151
|
Pedersen JT, Teilum K, Heegaard NHH, Østergaard J, Adolph HW, Hemmingsen L. Rapid Formation of a Preoligomeric Peptide-Metal-Peptide Complex Following Copper(II) Binding to Amyloid β Peptides. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
152
|
Ruthstein S, Stone KM, Cunningham TF, Ji M, Cascio M, Saxena S. Pulsed electron spin resonance resolves the coordination site of Cu²(+) ions in α1-glycine receptor. Biophys J 2011; 99:2497-506. [PMID: 20959090 DOI: 10.1016/j.bpj.2010.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 08/09/2010] [Accepted: 08/26/2010] [Indexed: 11/19/2022] Open
Abstract
Herein, we identify the coordination environment of Cu²(+) in the human α1-glycine receptor (GlyR). GlyRs are members of the pentameric ligand-gated ion channel superfamily (pLGIC) that mediate fast signaling at synapses. Metal ions like Zn²(+) and Cu²(+) significantly modulate the activity of pLGICs, and metal ion coordination is essential for proper physiological postsynaptic inhibition by GlyR in vivo. Zn²(+) can either potentiate or inhibit GlyR activity depending on its concentration, while Cu²(+) is inhibitory. To better understand the molecular basis of the inhibitory effect we have used electron spin resonance to directly examine Cu²(+) coordination and stoichiometry. We show that Cu²(+) has one binding site per α1 subunit, and that five Cu²(+) can be coordinated per GlyR. Cu²(+) binds to E192 and H215 in each subunit of GlyR with a 40 μM apparent dissociation constant, consistent with earlier functional measurements. However, the coordination site does not include several residues of the agonist/antagonist binding site that were previously suggested to have roles in Cu²(+) coordination by functional measurements. Intriguingly, the E192/H215 site has been proposed as the potentiating Zn²(+) site. The opposing modulatory actions of these cations at a shared binding site highlight the sensitive allosteric nature of GlyR.
Collapse
Affiliation(s)
- Sharon Ruthstein
- Department of Chemistry, University of Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
153
|
Pushie MJ, Pickering IJ, Martin GR, Tsutsui S, Jirik FR, George GN. Prion protein expression level alters regional copper, iron and zinc content in the mouse brain. Metallomics 2011; 3:206-14. [PMID: 21264406 DOI: 10.1039/c0mt00037j] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The central role of the prion protein (PrP) in a family of fatal neurodegenerate diseases has garnered considerable research interest over the past two decades. Moreover, the role of PrP in neuronal development, as well as its apparent role in metal homeostasis, is increasingly of interest. The host-encoded form of the prion protein (PrP(C)) binds multiple copper atoms via its N-terminal domain and can influence brain copper and iron levels. The importance of PrP(C) to the regulation of brain metal homeostasis and metal distribution, however, is not fully understood. We therefore employed synchrotron-based X-ray fluorescence imaging to map the level and distributions of several key metals in the brains of mice that express different levels of PrP(C). Brain sections from wild-type, prion gene knockout (Prnp(-/-)) and PrP(C) over-expressing mice revealed striking variation in the levels of iron, copper, and even zinc in specific brain regions as a function of PrP(C) expression. Our results indicate that one important function of PrP(C) may be to regulate the amount and distribution of specific metals within the central nervous system. This raises the possibility that PrP(C) levels, or its activity, might regulate the progression of diseases in which altered metal homeostasis is thought to play a pathogenic role such as Alzheimer's, Parkinson's and Wilson's diseases and disorders such as hemochromatosis.
Collapse
Affiliation(s)
- M Jake Pushie
- Molecular and Environmental Science Research Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | | | | | | | | | | |
Collapse
|
154
|
Rivillas-Acevedo L, Grande-Aztatzi R, Lomelí I, García JE, Barrios E, Teloxa S, Vela A, Quintanar L. Spectroscopic and Electronic Structure Studies of Copper(II) Binding to His111 in the Human Prion Protein Fragment 106−115: Evaluating the Role of Protons and Methionine Residues. Inorg Chem 2011; 50:1956-72. [DOI: 10.1021/ic102381j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lina Rivillas-Acevedo
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Rafael Grande-Aztatzi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Italia Lomelí
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Javier E. García
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Erika Barrios
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Sarai Teloxa
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| | - Liliana Quintanar
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), 07360, D.F., Mexico
| |
Collapse
|
155
|
Ahamed BN, Ghosh P. Selective colorimetric and fluorometric sensing of Cu(ii) by iminocoumarin derivative in aqueous buffer. Dalton Trans 2011; 40:6411-9. [DOI: 10.1039/c1dt10177c] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
156
|
Lorca RA, Varela-Nallar L, Inestrosa NC, Huidobro-Toro JP. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2 X4Receptors. Int J Alzheimers Dis 2011; 2011:706576. [PMID: 22114745 PMCID: PMC3202100 DOI: 10.4061/2011/706576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 08/16/2011] [Indexed: 11/20/2022] Open
Abstract
Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+.
Collapse
Affiliation(s)
- Ramón A. Lorca
- Departamento de Fisiología, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago 8331150, Chile
| | - Lorena Varela-Nallar
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago 8331150, Chile
| | - Nibaldo C. Inestrosa
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago 8331150, Chile
| | - J. Pablo Huidobro-Toro
- Departamento de Fisiología, Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
157
|
Sultana R, Butterfield DA. Brain Protein Oxidation and Modification for Good or for Bad in Alzheimer’s Disease. NEUROCHEMICAL MECHANISMS IN DISEASE 2011. [DOI: 10.1007/978-1-4419-7104-3_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
158
|
Andre C, Excoffon L, Magy-Bertrand N, Limat S, Guillaume YC. Copper Mediated Affinity of Amyloid β to Chondroitin Sulfates. Chromatographia 2010. [DOI: 10.1365/s10337-010-1770-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
159
|
Sarell CJ, Wilkinson SR, Viles JH. Substoichiometric levels of Cu2+ ions accelerate the kinetics of fiber formation and promote cell toxicity of amyloid-{beta} from Alzheimer disease. J Biol Chem 2010; 285:41533-40. [PMID: 20974842 DOI: 10.1074/jbc.m110.171355] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A role for Cu(2+) ions in Alzheimer disease is often disputed, as it is believed that Cu(2+) ions only promote nontoxic amorphous aggregates of amyloid-β (Aβ). In contrast with currently held opinion, we show that the presence of substoichiometric levels of Cu(2+) ions in fact doubles the rate of production of amyloid fibers, accelerating both the nucleation and elongation of fiber formation. We suggest that binding of Cu(2+) ions at a physiological pH causes Aβ to approach its isoelectric point, thus inducing self-association and fiber formation. We further show that Cu(2+) ions bound to Aβ are consistently more toxic to neuronal cells than Aβ in the absence of Cu(2+) ions, whereas Cu(2+) ions in the absence of Aβ are not cytotoxic. The degree of Cu-Aβ cytotoxicity correlates with the levels of Cu(2+) ions that accelerate fiber formation. We note the effect appears to be specific for Cu(2+) ions as Zn(2+) ions inhibit the formation of fibers. An active role for Cu(2+) ions in accelerating fiber formation and promoting cell death suggests impaired copper homeostasis may be a risk factor in Alzheimer disease.
Collapse
Affiliation(s)
- Claire J Sarell
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | |
Collapse
|
160
|
Su CK, Sun YC, Tzeng SF, Yang CS, Wang CY, Yang MH. In vivo monitoring of the transfer kinetics of trace elements in animal brains with hyphenated inductively coupled plasma mass spectrometry techniques. MASS SPECTROMETRY REVIEWS 2010; 29:392-424. [PMID: 19437493 DOI: 10.1002/mas.20240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The roles of metal ions to sustain normal function and to cause dysfunction of neurological systems have been confirmed by various studies. However, because of the lack of adequate analytical method to monitor the transfer kinetics of metal ions in the brain of a living animal, research on the physiopathological roles of metal ions in the CNS remains in its early stages and more analytical efforts are still needed. To explicitly model the possible links between metal ions and physiopathological alterations, it is essential to develop in vivo monitoring techniques that can bridge the gap between metalloneurochemistry and neurophysiopathology. Although inductively coupled plasma mass spectrometry (ICP-MS) is a very powerful technique for multiple trace element analyses, when dealing with chemically complex microdialysis samples, the detection capability is largely limited by instrumental sensitivity, selectivity, and contamination that arise from the experimental procedure. As a result, in recent years several high efficient and clean on-line sample pretreatment systems have been developed and combined with microdialysis and ICP-MS for the continuous and in vivo determination of the concentration-time profiles of metal ions in the extracellular space of rat brain. This article reviews the research relevant to the development of analytical techniques for the in vivo determination of dynamic variation in the concentration levels of metal ions in a living animal.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
161
|
Morot-Gaudry-Talarmain Y. Physical and functional interactions of cyclophilin B with neuronal actin and peroxiredoxin-1 are modified by oxidative stress. Free Radic Biol Med 2009; 47:1715-30. [PMID: 19766713 DOI: 10.1016/j.freeradbiomed.2009.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 08/26/2009] [Accepted: 09/14/2009] [Indexed: 12/29/2022]
Abstract
Presynaptic actin was identified as a new Torpedo cyclophilin B partner captured in pull-down experiments and by coimmunoprecipitation. The cyclophilin B-actin pull-down interaction was insensitive to the blockade of peptidyl cis/trans prolyl isomerase and calcineurin activities and to the latrunculin A- and jasplakinolide-mediated perturbation of F-actin polymerization. Conversely, it was reduced by ATP and stimulated by a low Cu(2+) treatment of synaptosomes and by acrolydan-conjugated cyclophilin B. This Cu(2+)-induced stress, in parallel, stimulates the formation of GSH adducts with cysteines of synaptosomal actin followed by its deglutathionylation and its dimerization in the presence of higher Cu(2+) concentrations. The reversibility of the thiol processing of actin occurred in the same range of Cu(2+) concentrations that mediated a stronger cyclophilin B-actin interaction, suggesting cyclophilin B participation in antioxidant processes. Among 2-Cys-peroxiredoxin isoforms, mainly peroxiredoxin-1 was found in cell bodies and nerve endings. Functionally, both Torpedo and human peroxiredoxin-1 were activated in vitro by Torpedo cyclophilin B. Moreover, cyclophilin B, like thioredoxins, maintained an H(2)O(2)-dependent peroxidase activity of peroxiredoxin-1 in the presence of dithiothreitol. Thus, the monocysteinic Torpedo cyclophilin B is able to sustain peroxiredoxin-1 activity and might be involved in the presynaptic defense against oxidative stress affecting G-actin posttranslational changes and its redox signaling in nerve ending compartments.
Collapse
Affiliation(s)
- Yvette Morot-Gaudry-Talarmain
- Laboratoire de Neurobiologie Cellulaire et Moléculaire-UPR9040, CNRS, Institut de Neurobiologie Alfred Fessard-FRC2118, Gif sur Yvette, F-91198, France.
| |
Collapse
|
162
|
Copper in the brain and Alzheimer’s disease. J Biol Inorg Chem 2009; 15:61-76. [DOI: 10.1007/s00775-009-0600-y] [Citation(s) in RCA: 313] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 10/13/2009] [Indexed: 12/13/2022]
|
163
|
Gajewska A, Gajkowska B, Pajak B, Styrna J, Kochman K. Impaired growth hormone-releasing hormone neurons ultrastructure and peptide accumulation in the arcuate nucleus of mosaic mice with altered copper metabolism. Brain Res Bull 2009; 80:128-32. [DOI: 10.1016/j.brainresbull.2009.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/07/2009] [Indexed: 01/31/2023]
|
164
|
Sarell CJ, Syme CD, Rigby SEJ, Viles JH. Copper(II) binding to amyloid-beta fibrils of Alzheimer's disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Abeta oligomeric form. Biochemistry 2009; 48:4388-402. [PMID: 19338344 DOI: 10.1021/bi900254n] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cu(2+) ions are found concentrated within senile plaques of Alzheimer's disease patients directly bound to amyloid-beta peptide (Abeta) and are linked to the neurotoxicity and self-association of Abeta. The affinity of Cu(2+) for monomeric Abeta is highly disputed, and there have been no reports of affinity of Cu(2+) for fibrillar Abeta. We therefore measured the affinity of Cu(2+) for both monomeric and fibrillar Abeta(1-42) using two independent methods: fluorescence quenching and circular dichroism. The binding curves were almost identical for both fibrillar and monomeric forms. Competition studies with free glycine, l-histidine, and nitrilotriacetic acid (NTA) indicate an apparent (conditional) dissociation constant of 10(-11) M, at pH 7.4. Previous studies of Cu-Abeta have typically found the affinity 2 or more orders of magnitude weaker, largely because the affinity of competing ligands or buffers has been underestimated. Abeta fibers are able to bind a full stoichiometric complement of Cu(2+) ions with little change in their secondary structure and have coordination geometry identical to that of monomeric Abeta. Electron paramagnetic resonance studies (EPR) with Abeta His/Ala analogues suggest a dynamic view of the tetragonal Cu(2+) complex, with axial as well as equatorial coordination of imidazole nitrogens creating an ensemble of coordination geometries in exchange between each other. Furthermore, the N-terminal amino group is essential for the formation of high-pH complex II. The Abeta(1-28) fragment binds an additional Cu(2+) ion compared to full-length Abeta, with appreciable affinity. This second binding site is revealed in Abeta(1-42) upon addition of methanol, indicating hydrophobic interactions block the formation of this weaker carboxylate-rich complex. A Cu(2+) affinity for Abeta of 10(11) M(-1) supports a modified amyloid cascade hypothesis in which Cu(2+) is central to Abeta neurotoxicity.
Collapse
Affiliation(s)
- Claire J Sarell
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | | | |
Collapse
|
165
|
Stevens DJ, Walter ED, Rodríguez A, Draper D, Davies P, Brown DR, Millhauser GL. Early onset prion disease from octarepeat expansion correlates with copper binding properties. PLoS Pathog 2009; 5:e1000390. [PMID: 19381258 PMCID: PMC2663819 DOI: 10.1371/journal.ppat.1000390] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 03/20/2009] [Indexed: 11/18/2022] Open
Abstract
Insertional mutations leading to expansion of the octarepeat domain of the prion protein (PrP) are directly linked to prion disease. While normal PrP has four PHGGGWGQ octapeptide segments in its flexible N-terminal domain, expanded forms may have up to nine additional octapeptide inserts. The type of prion disease segregates with the degree of expansion. With up to four extra octarepeats, the average onset age is above 60 years, whereas five to nine extra octarepeats results in an average onset age between 30 and 40 years, a difference of almost three decades. In wild-type PrP, the octarepeat domain takes up copper (Cu2+) and is considered essential for in vivo function. Work from our lab demonstrates that the copper coordination mode depends on the precise ratio of Cu2+ to protein. At low Cu2+ levels, coordination involves histidine side chains from adjacent octarepeats, whereas at high levels each repeat takes up a single copper ion through interactions with the histidine side chain and neighboring backbone amides. Here we use both octarepeat constructs and recombinant PrP to examine how copper coordination modes are influenced by octarepeat expansion. We find that there is little change in affinity or coordination mode populations for octarepeat domains with up to seven segments (three inserts). However, domains with eight or nine total repeats (four or five inserts) become energetically arrested in the multi-histidine coordination mode, as dictated by higher copper uptake capacity and also by increased binding affinity. We next pooled all published cases of human prion disease resulting from octarepeat expansion and find remarkable agreement between the sudden length-dependent change in copper coordination and onset age. Together, these findings suggest that either loss of PrP copper-dependent function or loss of copper-mediated protection against PrP polymerization makes a significant contribution to early onset prion disease. Prion diseases are neurodegenerative disorders involving the prion protein, a normal component of the central nervous system. An unusual class of inherited mutations giving rise to prion disease involves elongation of the so-called octarepeat domain, near the protein's N-terminus. Research from our lab and others shows that this domain binds the micronutrient copper, an essential element for proper neurological function. We investigated how octarepeat elongation influences copper binding by examining both the molecular features and the binding equilibrium. We find that elongation beyond a specific threshold, which confers profound early onset disease, gives rise to concomitant changes in copper uptake. The remarkable agreement between onset age and altered copper binding points to loss of copper protein function as significant in prion neurodegeneration.
Collapse
Affiliation(s)
- Daniel J. Stevens
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Eric D. Walter
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Abel Rodríguez
- Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - David Draper
- Department of Applied Mathematics and Statistics, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Paul Davies
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - David R. Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
166
|
Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E. Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res 2009; 1256:69-75. [DOI: 10.1016/j.brainres.2008.12.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/05/2008] [Accepted: 12/14/2008] [Indexed: 10/21/2022]
|
167
|
Bica L, Crouch PJ, Cappai R, White AR. Metallo-complex activation of neuroprotective signalling pathways as a therapeutic treatment for Alzheimer’s disease. ACTA ACUST UNITED AC 2009; 5:134-42. [DOI: 10.1039/b816577g] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
168
|
Schumann T, Grudzinska J, Kuzmin D, Betz H, Laube B. Binding-site mutations in the α1 subunit of the inhibitory glycine receptor convert the inhibitory metal ion Cu2+ into a positive modulator. Neuropharmacology 2009; 56:310-7. [DOI: 10.1016/j.neuropharm.2008.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/31/2008] [Accepted: 08/08/2008] [Indexed: 10/21/2022]
|
169
|
Faller P, Hureau C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans 2009:1080-94. [DOI: 10.1039/b813398k] [Citation(s) in RCA: 423] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
170
|
Biran Y, Masters CL, Barnham KJ, Bush AI, Adlard PA. Pharmacotherapeutic targets in Alzheimer's disease. J Cell Mol Med 2008; 13:61-86. [PMID: 19040415 PMCID: PMC3823037 DOI: 10.1111/j.1582-4934.2008.00595.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which is characterized by an increasing impairment in normal memory and cognitive processes that significantly diminishes a person's daily functioning. Despite decades of research and advances in our understanding of disease aetiology and pathogenesis, there are still no effective disease-modifying drugs available for the treatment of AD. However, numerous compounds are currently undergoing pre-clinical and clinical evaluations. These candidate pharma-cotherapeutics are aimed at various aspects of the disease, such as the microtubule-associated τ-protein, the amyloid-β (Aβ) peptide and metal ion dyshomeostasis – all of which are involved in the development and progression of AD. We will review the way these pharmacological strategies target the biochemical and clinical features of the disease and the investigational drugs for each category.
Collapse
Affiliation(s)
- Yif'at Biran
- The Oxidation Biology Laboratory, The Mental Health Research Institute, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
171
|
Nadal RC, Rigby SEJ, Viles JH. Amyloid beta-Cu2+ complexes in both monomeric and fibrillar forms do not generate H2O2 catalytically but quench hydroxyl radicals. Biochemistry 2008; 47:11653-64. [PMID: 18847222 DOI: 10.1021/bi8011093] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Oxidative stress plays a key role in Alzheimer's disease (AD). In addition, the abnormally high Cu(2+) ion concentrations present in senile plaques has provoked a substantial interest in the relationship between the amyloid beta peptide (Abeta) found within plaques and redox-active copper ions. There have been a number of studies monitoring reactive oxygen species (ROS) generation by copper and ascorbate that suggest that Abeta acts as a prooxidant producing H2O2. However, others have indicated Abeta acts as an antioxidant, but to date most cell-free studies directly monitoring ROS have not supported this hypothesis. We therefore chose to look again at ROS generation by both monomeric and fibrillar forms of Abeta under aerobic conditions in the presence of Cu(2+) with/without the biological reductant ascorbate in a cell-free system. We used a variety of fluorescence and absorption based assays to monitor the production of ROS, as well as Cu(2+) reduction. In contrast to previous studies, we show here that Abeta does not generate any more ROS than controls of Cu(2+) and ascorbate. Abeta does not silence the redox activity of Cu(2+/+) via chelation, but rather hydroxyl radicals produced as a result of Fenton-Haber Weiss reactions of ascorbate and Cu(2+) rapidly react with Abeta; thus the potentially harmful radicals are quenched. In support of this, chemical modification of the Abeta peptide was examined using (1)H NMR, and specific oxidation sites within the peptide were identified at the histidine and methionine residues. Our studies add significant weight to a modified amyloid cascade hypothesis in which sporadic AD is the result of Abeta being upregulated as a response to oxidative stress. However, our results do not preclude the possibility that Abeta in an oligomeric form may concentrate the redox-active copper at neuronal membranes and so cause lipid peroxidation.
Collapse
Affiliation(s)
- Rebecca C Nadal
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | | | | |
Collapse
|
172
|
Ma Z, Wong KY, Horrigan FT. An extracellular Cu2+ binding site in the voltage sensor of BK and Shaker potassium channels. ACTA ACUST UNITED AC 2008; 131:483-502. [PMID: 18443360 PMCID: PMC2346571 DOI: 10.1085/jgp.200809980] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Copper is an essential trace element that may serve as a signaling molecule in the nervous system. Here we show that extracellular Cu2+ is a potent inhibitor of BK and Shaker K+ channels. At low micromolar concentrations, Cu2+ rapidly and reversibly reduces macrosocopic K+ conductance (GK) evoked from mSlo1 BK channels by membrane depolarization. GK is reduced in a dose-dependent manner with an IC50 and Hill coefficient of ∼2 μM and 1.0, respectively. Saturating 100 μM Cu2+ shifts the GK-V relation by +74 mV and reduces GKmax by 27% without affecting single channel conductance. However, 100 μM Cu2+ fails to inhibit GK when applied during membrane depolarization, suggesting that Cu2+ interacts poorly with the activated channel. Of other transition metal ions tested, only Zn2+ and Cd2+ had significant effects at 100 μM with IC50s > 0.5 mM, suggesting the binding site is Cu2+ selective. Mutation of external Cys or His residues did not alter Cu2+ sensitivity. However, four putative Cu2+-coordinating residues were identified (D133, Q151, D153, and R207) in transmembrane segments S1, S2, and S4 of the mSlo1 voltage sensor, based on the ability of substitutions at these positions to alter Cu2+ and/or Cd2+ sensitivity. Consistent with the presence of acidic residues in the binding site, Cu2+ sensitivity was reduced at low extracellular pH. The three charged positions in S1, S2, and S4 are highly conserved among voltage-gated channels and could play a general role in metal sensitivity. We demonstrate that Shaker, like mSlo1, is much more sensitive to Cu2+ than Zn2+ and that sensitivity to these metals is altered by mutating the conserved positions in S1 or S4 or reducing pH. Our results suggest that the voltage sensor forms a state- and pH-dependent, metal-selective binding pocket that may be occupied by Cu2+ at physiologically relevant concentrations to inhibit activation of BK and other channels.
Collapse
Affiliation(s)
- Zhongming Ma
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
173
|
Linden R, Martins VR, Prado MAM, Cammarota M, Izquierdo I, Brentani RR. Physiology of the prion protein. Physiol Rev 2008; 88:673-728. [PMID: 18391177 DOI: 10.1152/physrev.00007.2007] [Citation(s) in RCA: 435] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs), attributed to conformational conversion of the cellular prion protein (PrP(C)) into an abnormal conformer that accumulates in the brain. Understanding the pathogenesis of TSEs requires the identification of functional properties of PrP(C). Here we examine the physiological functions of PrP(C) at the systemic, cellular, and molecular level. Current data show that both the expression and the engagement of PrP(C) with a variety of ligands modulate the following: 1) functions of the nervous and immune systems, including memory and inflammatory reactions; 2) cell proliferation, differentiation, and sensitivity to programmed cell death both in the nervous and immune systems, as well as in various cell lines; 3) the activity of numerous signal transduction pathways, including cAMP/protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt pathways, as well as soluble non-receptor tyrosine kinases; and 4) trafficking of PrP(C) both laterally among distinct plasma membrane domains, and along endocytic pathways, on top of continuous, rapid recycling. A unified view of these functional properties indicates that the prion protein is a dynamic cell surface platform for the assembly of signaling modules, based on which selective interactions with many ligands and transmembrane signaling pathways translate into wide-range consequences upon both physiology and behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Instituto de Biofísica da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
174
|
Que EL, Domaille DW, Chang CJ. Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 2008; 108:1517-49. [PMID: 18426241 DOI: 10.1021/cr078203u] [Citation(s) in RCA: 1558] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
175
|
Inhibition of P2X7 receptors by divalent cations: old action and new insight. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:339-46. [DOI: 10.1007/s00249-008-0315-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/11/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
|
176
|
Tõugu V, Karafin A, Palumaa P. Binding of zinc(II) and copper(II) to the full-length Alzheimer's amyloid-beta peptide. J Neurochem 2008; 104:1249-59. [PMID: 18289347 DOI: 10.1111/j.1471-4159.2007.05061.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is evidence that binding of metal ions like Zn2+ and Cu2+ to amyloid beta-peptides (Abeta) may contribute to the pathogenesis of Alzheimer's disease. Cu2+ and Zn2+ form complexes with Abeta peptides in vitro; however, the published metal-binding affinities of Abeta vary in an enormously large range. We studied the interactions of Cu2+ and Zn2+ with monomeric Abeta(40) under different conditions using intrinsic Abeta fluorescence and metal-selective fluorescent dyes. We showed that Cu(2+) forms a stable and soluble 1 : 1 complex with Abeta(40), however, buffer compounds act as competitive copper-binding ligands and affect the apparent K(D). Buffer-independent conditional K(D) for Cu(II)-Abeta(40) complex at pH 7.4 is equal to 0.035 micromol/L. Interaction of Abeta(40) with Zn2+ is more complicated as partial aggregation of the peptide occurs during zinc titration experiment and in the same time period (within 30 min) the initial Zn-Abeta(40) complex (K(D) = 60 micromol/L) undergoes a transition to a more tight complex with K(D) approximately 2 micromol/L. Competition of Abeta(40) with ion-selective fluorescent dyes Phen Green and Zincon showed that the K(D) values determined from intrinsic fluorescence of Abeta correspond to the binding of the first Cu2+ and Zn2+ ions to the peptide with the highest affinity. Interaction of both Zn2+ and Cu2+ ions with Abeta peptides may occur in brain areas affected by Alzheimer's disease and Zn2+-induced transition in the peptide structure might contribute to amyloid plaque formation.
Collapse
Affiliation(s)
- Vello Tõugu
- Department of Gene Technology, Tallinn University of Technology, Akadeemia tee, Tallinn, Estonia.
| | | | | |
Collapse
|
177
|
The chemistry of copper binding to PrP: is there sufficient evidence to elucidate a role for copper in protein function? Biochem J 2008; 410:237-44. [DOI: 10.1042/bj20071477] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There has been an enormous body of literature published in the last 10 years concerning copper and PrP (prion protein). Despite this, there is still no generally accepted role for copper in the function of PrP or any real consensus as to how and to what affinity copper associates with the protein. The present review attempts to look at all the evidence for the chemistry, co-ordination and affinity of copper binding to PrP, and then looks at what effect this has on the protein. We then connect this evidence with possible roles for PrP when bound to copper. No clear conclusions can be made from the available data, but it is clear from the present review what aspects of copper association with PrP need to be re-investigated.
Collapse
|
178
|
Klewpatinond M, Davies P, Bowen S, Brown DR, Viles JH. Deconvoluting the Cu2+ Binding Modes of Full-length Prion Protein. J Biol Chem 2008; 283:1870-81. [DOI: 10.1074/jbc.m708472200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
179
|
Liu X, Surprenant A, Mao HJ, Roger S, Xia R, Bradley H, Jiang LH. Identification of key residues coordinating functional inhibition of P2X7 receptors by zinc and copper. Mol Pharmacol 2008; 73:252-9. [PMID: 17959713 DOI: 10.1124/mol.107.039651] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
P2X(7) receptors are distinct from other ATP-gated P2X receptors in that they are potently inhibited by submicromolar concentrations of zinc and copper. The molecular basis for the strong functional inhibition by zinc and copper at this purinergic ionotropic receptor is controversial. We hypothesized that it involves a direct interaction of zinc and copper with residues in the ectodomain of the P2X(7) receptor. Fourteen potential metal interacting residues are conserved in the ectodomain of all mammalian P2X(7) receptors, none of which is homologous to previously identified sites in other P2X receptors shown to be important for functional potentiation by zinc. We introduced alanine substitutions into each of these residues, expressed wild-type and mutated receptors in human embryonic kidney 293 cells, and recorded resulting ATP and BzATP-evoked membrane currents. Agonist concentration-response curves were similar for all 12 functional mutant receptors. Alanine substitution at His(62) or Asp(197) strongly attenuated both zinc and copper inhibition, and the double mutant [H62A/D197A] mutant receptor was virtually insensitive to inhibition by zinc or copper. Thus, we conclude that zinc and copper inhibition is due to a direct interaction of these divalent cations with ectodomain residues of the P2X(7) receptor, primarily involving combined interaction with His(62) and Asp(197) residues.
Collapse
Affiliation(s)
- Xing Liu
- Institute of Membrane and Systems Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | |
Collapse
|
180
|
Walter ED, Stevens DJ, Visconte MP, Millhauser GL. The prion protein is a combined zinc and copper binding protein: Zn2+ alters the distribution of Cu2+ coordination modes. J Am Chem Soc 2007; 129:15440-1. [PMID: 18034490 PMCID: PMC2532507 DOI: 10.1021/ja077146j] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PrP binds copper in the highly conserved, unstructured N-terminal half of the protein. The octarepeat region consists of 4 tandem repeats of PHGGGWGQ and binds four equivalents of copper at full occupancy. Adjacent to the octarepeats are two additional histidines that may also bind copper. We recently showed that when the octarepeat region is titrated with Cu2+, the copper binding mode depends on the number of equivalents of copper bound. In addition to copper, other metals have been associated with PrP, however zinc is the only metal other than copper that induces PrP endocytosis, inhibits fibril formation and promotes inter-molecular interactions. In this work we show that even large excesses of zinc (> 1mM) are unable to displace copper from either the octarepeat region or the full-length protein. However, EPR reveals that physiologically relevant levels of zinc significantly alter the distribution of copper among the available binding modes. Diethyl pyrocarbonate (DEPC) modification and Mass Spectrometry is used to identify the octarepeat region as the zinc binding site and to confirm that the affinity of PrP for zinc is ~200 μM. PrP can simultaneously bind both copper and zinc by shifting to binding modes that minimize the ratio of histidines to copper.
Collapse
Affiliation(s)
- Eric D. Walter
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Daniel J. Stevens
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Micah P. Visconte
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
181
|
Caragounis A, Du T, Filiz G, Laughton K, Volitakis I, Sharples R, Cherny R, Masters C, Drew S, Hill A, Li QX, Crouch P, Barnham K, White A. Differential modulation of Alzheimer's disease amyloid beta-peptide accumulation by diverse classes of metal ligands. Biochem J 2007; 407:435-50. [PMID: 17680773 PMCID: PMC2275059 DOI: 10.1042/bj20070579] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Biometals have an important role in AD (Alzheimer's disease) and metal ligands have been investigated as potential therapeutic agents for treatment of AD. In recent studies the 8HQ (8-hydroxyquinoline) derivative CQ (clioquinol) has shown promising results in animal models and small clinical trials; however, the actual mode of action in vivo is still being investigated. We previously reported that CQ-metal complexes up-regulated MMP (matrix metalloprotease) activity in vitro by activating PI3K (phosphoinositide 3-kinase) and JNK (c-jun N-terminal kinase), and that the increased MMP activity resulted in enhanced degradation of secreted Abeta (amyloid beta) peptide. In the present study, we have further investigated the biochemical mechanisms by which metal ligands affect Abeta metabolism. To achieve this, we measured the effects of diverse metal ligands on cellular metal uptake and secreted Abeta levels in cell culture. We report that different classes of metal ligands including 8HQ and phenanthroline derivatives and the sulfur compound PDTC (pyrrolidine dithiocarbamate) elevated cellular metal levels (copper and zinc), and resulted in substantial loss of secreted Abeta. Generally, the ability to inhibit Abeta levels correlated with a higher lipid solubility of the ligands and their capacity to increase metal uptake. However, we also identified several ligands that potently inhibited Abeta levels while only inducing minimal change to cellular metal levels. Metal ligands that inhibited Abeta levels [e.g. CQ, 8HQ, NC (neocuproine), 1,10-phenanthroline and PDTC] induced metal-dependent activation of PI3K and JNK, resulting in JNK-mediated up-regulation of metalloprotease activity and subsequent loss of secreted Abeta. The findings in the present study show that diverse metal ligands with high lipid solubility can elevate cellular metal levels resulting in metalloprotease-dependent inhibition of Abeta. Given that a structurally diverse array of ligands was assessed, the results are consistent with the effects being due to metal transport rather than the chelating ligand interacting directly with a receptor.
Collapse
Affiliation(s)
- Aphrodite Caragounis
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Tai Du
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Gulay Filiz
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Katrina M. Laughton
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Irene Volitakis
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Robyn A. Sharples
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
- ∥Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010, Australia
| | - Robert A. Cherny
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Colin L. Masters
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Simon C. Drew
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
| | - Andrew F. Hill
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
- ∥Department of Biochemistry and Molecular Biology, The University of Melbourne, Victoria 3010, Australia
| | - Qiao-Xin Li
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
| | - Peter J. Crouch
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
| | - Kevin J. Barnham
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- §Bio21 Molecular Science and Biotechnology Institute, Parkville, Victoria 3052, Australia
| | - Anthony R. White
- *Department of Pathology, The University of Melbourne, Victoria 3010, Australia
- †The Mental Health Research Institute, Parkville, Victoria 3052, Australia
- ‡Centre for Neuroscience, The University of Melbourne, Victoria 3010, Australia
- To whom correspondence should be addressed (email )
| |
Collapse
|
182
|
Huidobro-Toro JP, Lorca RA, Coddou C. Trace metals in the brain: allosteric modulators of ligand-gated receptor channels, the case of ATP-gated P2X receptors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 37:301-14. [DOI: 10.1007/s00249-007-0230-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 10/10/2007] [Accepted: 10/11/2007] [Indexed: 01/26/2023]
|
183
|
Coddou C, Acuña-Castillo C, Bull P, Huidobro-Toro JP. Dissecting the facilitator and inhibitor allosteric metal sites of the P2X4 receptor channel: critical roles of CYS132 for zinc potentiation and ASP138 for copper inhibition. J Biol Chem 2007; 282:36879-86. [PMID: 17962187 DOI: 10.1074/jbc.m706925200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Zinc and copper are atypical modulators of ligand-gated ionic channels in the central nervous system. We sought to identify the amino acids of the rat P2X4 receptor involved in trace metal interaction, specifically in the immediate linear vicinity of His140, a residue previously identified as being critical for copper-induced inhibition of the ATP-evoked currents. Site-directed mutagenesis replaced conspicuous amino acids located within the extracellular domain region between Thr123 and Thr146 for alanines. cDNAs for the wild-type and the receptor mutants were expressed in Xenopus laevis oocytes and examined by the two-electrode technique. Cys132, but not Cys126, proved crucial for zinc-induced potentiation of the receptor activity, but not for copper-induced inhibition. Zinc inhibited in a concentration-dependent manner the ATP-gated currents of the C132A mutant. Likewise, Asp138, but not Asp131 was critical for copper and zinc inhibition; moreover, mutant D138A was 20-fold more reactive to zinc potentiation than wild-type receptors. Asp129, Asp131, and Thr133 had minor roles in metal modulation. We conclude that this region of the P2X4 receptor has a pocket for trace metal coordination with two distinct and separate facilitator and inhibitor metal allosteric sites. In addition, Cys132 does not seem to participate exclusively as a structural receptor channel folding motif but plays a role as a ligand for zinc modulation highlighting the role of trace metals in neuronal excitability.
Collapse
Affiliation(s)
- Claudio Coddou
- Centro de Regulación Celular y Patología J. V. Luco, Instituto Milenio de Biología Fundamental y Aplicada MIFAB, Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
184
|
Jones CE, Underwood CK, Coulson EJ, Taylor PJ. Copper induced oxidation of serotonin: analysis of products and toxicity. J Neurochem 2007; 102:1035-43. [PMID: 17663749 DOI: 10.1111/j.1471-4159.2007.04602.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Serotonin is a major neurotransmitter that controls many functions, ranging from mood and behaviour through to sleep and motor functions. The non-enzymatic oxidation of serotonin is of significant importance as some oxidation products are considered to be neurotoxic. An interaction between copper and serotonin has been suggested by symptoms observed in a number of neurodegenerative diseases such as Wilson's and Prion diseases. Using PC12 cells as a model of neuronal cells, we show that the interaction between copper and serotonin is toxic to undifferentiated cells. The toxicity is largely due to reactive oxygen species as cell death is significantly reduced in the presence of the antioxidant mannitol. Differentiation of the PC12 cells also confers resistance to the oxidative process. In vitro oxidation of serotonin by copper results in the eventual formation of a coloured pigment, thought to be a melanin-like polymeric species. Using spectroscopic methods we provide evidence for the formation of a single intermediate product. This dimeric intermediate was identified and characterized as 5,5'-dihydroxy-4,4'-bitryptamine. These results indicate that copper structurally alters serotonin and this process may play a role in copper related neurodegenerative diseases.
Collapse
Affiliation(s)
- Christopher E Jones
- Centre for Metals in Biology, and School of Molecular and Microbial Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | |
Collapse
|
185
|
Abstract
Copper and iron are transition elements essential for life. These metals are required to maintain the brain's biochemistry such that deficiency or excess of either copper or iron results in central nervous system disease. This review focuses on the inherited disorders in humans that directly affect copper or iron homeostasis in the brain. Elucidation of the molecular genetic basis of these rare disorders has provided insight into the mechanisms of copper and iron acquisition, trafficking, storage, and excretion in the brain. This knowledge permits a greater understanding of copper and iron roles in neurobiology and neurologic disease and may allow for the development of therapeutic approaches where aberrant metal homeostasis is implicated in disease pathogenesis.
Collapse
Affiliation(s)
- Erik Madsen
- Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63130, USA.
| | | |
Collapse
|
186
|
Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev 2007; 87:1011-46. [PMID: 17615395 DOI: 10.1152/physrev.00004.2006] [Citation(s) in RCA: 595] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Copper-transporting ATPases (Cu-ATPases) ATP7A and ATP7B are evolutionarily conserved polytopic membrane proteins with essential roles in human physiology. The Cu-ATPases are expressed in most tissues, and their transport activity is crucial for central nervous system development, liver function, connective tissue formation, and many other physiological processes. The loss of ATP7A or ATP7B function is associated with severe metabolic disorders, Menkes disease, and Wilson disease. In cells, the Cu-ATPases maintain intracellular copper concentration by transporting copper from the cytosol across cellular membranes. They also contribute to protein biosynthesis by delivering copper into the lumen of the secretory pathway where metal ion is incorporated into copper-dependent enzymes. The biosynthetic and homeostatic functions of Cu-ATPases are performed in different cell compartments; targeting to these compartments and the functional activity of Cu-ATPase are both regulated by copper. In recent years, significant progress has been made in understanding the structure, function, and regulation of these essential transporters. These studies raised many new questions related to specific physiological roles of Cu-ATPases in various tissues and complex mechanisms that control the Cu-ATPase function. This review summarizes current data on the structural organization and functional properties of ATP7A and ATP7B as well as their localization and functions in various tissues, and discusses the current models of regulated trafficking of human Cu-ATPases.
Collapse
Affiliation(s)
- Svetlana Lutsenko
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | |
Collapse
|
187
|
Abstract
The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrP(C) to PrP(Sc). Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrP(C) in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrP(C), with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrP(C) function, and emerging connections between copper and prion disease.
Collapse
Affiliation(s)
- Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
188
|
Guilarte TR, Chen MK. Manganese inhibits NMDA receptor channel function: implications to psychiatric and cognitive effects. Neurotoxicology 2007; 28:1147-52. [PMID: 17662456 PMCID: PMC2100416 DOI: 10.1016/j.neuro.2007.06.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 05/31/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
Humans exposed to excess levels of manganese (Mn(2+)) express psychiatric problems and deficits in attention and learning and memory. However, there is a paucity of knowledge on molecular mechanisms by which Mn(2+) produces such effects. We now report that Mn(2+) is a potent inhibitor of [(3)H]-MK-801 binding to the NMDA receptor channel in rat neuronal membrane preparations. The inhibition of [(3)H]-MK-801 to the NMDA receptor channel by Mn(2+) was activity-dependent since Mn(2+) was a more potent inhibitor in the presence of the NMDA receptor co-agonists glutamate and glycine (K(i)=35.9+/-3.1 microM) than in their absence (K(i)=157.1+/-6.5 microM). We also show that Mn(2+) is a NMDA receptor channel blocker since its inhibition of [(3)H]-MK-801 binding to the NMDA receptor channel is competitive in nature. That is, Mn(2+) significantly increased the affinity constant (K(d)) with no significant effect on the maximal number of [(3)H]-MK-801 binding sites (B(max)). Under stimulating conditions, Mn(2+) was equipotent in inhibiting [(3)H]-MK-801 binding to NMDA receptors expressed in neuronal membrane preparations from different brain regions. However, under basal, non-stimulated conditions, Mn(2+) was more potent in inhibiting NMDA receptors in the cerebellum than other brain regions. We have previously shown that chronic Mn(2+) exposure in non-human primates increases Cu(2+), but not zinc or iron concentrations in the basal ganglia [Guilarte TR, Chen M-K, McGlothan JL, Verina T, Wong DF, Zhou Y, Alexander M, Rohde CA, Syversen T, Decamp E, Koser AJ, Fritz S, Gonczi H, Anderson DW, Schneider JS. Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates. Exp Neurol 2006a;202:381-90]. Therefore, we also tested the inhibitory effects of Cu(2+) on [(3)H]-MK-801 binding to the NMDA receptor channel. The data shows that Cu(2+) in the presence of glutamate and glycine is a more potent inhibitor of the NMDA receptor than Mn(2+). Our findings suggest that the inhibitory effect of Mn(2+) and/or Cu(2+) on the NMDA receptor may produce a deficit in glutamatergic transmission in the brain of individuals exposed to excess levels of Mn(2+) and produce neurological dysfunction.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Neurotoxicology & Molecular Imaging Laboratory, Department of Environmental Health Sciences, Johns Hopkins University, Bloomberg School of Public Health, Baltimore, Maryland 21205, United States.
| | | |
Collapse
|
189
|
Acuña-Castillo C, Coddou C, Bull P, Brito J, Huidobro-Toro JP. Differential role of extracellular histidines in copper, zinc, magnesium and proton modulation of the P2X7 purinergic receptor. J Neurochem 2007; 101:17-26. [PMID: 17394459 DOI: 10.1111/j.1471-4159.2006.04343.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The P2X7 receptor is a non-selective cationic channel activated by extracellular ATP, belonging to the P2X receptor family. To assess the role of extracellular histidines on the allosteric modulation of the rat P2X7 receptor by divalent metals (copper, zinc and magnesium) and protons, these amino acid residues were singly substituted for corresponding alanines. Wild-type and mutated receptors were injected to Xenopus laevis oocytes; metal-related effects were evaluated by the two-electrode voltage-clamp technique. Copper inhibited the ATP-gated currents with a median inhibitory concentration of 4.4 +/- 1.0 micromol/L. The inhibition was non-competitive and time-dependent; copper was 60-fold more potent than zinc. The mutant H267A, resulted in a copper resistant receptor; mutants H201A and H130A were less sensitive to copper inhibition (p < 0.05). The rest of the mutants examined, H62A, H85A, and H219A, conserved the copper-induced inhibition. Only mutants H267A and H219A were less sensitive to the modulator action of zinc. Moreover, the magnesium-induced inhibition was abolished exclusively on the H130A and H201A mutants, suggesting that this metal may act at a novel cationic modulator site. Media acidification inhibited the ATP-gated current 87 +/- 3%; out of the six mutants examined, only H130A was significantly less sensitive to the change in pH, suggesting that His-130 could be involved as a pH sensor. In conclusion, while His-267 is critically involved in the copper or zinc allosteric modulation, the magnesium inhibitory effects is related to His-130 and His-201, His-130 is involved in proton sensing, highlighting the role of defined extracellular histidines in rat P2X7 receptor allosteric modulation.
Collapse
Affiliation(s)
- Claudio Acuña-Castillo
- Departamentos de Fisiología, Centro de Regulación Celular y Patología J.V. Luco, Instituto Milenio de Biología Fundamental y Aplicada MIFAB, Chile
| | | | | | | | | |
Collapse
|
190
|
Wang W, Yu Y, Xu TL. Modulation of acid-sensing ion channels by Cu2+ in cultured hypothalamic neurons of the rat. Neuroscience 2007; 145:631-41. [PMID: 17224241 DOI: 10.1016/j.neuroscience.2006.12.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 12/13/2022]
Abstract
Acid-sensing ion channels (ASICs) are known to distribute throughout the nervous system and serve important roles in various physiological and pathological processes. However, the properties of ASICs in the hypothalamus, an important region of diencephalon, are little known. We herein used whole-cell patch-clamp recordings to characterize proton-induced cation currents in cultured hypothalamic neurons of the rat, and attributed these transient inward currents to ASICs based on their electrophysiological and pharmacological properties. We further examined the effects of Cu(2+), the third most abundant trace element, on ASICs in hypothalamic neurons. Our results showed that this divalent cation reversibly and concentration-dependently inhibited the amplitude of ASIC currents, and slowed down the desensitization of ASIC channels. Our results also displayed that Cu(2+) modulated ASICs independent of change in membrane potential and extracellular protons, suggesting a noncompetitive mechanism. Furthermore, micromolar concentration of Cu(2+) attenuated the acid-induced membrane depolarization. Taken together, our data demonstrate a modulatory effect of Cu(2+) on ASICs in native hypothalamic neurons and suggest a role of this endogenous metal ion in negatively modulating the increased neuronal membrane excitability caused by activation of ASICs.
Collapse
Affiliation(s)
- W Wang
- Department of Neurobiology and Biophysics, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, PR China
| | | | | |
Collapse
|
191
|
Smith DG, Cappai R, Barnham KJ. The redox chemistry of the Alzheimer's disease amyloid beta peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1976-90. [PMID: 17433250 DOI: 10.1016/j.bbamem.2007.02.002] [Citation(s) in RCA: 449] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 02/02/2007] [Accepted: 02/05/2007] [Indexed: 12/28/2022]
Abstract
There is a growing body of evidence to support a role for oxidative stress in Alzheimer's disease (AD), with increased levels of lipid peroxidation, DNA and protein oxidation products (HNE, 8-HO-guanidine and protein carbonyls respectively) in AD brains. The brain is a highly oxidative organ consuming 20% of the body's oxygen despite accounting for only 2% of the total body weight. With normal ageing the brain accumulates metals ions such iron (Fe), zinc (Zn) and copper (Cu). Consequently the brain is abundant in antioxidants to control and prevent the detrimental formation of reactive oxygen species (ROS) generated via Fenton chemistry involving redox active metal ion reduction and activation of molecular oxygen. In AD there is an over accumulation of the Amyloid beta peptide (Abeta), this is the result of either an elevated generation from amyloid precursor protein (APP) or inefficient clearance of Abeta from the brain. Abeta can efficiently generate reactive oxygen species in the presence of the transition metals copper and iron in vitro. Under oxidative conditions Abeta will form stable dityrosine cross-linked dimers which are generated from free radical attack on the tyrosine residue at position 10. There are elevated levels of urea and SDS resistant stable linked Abeta oligomers as well as dityrosine cross-linked peptides and proteins in AD brain. Since soluble Abeta levels correlate best with the degree of degeneration [C.A. McLean, R.A. Cherny, F.W. Fraser, S.J. Fuller, M.J. Smith, K. Beyreuther, A.I. Bush, C.L. Masters, Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease, Ann. Neurol. 46 (1999) 860-866] we suggest that the toxic Abeta species corresponds to a soluble dityrosine cross-linked oligomer. Current therapeutic strategies using metal chelators such as clioquinol and desferrioxamine have had some success in altering the progression of AD symptoms. Similarly, natural antioxidants curcumin and ginkgo extract have modest but positive effects in slowing AD development. Therefore, drugs that target the oxidative pathways in AD could have genuine therapeutic efficacy.
Collapse
Affiliation(s)
- Danielle G Smith
- Department of Pathology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
192
|
Wimalasena DS, Wiese TJ, Wimalasena K. Copper ions disrupt dopamine metabolism via inhibition of V-H+-ATPase: a possible contributing factor to neurotoxicity. J Neurochem 2007; 101:313-26. [PMID: 17217412 DOI: 10.1111/j.1471-4159.2006.04362.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The involvement of copper in the pathophysiology of neurodegeneration has been well documented but is not fully understood. Commonly, the effects are attributed to increased reactive oxygen species (ROS) production due to inherent redox properties of copper ions. Here we show copper can have physiological effects distinct from direct ROS production. First, we show that extragranular free copper inhibits the vesicular H(+)-ATPase of resealed chromaffin granule ghosts. Extragranular ascorbate potentiates this inhibition. The inhibition is mixed type with K(is) = 6.8 +/- 2.8 micromol/L and K(ii) = 3.8 +/- 0.6 micromol/L, with respect to ATP. Second, extracellular copper causes an inhibition of the generation of a pH-gradient and rapid dissipation of pre-generated pH and catecholamine gradients. Copper chelators and the ss-amyloid peptide 1-42 were found to effectively prevent the inhibition. The inhibition is reversible and time-independent suggesting the effects of extracellular copper on H(+)-ATPase is direct, and not due to ROS. The physiological significance of these observations was shown by the demonstration that extracellular copper causes a dramatic perturbation of dopamine metabolism in SH-SY5Y cells. Thus, we propose that the direct inhibition of the vesicular H(+)-ATPase may also contribute to the neurotoxic effects of copper.
Collapse
|
193
|
Hwang JJ, Park MH, Koh JY. Copper activates TrkB in cortical neurons in a metalloproteinase-dependent manner. J Neurosci Res 2007; 85:2160-6. [PMID: 17520746 DOI: 10.1002/jnr.21350] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Copper (Cu) is an endogenous metal that is physiologically essential in the brain and that, like zinc (Zn), may be synaptically released in certain regions. Previously, we demonstrated that Zn activates TrkB in cultured cortical neurons in a metalloproteinase (MP)-dependent manner. To determine whether Cu has similar properties, we exposed cortical cultures for 15 min to various metals and performed Western blots to detect tyrosine-phosphorylated TrkB (p-Trk). Whereas Cd, Mn, Fe(II), and Fe(III) had no effect on the level of p-Trk, 10 microM of Cu in phosphate-containing (Hanks' balanced salt solution) or 10 nM in phosphate-lacking salt solution (control salt solution), increased levels of p-Trk. Cu also activated extracellular signal-regulated kinase 1/2 and Src tyrosine kinase, signaling molecules activated downstream of TrkB. Cu decreased levels of probrain-derived neurotrophic factor (pro-BDNF) in cells but increased levels of pro- and mature BDNF in the media. Addition of MP inhibitors completely blocked the Cu-induced increases in pro-BDNF and BDNF as well as TrkB activation, indicating that MP mediates most of the Cu effect. Furthermore, Cu increased the activity of matrix metalloproteinase 2 (MMP2) and MMP9 in cortical neurons. These findings indicate that, like Zn, Cu activates MPs, releases pro-BDNF from cells, and phosphorylates TrsB. Because Cu, like Zn, is released in certain brain areas with neuronal activity, metal-triggered TrkB activation may occur in both Cu- and Zn-containing synapses.
Collapse
Affiliation(s)
- Jung Jin Hwang
- NRL Neural Injury Research Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
194
|
Walter ED, Chattopadhyay M, Millhauser GL. The affinity of copper binding to the prion protein octarepeat domain: evidence for negative cooperativity. Biochemistry 2006; 45:13083-92. [PMID: 17059225 PMCID: PMC2905157 DOI: 10.1021/bi060948r] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prion protein (PrP) binds Cu(2+) in its N-terminal octarepeat domain, composed of four or more tandem PHGGGWGQ segments. Previous work from our laboratory demonstrates that copper interacts with the octarepeat domain through three distinct coordination modes at pH 7.4, depending upon the precise ratio of Cu(2+) to protein. Here, we apply both electron paramagnetic resonance (EPR) and fluorescence quenching to determine the copper affinity for each of these modes. At low copper occupancy, which favors multiple His coordination, the octarepeat domain binds Cu(2+) with a dissociation constant of 0.10 (+/-0.08) nM. In contrast, high copper occupancy, involving coordination through deprotonated amide nitrogens, exhibits a weaker affinity characterized by dissociation constants in the range of 7.0-12.0 microM. Decomposition of the EPR spectra reveals the proportions of all coordination species throughout the copper concentration range and identifies significant populations of intermediates, consistent with negative cooperativity. At most copper concentrations, the Hill coefficient is less than 1.0 and approximately 0.7 at half copper occupancy. These findings demonstrate that the octarepeat domain is responsive to a remarkably wide copper concentration range covering approximately 5 orders of magnitude. Consideration of these findings, along with the demonstrated ability of the protein to quench copper redox activity at high occupancy, suggests that PrP may function to protect cells by scavenging excess copper.
Collapse
Affiliation(s)
| | | | - Glenn L. Millhauser
- To whom correspondence should be addressed. Telephone: (831) 459-2176. Fax: (831) 459-2935.
| |
Collapse
|
195
|
Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD. Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci U S A 2006; 103:14919-24. [PMID: 17003121 PMCID: PMC1578502 DOI: 10.1073/pnas.0605390103] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Menkes disease, a fatal neurodegenerative disorder resulting in seizures, hypotonia, and failure to thrive, is due to inherited loss-of-function mutations in the gene encoding a copper-transporting ATPase (Atp7a) on the X chromosome. Although affected patients exhibit signs and symptoms of copper deficiency, the mechanisms resulting in neurologic disease remain unknown. We recently discovered that Atp7a is required for the production of an NMDA receptor-dependent releasable copper pool within hippocampal neurons, a finding that suggests a role for copper in activity-dependent modulation of synaptic activity. In support of this hypothesis, we now demonstrate that copper chelation exacerbates NMDA-mediated excitotoxic cell death in primary hippocampal neurons, whereas the addition of copper is specifically protective and results in a significant decrease in cytoplasmic Ca(2+) levels after NMDA receptor activation. Consistent with the known neuroprotective effect of NMDA receptor nitrosylation, we show here that this protective effect of copper depends on endogenous nitric oxide production in hippocampal neurons, demonstrating in vivo links among neuroprotection, copper metabolism, and nitrosylation. Atp7a is required for these copper-dependent effects: Hippocampal neurons isolated from newborn Mo(br) mice reveal a marked sensitivity to endogenous glutamate-mediated NMDA receptor-dependent excitotoxicity in vitro, and mild hypoxic/ischemic insult to these mice in vivo results in significantly increased caspase 3 activation and neuronal injury. Taken together, these data reveal a unique connection between copper homeostasis and NMDA receptor activity that is of broad relevance to the processes of synaptic plasticity and excitotoxic cell death.
Collapse
Affiliation(s)
| | | | - Ann Marie Craig
- Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | - Jonathan D. Gitlin
- Departments of *Pediatrics
- To whom correspondence should be addressed at:
Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110. E-mail:
| |
Collapse
|
196
|
Shiraishi N, Utsunomiya H, Nishikimi M. Combination of NADPH and copper ions generates proteinase K-resistant aggregates from recombinant prion protein. J Biol Chem 2006; 281:34880-7. [PMID: 16990274 DOI: 10.1074/jbc.m606581200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent studies have demonstrated that the octapeptide repeats of the N-terminal region of prion protein may be responsible for de novo generation of infectious prions in the absence of template. Here we demonstrate that PrP-(23-98), an N-terminal portion of PrP, is converted to aggregates upon incubation with NADPH and copper ions. Other pyridine nucleotides possessing a phosphate group on the adenine-linked ribose moiety (the reduced form of nicotinamide adenine dinucleotide 3'-phosphate, nicotinic acid adenine dinucleotide phosphate, and NADP) were also effective in promoting aggregation, but NADH and NAD had no effect. The aggregation was attenuated by the metal chelator EDTA or by modification of histidyl residues with diethyl pyrocarbonate. The aggregates are amyloid-like as judged by the binding of thioflavin T, a fluorescent probe for amyloid, but do not exhibit fibrillar structures according to electron micrography. Interestingly the aggregates were resistant to proteinase K digestion. Likewise NADPH and zinc ions caused aggregation of PrP-(23-98), but the resulting aggregates were susceptible to degradation by proteinase K. Upon incubation with NADPH and copper ions, the full-length molecule PrP-(23-231) also formed proteinase K-resistant amyloid-like aggregates. Because it is possible that PrP, NADPH, and copper ions could associate in certain tissues, the aggregation observed in this study may be involved in prion initiation especially in the nonfamilial types of prion diseases.
Collapse
Affiliation(s)
- Noriyuki Shiraishi
- Department of Biochemistry and Central Research Laboratory, Wakayama Medical University, Wakayama 641-8509, Japan.
| | | | | |
Collapse
|
197
|
Schlief ML, Gitlin JD. Copper homeostasis in the CNS: a novel link between the NMDA receptor and copper homeostasis in the hippocampus. Mol Neurobiol 2006; 33:81-90. [PMID: 16603790 DOI: 10.1385/mn:33:2:81] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Revised: 11/30/1999] [Accepted: 06/30/2005] [Indexed: 10/24/2022]
Abstract
Copper is an essential nutrient that plays a fundamental role in the biochemistry of the central nervous system, as evidenced by patients with Menkes disease, a fatal neurodegenerative disorder of childhood resulting from the loss-of-function of a copper-transporting P-type adenosine triphosphatase (ATPase). Despite clinical and experimental data indicating a role for copper in brain function, the mechanisms and timing of the critical events affected by copper remain poorly understood. A novel role for the Menkes ATPase has been identified in the availability of an N-methyl-D-aspartate (NMDA) receptor-dependent, releasable pool of copper in hippocampal neurons, suggesting a unique mechanism linking copper homeostasis and neuronal activation within the central nervous system. This article explores the evidence that copper acts as a modulator of neuronal transmission, and that the release of endogenous copper from neurons may regulate NMDA receptor activity. The relationship between impaired copper homeostasis and neuropathophysiology suggests that impairment of copper efflux could alter neuronal function and thus contribute to rapid neuronal degeneration.
Collapse
Affiliation(s)
- Michelle L Schlief
- Edward Mallickrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
198
|
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by neuronal dysfunction and the formation of amyloid plaques in the brain. Although the pathological processes resulting in the onset and progression of AD are not well understood, there is a growing body of evidence to support a central role for biometals in many critical aspects of the illness. Recent reports have described the exciting development of potential therapeutic agents based on the modulation of metal bioavailability. The metal ligand, clioquinol has demonstrated promising results in animal models and small clinical trials and a new generation of metal ligand-based therapeutics are currently under development. However, further research is necessary to fully understand the complex and interdependent pathways of biometal homeostasis and amyloid metabolism in AD. This information will be vital for the development of safe and effective metal-based pharmaceuticals for the treatment of AD and, potentially, other neurodegenerative disorders.
Collapse
Affiliation(s)
- Anthony R White
- The University of Melbourne, Department of Pathology, Victoria 3010, Australia.
| | | | | |
Collapse
|
199
|
Mathie A, Sutton GL, Clarke CE, Veale EL. Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 2006; 111:567-83. [PMID: 16410023 DOI: 10.1016/j.pharmthera.2005.11.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 11/23/2005] [Indexed: 12/19/2022]
Abstract
As well as being key structural components of many proteins, increasing evidence suggests that zinc and copper ions function as signaling molecules in the nervous system and are released from the synaptic terminals of certain neurons. In this review, we consider the actions of these two ions on proteins that regulate neuronal excitability. In addition to the established actions of zinc, and to a lesser degree copper, on excitatory and inhibitory ligand-gated ion channels, we show that both ions have a number of actions on selected members of the voltage-gated-like ion channel superfamily. For example, zinc is a much more effective blocker of one subtype of tetrodotoxin (TTX)-insensitive sodium (Na+) channel (NaV1.5) than other Na+ channels, whereas a certain T-type calcium (Ca2+) channel subunit (CaV3.2) is particularly sensitive to zinc. For potassium (K+) channels, zinc can have profound effects on the gating of certain KV channels whereas zinc and copper have distinct actions on closely related members of the 2 pore domain potassium channel (K2P) channel family. In addition to direct actions on these proteins, zinc is able to permeate a number of membrane proteins such as (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)/kainate receptors, Ca2+ channels and some transient receptor potential (trp) channels. There are a number of important physiological and pathophysiological consequences of these many actions of zinc and copper on membrane proteins, in terms of regulation of neuronal excitability and neurotoxicity. Furthermore, the concentration of free zinc and copper either in the synaptic cleft or neuronal cytoplasm may contribute to the etiology of certain disease states such as Alzheimer's disease (AD) and epilepsy.
Collapse
Affiliation(s)
- Alistair Mathie
- Biophysics Section, Blackett Laboratory, Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | | | | |
Collapse
|
200
|
Goldschmith A, Infante C, Leiva J, Motles E, Palestini M. Interference of chronically ingested copper in long-term potentiation (LTP) of rat hippocampus. Brain Res 2005; 1056:176-82. [PMID: 16112097 DOI: 10.1016/j.brainres.2005.07.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 07/14/2005] [Accepted: 07/18/2005] [Indexed: 12/01/2022]
Abstract
The objective of our study was to find the evidence of copper interaction in LTP, motivated by copper involvement in neurodegenerative illness, like Parkinson, Alzheimer and Amyotrophic Lateral Sclerosis, and we initiated the study of this element in the LTP. For this purpose we used hippocampus slices of rats chronically consuming copper dissolved in water (CuDR; n=26) and non-copper-consuming rats (CR; n=20). The CuDR rats received 8--10 mg/day during 20--25 days. Electrophysiological tests showed absence of LTP in CuDR slices, contrary to CR slices. The stimulus-response test applied before and after LTP showed significant increases of synaptic potential in the CR group. This did not occur in the CuDR group, except for the initial values, which probably seem associated to an early action of copper. The paired-pulse (PP) test, applied to CR and CuDR prior to tetanic stimulation, showed a significant reduction in PP, for the 20-, 30- and 50-ms intervals in CuDR. At the end of the experiments, copper concentration was 54.2 times higher in CuDR slices, compared to the concentration present in CR slices. Our results show that copper reduces synaptic sensibility and also the facilitation capability. These effects represent a significant disturbance in the plasticity phenomenon associated with learning and memory.
Collapse
Affiliation(s)
- A Goldschmith
- Facultad de Ingeniería, Escuela de Geología, Universidad de Chile, Chile
| | | | | | | | | |
Collapse
|