were also present when extracellular calcium was replaced by barium, but were independent upon an increase in the intracellular free calcium concentration. Substitution of extracellular sodium by the impermeant cation N-methyl-D-glucamine indicated that sodium influx could also contribute to plateau potentials. To gain some information on the pharmacological profile of the Ca++ channels responsible for plateau potentials, selective blocker of various types of Ca++ channel were tested. Plateau potentials were unaffected by isradipine, an L-type Ca++ channel blocker. However, they were slightly reduced by omega-conotoxin GVIA and omega-agatoxin TK, blockers of N-type and P/Q-type Ca++ channels, respectively. These data suggest that R-type Ca++ channels probably play a major role in the genesis of plateau potentials. We speculate that neurotransmitters/neuromodulators capable of reducing or suppressing potassium conductance(s) may elicit a Ca++-dependent plateau potential in suprachiasmatic neurons, thus promoting sustained firing activity and neuropeptide release.
Collapse
Affiliation(s)
- Patricia M Pierson
- Laboratoire de Physiologie Cellulaire et Moléculaire, CNRS UMR 6548, Faculté des Sciences, Université de Nice-Sophia Antipolis, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
172
|
Schwartz EJ, Gerachshenko T, Alford S. 5-HT Prolongs Ventral Root Bursting Via Presynaptic Inhibition of Synaptic Activity During Fictive Locomotion in Lamprey. J Neurophysiol 2005; 93:980-8. [PMID: 15456802 DOI: 10.1152/jn.00669.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotor pattern generation is maintained by integration of the intrinsic properties of spinal central pattern generator (CPG) neurons in conjunction with synaptic activity of the neural network. In the lamprey, the spinal locomotor CPG is modulated by 5-HT. On a cellular level, 5-HT presynaptically inhibits synaptic transmission and postsynaptically inhibits a Ca2+-activated K+current responsible for the slow afterhyperpolarization (sAHP) that follows action potentials in ventral horn neurons. To understand the contribution of these cellular mechanisms to the modulation of the spinal CPG, we have tested the effect of selective 5-HT analogues against fictive locomotion initiated by bath application of N-methyl-d-aspartate (NMDA). We found that the 5-HT1Dagonist, L694-247, dramatically prolongs the frequency of ventral root bursting. Furthermore, we show that L694-247 presynaptically inhibits synaptic transmission without altering postsynaptic Ca2+-activated K+currents. We also confirm that 5-HT inhibits synaptic transmission at concentrations that modulate locomotion. To examine the mechanism by which selective presynaptic inhibition modulates the frequency of fictive locomotion, we performed voltage- and current-clamp recordings of CPG neurons during locomotion. Our results show that 5-HT decreases glutamatergic synaptic drive within the locomotor CPG during fictive locomotion. Thus we conclude that presynaptic inhibition of neurotransmitter release contributes to 5-HT–mediated modulation of locomotor activity.
Collapse
Affiliation(s)
- Eric J Schwartz
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60607, USA
| | | | | |
Collapse
|
173
|
Bergeron R, Coyle JT, Tsai G, Greene RW. NAAG reduces NMDA receptor current in CA1 hippocampal pyramidal neurons of acute slices and dissociated neurons. Neuropsychopharmacology 2005; 30:7-16. [PMID: 15354184 DOI: 10.1038/sj.npp.1300559] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-acetylaspartylglutamate (NAAG) is an abundant neuropeptide in the nervous system, yet its functions are not well understood. Pyramidal neurons of the CA1 sector of acutely prepared hippocampal slices were recorded using the whole-cell patch-clamp technique. At low concentrations (20 microM), NAAG reduced isolated N-methyl-D-aspartate receptor (NMDAR)-mediated synaptic currents or NMDA-induced currents. The NAAG-induced change in the NMDA concentration/response curve suggested that the antagonism was not competitive. However, the NAAG-induced change in the concentration/response curve for the NMDAR co-agonist, glycine, indicated that glycine can overcome the NAAG antagonism. The antagonism of the NMDAR induced by NAAG was still observed in the presence of LY-341495, a potent and selective mGluR3 antagonist. Moreover, in dissociated pyramidal neurons of the CA1 region, NAAG also reduced the NMDA current and this effect was reversed by glycine. These results suggest that NAAG reduces the NMDA currents in hippocampal CA1 pyramidal neurons.
Collapse
|
174
|
Farries MA, Ding L, Perkel DJ. Evidence for ?direct? and ?indirect? pathways through the song system basal ganglia. J Comp Neurol 2005; 484:93-104. [PMID: 15717304 DOI: 10.1002/cne.20464] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Song learning in oscine birds relies on a circuit known as the "anterior forebrain pathway," which includes a specialized region of the avian basal ganglia. This region, area X, is embedded within a telencephalic structure considered homologous to the striatum, the input structure of the mammalian basal ganglia. Area X has many features in common with the mammalian striatum, yet has distinctive traits, including largely aspiny projection neurons that directly innervate the thalamus and a cell type that physiologically resembles neurons recorded in the mammalian globus pallidus. We have proposed that area X is a mixture of striatum and globus pallidus and has the same functional organization as circuits in the mammalian basal ganglia. Using electrophysiological and anatomical approaches, we found that area X contains a functional analog of the "direct" striatopallidothalamic pathway of mammals: axons of the striatal spiny neurons make close contacts on the somata and dendrites of pallidal cells. A subset of pallidal neurons project directly to the thalamus. Surprisingly, we found evidence that many pallidal cells may not project to the thalamus, but rather participate in a functional analog of the mammalian "indirect" pathway, which may oppose the effects of the direct pathway. Our results deepen our understanding of how information flows through area X and provide more support for the notion that song learning in oscines employs physiological mechanisms similar to basal ganglia-dependent forms of motor learning in mammals.
Collapse
Affiliation(s)
- Michael A Farries
- Department of Biology, University of Washington, Seattle, Washington 98195-6515, USA
| | | | | |
Collapse
|
175
|
Kantrowitz JT, Francis NN, Salah A, Perkins KL. Synaptic depolarizing GABA Response in adults is excitatory and proconvulsive when GABAB receptors are blocked. J Neurophysiol 2004; 93:2656-67. [PMID: 15590725 DOI: 10.1152/jn.01026.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the presence of 4-aminopyridine, interneurons fire synchronously, causing giant GABA-mediated postsynaptic potentials (GPSPs; GPSCs in voltage clamp) in CA3 pyramidal cells in hippocampal slices from adult guinea pigs. These triphasic GPSPs are composed of a GABA(A)-mediated hyperpolarizing component, a depolarizing component, and a GABA(B)-mediated hyperpolarizing component. We propose that GABA(B) receptors exert control over the postsynaptic depolarizing GABA response. Microelectrode and cell-attached recordings demonstrated that the mean number of action potentials during the depolarizing component of the GPSP increased dramatically in the presence of the GABA(B) receptor antagonist (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2- hydroxypropyl](phenylmethyl) phosphinic acid (CGP 55845A; P = 0.003 and 0.0005, respectively). Whole cell voltage-clamp recordings showed that the postsynaptic GABA(B) and depolarizing GABA components of the GPSC overlap substantially, allowing the GABA(B)-mediated hyperpolarization to suppress the excitation mediated by the depolarizing GABA component. Further voltage-clamp recordings showed that CGP 55845A increased the duration of the depolarizing GABA component of the GPSC even when the GABA(B) component had already been blocked by internal QX-314, suggesting that CGP 55845A also increased the duration of GABA release. When glutamatergic transmission is intact, GPSPs directly precede epileptiform afterdischarges. We hypothesize that the depolarizing component of the GPSP triggers the epileptiform events and show here that enhancement of the depolarizing component with CGP 55845A increased epileptiform activity. CGP 55845A increased the likelihood of a GPSP triggering an epileptiform event from 32 to 99% (P = 0.0000001), and significantly increased the number of afterdischarges per epileptiform event (P = 0.001). Loss of GABA(B) receptor function is associated with temporal lobe epilepsy in rodents and humans. We show here that GABA(B) receptors exert control over the synaptic depolarizing GABA response and that block of GABA(B) receptors makes the depolarizing GABA response excitatory and proconvulsive.
Collapse
Affiliation(s)
- Joshua T Kantrowitz
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
176
|
Thuault SJ, Brown JT, Sheardown SA, Jourdain S, Fairfax B, Spencer JP, Restituito S, Nation JHL, Topps S, Medhurst AD, Randall AD, Couve A, Moss SJ, Collingridge GL, Pangalos MN, Davies CH, Calver AR. The GABAB2 subunit is critical for the trafficking and function of native GABAB receptors. Biochem Pharmacol 2004; 68:1655-66. [PMID: 15451409 DOI: 10.1016/j.bcp.2004.07.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/12/2004] [Indexed: 11/25/2022]
Abstract
Studies in heterologous systems have demonstrated that heterodimerisation of the two GABA(B) receptor subunits appears to be crucial for the trafficking and signalling of the receptor. Gene targeting of the GABA(B1) gene has demonstrated that the expression of GABA(B1) is essential for GABA(B) receptor function in the central nervous system (CNS). However, the contribution of the GABA(B2) subunit in the formation of native GABA(B) receptors is still unclear, in particular whether other proteins can substitute for this subunit. We have created a transgenic mouse in which the endogenous GABA(B2) gene has been mutated in order to express a C-terminally truncated version of the protein. As a result, the GABA(B1) subunit does not reach the cell surface and concomitantly both pre- and post-synaptic GABA(B) receptor functions are abolished. Taken together with previous gene deletion studies for the GABA(B1) subunit, this suggests that classical GABA(B) function in the brain is exclusively mediated by GABA(B1/2) heteromers.
Collapse
Affiliation(s)
- Seb J Thuault
- Neurology and GI CEDD, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Puche AC, Heyward P, Shipley MT. Transmembrane dye labeling and immunohistochemical staining of electrophysiologically characterized single neurons. J Neurosci Methods 2004; 137:235-40. [PMID: 15262066 DOI: 10.1016/j.jneumeth.2004.02.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 02/24/2004] [Accepted: 02/24/2004] [Indexed: 11/21/2022]
Abstract
Numerous studies have used whole-cell patch recording to characterize the electrophysiology of neurons and, via intracellular dye filling, the detailed morphology of the same cells. However, it has been difficult to demonstrate the presence of small soluble molecules within such cells, because washout of the soluble contents of the cell into the patch pipette precludes their later detection by immunohistochemistry. This leaves a major gap in our understanding of circuits made up of neurochemically heterogeneous neurons. To bridge this gap we have developed a transmembrane labeling approach, employing membrane-permeant dye in conjunction with perforated patch electrophysiology. Using this method we have successfully recorded from juxtaglomerular cells in the olfactory bulb, reconstructed the morphology of the cells, and demonstrated expression of soluble neurochemical markers within the same cells. This new technique provides a reliable means to link the physiology, morphology, and neurochemistry of single identified neurons studied using patch-clamp recording.
Collapse
Affiliation(s)
- Adam C Puche
- Department of Anatomy and Neurobiology, Program in Neuroscience, School of Medicine, The University of Maryland, Rm. 222, 685 West Baltimore St., Baltimore, MD 21201, USA
| | | | | |
Collapse
|
178
|
Barton ME, White HS, Wilcox KS. The effect of CGX-1007 and CI-1041, novel NMDA receptor antagonists, on NMDA receptor-mediated EPSCs. Epilepsy Res 2004; 59:13-24. [PMID: 15135163 DOI: 10.1016/j.eplepsyres.2003.12.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Accepted: 12/24/2003] [Indexed: 11/20/2022]
Abstract
The N-methyl-D-aspartate (NMDA) receptor-gated ion channel is comprised of at least one NR1 subunit and any of four NR2 subunits (NR2A-D). The NR2 subunit confers different pharmacological and kinetic properties to the receptor. CGX-1007 (Conantokin G), a 17-amino acid polypeptide isolated from the venom of Conus geographus, is a novel NMDA receptor antagonist that is thought to be selective for the NR2B subunit. CGX-1007 has been reported to have highly potent, broad-spectrum anticonvulsant activity in animal seizure models. CI-1041 is an investigational compound, which also possesses anticonvulsant activity and has been shown to be highly selective for NR2B containing NMDA receptors. Although both CI-1041 and CGX-1007 are reportedly NR2B specific antagonists, they differ in their ability to block amygdala-kindled seizures, suggesting that the mechanism of action of these compounds differs. The present study was designed to test the hypothesis that CI-1041 and CGX-1007 would differentially modulate the function of NMDA receptors at excitatory synapses. Using the whole cell patch clamp technique, CGX-1007 and CI-1041 were found to block CA1 pyramidal cell, NMDA receptor-mediated excitatory postsynaptic currents (N-EPSCs) in a concentration-dependent manner in hippocampal slices from P4-P6 animals. In contrast, only CGX-1007 decreased NMDA receptor-mediated EPSC peak amplitude in slices from adult animals. The CGX-1007 block of peak amplitude was accompanied by a similar concentration-dependent decrease in decay kinetics of NMDA receptor-mediated EPSCs. These results suggest that while CI-1041 may be selective for NMDA receptors containing the NR2B subunit, CGX-1007 appears to be less selective than previously reported.
Collapse
Affiliation(s)
- Matthew E Barton
- Anticonvulsant Drug Development Program, Department of Pharmacology and Toxicology, University of Utah, 20 S 2030 E, RM 408, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
179
|
Han JS, Bird GC, Neugebauer V. Enhanced group III mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Neuropharmacology 2004; 46:918-26. [PMID: 15081788 DOI: 10.1016/j.neuropharm.2004.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Revised: 10/25/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
Pain has a strong emotional component. A key player in emotionality, the amygdala is also involved in pain processing. Our previous studies showed synaptic plasticity in the central nucleus of the amygdala (CeA) in a model of arthritic pain. Here, we address the role of group III metabotropic glutamate receptors (mGluRs) in the regulation of synaptic transmission in CeA neurons. Whole-cell current- and voltage-clamp recordings were made from neurons in the latero-capsular part of the CeA in brain slices from control rats and arthritic rats (>6 h postinduction). The latero-capsular part of the CeA is the target of the spino-parabrachio-amygdaloid pain pathway and is now designated as the "nociceptive amygdala". Monosynaptic excitatory postsynaptic currents (EPSCs) were evoked by electrical stimulation of afferents from the pontine parabrachial (PB) area. LAP4 decreased the amplitude of EPSCs more potently in CeA neurons from arthritic rats (EC(50)=1.2 nM) than in control animals (EC(50)=11.5 nM). The inhibitory effect of LAP4 was reversed by a selective group III mGluR antagonist (UBP1112). During the application of LAP4, paired-pulse facilitation was increased, while no significant changes in slope conductance and action potential firing rate of CeA neurons were observed. These data suggest that presynaptic group III mGluRs are involved in the regulation of synaptic plasticity in the amygdala in an arthritis pain model.
Collapse
Affiliation(s)
- Jeong S Han
- Department of Anatomy and Neurosciences and Marine Biomedical Institute, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | |
Collapse
|
180
|
Kaur S, Lazar R, Metherate R. Intracortical Pathways Determine Breadth of Subthreshold Frequency Receptive Fields in Primary Auditory Cortex. J Neurophysiol 2004; 91:2551-67. [PMID: 14749307 DOI: 10.1152/jn.01121.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To examine the basis of frequency receptive fields in auditory cortex (ACx), we have recorded intracellular (whole cell) and extracellular (local field potential, LFP) responses to tones in anesthetized rats. Frequency receptive fields derived from excitatory postsynaptic potentials (EPSPs) and LFPs from the same location resembled each other in terms of characteristic frequency (CF) and breadth of tuning, suggesting that LFPs reflect local synaptic (including subthreshold) activity. Subthreshold EPSP and LFP receptive fields were remarkably broad, often spanning five octaves (the maximum tested) at moderate intensities (40–50 dB above threshold). To identify receptive-field features that are generated intracortically, we microinjected the GABAA receptor agonist muscimol (0.2–5.1 mM, 1–5 μl) into ACx. Muscimol dramatically reduced LFP amplitude and reduced receptive-field bandwidth, implicating intracortical contributions to these features but had lesser effects on CF response threshold or onset latency, suggesting minimal loss of thalamocortical input. Reversal of muscimol's inhibition preferentially at the recording site by diffusion from the recording pipette of the GABAA receptor antagonist picrotoxin (0.01–100 μM) disinhibited responses to CF stimuli more than responses to spectrally distant, non-CF stimuli. We propose that thalamocortical and intracortical pathways preferentially contribute to responses evoked by CF and non-CF stimuli, respectively, and that intracortical projections linking frequency representations determine the breadth of receptive fields in primary ACx. Broad, subthreshold receptive fields may distinguish ACx from subcortical auditory relay nuclei, promote integrated responses to spectrotemporally complex stimuli, and provide a substrate for plasticity of cortical receptive fields and maps.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
181
|
Colombe JB, Sylvester J, Block J, Ulinski PS. Subpial and stellate cells: two populations of interneurons in turtle visual cortex. J Comp Neurol 2004; 471:333-51. [PMID: 14991565 DOI: 10.1002/cne.20037] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Turtle visual cortex has three layers and receives direct input from the dorsolateral geniculate complex of the thalamus. The outer layer 1 contains several populations of interneurons, but their physiological properties have not been characterized. This study used intracellular recording methods followed by filling with Neurobiotin to characterize the morphology and physiology of two populations of layer 1 interneurons. Subpial cells have somata positioned in the outer third of layer 1 and dendrites confined within the band of geniculate afferents that runs from lateral to medial across visual cortex. Their dendrites are composed of a sequence of many beads or varicosities separated by intervaricose segments. They have membrane time constants of tau(o) = 45.5 +/- 5.2 ms and electrotonic lengths of 1.1 +/- 0.2. Subpial cells show spike rate adaptation in response to intracellular current pulses. Stellate cells have somata located in the inner two-thirds of layer 1 and, less frequently, in layers 2 and 3. Their dendrites extend in a stellate configuration across the cortex. They are smooth or sparsely spiny, but never bear distinct varicosities. They have membrane time constants of tau(o) = 155.1 +/- 12 ms and electrotonic lengths of 3.8 +/- 0.5. They show little spike rate adaptation in response to intracellular current pulses. The positions of the two populations of cells in visual cortex and their physiological properties suggest that subpial cells may participate in a feedforward inhibitory pathway to pyramidal cells, whereas stellate cells are involved in feedback inhibition to pyramidal cells.
Collapse
Affiliation(s)
- Jeffrey B Colombe
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
182
|
Abstract
Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in sensory cortex. This review first describes the systems-level effects of activating nAChRs in visual, somatosensory, and auditory cortex, and then describes, as far as possible, the underlying cellular and synaptic mechanisms. A related goal is to examine if sensory cortex can be considered a model system for cortex in general, because the use of sensory stimuli to activate neural circuits physiologically is helpful for understanding mechanisms of systems-level function and plasticity. A final goal is to highlight the emerging role of nAChRs in developing sensory cortex, and the adverse impact of early nicotine exposure on subsequent sensory-cognitive function.
Collapse
Affiliation(s)
- Raju Metherate
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California 92697, USA.
| |
Collapse
|
183
|
Gilmore J, Fedirchuk B. The excitability of lumbar motoneurones in the neonatal rat is increased by a hyperpolarization of their voltage threshold for activation by descending serotonergic fibres. J Physiol 2004; 558:213-24. [PMID: 15121804 PMCID: PMC1664930 DOI: 10.1113/jphysiol.2004.064717] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Previous work has shown there is an increase in motoneurone excitability produced by hyperpolarization of the threshold potential at which an action potential is elicited (Vth) at the onset, and throughout brainstem-induced fictive locomotion in the decerebrate cat. This represents a transient facilitation in the membrane potential for activation dependent on the presence of fictive locomotion. The present study tests the hypothesis that a similar neuromodulatory mechanism facilitating neuronal recruitment also exists in the neonatal rat, and the endogenous pathway mediating the Vth hyperpolarization can be activated by electrical stimulation of the neonatal brainstem. Isolated brainstem-spinal cord preparations from 1- to 5-day-old neonatal rats, and whole-cell recording techniques were used to examine the patterns of ventral root (VR) activity produced, and the effect of electrical stimulation of the ventromedial medulla on lumbar spinal neurones. Hyperpolarization of Vth was seen in 10/11 (range -2 to -18 mV) neurones recorded during locomotor-like VR activity, and appeared analogous to the locomotor-dependent Vth hyperpolarization previously described in the cat. However, in the present study, Vth hyperpolarization was also seen during electrical brainstem stimulation that evoked alternating, rhythmic, or tonic VR activity, or failed to evoke VR activity. Thirty-six of 71 neurones were antidromically identified as lumbar motoneurones and 33/36 showed a hyperpolarization of Vth (-2 to -14 mV) during electrical brainstem stimulation. Of the unidentified lumbar ventral horn neurones, 31/35 also showed hyperpolarization of Vth (-2 to -20 mV) during brainstem stimulation. The hyperpolarization of Vth and VR activity induced by brainstem stimulation was reversibly blocked by cooling of the cervical cord, indicating it is mediated by descending fibres, and application of the serotonergic antagonist ketanserin to the spinal cord was effectively able to block the brainstem-evoked hyperpolarization of Vth. These results demonstrate a previously unknown action of the endogenous descending serotonergic system to facilitate spinal motoneuronal recruitment and firing by inducing a hyperpolarization of Vth. This modulatory process can be examined in the neonatal rat brainstem-spinal cord preparation without the requirement for ongoing locomotor activity.
Collapse
Affiliation(s)
- Jonathan Gilmore
- Department of Physiology, University of Manitoba, 730 William Avenue, Winnipeg, MB, Canada R3E 3J7
| | | |
Collapse
|
184
|
Manns ID, Sakmann B, Brecht M. Sub- and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex. J Physiol 2004; 556:601-22. [PMID: 14724202 PMCID: PMC1664944 DOI: 10.1113/jphysiol.2003.053132] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2003] [Accepted: 01/07/2004] [Indexed: 11/08/2022] Open
Abstract
Layer 5 (L5) pyramidal neurones constitute a major sub- and intracortical output of the somatosensory cortex. This layer 5 is segregated into layers 5A and 5B which receive and distribute relatively independent afferent and efferent pathways. We performed in vivo whole-cell recordings from L5 neurones of the somatosensory (barrel) cortex of urethane-anaesthetized rats (aged 27-31 days). By delivering 6 deg single whisker deflections, whisker pad receptive fields were mapped for 16 L5A and 11 L5B neurones located below the layer 4 whisker-barrels. Average resting membrane potentials were -75.6 +/- 1.1 mV, and spontaneous action potential (AP) rates were 0.54 +/- 0.14 APs s(-1). Principal whisker (PW) evoked responses were similar in L5A and L5B neurones, with an average 5.0 +/- 0.6 mV postsynaptic potential (PSP) and 0.12 +/- 0.03 APs per stimulus. The layer 5A sub- and suprathreshold receptive fields (RFs) were more confined to the principle whisker than those of layer 5B. The basal dendritic arbors of layer 5A and 5B cells were located below both layer 4 barrels and septa, and the cell bodies were biased towards the barrel walls. Responses in both L5A and L5B developed slowly, with onset latencies of 10.1 +/- 0.5 ms and peak latencies of 33.9 +/- 3.3 ms. Contralateral multi-whisker stimulation evoked PSPs similar in amplitude to those of PW deflections; whereas, ipsilateral stimulation evoked smaller and longer latency PSPs. We conclude that in L5 a whisker deflection is represented in two ways: focally by L5A pyramids and more diffusely by L5B pyramids as a result of combining different inputs from lemniscal and paralemniscal pathways. The relevant output evoked by a whisker deflection could be the ensemble activity in the anatomically defined cortical modules associated with a single or a few barrel-columns.
Collapse
Affiliation(s)
- Ian D Manns
- Max-Planck Institut für medizinische Forschung, Abteilung Zellphysiologie, Jahnstrasse 29, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
185
|
Almeida LEF, Pereira EFR, Camara AL, Maelicke A, Albuquerque EX. Sensitivity of neuronal nicotinic acetylcholine receptors to the opiate antagonists naltrexone and naloxone: receptor blockade and up-regulation. Bioorg Med Chem Lett 2004; 14:1879-87. [PMID: 15050620 DOI: 10.1016/j.bmcl.2004.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 01/07/2004] [Indexed: 11/28/2022]
Abstract
In HEK293 cells stably expressing alpha4beta2 nAChRs, naltrexone, but not naloxone, blocked alpha4beta2 nAChRs via an open-channel blocking mechanism. In primary hippocampal cultures, naltrexone inhibited alpha7 nAChRs up-regulated by nicotine, and in organotypic hippocampal cultures naltrexone caused a time-dependent up-regulation of functional alpha7 nAChRs that was detected after removal of the drug. These results indicate that naltrexone could be used as a smoking cessation aid.
Collapse
Affiliation(s)
- Luis E F Almeida
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
186
|
Youn DH, Randic M. Modulation of excitatory synaptic transmission in the spinal substantia gelatinosa of mice deficient in the kainate receptor GluR5 and/or GluR6 subunit. J Physiol 2004; 555:683-98. [PMID: 14724198 PMCID: PMC1664855 DOI: 10.1113/jphysiol.2003.057570] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Accepted: 01/05/2004] [Indexed: 11/08/2022] Open
Abstract
Functional kainate (KA) receptors (KARs) are expressed in the spinal cord substantia gelatinosa (SG) region, and their activation has a capacity to modulate excitatory synaptic transmission at primary afferent synapses with SG neurones. In the present study, we have used gene-targeted mice lacking KAR GluR5 and/or GluR6 subunits to determine the identity of the receptor subunits involved in the KA-induced modulation of excitatory transmission. Our findings reveal that KARs comprising GluR5 or GluR6 subunits can either suppress or facilitate glutamatergic excitatory transmission in the SG of acutely prepared adult mouse spinal cord slices. In the absence of synaptic inhibition mediated by GABA(A) and glycine receptors, a biphasic effect of kainate is characteristic with facilitation apparent at a low concentration (30 nM) and depression at a higher concentration (3 microM). In addition, GluR6-KARs, localizing pre- and postsynaptically, are critically involved in inhibiting transmission at both A delta and C fibre monosynaptic pathways, whereas presynaptic GluR5-KARs play a limited role in inhibiting the C fibre-activated pathway. The results obtained support the hypothesis that KARs are involved in bi-directional regulation of excitatory synaptic transmission in the spinal cord SG region, and that these actions may be of critical importance for nociception and the clinical treatment of pain.
Collapse
Affiliation(s)
- Dong-Ho Youn
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
187
|
Pronchuk N, Colmers WF. NPY presynaptic actions are reduced in the hypothalamic mpPVN of obese (fa/fa), but not lean, Zucker rats in vitro. Br J Pharmacol 2004; 141:1032-6. [PMID: 14967739 PMCID: PMC1574271 DOI: 10.1038/sj.bjp.0705699] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Neuropeptide Y (NPY) profoundly enhances feeding when injected intracerebroventricularly, or directly into hypothalamic nuclei, such as the paraventricular nucleus (PVN). Paradoxically, NPY has a reduced action on feeding in obese Zucker rats relative to lean Zucker rats, although the obese rats have much higher levels of hypothalamic NPY expression. GABAergic inputs to a subpopulation of medial parvocellular PVN (mpPVN) neurons are sensitive to NPY. Here, we tested the hypothesis that the blunted eating response to NPY observed in obese Zucker rats will be reflected in a reduced NPY action at mpPVN GABAergic synapses. 2. 'Blind' whole-cell patch-clamp recordings made from mpPVN neurons in acute brain slices of lean and obese Zucker rats revealed GABAergic inhibitory postsynaptic currents (IPSC) responses which were inhibited by NPY. While the maximum response in the obese Zucker rats was significantly less than in lean Zucker or Sprague-Dawley rats, there was no difference in the EC(50). 3. Experiments using blocking concentrations of Y(1)- or Y(5)-receptor antagonists revealed no differences between lean and obese Zucker rats in the contributions of either of these receptors to the total NPY response in mpPVN. 4. NPY is less effective at the mpPVN GABA synapse in obese than in lean Zucker rats. This is not associated with a change in the proportion of Y(1) or Y(5) receptors mediating the NPY response, and is consistent with the downregulation of NPY receptors or a reduction in receptor-effector coupling, and with the reduced sensitivity of obese rats to NPY.
Collapse
Affiliation(s)
- Nina Pronchuk
- Department of Pharmacology, University of Alberta, 9-36 MSB, Edmonton, AB, Canada T6G 2H7
| | - William F Colmers
- Department of Pharmacology, University of Alberta, 9-36 MSB, Edmonton, AB, Canada T6G 2H7
- Author for correspondence:
| |
Collapse
|
188
|
Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. ACTA ACUST UNITED AC 2004; 163:1313-26. [PMID: 14691139 PMCID: PMC1435730 DOI: 10.1083/jcb.200306033] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Here, using a genetic approach, we dissect the roles of EphB receptor tyrosine kinases in dendritic spine development. Analysis of EphB1, EphB2, and EphB3 double and triple mutant mice lacking these receptors in different combinations indicates that all three, although to varying degrees, are involved in dendritic spine morphogenesis and synapse formation in the hippocampus. Hippocampal neurons lacking EphB expression fail to form dendritic spines in vitro and they develop abnormal spines in vivo. Defective spine formation in the mutants is associated with a drastic reduction in excitatory glutamatergic synapses and the clustering of NMDA and AMPA receptors. We show further that a kinase-defective, truncating mutation in EphB2 also results in abnormal spine development and that ephrin-B2–mediated activation of the EphB receptors accelerates dendritic spine development. These results indicate EphB receptor cell autonomous forward signaling is responsible for dendritic spine formation and synaptic maturation in hippocampal neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cells, Cultured
- Dendrites/enzymology
- Dendrites/physiology
- Dendrites/ultrastructure
- Down-Regulation/genetics
- Fetus
- Fluorescent Antibody Technique
- Hippocampus/enzymology
- Hippocampus/growth & development
- Hippocampus/ultrastructure
- Mice
- Mice, Mutant Strains
- Microscopy, Electron
- Mutation/genetics
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Receptor Aggregation/genetics
- Receptor, EphB1/deficiency
- Receptor, EphB1/genetics
- Receptor, EphB1/physiology
- Receptor, EphB2/deficiency
- Receptor, EphB2/genetics
- Receptor, EphB2/physiology
- Receptor, EphB3/deficiency
- Receptor, EphB3/genetics
- Receptor, EphB3/physiology
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Eph Family/deficiency
- Receptors, Eph Family/genetics
- Receptors, Eph Family/physiology
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Synapses/enzymology
- Synapses/ultrastructure
- gamma-Aminobutyric Acid/metabolism
Collapse
Affiliation(s)
- Mark Henkemeyer
- Division of Biomedical Sciences, University of California Riverside, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
189
|
Mellen NM, Roham M, Feldman JL. Afferent modulation of neonatal rat respiratory rhythm in vitro: cellular and synaptic mechanisms. J Physiol 2004; 556:859-74. [PMID: 14766932 PMCID: PMC1664991 DOI: 10.1113/jphysiol.2004.060673] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In mammals, expiration is lengthened by mid-expiratory lung inflation (Breuer-Hering Expiratory reflex; BHE). The central pathway mediating the BHE is paucisynaptic, converging on neurones in the rostral ventrolateral medulla. An in vitro neonatal rat brainstem-lung preparation in which mid-expiratory inflation lengthens expiration was used to study afferent modulation of respiratory neurone activity. Recordings were made from respiratory neurones in or near the pre-Bötzinger Complex (preBötC). Respiratory neurone membrane properties and BHE-induced changes in activity were characterized. Our findings suggest the following mechanisms for the BHE: (i) lung afferent signals strongly excite biphasic neurones that convey these signals to respiratory neurones in ventrolateral medulla; (ii) expiratory lengthening is mediated by inhibition of rhythmogenic and (pre)motoneuronal networks; and (iii) pre-inspiratory (Pre-I) neurones, some of which project to abdominal expiratory motoneurones, are excited during the BHE. These findings are qualitatively similar to studies of the BHE in vivo. Where there are differences, they can largely be accounted for by developmental changes and experimental conditions.
Collapse
Affiliation(s)
- Nicholas M Mellen
- Systems Neurobiology Laboratory, Department of Neurobiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095-1763, USA.
| | | | | |
Collapse
|
190
|
Dougalis A, Lees G, Ganellin CR. The sleep inducing brain lipid cis-oleamide (cOA) does not modulate serotonergic transmission in the CA1 pyramidal neurons of the hippocampus in vitro. Neuropharmacology 2004; 46:63-73. [PMID: 14654098 DOI: 10.1016/s0028-3908(03)00297-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
cis-Oleamide (cOA) is a novel sleep inducing brain lipid with an unknown mechanism of action. High affinity interactions with metabotropic 5-HT receptors (2A/C and 1A subtypes) in frog oocytes and expression systems have been reported, but functional in vitro evidence for the modulatory effect is still lacking. Here, we addressed the ability of cOA to modulate 5-HT-induced cellular actions in the CA1 neurons of the rat hippocampal slice.5-HT (0.1-100 microM) concentration dependently reduced the amplitude of the evoked field population spike (fPS), and produced a hyperpolarising shift in the resting membrane potential (Vr) and a drop in input resistance (R in). The effects of a low dose of 5-HT (3.2 microM) on fPS, Vr and R in were reversed by the specific 5-HT(1A)-receptor antagonist WAY 100135 (10 microM). cOA (1 microM) failed to potentiate 5-HT1A receptor mediated effects on fPS, Vr or R in. High doses of 5-HT also recruited both 5-HT2 and 5-HT3 receptors, causing an increase in the rate and amplitude of sIPSCs. cOA (1 microM), in the presence of Y 25130, failed to potentiate the 5-HT2 receptor induced enhancement of sIPSCs. In summary, cis-oleamide failed to modulate metabotropic responses to exogenous 5-HT in this microelectrode study at concentrations well in excess of those reported to modulate 5-HT1A and 5-HT2A/C systems in earlier studies.
Collapse
Affiliation(s)
- Antonios Dougalis
- Sunderland Pharmacy School, School of Health, Social and Natural Sciences, University of Sunderland, Chester Road Campus, Wharncliffe Street, Sunderland, SR1 3SD, UK
| | | | | |
Collapse
|
191
|
Dityatev AE, Altinbaev RS, Astrelin AV, Voronin LL. Combining principal component and spectral analyses with the method of moments in studies of quantal transmission. J Neurosci Methods 2003; 130:173-99. [PMID: 14667545 DOI: 10.1016/j.jneumeth.2003.09.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This chapter considers methods for measurements of postsynaptic responses and simple approaches to the estimation of parameters of quantal release in synapses of the central nervous system of vertebrates. The use of these methods is illustrated by the analysis of single-fibre and "minimal" monosynaptic postsynaptic potentials (PSPs) or currents (PSCs) recorded from neurons of the frog spinal cord and rat hippocampus. First, we briefly discuss traditional methods of the response measurements using peak amplitudes or areas, further focusing on a novel method based on multivariate statistical techniques of the principal component analysis (PCA). This approach provides typically better signal-to-noise ratios and is able to separate two or more response components, which can arise due to activation of more than one presynaptic fibre, axon collaterals, receptor subtypes or spatially separated transmission sites. Second, spectral analysis is introduced as the method of choice to verify whether the amplitude fluctuations of the postsynaptic responses have a quantal nature and to obtain estimations of the "basic" quantal parameters, i.e. the quantal size (Q) and mean quantal content (m), without introducing assumptions on release statistics. Third, we show how the method of moments could be applied in the framework of the Poisson and binomial models to estimate the basic quantal parameters and parameters p and n, which reflect the release probability and maximum number of quanta released (or the number of effective release sites), respectively. Fourth, we show that the analysis of the moments can also be instrumental to reveal non-uniformity of release probabilities and compare how several competing models of neurotransmitter release fit to multiple experimental data sets.
Collapse
Affiliation(s)
- Alexander E Dityatev
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Martinistr. 52, D-20246 Hamburg, Germany.
| | | | | | | |
Collapse
|
192
|
Brecht M, Roth A, Sakmann B. Dynamic receptive fields of reconstructed pyramidal cells in layers 3 and 2 of rat somatosensory barrel cortex. J Physiol 2003; 553:243-65. [PMID: 12949232 PMCID: PMC2343497 DOI: 10.1113/jphysiol.2003.044222] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 08/26/2003] [Indexed: 11/08/2022] Open
Abstract
Whole-cell voltage recordings were made in vivo from subsequently reconstructed pyramidal neurons (n = 30) in layer 3 (L3) and layer 2 (L2) of the barrel cortex of urethane-anaesthetised rats. Average resting membrane potentials were well below (15-40 mV) action potential (AP) initiation threshold. The average spontaneous AP activity (0.068 +/- 0.22 APs s-1) was low. Principal whisker (PW) deflections evoked postsynaptic potentials (PSPs) in almost all cells of a PW column but evoked AP activity (0.031 +/- 0.056 APs per PW stimulus 6 deg deflection) was low indicating 'sparse' coding by APs. Barrel-related cells (n = 16) have their soma located above a barrel and project their main axon through the barrel whereas septum-related cells (n = 8) are located above and project their main axon through the septum between barrels. Both classes of cell had broad subthreshold receptive fields (RFs) which comprised a PW and several (> 8) surround whiskers (SuW). Barrel-related cells had shorter PSP onset latencies (9.6 +/- 4.6 ms) and larger amplitude PW stimulus responses (9.1 +/- 4.5 mV) than septum-related cells (23.3 +/- 16.5 ms and 5.0 +/- 2.8 mV, respectively). The dendritic fields of barrel-related cells were restricted, in the horizontal plane, to the PW column width. Their axonal arbors projected horizontally into several SuW columns, preferentially those representing whiskers of the same row, suggesting that they are the major anatomical substrate for the broad subthreshold RFs. In barrel-related cells the response time course varied with whisker position and subthreshold RFs were highly dynamic, expanding in size from narrow single-whisker to broad multi-whisker RFs, elongated along rows within 10-150 ms following a deflection. The response time course in septum-related cells was much longer and almost independent of whisker position. Their broad subthreshold RF suggests that L2/3 cells integrate PSPs from several barrel columns. We conclude that the lemniscal (barrel-related) and paralemniscal (septum-related) afferent inputs remain anatomically and functionally segregated in L2/3.
Collapse
Affiliation(s)
- Michael Brecht
- Department of Cell Physiology, Max-Planck Institute for Medical Research, Heidelberg, Germany.
| | | | | |
Collapse
|
193
|
Liu X, Leung LS. Partial hippocampal kindling increases GABAB receptor-mediated postsynaptic currents in CA1 pyramidal cells. Epilepsy Res 2003; 57:33-47. [PMID: 14706731 DOI: 10.1016/j.eplepsyres.2003.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In previous studies, we showed that partial hippocampal kindling decreased the efficacy of the presynaptic GABAB receptors on both GABAergic and glutamatergic terminals of CA1 neurons in hippocampal slices in vitro. In this study, GABAB receptor-mediated inhibitory postsynaptic currents (GABAB-IPSCs) were assessed by whole-cell recordings in CA1 pyramidal neurons in hippocampal slices of male Long-Evans rats. The peak GABAB-IPSC evoked by a brief train of supramaximal stratum radiatum stimuli (20 pulses of 300 Hz) in the presence of picrotoxin (0.1 mM) and kynurenic acid (1 mM) was larger in neurons of kindled (65.9 +/- 5.2 pA, N=42 cells) than control (45.8 +/- 4.8 pA, N=32 cells) rats (P<0.01). Adding GABA uptake blocker nipecotic acid (1 mM) or GABAB receptor agonist baclofen (0.01 mM) in the perfusate induced outward currents that were blocked by GABAB receptor antagonist CGP 55845A (1 microM). The peak outward current induced by nipecotic acid was larger in neurons of the kindled (55.4 +/- 5.7 pA, N=30) than the control group (39.8 +/- 4.5 pA, N=28) (P<0.05). However, the magnitude of the baclofen-induced current was not different between kindled (90.8 +/- 6.9 pA, N=29) and control (87.2 +/- 5.9 pA, N=21) groups (P>0.05). We concluded that partial hippocampal kindling increased GABAB-IPSCs in hippocampal CA1 pyramidal cells via multiple presynaptic mechanisms.
Collapse
Affiliation(s)
- Xinhuai Liu
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ont, Canada N6A 5C1
| | | |
Collapse
|
194
|
Garraway SM, Petruska JC, Mendell LM. BDNF sensitizes the response of lamina II neurons to high threshold primary afferent inputs. Eur J Neurosci 2003; 18:2467-76. [PMID: 14622147 DOI: 10.1046/j.1460-9568.2003.02982.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is up-regulated and released in the dorsal horn following peripheral inflammation and has therefore been implicated in spinal mechanisms of sensitization. Despite these observations, the mechanisms associated with such a role for BDNF are not yet fully determined. Here, we investigate the effect of BDNF on dorsal root-evoked synaptic transmission in lamina II neurons. In a transverse spinal cord slice preparation from neonatal rats (P1-15), the whole cell patch-clamp technique was used to record from these neurons. Brief application of BDNF (50-200 ng/mL) facilitated the evoked synaptic currents; they remained enhanced even after BDNF was washed out. A significant minority of cells was minimally affected by BDNF and consistent with this, not all neurons in lamina II were immunoreactive for the tyrosine kinase (trk) B receptor. No facilitation was elicited when N-methyl-d-aspartate (NMDA) receptors were blocked with D-APV, when the postsynaptic NMDA receptors were selectively blocked with intracellular MK-801, or when postsynaptic neurons were loaded with BAPTA. Additionally, inhibiting phospholipase C (PLC) or protein kinase C (PKC) prior to BDNF application completely blocked facilitation. However, once synaptic current underwent BDNF-induced facilitation, the PKC inhibitors failed to reverse the effect, suggesting that PKC is needed for initiation, but not maintenance of BDNF-induced facilitation. These results demonstrate that BDNF functions at the spinal level to enhance synaptic efficacy in an NMDA receptor-dependent manner and requires the action of the PLC/PKC pathway. This action of BDNF may contribute to central sensitization and exaggerated pain states.
Collapse
Affiliation(s)
- Sandra M Garraway
- Department of Neurobiology and Behaviour, State University of New York, Stony Brook NY 11794-5230, USA
| | | | | |
Collapse
|
195
|
Presynaptic depression of glutamatergic synaptic transmission by D1-like dopamine receptor activation in the avian basal ganglia. J Neurosci 2003. [PMID: 12853427 DOI: 10.1523/jneurosci.23-14-06086.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vocal behavior in songbirds exemplifies a rich integration of motor, cognitive, and social functions that are shared among vertebrates. As a part of the underlying neural substrate, the song system, the anterior forebrain pathway (AFP) is required for song learning and maintenance. The AFP resembles the mammalian basal ganglia-thalamocortical loop in its macroscopic organization, neuronal intrinsic properties, and microcircuitry. Area X, the first station in the AFP, is a part of the basal ganglia essential for vocal learning. It receives glutamatergic inputs from pallial structures and sends GABAergic outputs to thalamic structures. It also receives dense dopaminergic innervation from the midbrain. The role of this innervation is essentially unknown. Here we provide evidence that dopamine (DA) can modulate the glutamatergic inputs to spiny neurons in area X. In whole-cell voltage-clamp recordings from neurons in brain slices of adult zebra finches, we found that activation of D1-like DA receptors depresses ionotropic glutamatergic synaptic current in area X spiny neurons. This effect is mediated by a presynaptic site of action, mimicked by activation of adenylyl cyclase, and blocked by protein kinase A inhibitor and an adenosine A1 receptor antagonist. These results suggest that, in addition to altering the input-output function of spiny neurons by modulating their excitability, as we have shown previously, DA can directly influence the excitatory inputs to these neurons as well. Thus, DA can exert fine control over information processing through spiny neurons in area X, the dynamics of the AFP output, and ultimately song learning and maintenance.
Collapse
|
196
|
Abstract
The recurrent mossy fiber pathway of the dentate gyrus expands dramatically in human temporal lobe epilepsy and in animal models of this disorder, creating monosynaptic connections among granule cells. This novel granule cell network can support reverberating excitation but is difficult to activate with low-frequency stimulation. This study used hippocampal slices from pilocarpine-treated rats to explore the dependence of synaptic transmission in this pathway on stimulus frequency. Minimal electrically evoked EPSCs exhibited a high failure rate ( approximately 60%). Stimulus trains delivered at a frequency of <1 Hz depressed synaptic transmission, as evidenced by an increase in response failures. Conversely, stimulus trains delivered at higher frequencies reduced the percentage of response failures and increased the amplitude of compound EPSCs, including pharmacologically isolated NMDA receptor-mediated EPSCs. Short-term frequency-dependent facilitation was of modest size compared with mossy fiber synapses on other neuronal types. Facilitation depended on the activation of kainate receptors by released glutamate and was inhibited by feedback activation of type II metabotropic glutamate receptors. These results suggest that the recurrent mossy fiber pathway may be functionally silent during baseline asynchronous granule cell activity in vivo attributable, in part, to progressive transmission failure. The pathway may synchronize granule cell firing and may promote seizure propagation most effectively during the brief periods of high-frequency granule cell firing that occur during normal behavior, during the periods of hypersynchronous fast activity characteristic of epileptic brain and, most importantly, during the period of increasing granule cell activity that precedes a spontaneous seizure.
Collapse
|
197
|
Fortune ES, Rose GJ. Voltage-gated Na+ channels enhance the temporal filtering properties of electrosensory neurons in the torus. J Neurophysiol 2003; 90:924-9. [PMID: 12750421 DOI: 10.1152/jn.00294.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regenerative processes enhance postsynaptic potential (PSP) amplitude and behaviorally relevant temporal filtering in more than one-third of electrosensory neurons in the torus semicircularis of Eigenmannia. Data from in vivo current-clamp intracellular recordings indicate that these "regenerative PSPs" can be divided in two groups based on their half-amplitude durations: constant duration (CD) and variable duration (VD) PSPs. CD PSPs have half-amplitude durations of between 20 and 60 ms that do not vary in relation to stimulus periodicity. In contrast, the half-amplitude durations of VD PSPs vary in relation to stimulus periodicity and range from approximately 10 to 500 ms. Injection of 0.1 nA sinusoidal current through the recording electrode demonstrated that CD PSPs and not VD PSPs can be elicited by voltage fluctuations alone. In addition, CD PSPs were blocked by intracellular application of either QX-314 or QX-222, whereas VD PSPs were not. These in vivo data suggest, therefore, that CD PSPs are mediated by voltage-dependent Na+ conductances.
Collapse
Affiliation(s)
- Eric S Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | | |
Collapse
|
198
|
Schneider SP. Spike frequency adaptation and signaling properties of identified neurons in rodent deep spinal dorsal horn. J Neurophysiol 2003; 90:245-58. [PMID: 12634280 DOI: 10.1152/jn.01012.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using whole cell recordings, I analyzed the intrinsic discharge properties for 285 neurons in Rexed's laminae III-V of isolated hamster spinal cord preparations. Neurons were characterized by their responses to step-wise and ramp-hold depolarizing current applied through the recording pipettes. Tonic cells (133/285; 47%) fired repetitively during step-wise current application. Firing decayed linearly (-0.14 to -4.3 imp . s(-1) . s(-1)) or was bimodal, with an initial exponential phase (tau approximately 450 ms) followed by a linear decline (-0.02 to -6.3 imp . s(-1) . s(-1)); discharge frequency was unrelated to current trajectory. Phasic-firing cells (108/285; 38%) responded with a burst discharge having an initial rapid, exponential decrease (tau approximately 30 ms) and subsequent linear decline (-1 to -78 imp . s(-1) . s(-1)). Phasic cells were activated preferentially by fast current ramps (slope, 70 pA/s-2.2 nA/s) with the number and frequency of impulses increasing with current slope. Delayed-firing cells (44/285; 15%), responded to current steps with an accelerating firing following a substantial latent period (0.5-4 s) and discharged during current ramps with slopes less than approximately 100 pA/s. Intracellular staining revealed a significant association between electrophysiological profile and neuronal morphology. A majority of presumed projection cells (22/30; 73%) exhibited tonic firing to step-wise activation. The preponderance of phasic and delayed firing cells, 93% (42/45) and 71% (12/17), respectively, were interneurons with local or intersegmental terminations. Differential sensitivity to static and time-varying components of membrane current suggest differences in neuronal signaling properties that may have important implications for integration of mechanosensory information in the deep spinal dorsal horn.
Collapse
Affiliation(s)
- S P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, E. Lansing, Michigan 48824-3320, USA.
| |
Collapse
|
199
|
Abstract
One of the first steps in the coding of olfactory information is the transformation of synaptic input to action potential firing in mitral and tufted (M/T) cells of the mammalian olfactory bulb. However, little is known regarding the synaptic mechanisms underlying this process in vivo. In this study, we examined odor-evoked response patterns of M/T and granule cells using whole-cell recording in anesthetized, freely breathing rats. We find that odor-evoked excitatory responses in M/T cells typically consist of bursts of action potentials coupled to the approximately 2 Hz respiration rhythm. Odor-evoked, rhythmic M/T cell excitation is reliable during odor presentation (2-4 sec); in contrast, both excitatory responses of granule cells and M/T cell lateral inhibition adapt quickly after the first respiration cycle in the presence of odorants. We also find that the amplitude and initial slope of odor-evoked synaptic excitation play an important role in regulating the timing of M/T cell spikes. Furthermore, differences in odor concentration alter the shape of odor-evoked excitatory synaptic responses, the latency of M/T cell spikes, and the timing of M/T cell lateral inhibition.
Collapse
|
200
|
Enhancement of associative long-term potentiation by activation of beta-adrenergic receptors at CA1 synapses in rat hippocampal slices. J Neurosci 2003. [PMID: 12764105 DOI: 10.1523/jneurosci.23-10-04173.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The objective of this study was to evaluate the role of beta-adrenergic receptors in modulating associative long-term potentiation (LTP) induced at CA1 synapses. Two independent Schaffer collateral pathways were stimulated in hippocampal slices. The field EPSP (fEPSP) response evoked in one pathway (the weak pathway) was small, whereas a large response, usually 80-90% of the maximum, was evoked in the strong pathway. After recording of the baseline fEPSP evoked at 0.033 Hz, LTP of the weak pathway could be associatively induced by paired stimulation of the weak and strong pathways 100 times at 6 sec intervals, with stimulation of the weak pathway preceded 3-10 msec. However, pairing protocols with an interval between stimulation of the two pathways >10 msec resulted in no LTP. The induced LTP was NMDA receptor dependent, because 50 microm D,L-APV blocked its induction. Bath application of 1 microm isoproterenol enhanced LTP by increasing the window of the stimulation interval up to 15 msec but did not affect the magnitude of the LTP induced by pairing protocols with intervals <10 msec. Similar results were obtained when the experiments were repeated using whole-cell recording. These results suggest that activation of beta-adrenergic receptors can enhance associative LTP by increasing the width of the time window rather than the magnitude of the LTP. Enhancement of LTP by beta-adrenergic receptors was blocked in slices by pretreatment with inhibitors of protein kinase A or mitogen-activated protein kinase, suggesting that these signaling cascades are involved in this process.
Collapse
|