151
|
Dettori MA, Fabbri D, Dessì A, Dallocchio R, Carta P, Honisch C, Ruzza P, Farina D, Migheli R, Serra PA, Pantaleoni RA, Fois X, Rocchitta G, Delogu G. Synthesis and Studies of the Inhibitory Effect of Hydroxylated Phenylpropanoids and Biphenols Derivatives on Tyrosinase and Laccase Enzymes. Molecules 2020; 25:E2709. [PMID: 32545293 PMCID: PMC7321210 DOI: 10.3390/molecules25112709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
The impaired activity of tyrosinase and laccase can provoke serious concerns in the life cycles of mammals, insects and microorganisms. Investigation of inhibitors of these two enzymes may lead to the discovery of whitening agents, medicinal products, anti-browning substances and compounds for controlling harmful insects and bacteria. A small collection of novel reversible tyrosinase and laccase inhibitors with a phenylpropanoid and hydroxylated biphenyl core was prepared using naturally occurring compounds and their activity was measured by spectrophotometric and electrochemical assays. Biosensors based on tyrosinase and laccase enzymes were constructed and used to detect the type of protein-ligand interaction and half maximal inhibitory concentration (IC50). Most of the inhibitors showed an IC50 in a range of 20-423 nM for tyrosinase and 23-2619 nM for laccase. Due to the safety concerns of conventional tyrosinase and laccase inhibitors, the viability of the new compounds was assayed on PC12 cells, four of which showed a viability of roughly 80% at 40 µM. In silico studies on the crystal structure of laccase enzyme identified a hydroxylated biphenyl bearing a prenylated chain as the lead structure, which activated strong and effective interactions at the active site of the enzyme. These data were confirmed by in vivo experiments performed on the insect model Tenebrio molitur.
Collapse
Affiliation(s)
- Maria Antonietta Dettori
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (D.F.); (A.D.); (R.D.); (P.C.)
| | - Davide Fabbri
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (D.F.); (A.D.); (R.D.); (P.C.)
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (D.F.); (A.D.); (R.D.); (P.C.)
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (D.F.); (A.D.); (R.D.); (P.C.)
| | - Paola Carta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (D.F.); (A.D.); (R.D.); (P.C.)
| | - Claudia Honisch
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy; (C.H.); or (P.R.)
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 35131 Padova, Italy
| | - Paolo Ruzza
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, 35131 Padova, Italy; (C.H.); or (P.R.)
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 35131 Padova, Italy
| | - Donatella Farina
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi, 07100 Sassari, Italy; (D.F.); (R.M.); (P.A.S.)
| | - Rossana Migheli
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi, 07100 Sassari, Italy; (D.F.); (R.M.); (P.A.S.)
| | - Pier Andrea Serra
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi, 07100 Sassari, Italy; (D.F.); (R.M.); (P.A.S.)
| | - Roberto A. Pantaleoni
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale Ricerca, 07100 Sassari, Italy; (R.A.P.); (X.F.)
- Dipartimento di Agraria, Università degli Studi, 07100 Sassari, Italy
| | - Xenia Fois
- Istituto di Ricerca sugli Ecosistemi Terrestri, Consiglio Nazionale Ricerca, 07100 Sassari, Italy; (R.A.P.); (X.F.)
| | - Gaia Rocchitta
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università degli Studi, 07100 Sassari, Italy; (D.F.); (R.M.); (P.A.S.)
| | - Giovanna Delogu
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (D.F.); (A.D.); (R.D.); (P.C.)
| |
Collapse
|
152
|
Parvez S, Amin MH, Bae H. Tyrosinase inhibitors of Galla Rhois and its derivative components. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00455-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
153
|
Discovery of a new potent inhibitor of mushroom tyrosinase (Agaricus bisporus) containing 4-(4-hydroxyphenyl)piperazin-1-yl moiety. Bioorg Med Chem 2020; 28:115497. [DOI: 10.1016/j.bmc.2020.115497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/16/2020] [Accepted: 04/07/2020] [Indexed: 02/08/2023]
|
154
|
Affiliation(s)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
155
|
Biundo A, Braunschmid V, Pretzler M, Kampatsikas I, Darnhofer B, Birner-Gruenberger R, Rompel A, Ribitsch D, Guebitz GM. Polyphenol oxidases exhibit promiscuous proteolytic activity. Commun Chem 2020; 3:62. [PMID: 36703476 PMCID: PMC9814219 DOI: 10.1038/s42004-020-0305-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/16/2020] [Indexed: 01/29/2023] Open
Abstract
Tyrosinases catalyse both the cresolase and catecholase reactions for the formation of reactive compounds which are very important for industrial applications. In this study, we describe a proteolytic activity of tyrosinases. Two different tyrosinases originating from mushroom and apple are able to cleave the carboxylesterase EstA. The cleavage reaction correlates with the integrity of the active site of tyrosinase and is independent of other possible influencing factors, which could be present in the reaction. Therefore, the cleavage of EstA represents a novel functionality of tyrosinases. EstA was previously reported to degrade synthetic polyesters, albeit slowly. However, the EstA truncated by tyrosinase shows higher degradation activity on the non-biodegradable polyester polyethylene terephthalate (PET), which is a well-established environmental threat.
Collapse
Affiliation(s)
- A Biundo
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, Via Edoardo Orabona, 70125, Bari, Italy
| | - V Braunschmid
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
| | - M Pretzler
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - I Kampatsikas
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - B Darnhofer
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
| | - R Birner-Gruenberger
- Medical University of Graz, Diagnostic and Research Institute of Pathology, Neue Stiftingtalstraße 6, 8010, Graz, Austria
- BioTechMed-Graz, Mozartgasse 12/II, 8010, Graz, Austria
- Vienna University of Technology, Institute for Chemical Technologies and Analytics, Getreidemarkt 9/164, 1060, Vienna, Austria
| | - A Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, Althanstraße 14, 1090, Wien, Austria
| | - D Ribitsch
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria.
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria.
| | - G M Guebitz
- Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences (BOKU), Konrad Lorenz Straße 22, 3430, Tulln, Austria
- Austrian Centre for Industrial Biotechnology (ACIB), Konrad Lorenz Straße 22, 3430 Tulln, Austria and Petersgasse 14, 8010, Graz, Austria
| |
Collapse
|
156
|
Hu Z, Song H, Zhou C, Yu ZL, Yang MJ, Zhang T. De novo assembly transcriptome analysis reveals the preliminary molecular mechanism of pigmentation in juveniles of the hard clam Mercenaria mercenaria. Genomics 2020; 112:3636-3647. [PMID: 32353476 DOI: 10.1016/j.ygeno.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/19/2023]
Abstract
Color plays a vital function in camouflage, sexual selection, immunity, and evolution. Mollusca possess vivid shell colors and pigmentation starts at the juvenile stage. The hard clam Mercenaria mercenaria is a widely cultivated bivalve of high economic value. To explore the molecular mechanism of pigmentation in juvenile clams, here, we performed RNA-Seq analysis on non-pigmented, white, and red M. mercenaria specimens. Clean reads were assembled into 358,285 transcripts and 149,234 unigenes, whose N50 lengths were 2107 bp and 1567 bp, respectively. Differentially expressed genes were identified and analyzed for KEGG enrichment. "Melanoma/Melanogenesis", "ABC transporters", and "Porphyrin and chlorophyll metabolism" pathways appeared to be associated with pigmentation. Pathways related to carotenoid metabolism seemed to also play a vital role in pigmentation in juveniles. Our results provide new insights into the formation of shell color in juvenile hard clams.
Collapse
Affiliation(s)
- Zhi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Cong Zhou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zheng-Lin Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mei-Jie Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Tao Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
157
|
Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, Su H. Natural skin-whitening compounds for the treatment of melanogenesis (Review). Exp Ther Med 2020; 20:173-185. [PMID: 32509007 PMCID: PMC7271691 DOI: 10.3892/etm.2020.8687] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 03/17/2020] [Indexed: 01/23/2023] Open
Abstract
Melanogenesis is the process for the production of melanin, which is the primary cause of human skin pigmentation. Skin-whitening agents are commercially available for those who wish to have a lighter skin complexions. To date, although numerous natural compounds have been proposed to alleviate hyperpigmentation, insufficient attention has been focused on potential natural skin-whitening agents and their mechanism of action from the perspective of compound classification. In the present article, the synthetic process of melanogenesis and associated core signaling pathways are summarized. An overview of the list of natural skin-lightening agents, along with their compound classifications, is also presented, where their efficacy based on their respective mechanisms of action on melanogenesis is discussed.
Collapse
Affiliation(s)
- Wenhui Qian
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China.,School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Wenya Liu
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Dong Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Yanli Cao
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Anfu Tang
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Guangming Gong
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Hua Su
- Department of Pharmaceutics, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
158
|
Chen XK, Kwan JSK, Chang RCC, Ma ACH. 1-phenyl 2-thiourea (PTU) activates autophagy in zebrafish embryos. Autophagy 2020; 17:1222-1231. [PMID: 32286915 DOI: 10.1080/15548627.2020.1755119] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
1-phenyl 2-thiourea (PTU) is a Tyr (tyrosinase) inhibitor that is extensively used to block pigmentation and improve optical transparency in zebrafish (Danio rerio) embryo. Here, we reported a previously undescribed effect of PTU on macroautophagy/autophagy in zebrafish embryos. Upon 0.003% PTU treatment, aberrant autophagosome and autolysosome formation, accumulation of lysosomes, and elevated autophagic flux were observed in various tissues and organs of zebrafish embryos, such as skin, brain, and muscle. Similar to PTU treatment, autophagic activation and lysosomal accumulation were also observed in the somatic tyr mutant zebrafish embryos, which suggest that Tyr inhibition may contribute to PTU-induced autophagic activation. Furthermore, we demonstrated that autophagy contributes to pigmentation inhibition, but is not essential to the PTU-induced pigmentation inhibition. With the involvement of autophagy in a wide range of physiological and pathological processes and the routine use of PTU in zebrafish research of autophagy-related processes, these observations raise a novel concern in autophagy-related studies using PTU-treated zebrafish embryos.Abbreviations: 3-MA: 3-methyladenine; Atg: autophagy-related; BSA: bovine serum albumin; CHT: caudal hematopoietic tissue; CQ: chloroquine; GFP: green fluorescent protein; hpf: hour-post-fertilization; Map1lc3/Lc3: microtubule-associated protein 1 light chain 3; NGS: normal goat serum; PtdIns3K: class III phosphatidylinositol 3-kinase; PTU: 1-phenyl 2-thiourea; RFP: red fluorescent protein; Sqstm1: sequestosome 1; tyr: tyrosinase.
Collapse
Affiliation(s)
- Xiang-Ke Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Raymond Chuen-Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.,State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Alvin Chun-Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
159
|
Song S, Mai Y, Shi H, Liao B, Wang F. Design, Synthesis, Biological Evaluation and Inhibition Mechanism of 3-/4-Alkoxy Phenylethylidenethiosemicarbazides as New, Potent and Safe Tyrosinase Inhibitors. Chem Pharm Bull (Tokyo) 2020; 68:369-379. [DOI: 10.1248/cpb.c19-00949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Senchuan Song
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Yuliang Mai
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Huahong Shi
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Bing Liao
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| | - Fei Wang
- Guangdong Research Institute of Petrochemical and Fine Chemical Engineering, Guangdong Academy of Sciences
| |
Collapse
|
160
|
Riciluca KCT, Borges AC, Mello JFR, de Oliveira UC, Serdan DC, Florez-Ariza A, Chaparro E, Nishiyama MY, Cassago A, Junqueira-de-Azevedo ILM, van Heel M, Silva PI, Portugal RV. Myriapod haemocyanin: the first three-dimensional reconstruction of Scolopendra subspinipes and preliminary structural analysis of S. viridicornis. Open Biol 2020; 10:190258. [PMID: 32228398 PMCID: PMC7241075 DOI: 10.1098/rsob.190258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Haemocyanins (Hcs) are copper-containing, respiratory proteins that occur in the haemolymph of many arthropod species. Here, we report the presence of Hcs in the chilopode Myriapoda, demonstrating that these proteins are more widespread among the Arthropoda than previously thought. The analysis of transcriptome of S. subspinipes subpinipes reveals the presence of two distinct subunits of Hc, where the signal peptide is present, and six of prophenoloxidase (PPO), where the signal peptide is absent, in the 75 kDa range. Size exclusion chromatography profiles indicate different quaternary organization for Hc of both species, which was corroborated by TEM analysis: S. viridicornis Hc is a 6 × 6-mer and S. subspinipes Hc is a 3 × 6-mer, which resembles the half-structure of the 6 × 6-mer but also includes the presence of phenoloxidases, since the 1 × 6-mer quaternary organization is commonly associated with hexamers of PPO. Studies with Chelicerata showed that PPO activity are exclusively associated with the Hcs. This study indicates that Scolopendra may have different proteins playing oxygen transport (Hc) and PO function, both following the hexameric oligomerization observed in Hcs.
Collapse
Affiliation(s)
- K C T Riciluca
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil.,Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A C Borges
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - J F R Mello
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - U C de Oliveira
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - D C Serdan
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - A Florez-Ariza
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - E Chaparro
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - M Y Nishiyama
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - A Cassago
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - I L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil
| | - M van Heel
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| | - P I Silva
- Laboratório de Toxinologia Aplicada (LETA), Centro de Toxinas, Imuno-Resposta e Sinalização Celular (CeTICS/CEPID) - Instituto Butantan, São Paulo, Brazil.,Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - R V Portugal
- Laboratório Nacional de Nanotecnologia (LNNano), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, Brazil
| |
Collapse
|
161
|
Jiang K, Jiang L, Nie H, Huo Z, Yan X. Molecular cloning and expression analysis of tyrosinases ( tyr) in four shell-color strains of Manila clam Ruditapes philippinarum. PeerJ 2020; 8:e8641. [PMID: 32110498 PMCID: PMC7032058 DOI: 10.7717/peerj.8641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022] Open
Abstract
The Manila clam (Ruditapes philippinarum) is an economically important molluscan bivalve with variation in pigmentation frequently observed in the shell. In nature, tyrosinase is widely distributed in invertebrates and vertebrates, and plays a crucial role in a variety of physiological activities. In this study, a tyrosinase gene (tyr 9) was cloned and the expression level of tyr genes (tyr 6, tyr 9, tyr 10, and tyr 11) were investigated in different shell colors. Quantitative real-time PCR showed that tyr genes were significantly expressed in the mantle, a shell formation and pigmentation-related tissue. Moreover, the expression pattern of the tyr genes in the mantle of different shell-color strains was different, suggesting that tyrosinases might be involved in different shell-color formation. In addition, the expression profile of tyr 6, tyr 9, tyr 10, and tyr 11 genes were detected at different early developmental stages and the expression level varied with embryonic and larval growth. RNA interference (RNAi) results showed that the expression level of tyr 9 in the RNAi group was significantly down-regulated compared to control and negative control groups, indicating that Rptyr 9 might participate in shell-color formation. Our results indicated that tyr genes were likely to play vital roles in the formation of shell and shell-color in R. philippinarum.
Collapse
Affiliation(s)
- Kunyin Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Liwen Jiang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, School of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| |
Collapse
|
162
|
Janusz G, Pawlik A, Świderska-Burek U, Polak J, Sulej J, Jarosz-Wilkołazka A, Paszczyński A. Laccase Properties, Physiological Functions, and Evolution. Int J Mol Sci 2020; 21:ijms21030966. [PMID: 32024019 PMCID: PMC7036934 DOI: 10.3390/ijms21030966] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/16/2023] Open
Abstract
Discovered in 1883, laccase is one of the first enzymes ever described. Now, after almost 140 years of research, it seems that this copper-containing protein with a number of unique catalytic properties is widely distributed across all kingdoms of life. Laccase belongs to the superfamily of multicopper oxidases (MCOs)—a group of enzymes comprising many proteins with different substrate specificities and diverse biological functions. The presence of cupredoxin-like domains allows all MCOs to reduce oxygen to water without producing harmful byproducts. This review describes structural characteristics and plausible evolution of laccase in different taxonomic groups. The remarkable catalytic abilities and broad substrate specificity of laccases are described in relation to other copper-containing MCOs. Through an exhaustive analysis of laccase roles in different taxa, we find that this enzyme evolved to serve an important, common, and protective function in living systems.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
- Correspondence: ; Tel.: +48-81-537-5521
| | - Anna Pawlik
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Urszula Świderska-Burek
- Department of Botany, Mycology and Ecology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Jolanta Polak
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Justyna Sulej
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.P.); (J.P.); (J.S.); (A.J.-W.)
| | - Andrzej Paszczyński
- Professor Emeritus, School of Food Science, University of Idaho, Moscow, ID 83844, USA;
| |
Collapse
|
163
|
Hun Lee T, Hau Lee C, Alia Azmi N, Kavita S, Wong S, Znati M, Ben Jannet H. Characterization of Polar and Non-Polar Compounds of House Edible Bird's Nest (EBN) from Johor, Malaysia. Chem Biodivers 2020; 17:e1900419. [PMID: 31721431 DOI: 10.1002/cbdv.201900419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
This work investigated the polar (PC: protein, amino acid and metabolite) and non-polar (NPC: fatty acid) compounds and bioactivity characteristics of the EBN harvested from the state of Johor in Malaysia. The electrophoretic gels exhibited 15 protein bands (16-173 kD) with unique protein profile. Amino acids analysis by AccQ⋅Tag method revealed 18 types of amino acids in EBN. Metabolite profiling was performed using High-Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometer (HPLC-QTOF/MS) technique and a total of 54 compounds belonging to different groups were detected and identified. These findings help to uncover the relation of therapeutic activity of EBN. The EBN was further extracted with AcOEt and BuOH. The AcOEt extract was fractionated into three fractions (F1 -F3 ), and the high triglyceride content in F2 was verified by gC-FID. The three groups of fatty acids discovered in EBN are 48.43 % of poly-unsaturated (PUFA), 25.35 % of saturated fatty acids (SFA) and 24.74 % of mono-unsaturated fat (MUFA). This is the first time to report results ofEBN, BuOH, and AcOEt extracts and of fraction F2 (TEBN) on their analysis for their antioxidant activities by DPPH, ABTS and catalase assay and for their paraoxonase and anti-tyrosinase activities. The results showed that TEBN exhibited the significant bioactivity in all assays. These findings suggest that TEBN is a good source for natural bioactive compounds in promoting body vigor. Current work widened the content of EBN especially on the triglyceride and also marked the content of specific location (Johor, Malaysia) of EBN origin.
Collapse
Affiliation(s)
- Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nurul Alia Azmi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Supparmaniam Kavita
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Syieluing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mansour Znati
- Faculty of Science of Monastir, University of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| | - Hichem Ben Jannet
- Faculty of Science of Monastir, University of Monastir, Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, 5019, Monastir, Tunisia
| |
Collapse
|
164
|
Chakraborty M, Mondal A, Chattopadhyay SK. Structural divergence in binuclear Cu(ii) pyridoxal Schiff base complexes probed by co-ligands: catecholase mimetic activity and sulphide ion sensing. NEW J CHEM 2020. [DOI: 10.1039/d0nj00719f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three Cu(ii) complexes showing efficient catecholase activity, with pronounced solvent sensitivity, S2−sensing ability in micromolar concentrations, and coligand dependent denticity of the pyridoxal Schiff base ligand are reported.
Collapse
Affiliation(s)
- Moumita Chakraborty
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Shibpur
- Howrah 711103
- India
| | - Antu Mondal
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Shibpur
- Howrah 711103
- India
| | | |
Collapse
|
165
|
Abstract
The coelomic cavity is part of the main body plan of annelids. This fluid filled space takes up a considerable volume of the body and serves as an important site of exchange of both metabolites and proteins. In addition to low molecular substances such as amino acids and glucose and lactate, the coelomic fluid contains different proteins that can arise through release from adjacent tissues (intestine) or from secretion by coelomic cells. In this chapter, we will review the current knowledge about the proteins in the annelid coelomic fluid. Given the number of more than 20,000 extant annelid species, existing studies are confined to a relatively few species. Most studies on the oligochaetes are confined to the earthworms-clearly because of their important role in soil biology. In the polychaetes (which might represent a paraphyletic group) on the other hand, studies have focused on a few species of the Nereidid family. The proteins present in the coelomic fluid serve different functions and these have been studied in different taxonomic groups. In oligochaetes, proteins involved antibacterial defense such as lysenin and fetidin have received much attention in past and ongoing studies. In polychaetes, in contrast, proteins involved in vitellogenesis and reproduction, and the vitellogenic function of coelomic cells have been investigated in more detail. The metal binding metallothioneins as well as antimicrobial peptides, have been investigated in both oligochaetes and polychaetes. In the light of the literature available, this review will focus on lipoproteins, especially vitellogenin, and proteins involved in defense reactions. Other annelid groups such as the Pogonophora, Echiura, and Sipuncula (now considered polychaetes), have not received much attention and therefore, this overview is far from being complete.
Collapse
|
166
|
Olive Oil Polyphenols in Neurodegenerative Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1195:77-91. [PMID: 32468462 DOI: 10.1007/978-3-030-32633-3_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Neurodegenerative diseases lead to the death of nerve cells in the brain or the spinal cord. A wide range of diseases are included within the group of neurodegenerative disorders, with the most common ones being dementia, Alzheimer's, and Parkinson's diseases. Millions of older people are suffering from such pathologies. The global increase of life expectancy unavoidably leads to a consequent increase in the number of people who will be at some degree affected by neurodegenerative-related diseases. At this moment, there is no effective therapy or treatment that can reverse the loss of neurons. A growing number of studies highlight the value of the consumption of medical foods, and in particular olive oil, as one of the most important components of the Mediterranean diet. A diet based on extra virgin olive oil seems to contribute toward the lowering of risk of age-related pathologies due to high phenol concentration. The link of a polyphenol found in extra virgin olive oil, namely, tyrosol, with the protein tyrosinase, associated to Parkinson's disease is underlined as a paradigm of affiliation between polyphenols and neurodegenerative disorders.
Collapse
|
167
|
Ethanolic Extract of Hippocampus abdominalis Exerts Anti-Melanogenic Effects in B16F10 Melanoma Cells and Zebrafish Larvae by Activating the ERK Signaling Pathway. COSMETICS 2019. [DOI: 10.3390/cosmetics7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The big belly seahorse (Hippocampus abdominalis), a well-known ingredient of traditional medicine, possesses anti-inflammatory, anti-aging, anti-fatigue, and anti-thrombotic properties, and also increases male fertility. This study demonstrates that the ethanolic extract of dried H. abdominalis (EEHA) has anti-melanogenic effects in B16F10 melanoma cells and zebrafish larvae. EEHA significantly reduced the α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis in B16F10 melanoma cells without causing cytotoxicity. At a concentration of 200 µg/mL, EEHA had significant anti-melanogenic activity in zebrafish larvae, accompanied by a severe reduction in the heart rate (118 ± 17 heartbeats/min) compared to that of the untreated group (185 ± 8 heartbeats/min), indicating that EEHA induces cardiotoxicity at high concentrations. Below 100 µg/mL, EEHA significantly reduced melanogenesis in zebrafish larvae in the presence or absence of α-MSH, while the heart rate remained unaltered. Additionally, EEHA downregulated the release of cyclic adenosine monophosphate (cAMP) and the phosphorylation of cAMP response element-binding protein (CREB) in B16F10 melanoma cells, which inhibited microphthalmia-associated transcription factor (MITF), leading to the inhibition of tyrosinase activity. EEHA also increased the phosphorylation of extracellular-signal regulated kinase (ERK). The ERK inhibitor PD98059 interfered with the anti-melanogenic activity of EEHA in B16F10 melanoma cells and zebrafish larvae, indicating that the ERK signaling pathway might regulate the anti-melanogenic properties of EEHA. Altogether, we conclude that EEHA represses the cAMP–CREB–MITF axis, which consequently inhibits tyrosinase-mediated melanogenesis. We propose that at low concentrations, EEHA can serve as a promising anti-melanogenic agent that could be used to prepare whitening cosmetics and for treating melanogenic disorders.
Collapse
|
168
|
Sohtun WP, Muthuramalingam S, Velusamy M, Mayilmurugan R. New class of tridentate 3N ligands and copper(II) complexes: A model for type-2 copper site of phenoxazinone synthase. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
169
|
Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 2019; 34:279-309. [PMID: 30734608 PMCID: PMC6327992 DOI: 10.1080/14756366.2018.1545767] [Citation(s) in RCA: 569] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Tyrosinase is a multi-copper enzyme which is widely distributed in different organisms and plays an important role in the melanogenesis and enzymatic browning. Therefore, its inhibitors can be attractive in cosmetics and medicinal industries as depigmentation agents and also in food and agriculture industries as antibrowning compounds. For this purpose, many natural, semi-synthetic and synthetic inhibitors have been developed by different screening methods to date. This review has focused on the tyrosinase inhibitors discovered from all sources and biochemically characterised in the last four decades.
Collapse
Affiliation(s)
- Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | - Asieh Bahrami
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom, Iran
| | | | - J. Munoz-Munoz
- Group of Microbiology, Department of Applied Sciences, Northumbria University at Newcastle, Newcastle Upon Tyne, UK
| | - F. Garcia-Molina
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - F. Garcia-Canovas
- GENZ-Group of Research on Enzymology, Department of Biochemistry and Molecular Biology-A, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Espinardo, Murcia, Spain
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
170
|
Modification of Polyacrylonitrile Fibers by Coupling to Thiosemicarbazones. MATERIALS 2019; 12:ma12233980. [PMID: 31801281 PMCID: PMC6926618 DOI: 10.3390/ma12233980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 12/25/2022]
Abstract
This work reports the modification of Polyacrylonitrile (PAN) fibers by coupling to thiosemicarbazones to achieve the biological activity for the applications in the food product packaging. After modification, seven thiosemicarbazone compounds were synthesized. The as-synthesized thiosemicarbazone compounds were bonded to PAN fibers via covalent coupling, which was confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy. The mean graft efficiency of the compounds was about 1.92%, and the antibacterial efficiency was 88.6% and 45.1% against Staphylococcus aureus (S-aureus) bacteria. All the seven thiosemicarbazone compounds exerted excellent tyrosinase activity, low cytotoxicity, excellent metal ion chelation ability, and anti-bacterial behavior against both gram-positive and negative bacteria. The mechanical properties of the fibers have been maintained without significant damage after the chemical modification. The break strength test and elongation at the break test were done to measure the fracture strength of the modified fibers. Overall, the promising properties of the modified PAN fibers show potential applications in food packaging materials for fruits and vegetables, which require long-term anti-browning effects during their transportation and storage.
Collapse
|
171
|
Integrated Analysis of mRNA Expression, CpG Island Methylation, and Polymorphisms in the MITF Gene in Ducks ( Anas platyrhynchos). BIOMED RESEARCH INTERNATIONAL 2019; 2019:8512467. [PMID: 31662999 PMCID: PMC6778931 DOI: 10.1155/2019/8512467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/29/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023]
Abstract
Microphthalmia-associated transcription factor (MITF) is a key regulator for the development and function of melanocytes in skin, eye, and plumage pigmentations. Thus, the MITF was selected as a candidate gene associated with plumage coloration in ducks. This study analyzed the mRNA expression, promoter methylation, and polymorphisms in the MITF gene in ducks with different plumage colors (Putian Black, Putian White, Liancheng White, and Longsheng Jade-green). No expression of the MITF melanin-specific isoform (MITF-M) was detected in white feather bulbs. By contrast, the mRNA expression levels of MITF-M were high in black feather bulbs. Bioinformatics analysis showed that two CpG islands were present in the promoter region of the MITF gene. The methylation level of the second CpG island was significantly lower in black feather bulbs than in white feather bulbs. However, the methylation level of the first CpG island was not different among the feather bulbs with various colors except Liancheng White feather bulbs. The methylation status of the whole CpG island significantly and negatively correlated with the mRNA expression of MITF-M (P < 0.05). Furthermore, four novel SNPs (single nucleotide polymorphisms) were identified in the 5′UTR, exon 4, intron 7, and intron 8 of the MITF gene. Allele T in g.39807T>G and allele G in g.40862G>A were the predominant alleles only found in Putian White, whereas the variant A allele in g.32813G>A exhibited a high allele frequency in Liancheng White. Collectively, these results contributed to the understanding of the function of the MITF gene in duck plumage coloration.
Collapse
|
172
|
Bouville AS, Erlich G, Azoulay S, Fernandez X. Forgotten Perfumery Plants - Part I: Balm of Judea. Chem Biodivers 2019; 16:e1900506. [PMID: 31633273 DOI: 10.1002/cbdv.201900506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 10/15/2019] [Indexed: 11/10/2022]
Abstract
Perfumes have always been products of great importance, mainly composed of natural, valuable and vegetal raw materials. Today, some of them have completely disappeared in perfumery, even though they are part of our cultural heritage and were commonly used in the past. Balm of Judea is one of the most noble, rare and fascinating ingredient long used in perfumery and medicine, that is missing today. After years of research, we collected a resin and an essential oil (steam distillation of fresh aerial parts) from Commiphora gileadensis (L.) C.Chr. native from Saudi Arabia and cultivated in Israel. The aims of this study were to i) identify the main reasons of the loss of the balm of Judea, ii) characterize the volatile composition of the resin and the essential oil and iii) evaluate their olfactory profile and assess their biological activity. Eighty-three compounds were identified in the resin, by a combination of GC-MS and GC/FID techniques, using direct injection and HS-SPME. α-Pinene (24.0 %), sabinene (43.8 %), β-pinene (6.3 %) and cymene (3.6 %) were the main identified compounds, giving an intense, terpenic and lemony smell to the resin. Anti-inflammatory, wound-healing and whitening activities were highlighted. Sabinene (22.7 %), terpinen-4-ol (18.7 %), α-pinene (14.4 %) and cymene (13.6 %) were identified as the main components of the essential oil, giving a spicy, woody and lemony fragrance. Anti-inflammatory and whitening activities were emphasized.
Collapse
Affiliation(s)
- Anne-Sophie Bouville
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, 06108, Nice, France
| | - Guy Erlich
- Kibbutz Almog, Balm of Gilead Farm, 906500, Dead Sea, Israel
| | - Stéphane Azoulay
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, 06108, Nice, France
| | - Xavier Fernandez
- Université Côte d'Azur, Institut de Chimie de Nice, UMR 7272, 06108, Nice, France
| |
Collapse
|
173
|
Wang L, Liu L, Dong B, Zhao H. Peroxidase-Mediated In Situ Fabrication of Multi-Stimuli-Responsive and Dynamic Protein Nanogels from Tyrosine-Conjugated Biodynamer and Ovablumin. ACS Macro Lett 2019; 8:1233-1239. [PMID: 35651157 DOI: 10.1021/acsmacrolett.9b00465] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Horseradish peroxidase (HRP)-mediated oxidation of tyrosine-conjugated biodynamer containing acylhydrazone linkages and ovalbumin (OVA)/reduced ovalbumin (rOVA) generated protein nanogels through simultaneous tyrosine coupling and thiol cross-linking in the presence of H2O2. The obtained nanogels are multi-stimuli-responsive to temperature, pH, and glutathione (GSH) and possess the dynamic character of reversible covalent bonds. The OVA-based or rOVA-based protein nanogels can be utilized as cargoes of anticancer drug curcumin (Cur). The Cur-loaded protein nanogels rapidly released Cur in intracellular-mimicking acidic and reductive environment, thus, making these protein nanogels promising nanocarriers for intracellular drug delivery. HRP-mediated cross-linking of the tyrosine-conjugated biodynamer and proteins provides a facile and versatile approach for fabrication of responsive and adaptive biohybrid nanogels under mild conditions.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
- School of Packaging and Printing Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, People’s Republic of China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| | - Bingyang Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People’s Republic of China
| |
Collapse
|
174
|
Li Y, McLarin MA, Middleditch MJ, Morrow SJ, Kilmartin PA, Leung IK. An approach to recombinantly produce mature grape polyphenol oxidase. Biochimie 2019; 165:40-47. [DOI: 10.1016/j.biochi.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/04/2019] [Indexed: 01/30/2023]
|
175
|
Vila M. Neuromelanin, aging, and neuronal vulnerability in Parkinson's disease. Mov Disord 2019; 34:1440-1451. [PMID: 31251435 PMCID: PMC7079126 DOI: 10.1002/mds.27776] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/22/2022] Open
Abstract
Neuromelanin, a dark brown intracellular pigment, has long been associated with Parkinson's disease (PD). In PD, neuromelanin-containing neurons preferentially degenerate, tell-tale neuropathological inclusions form in close association with this pigment, and neuroinflammation is restricted to neuromelanin-containing areas. In humans, neuromelanin accumulates with age, which in turn is the main risk factor for PD. The potential contribution of neuromelanin to PD pathogenesis remains unknown because, in contrast to humans, common laboratory animals lack neuromelanin. The recent introduction of a rodent model exhibiting an age-dependent production of human-like neuromelanin has allowed, for the first time, for the consequences of progressive neuromelanin accumulation-up to levels reached in elderly human brains-to be assessed in vivo. In these animals, intracellular neuromelanin accumulation above a specific threshold compromises neuronal function and triggers a PD-like pathology. As neuromelanin levels reach this threshold in PD patients and presymptomatic PD patients, the modulation of neuromelanin accumulation could provide a therapeutic benefit for PD patients and delay brain aging. © 2019 The Author. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Miquel Vila
- Neurodegenerative Diseases Research GroupVall d'Hebron Research Institute–Center for Networked Biomedical Research on Neurodegenerative DiseasesBarcelonaSpain
- Department of Biochemistry and Molecular BiologyAutonomous University of BarcelonaBarcelonaSpain
- Catalan Institution for Research and Advanced StudiesBarcelonaSpain
| |
Collapse
|
176
|
Tyrosinase inhibitory effects of Vinca major and its secondary metabolites: Enzyme kinetics and in silico inhibition model of the metabolites validated by pharmacophore modelling. Bioorg Chem 2019; 92:103259. [PMID: 31518762 DOI: 10.1016/j.bioorg.2019.103259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 11/20/2022]
Abstract
In the present study, we aimed to identify the tyrosinase enzyme inhibitory potential of Vinca major L. extract and its secondary metabolites. The extract possessed remarkable tyrosinase enzyme inhibitory effect with IC50 value of 20.39 ± 0.44 µg/mL compared to the positive control, kojic acid (IC50 8.56 ± 0.17 µg/mL). Compounds 1 and 5 were the most potent isolates with IC50 values of 32.41 ± 0.99 and 31.34 ± 0.75 µM, they were more potent than kojic acid (IC50: 60.25 ± 0.54 µM). Compound 2 also exhibited remarkable tyrosinase inhibition with an IC50 value of 64.51 ± 1.29 µM. An enzyme kinetics analysis revealed that 1 was a mixed-type, 2 and 5 were noncompetitive inhibitors. Using molecular docking, we predicted binding affinity and interactions of the compounds, which were in good alignment with a pharmacophore hypothesis generated out of a number of known tyrosinase inhibitors. The modelling studies underlined crucial interactions with the copper ions and residues around them such as Asn260, His263, and Met280.
Collapse
|
177
|
Honisch C, Osto A, Dupas de Matos A, Vincenzi S, Ruzza P. Isolation of a tyrosinase inhibitor from unripe grapes juice: A spectrophotometric study. Food Chem 2019; 305:125506. [PMID: 31606690 DOI: 10.1016/j.foodchem.2019.125506] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/08/2023]
Abstract
Grapes are known to contain high quantity of polyphenolic compounds, including caffeic, coumaric and ferulic acids esterified with tartaric acid, to yield caftaric, coutaric and fertaric acids, respectively. These acids are more abundant in unripe grapes, which can be processed into verjuice, a product that shows intrinsic resistance against microbial growth and significant antioxidant activity. In the present work, the isolation of hydroxycinnamoyl tartaric acids from unripe grape juice by chromatographic techniques was described. Moreover, the capability of caftaric acid to inhibit tyrosinase activity was evaluated by spectrophotometric assays. According to the kinetics parameters calculated, caftaric acid was shown to be a competitive inhibitor of tyrosinase, more potent than the related caffeic and chlorogenic acids, suggesting that it can be used in cosmetic and food industries for the development of natural skin whitening formulations and as an agent able to counteract the enzymatic browning of food.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute of Biomolecular Chemistry of CNR, Padua Unit, 35131 Padova, Italy; Department of Chemical Sciences, University of Padova, 35131 Padova, Italy
| | - Alice Osto
- Institute of Biomolecular Chemistry of CNR, Padua Unit, 35131 Padova, Italy
| | - Amanda Dupas de Matos
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy; Free University of Bozen-Bolzano, Faculty of Science and Technology, Noi TechPark, 39100 Bolzano, Italy
| | - Simone Vincenzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro (PD), Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR, Padua Unit, 35131 Padova, Italy.
| |
Collapse
|
178
|
Banagozar Mohammadi A, Sadigh-Eteghad S, Torbati M, Bagher Fazljou SM, Vatandoust SM, Ej Golzari S, Farajdokht F, Mahmoudi J. Identification and applications of neuroactive silk proteins: a narrative review. J Appl Biomed 2019; 17:147-156. [PMID: 34907702 DOI: 10.32725/jab.2019.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 01/24/2023] Open
Abstract
In traditional medicine, natural silk is regarded as a cognitive enhancer and a cure for ameliorating the symptoms of heart disease, atherosclerosis, and metabolic disorders. In this review, general characteristics of both silk proteins, fibroin and sericin, extracted from silkworm Bombyx mori and their potential use in the neuronal disorders was discussed. Evidence shows that silk proteins exhibit neuroprotective effects in models of neurotoxicity. The antioxidant, neuroprotective, and acetylcholinesterase inhibitory mechanisms of silk proteins could prove promising in the treatment of neurodegenerative diseases. Owing to their excellent neurocompatibility and physicochemical properties, silk proteins have been used as scaffolds and drug delivery materials in the neuronal tissue engineering. These data support the potential of silk proteins as an effective complementary agent for central and peripheral neurological disorders.
Collapse
Affiliation(s)
- Ahad Banagozar Mohammadi
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Mohammadali Torbati
- Tabriz University of Medical Sciences, Faculty of Nutrition, Department of Food Science and Technology, Tabriz, Iran
| | - Seyyed Mohammad Bagher Fazljou
- Tabriz University of Medical Sciences, Faculty of Traditional Medicine, Department of Traditional Medicine, Tabriz, Iran
| | - Seyed Mehdi Vatandoust
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Samad Ej Golzari
- Tabriz University of Medical Sciences, Research Center for Evidence Based Medicine, Tabriz, Iran.,Tabriz University of Medical Sciences, Health Management and Safety Promotion Research Institute, Road Traffic Injury Research Center, Tabriz, Iran
| | - Fereshteh Farajdokht
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| | - Javad Mahmoudi
- Tabriz University of Medical Sciences, Neurosciences Research Center (NSRC), Tabriz, Iran
| |
Collapse
|
179
|
Ghafary S, Ranjbar S, Larijani B, Amini M, Biglar M, Mahdavi M, Bakhshaei M, Khoshneviszadeh M, Sakhteman A, Khoshneviszadeh M. Novel morpholine containing cinnamoyl amides as potent tyrosinase inhibitors. Int J Biol Macromol 2019; 135:978-985. [DOI: 10.1016/j.ijbiomac.2019.05.201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 01/19/2023]
|
180
|
Ghayas S, Ali Masood M, Parveen R, Aquib M, Farooq MA, Banerjee P, Sambhare S, Bavi R. 3D QSAR pharmacophore-based virtual screening for the identification of potential inhibitors of tyrosinase. J Biomol Struct Dyn 2019; 38:2916-2927. [DOI: 10.1080/07391102.2019.1647287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Sana Ghayas
- Department of Pharmaceutics, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - M. Ali Masood
- Department of Pharmaceutics, Dow College of Pharmacy, Dow University of Health Sciences, Karachi, Pakistan
| | - Rashida Parveen
- Department of Pharmacy, Superior University Lahore, Lahore, Pakistan
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P R China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, P R China
| | - Parikshit Banerjee
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Taiwan
| | - Susmit Sambhare
- Advanced Centre for Treatment, Research and Education in Cancer, Kharghar, Navi Mumbai, Maharashtra, India
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, China Gulou District
| |
Collapse
|
181
|
Heichel DL, Burke KA. Dual-Mode Cross-Linking Enhances Adhesion of Silk Fibroin Hydrogels to Intestinal Tissue. ACS Biomater Sci Eng 2019; 5:3246-3259. [PMID: 33405568 DOI: 10.1021/acsbiomaterials.9b00786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Compared to conventional wound closure methods like sutures and staples, polymer-based tissue adhesives afford some distinct advantages, such as greater ease of deployment in spatially constrained surgical sites. One way to achieve aqueous adhesion is by introducing catechol functional groups that form coordinate and covalent bonds with a variety of substrates. This approach, inspired by marine organisms, has been applied to biopolymers and synthetic polymers, but one key challenge is that compositions that are soluble in water are often susceptible to high swelling ratios that can result in undesired compression of neighboring tissues. This work sought to synthesize aqueous adhesive gels that are capable of two modes of association: (1) adhesion and covalent cross-linking reactions arising from catechol oxidation and (2) noncovalent cross-linking arising from self-assembly of polymer backbones within the gelled adhesive. The network's self-assembly after gelation was envisioned to afford control over swelling and reinforce its strength. Bombyx mori silk fibroin was selected as the backbone of the adhesive network because it can be processed into an aqueous solution yet later be rendered insoluble in water through the assembly of its hydrophobic protein core. Distinct from a previous approach to functionalize silk directly with catechol groups, this work investigated in situ generation of catechol on silk fibroin by enzymatically modifying phenolic side chains, where it was found that this enzymatic approach led to conjugates with higher degrees of catechol functionalization and aqueous solubility. Silk fibroin was functionalized with tyramine to enrich the protein's phenolic side chains, which were subsequently oxidized into catechol groups using mushroom tyrosinase (MT). The gelation of the silk conjugates with MT was monitored by rheology, and the gels exhibited low water uptake. Phenolic enrichment increased the rate of chemical cross-linking leading to gelation but did not interrupt assembly of silk's secondary structures. Adhesion of the tyramine-silk conjugates to porcine intestine was found to be superior to fibrin sealant, and induction of β sheet secondary structures was found to further enhance adhesive strength through a second mode of cross-linking. Neither the chemical functionalization nor phenol oxidation affected the ability of intestinal epithelial cells (Caco-2) to attach and proliferate. Phenolic functionalization and oxidative cross-linking of silk fibroin was found to afford a new route to water-soluble, catechol-functionalized polymers, which were found to display excellent adhesion to mucosal tissue and whose secondary structure provides an additional mode to control strength and swelling of adhesive gels.
Collapse
Affiliation(s)
- Danielle L Heichel
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States
| | - Kelly A Burke
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States.,Department of Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States.,Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, Connecticut 06269-3247, United States
| |
Collapse
|
182
|
Prexler SM, Frassek M, Moerschbacher BM, Dirks‐Hofmeister ME. Catechol Oxidase versus Tyrosinase Classification Revisited by Site‐Directed Mutagenesis Studies. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sarah M. Prexler
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Martin Frassek
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Bruno M. Moerschbacher
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | | |
Collapse
|
183
|
Prexler SM, Frassek M, Moerschbacher BM, Dirks‐Hofmeister ME. Catechol Oxidase versus Tyrosinase Classification Revisited by Site‐Directed Mutagenesis Studies. Angew Chem Int Ed Engl 2019; 58:8757-8761. [DOI: 10.1002/anie.201902846] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah M. Prexler
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Martin Frassek
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | - Bruno M. Moerschbacher
- Institut für Biologie und Biotechnologie der PflanzenWestfälische Wilhelms-Universität (WWU) Schlossplatz 8 48143 Münster Germany
| | | |
Collapse
|
184
|
Horsch J, Wilke P, Stephanowitz H, Krause E, Börner HG. Fish and Clips: A Convenient Strategy to Identify Tyrosinase Substrates with Rapid Activation Behavior for Materials Science Applications. ACS Macro Lett 2019; 8:724-729. [PMID: 35619530 DOI: 10.1021/acsmacrolett.9b00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides with suitable substrate properties for a specific tyrosinase are selected by combinatorial means from a one-bead-one-compound (OBOC) peptide library. The identified sequences exhibit tyrosine residues that are rapidly oxidized to 3,4-dihydroxyphenylalanine (Dopa), making the peptides interesting for enzyme-activated adhesives. The selection process of peptides involves tyrosinase oxidation of tyrosine-bearing sequences on a solid support, yielding dopaquinone residues (fish from the sequence pool), to which thiol-functional fluorescent probes attach by Michael-reaction (clip to mark). Labeled supports are isolated and sequence readout is feasible by MALDI-TOF-MS/MS to reveal peptides, while activation kinetics as well as enzyme-activated coating behavior are verifying the proper selection.
Collapse
Affiliation(s)
- Justus Horsch
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Patrick Wilke
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Heike Stephanowitz
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Hans G. Börner
- Department of Chemistry, Laboratory for Organic Synthesis of Functional Systems, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
185
|
Ielo L, Deri B, Germanò MP, Vittorio S, Mirabile S, Gitto R, Rapisarda A, Ronsisvalle S, Floris S, Pazy Y, Fais A, Fishman A, De Luca L. Exploiting the 1-(4-fluorobenzyl)piperazine fragment for the development of novel tyrosinase inhibitors as anti-melanogenic agents: Design, synthesis, structural insights and biological profile. Eur J Med Chem 2019; 178:380-389. [PMID: 31202126 DOI: 10.1016/j.ejmech.2019.06.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/22/2022]
Abstract
The development of Tyrosinase inhibitors (TYRIs) could represent an efficacious strategy for pharmacological intervention on skin pathologies related to aberrant production of melanin. Based on in silico studies we designed and tested a library of twenty-four compounds bearing the 4-(4-fluorobenzyl)piperazin-1-yl]-fragment. As result, we identified several compounds with excellent inhibit effects at low micromolar concentration against TYR from Agaricus bisporus (TyM). Among them, compound 25 (IC50 = 0.96 μM) proved to be ∼20-fold more potent than the reference compound kojic acid (IC50 = 17.76 μM) having wide applications in the cosmetics and pharmaceutical industries. The mode of interaction of active inhibitor 25 was deciphered by means of crystallography as well as molecular docking and these results were consistent with kinetic experiments. Moreover, the identified compound 25 exhibited no considerable cytotoxicity and showed anti-melanogenic effects on B16F10 melanoma cells. Therefore, a combination of computational and biochemical approaches could represent a rational guidelines for further structural modification of this class of compounds as future anti-melanogenic agents.
Collapse
Affiliation(s)
- Laura Ielo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy
| | - Batel Deri
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Maria Paola Germanò
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy
| | - Serena Vittorio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy
| | - Salvatore Mirabile
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy
| | - Antonio Rapisarda
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy
| | - Simone Ronsisvalle
- Department of Drug Science, Medicinal Chemistry Section University of Catania, Catania, Italy
| | - Sonia Floris
- Department of Life and Environment Sciences, University of Cagliari, I-09042, Monserrato, Cagliari, Italy
| | - Yael Pazy
- Technion Center for Structural Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Antonella Fais
- Department of Life and Environment Sciences, University of Cagliari, I-09042, Monserrato, Cagliari, Italy
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Laura De Luca
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, Polo Universitario SS. Annunziata, University of Messina, Viale Palatucci 13, I-98168, Messina, Italy.
| |
Collapse
|
186
|
Fan M, Ding H, Zhang G, Hu X, Gong D. Relationships of dietary flavonoid structure with its tyrosinase inhibitory activity and affinity. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.076] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
187
|
Ishihara A, Sugai N, Bito T, Ube N, Ueno K, Okuda Y, Fukushima-Sakuno E. Isolation of 6-hydroxy-L-tryptophan from the fruiting body of Lyophyllum decastes for use as a tyrosinase inhibitor. Biosci Biotechnol Biochem 2019; 83:1800-1806. [PMID: 31131717 DOI: 10.1080/09168451.2019.1621157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Tyrosinase is the key enzyme that controls melanin formation. We found that a hot water extract of the lyophilized fruiting body of the fungus Lyophyllum decastes inhibited tyrosinase from Agaricus bisporus. The extract was fractionated by ODS column chromatography, and an active compound was obtained by purification through successive preparative HPLC using an ODS and a HILIC column. Using spectroscopic data, the compound was identified to be an uncommon amino acid, 6-hydroxytryptophan. 6-Hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan were prepared through a Fenton reaction from L-tryptophan and D-tryptophan, respectively. The active compound was determined to be 6-hydroxy-L-tryptophan by comparison of their circular dichroism spectra and retention time on HPLC analysis of the Nα-(5-fluoro-2,4-dinitrophenyl)-L-leuciamide derivative with those of 6-hydroxy-L-tryptophan and 6-hydroxy-D-tryptophan. A Lineweaver-Burk plot of the enzyme reaction in the presence of 6-hydroxy-L-tryptophan indicated that this compound was a competitive inhibitor. The IC50 values of 6-hydroxy-L-tryptophan was 0.23 mM.
Collapse
Affiliation(s)
| | - Naomi Sugai
- Faculty of Agriculture, Tottori University , Tottori , Japan
| | - Tomohiro Bito
- Faculty of Agriculture, Tottori University , Tottori , Japan
| | - Naoki Ube
- The United Graduate School of Agricultural Sciences, Tottori University , Tottori , Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University , Tottori , Japan
| | - Yasuhito Okuda
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation , Tottori , Japan
| | - Emi Fukushima-Sakuno
- The Tottori Mycological Institute, The Japan Kinoko Research Center Foundation , Tottori , Japan
| |
Collapse
|
188
|
Orf239342 from the mushroom Agaricus bisporus is a mannose binding protein. Biochem Biophys Res Commun 2019; 515:99-103. [PMID: 31128918 DOI: 10.1016/j.bbrc.2019.05.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/18/2022]
Abstract
A recently discovered lectin-like protein from mushroom tyrosinase designated as orf239342 inhibits proliferation of the MCF-7 breast cancer cells. This characteristic is likely derived from its ability to recognize sugar entity on the cell surface. Thereby, the binding specificity of orf239342 to sugars was studied. Orf239342 was found to bind specifically to mannose upon analysis with the surface plasmon resonance technique. Finally, our in vitro study showed that mannose impeded orf239342 ability to inhibit proliferation of the MCF-7 breast cancer cells, providing further evidence for the mannose binding onto the protein. Our finding is a breakthrough to characterise orf239342 i.e. to define its functioning in the mushroom, association to the tyrosinase, or even possible application in breast cancer therapy. In addition, the finding allows the more appropriate designation of the protein as Agaricus bisporus mannose binding-protein (AbMb).
Collapse
|
189
|
Zhang X, Huang H, He Y, Ruan Z, You X, Li W, Wen B, Lu Z, Liu B, Deng X, Shi Q. High-throughput identification of heavy metal binding proteins from the byssus of chinese green mussel (Perna viridis) by combination of transcriptome and proteome sequencing. PLoS One 2019; 14:e0216605. [PMID: 31071150 PMCID: PMC6508894 DOI: 10.1371/journal.pone.0216605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
The Byssus, which is derived from the foot gland of mussels, has been proved to bind heavy metals effectively, but few studies have focused on the molecular mechanisms behind the accumulation of heavy metals by the byssus. In this study, we integrated high-throughput transcriptome and proteome sequencing to construct a comprehensive protein database for the byssus of Chinese green mussel (Perna viridis), aiming at providing novel insights into the molecular mechanisms by which the byssus binds to heavy metals. Illumina transcriptome sequencing generated a total of 55,670,668 reads. After filtration, we obtained 53,047,718 clean reads and subjected them to de novo assembly using Trinity software. Finally, we annotated 73,264 unigenes and predicted a total of 34,298 protein coding sequences. Moreover, byssal samples were analyzed by proteome sequencing, with the translated protein database from the foot transcriptome as the reference for further prediction of byssal proteins. We eventually determined 187 protein sequences in the byssus, of which 181 proteins are reported for the first time. Interestingly, we observed that many of these byssal proteins are rich in histidine or cysteine residues, which may contribute to the byssal accumulation of heavy metals. Finally, we picked one representative protein, Pvfp-5-1, for recombinant protein synthesis and experimental verification of its efficient binding to cadmium (Cd2+) ions.
Collapse
Affiliation(s)
- Xinhui Zhang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Huiwei Huang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | | | - Zhiqiang Ruan
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
| | | | - Bo Wen
- BGI-Shenzhen, BGI, Shenzhen, China
| | - Zizheng Lu
- Shenzhen Horus Marine Technology Co. Ltd., Shenzhen, China
| | - Bing Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Deng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, China
- Laboratory of Aquatic Bioinformatics, BGI-Zhenjiang Institute of Hydrobiology, BGI Marine, BGI, Zhenjiang, China
| |
Collapse
|
190
|
Zhang Z, Lu Y, Xu W, Du Q, Sui L, Zhao Y, Li Q. RNA sequencing analysis of Beauveria bassiana isolated from Ostrinia furnacalis identifies the pathogenic genes. Microb Pathog 2019; 130:190-195. [DOI: 10.1016/j.micpath.2019.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/20/2019] [Accepted: 03/10/2019] [Indexed: 01/14/2023]
|
191
|
Herzigkeit B, Jurgeleit R, Flöser BM, Meißner NE, Engesser TA, Näther C, Tuczek F. Employing Linear Tridentate Ligands with Pyrazole End Groups in Catalytic Tyrosinase Model Chemistry: Does Hemilability Matter? Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Benjamin Herzigkeit
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| | - Ramona Jurgeleit
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| | - Benedikt M. Flöser
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| | - Nadja E. Meißner
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| | - Tobias A. Engesser
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| | - Christian Näther
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| | - Felix Tuczek
- Institut für Anorganische Chemie Christian‐Albrechts‐Universität zu Kiel Max‐Eyth‐Straße 2 24118 Kiel Germany
| |
Collapse
|
192
|
Hori J, Yamaguchi T, Keino H, Hamrah P, Maruyama K. Immune privilege in corneal transplantation. Prog Retin Eye Res 2019; 72:100758. [PMID: 31014973 DOI: 10.1016/j.preteyeres.2019.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Corneal transplantation is the most successful solid organ transplantation performed in humans. The extraordinary success of orthotopic corneal allografts, in both humans and experimental animals, is related to the phenomenon of "immune privilege". Inflammation is self-regulated to preserve ocular functions because the eye has immune privilege. At present, three major mechanisms are considered to provide immune privilege in corneal transplantation: 1) anatomical, cellular, and molecular barriers in the cornea; 2) tolerance related to anterior chamber-associated immune deviation and regulatory T cells; and 3) an immunosuppressive intraocular microenvironment. This review describes the mechanisms of immune privilege that have been elucidated from animal models of ocular inflammation, especially those involving corneal transplantation, and its relevance for the clinic. An update on molecular, cellular, and neural interactions in local and systemic immune regulation is provided. Therapeutic strategies for restoring immune privilege are also discussed.
Collapse
Affiliation(s)
- Junko Hori
- Department of Ophthalmology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan; Department of Ophthalmology, Nippon Medical School, Tama-Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan.
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, 5-11-13 Sugano, Ichikawa-shi, Chiba, 272-8513, Japan; Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Keino
- Department of Ophthalmology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi, Tokyo, 181-8611, Japan
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Tufts University, 800 Washington St, Boston, MA, 02111, USA
| | - Kazuichi Maruyama
- Department of Innovative Visual Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
193
|
Wang L, Gan ZF, Guo D, Xia HL, Patrice FT, Hafez ME, Li DW. Electrochemistry-Regulated Recyclable SERS Sensor for Sensitive and Selective Detection of Tyrosinase Activity. Anal Chem 2019; 91:6507-6513. [PMID: 30916930 DOI: 10.1021/acs.analchem.8b05341] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tyrosinase (TYR) which can catalyze the oxidation of catechol is recognized as a significant biomarker of melanocytic lesions, thus developing powerful methods for the determination of TYR activity is highly desirable for the early diagnosis of melanin-related diseases, including melanoma. Herein, we develop a novel portable and recyclable surface-enhanced Raman scattering (SERS) sensor, prepared by assembling gold nanoparticles and p-thiol catechol ( p-TC) on an ITO electrode, for detecting TYR activity via the SERS spectral variation caused by the conversion of p-TC into its corresponding quinone under TYR catalysis. The developed SERS sensor has a rapid response to TYR within 1 min under the optimized conditions and shows high selectivity for TYR with the detection limit at 0.07 U/mL. Importantly, this SERS sensor can be easily regulated by applying negative voltage to achieve circular utilization, favoring the automation of SERS detection. Furthermore, the presented recyclable SERS sensor can perform well on both the determination of TYR activity in serum and the assessment of TYR inhibitor, demonstrating huge potential in the sensitive, selective, and facile detection of TYR activity for disease diagnosis and drug screening related with TYR.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Zheng-Fei Gan
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Dan Guo
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Hai-Lun Xia
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Fato Tano Patrice
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China.,Department of Chemistry, Faculty of Science , Beni-Suef University , Beni-Suef 62511 , Egypt
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Joint International Laboratory for Precision Chemistry & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|
194
|
Okeke UC, Gultneh Y, Jasinski JP, Butcher RJ. A novel Cu(II) tetranuclear complex, chemical properties and catalysis of hydrolysis of phosphate esters. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
195
|
Zhang HH, Luo MJ, Zhang QW, Cai PM, Idrees A, Ji QE, Yang JQ, Chen JH. Molecular characterization of prophenoloxidase-1 (PPO1) and the inhibitory effect of kojic acid on phenoloxidase (PO) activity and on the development of Zeugodacus tau (Walker) (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:236-247. [PMID: 29929571 DOI: 10.1017/s0007485318000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phenoloxidase (PO) plays a key role in melanin biosynthesis during insect development. Here, we isolated the 2310-bp full-length cDNA of PPO1 from Zeugodacus tau, a destructive horticultural pest. qRT-polymerase chain reaction showed that the ZtPPO1 transcripts were highly expressed during larval-prepupal transition and in the haemolymph. When the larvae were fed a 1.66% kojic acid (KA)-containing diet, the levels of the ZtPPO1 transcripts significantly increased by 2.79- and 3.39-fold in the whole larvae and cuticles, respectively, while the corresponding PO activity was significantly reduced; in addition, the larval and pupal durations were significantly prolonged; pupal weights were lowered; and abnormal phenotypes were observed. An in vitro inhibition experiment indicated that KA was an effective competitive inhibitor of PO in Z. tau. Additionally, the functional analysis showed that 20E could significantly up-regulate the expression of ZtPPO1, induce lower pupal weight, and advance pupation. Knockdown of the ZtPPO1 gene by RNAi significantly decreased mRNA levels after 24 h and led to low pupation rates and incomplete pupae with abnormal phenotypes during the larval-pupal interim period. These results proved that PO is important for the normal growth of Z. tau and that KA can disrupt the development of this pest insect.
Collapse
Affiliation(s)
- H-H Zhang
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - M-J Luo
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - Q-W Zhang
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - P-M Cai
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - A Idrees
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - Q-E Ji
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - J-Q Yang
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| | - J-H Chen
- Institute of Beneficial Insects, Plant Protection College, Fujian Agriculture and Forestry University,Fuzhou 350002, PR,China
| |
Collapse
|
196
|
Development of a Novel Biosensor Based on Tyrosinase/Platinum Nanoparticles/Chitosan/Graphene Nanostructured Layer with Applicability in Bioanalysis. MATERIALS 2019; 12:ma12071009. [PMID: 30934702 PMCID: PMC6480429 DOI: 10.3390/ma12071009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/20/2019] [Accepted: 03/24/2019] [Indexed: 12/16/2022]
Abstract
The present paper describes the preparation and characterization of a graphene, chitosan, platinum nanoparticles and tyrosinase-based bionanocomposite film deposited on the surface of a screen-printed carbon electrode for the detection of L-tyrosine by voltammetry. The redox process on the biosensor surface is associated with the enzymatic oxidation of L-tyrosine, which is favoured by graphene and platinum nanoparticles that increase electrical conductivity and the electron transfer rate. Chitosan ensures the biocompatibility between the tyrosinase enzyme and the solid matrix, as well as a series of complex interactions for an efficient immobilization of the biocatalyst. Experimental conditions were optimized so that the analytical performances of the biosensor were maximal for L-tyrosine detection. By using square wave voltammetry as the detection method, a very low detection limit (4.75 × 10−8 M), a vast linearity domain (0.1–100 μM) and a high affinity of the enzyme for the substrate (KMapp is 53.4 μM) were obtained. The repeatability of the voltammetric response, the stability, and the reduced interference of the chemical species present in the sample prove that this biosensor is an excellent tool to be used in bioanalysis. L-tyrosine detection in medical and pharmaceutical samples was performed with very good results, the analytical recovery values obtained being between 99.5% and 101%. The analytical method based on biosensor was validated by the standard method of analysis, the differences observed being statistically insignificant at the 99% confidence level.
Collapse
|
197
|
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun 2019; 10:973. [PMID: 30846695 PMCID: PMC6405777 DOI: 10.1038/s41467-019-08858-y] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
Collapse
|
198
|
Carballo-Carbajal I, Laguna A, Romero-Giménez J, Cuadros T, Bové J, Martinez-Vicente M, Parent A, Gonzalez-Sepulveda M, Peñuelas N, Torra A, Rodríguez-Galván B, Ballabio A, Hasegawa T, Bortolozzi A, Gelpi E, Vila M. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun 2019. [PMID: 30846695 DOI: 10.1038/s41467-019-08858-y.pmid:30846695;pmcid:pmc6405777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
Collapse
Affiliation(s)
- Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Naples, Italy
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, Miyagi, 980-8574, Japan
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS)-Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank, Biobanc Hospital Clínic-IDIBAPS, 08036, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
199
|
Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review. ENVIRONMENT INTERNATIONAL 2019; 124:336-353. [PMID: 30660847 DOI: 10.1016/j.envint.2019.01.011] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/07/2018] [Accepted: 01/04/2019] [Indexed: 02/08/2023]
Abstract
The widespread occurrence and adverse environmental and health-related impacts of various types of emerging contaminants (ECs) have become an issue of high concern. With ever increasing scientific knowledge, socio-economic awareness, health-related problems and ecological apprehensions, people are more concerned about the widespread ECs, around the globe. Among ECs, biologically active compounds from pharmaceutical, cosmeceutical, biomedical, personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), and flame-retardants are of paramount concern. The presence and persistence of ECs in water bodies are of continued and burning interest, worldwide. Various types of ECs are being discharged knowingly/unknowingly with/without partial treatments into the aquatic environments that pose serious health issues and affects the entire living ecosystem. So far, various approaches have been developed for ECs degradation and removal to diminish their adverse impact. Many previous and/or ongoing studies have focused on contaminants degradation and efficient removal via numerous treatment strategies, i.e. (1) physical, (2) chemical and (3) biological. However, the experimental evidence is lacking to enable specific predictions about ECs mechanistic degradation and removal fate across various in-practice systems. In this context, the deployment oxidoreductases such as peroxidases (lignin peroxidases, manganese-dependent peroxidases, and horseradish peroxidase), aromatic dioxygenases, various oxygenases, laccases, and tyrosinases have received considerable research attention. Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment. This work overviews the current and state-of-the-art critical aspect related to hazardous pollutants at large and ECs in particular by the immobilized oxidoreductase enzymes. The first part of the review focuses on the occurrence, physiochemical behavior, potent sources and significant routes of ECs. Following that, environmentally-related adverse impacts and health-related issues of ECs are discussed in the second part. In the third part, biodegradation and removal strategies with a comparative overview of several conventional vs. non-conventional methods are presented briefly. The fourth part majorly focuses on operational modes of different oxidoreductase enzyme-based biocatalytic processes for the biodegradation and biotransformation of a wide array of harmful environmental contaminants. Finally, the left behind research gaps, concluding remarks as well as future trends and recommendations in the use of carrier-immobilized oxidoreductases for environmental perspective are also discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Adeel
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
200
|
Godoy-Gallardo M, Labay C, Hosta-Rigau L. Tyrosinase-Loaded Multicompartment Microreactor toward Melanoma Depletion. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5862-5876. [PMID: 30605301 DOI: 10.1021/acsami.8b20275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Melanoma is malignant skin cancer occurring with increasing prevalence with no effective treatment. A unique feature of melanoma cells is that they require higher concentrations of ltyrosine (l-tyr) for expansion than normal cells. As such, it has been demonstrated that dietary l-tyr restriction lowers systemic l-tyr and suppresses melanoma advancement in mice. Unfortunately, this diet is not well tolerated by humans. An alternative approach to impede melanoma progression will be to administer the enzyme tyrosinase (TYR), which converts l-tyr into melanin. Herein, a multicompartment carrier consisting of a polymer shell entrapping thousands of liposomes is employed to act as a microreactor depleting l-tyr in the presence of melanoma cells. It is shown that the TYR enzyme can be incorporated within the liposomal subunits with preserved catalytic activity. Aiming to mimic the dynamic environment at the tumor site, l-tyr conversion is conducted by co-culturing melanoma cells and microreactors in a microfluidic setup with applied intratumor shear stress. It is demonstrated that the microreactors are concurrently depleting l-tyr, which translates into inhibited melanoma cell growth. Thus, the first microreactor where the depletion of a substrate translates into antitumor properties in vitro is reported.
Collapse
Affiliation(s)
- Maria Godoy-Gallardo
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| | - Cédric Labay
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| | - Leticia Hosta-Rigau
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, DTU Nanotech , Technical University of Denmark , Building 423 , 2800 Lyngby , Denmark
| |
Collapse
|