151
|
Anatomy of the kisspeptin neural network in mammals. Brain Res 2010; 1364:90-102. [PMID: 20858464 DOI: 10.1016/j.brainres.2010.09.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/02/2010] [Accepted: 09/02/2010] [Indexed: 01/17/2023]
Abstract
Kisspeptin has been recognized as a key regulator of GnRH secretion during puberty and adulthood, conveying the feedback influence of endogenous gonadal steroids onto the GnRH system. Understanding the functional roles of this peptide depends on knowledge of the anatomical framework in which it acts, including the location of kisspeptin-expressing cells in the brain and their connections. In this paper, we review current data on the anatomy of the kisspeptin neuronal network, including its colocalization with gonadal steroid hormone receptors, anatomical sites of interaction with the GnRH system, and recent evidence of neurochemical heterogeneity among different kisspeptin neuronal populations. Evidence to date suggests that kisspeptin cells in mammals comprise an interconnected network, with reciprocal connections both within and between separate cell populations, and with GnRH neurons. At the same time, there is more functional and anatomical heterogeneity in this system than originally thought, and many unanswered questions remain concerning anatomical relationships of kisspeptin neurons with other neuroendocrine and neural systems in the brain.
Collapse
|
152
|
Abstract
The median eminence at the base of the hypothalamus serves as an interface between the neural and peripheral endocrine systems. It releases hypothalamic-releasing hormones into the portal capillary bed for transport to the anterior pituitary, which provides further signals to target endocrine systems. Of specific relevance to reproduction, a group of about 1000 neurons in mammals release the gonadotropin-releasing hormone (GnRH) peptide from neuroterminals in the median eminence. During the life cycle, there are dramatic changes in reproductive demands, and we focus this review on how GnRH terminals in the median eminence change during reproductive senescence. We discuss morphological and functional properties of the median eminence, and how relationships among GnRH terminals and their microenvironment of nerve terminals, glial cells, and the portal capillary vasculature determine the ability of GnRH peptide to be secreted and to reach its target in the anterior pituitary gland.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
153
|
Nikisch G, Baumann P, Kiessling B, Reinert M, Wiedemann G, Kehr J, Mathé AA, Piel M, Roesch F, Weisser H, Schneider P, Hertel A. Relationship between dopamine D2 receptor occupancy, clinical response, and drug and monoamine metabolites levels in plasma and cerebrospinal fluid. A pilot study in patients suffering from first-episode schizophrenia treated with quetiapine. J Psychiatr Res 2010; 44:754-9. [PMID: 20176367 DOI: 10.1016/j.jpsychires.2010.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/01/2010] [Accepted: 02/02/2010] [Indexed: 11/27/2022]
Abstract
Combining measurements of the monoamine metabolites in the cerebrospinal fluid (CSF) and neuroimaging can increase efficiency of drug discovery for treatment of brain disorders. To address this question, we examined five drug-naïve patients suffering from schizophrenic disorder. Patients were assessed clinically, using the Positive and Negative Syndrome Scale (PANSS): at baseline and then at weekly intervals. Plasma and CSF levels of quetiapine and norquetiapine as well CSF 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindole-acetic acid (5-HIAA) and 3-methoxy-4-hydroxyphenylglycol (MHPG) were obtained at baseline and again after at least a 4 week medication trail with 600 mg/day quetiapine. CSF monoamine metabolites levels were compared with dopamine D(2) receptor occupancy (DA-D(2)) using [(18)F]fallypride and positron emission tomography (PET). Quetiapine produced preferential occupancy of parietal cortex vs. putamenal DA-D(2), 41.4% (p<0.05, corrected for multiple comparisons). DA-D(2) receptor occupancies in the occipital and parietal cortex were correlated with CSF quetiapine and norquetiapine levels (p<0.01 and p<0.05, respectively). CSF monoamine metabolites were significantly increased after treatment and correlated with regional receptor occupancies in the putamen [DOPAC: (p<0.01) and HVA: (p<0.05)], caudate nucleus [HVA: (p<0.01)], thalamus [MHPG: (p<0.05)] and in the temporal cortex [HVA: (p<0.05) and 5-HIAA: (p<0.05)]. This suggests that CSF monoamine metabolites levels reflect the effects of quetiapine treatment on neurotransmitters in vivo and indicates that monitoring plasma and CSF quetiapine and norquetiapine levels may be of clinical relevance.
Collapse
Affiliation(s)
- Georg Nikisch
- Department of Psychiatry and Psychotherapy, Klinikum Fulda gAG, Pacelliallee 4, 36043 Fulda, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Brezina V. Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos Trans R Soc Lond B Biol Sci 2010; 365:2363-74. [PMID: 20603357 PMCID: PMC2894954 DOI: 10.1098/rstb.2010.0105] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
During the computations performed by the nervous system, its 'wiring diagram'--the map of its neurons and synaptic connections--is dynamically modified and supplemented by multiple actions of neuromodulators that can be so complex that they can be thought of as constituting a biochemical network that combines with the neuronal network to perform the computation. Thus, the neuronal wiring diagram alone is not sufficient to specify, and permit us to understand, the computation that underlies behaviour. Here I review how such modulatory networks operate, the problems that their existence poses for the experimental study and conceptual understanding of the computations performed by the nervous system, and how these problems may perhaps be solved and the computations understood by considering the structural and functional 'logic' of the modulatory networks.
Collapse
Affiliation(s)
- Vladimir Brezina
- Fishberg Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
155
|
Rukhadze I, Fenik VB, Benincasa KE, Price A, Kubin L. Chronic intermittent hypoxia alters density of aminergic terminals and receptors in the hypoglossal motor nucleus. Am J Respir Crit Care Med 2010; 182:1321-9. [PMID: 20622040 DOI: 10.1164/rccm.200912-1884oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with obstructive sleep apnea (OSA) adapt to the anatomical vulnerability of their upper airway by generating increased activity in upper airway-dilating muscles during wakefulness. Norepinephrine (NE) and serotonin (5-HT) mediate, through α₁-adrenergic and 5-HT₂A receptors, a wake-related excitatory drive to upper airway motoneurons. In patients with OSA, this drive is necessary to maintain their upper airway open. We tested whether chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, affects aminergic innervation of XII motoneurons that innervate tongue-protruding muscles in a manner that could alter their airway-dilatory action. OBJECTIVES To determine the impact of CIH on neurochemical markers of NE and 5-HT innervation of the XII nucleus. METHODS NE and 5-HT terminal varicosities and α₁-adrenergic and 5-HT₂A receptors were immunohistochemically visualized and quantified in the XII nucleus in adult rats exposed to CIH or room air exchanges for 10 h/d for 34 to 40 days. MEASUREMENTS AND MAIN RESULTS CIH-exposed rats had approximately 40% higher density of NE terminals and approximately 20% higher density of 5-HT terminals in the ventromedial quadrant of the XII nucleus, the region that controls tongue protruder muscles, than sham-treated rats. XII motoneurons expressing α₁-adrenoceptors were also approximately 10% more numerous in CIH rats, whereas 5-HT₂A receptor density tended to be lower in CIH rats. CONCLUSIONS CIH-elicited increase of NE and 5-HT terminal density and increased expression of α₁-adrenoceptors in the XII nucleus may lead to augmentation of endogenous aminergic excitatory drives to XII motoneurons, thereby contributing to the increased upper airway motor tone in patients with OSA.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Animal Biology, University of Pennsylvania, Philadelphia, 19104-6046, USA.
| | | | | | | | | |
Collapse
|
156
|
Marchionni I, Takács VT, Nunzi MG, Mugnaini E, Miller RJ, Maccaferri G. Distinctive properties of CXC chemokine receptor 4-expressing Cajal-Retzius cells versus GABAergic interneurons of the postnatal hippocampus. J Physiol 2010; 588:2859-78. [PMID: 20547684 DOI: 10.1113/jphysiol.2010.190868] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The CXC chemokine receptor 4 (CXCR4) for the chemokine (C-X-C motif) ligand 12/stromal cell-derived factor-1 alpha (CXCL12/SDF-1 alpha) is highly expressed in the postnatal CA1 stratum lacunosum-moleculare. However, both the network events triggered by SDF-1 alpha in this microcircuit and the cellular targets of this chemokine remain virtually unexplored. Here, we have studied SDF-1 alpha-mediated neuromodulation of the stratum lacunosum-moleculare by directly comparing the properties of CXCR4-expressing Cajal-Retzius cells vs. CXCR4-non-expressing interneurons, and by recording the electrophysiological effects caused by application of SDF-1 alpha on either cell type. We demonstrate that SDF-1 alpha dramatically reduces spontaneous firing in Cajal-Retzius cells via hyerpolarization, and that cessation of firing is prevented by the CXCR4-specific antagonist AMD3100. In contrast, no effects on the excitability of interneurons of the same layer were observed following exposure to the chemokine. We also provide evidence that, despite the expression of functional glutamate receptors, Cajal-Retzius cells are integrated in the synaptic network of the stratum lacunosum-moleculare via excitatory GABAergic input. Furthermore, we show that the axons of Cajal-Retzius cells target specifically the stratum lacunosum-moleculare and the dentate gyrus, but lack postsynaptic specializations opposite to their axonal varicosities. These results, taken together with our observation that SDF-1 alpha reduces evoked field responses at the entorhinal cortex-CA1 synapse, suggest that Cajal-Retzius cells produce a diffuse output that may impact information processing of stratum lacunosum-moleculare. We propose that pathological alterations of local levels of SDF-1 alpha or CXCR4 expression may affect the functions of an important hippocampal microcircuit.
Collapse
Affiliation(s)
- Ivan Marchionni
- Dept. of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
157
|
Parkash J, d'Anglemont de Tassigny X, Bellefontaine N, Campagne C, Mazure D, Buée-Scherrer V, Prevot V. Phosphorylation of N-methyl-D-aspartic acid receptor-associated neuronal nitric oxide synthase depends on estrogens and modulates hypothalamic nitric oxide production during the ovarian cycle. Endocrinology 2010; 151:2723-35. [PMID: 20371700 PMCID: PMC3112171 DOI: 10.1210/en.2010-0007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Within the preoptic region, nitric oxide (NO) production varies during the ovarian cycle and has the ability to impact hypothalamic reproductive function. One mechanism for the regulation of NO release mediated by estrogens during the estrous cycle includes physical association of the calcium-activated neuronal NO synthase (nNOS) enzyme with the glutamate N-methyl-d-aspartate (NMDA) receptor channels via the postsynaptic density 95 scaffolding protein. Here we demonstrate that endogenous variations in estrogens levels during the estrous cycle also coincide with corresponding changes in the state of nNOS Ser1412 phosphorylation, the level of association of this isoform with the NMDA receptor/postsynaptic density 95 complex at the plasma membrane, and the activity of NO synthase (NOS). Neuronal NOS Ser1412 phosphorylation is maximal on the afternoon of proestrus when both the levels of estrogens and the physical association of nNOS with NMDA receptors are highest. Estradiol mimicked these effects in ovariectomized (OVX) rats. In addition, the catalytic activity of NOS in membrane protein extracts from the preoptic region, i.e. independent of any functional protein-protein interactions or cell-cell signaling, was significantly increased in estradiol-treated OVX rats compared with OVX rats. Finally, lambda phosphatase-mediated nNOS dephosphorylation dramatically impaired NOS activity in preoptic region protein extracts, thus demonstrating the important role of phosphorylation in the regulation of NO production in the preoptic region. Taken together, these results yield new insights into the regulation of neuron-derived NO production by gonadal steroids within the preoptic region and raise the possibility that changes in nNOS phosphorylation during fluctuating physiological conditions may be involved in the hypothalamic control of key neuroendocrine functions, such as reproduction.
Collapse
Affiliation(s)
- Jyoti Parkash
- Institut National de la Santé et de la Recherche Médicale, Unité, Bâtiment Biserte, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | | | |
Collapse
|
158
|
de Seranno S, d'Anglemont de Tassigny X, Estrella C, Loyens A, Kasparov S, Leroy D, Ojeda SR, Beauvillain JC, Prevot V. Role of estradiol in the dynamic control of tanycyte plasticity mediated by vascular endothelial cells in the median eminence. Endocrinology 2010; 151:1760-72. [PMID: 20133455 PMCID: PMC2850227 DOI: 10.1210/en.2009-0870] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the ever-changing physiological context of the neuroendocrine brain, the mechanisms by which cellular events involving neurons, astroglia, and vascular cells are coordinated to bring forth the appropriate neuronal signaling is not yet known but is amenable to examination. In the median eminence of the hypothalamus, endothelial cells are key players in the plasticity of tanycytes (specialized astroglia) and neuroendocrine synapse efficacy. Here we report that estradiol acts on both purified endothelial cells and isolated tanycytes to trigger endothelial-to-glial communication that leads to a sudden and massive retraction of tanycyte processes. The blockade of endothelial nitric oxide synthase by in vitro adenoviral-mediated gene transfer of a dominant-negative form of endothelial nitric oxide synthase abrogates the estradiol-induced tanycyte plasticity mediated by endothelial cells. In parallel, increases in prostaglandin-E(2) (PGE(2)) due to changes in cyclooxygenase (COX)-1 and COX-2 expression induced by the exposure of tanycytes to estradiol promote acute tanycyte plasticity. We also demonstrate by electron microscopy that the administration of PGE(2) to median eminence explants induces rapid neuroglial plasticity at the neurovascular junction of neurons that release GnRH (the neuropeptide controlling reproduction). Conversely, preventing local PGE(2) synthesis in the median eminence of adult female rats with the COX inhibitor indomethacin impairs the ovarian cycle, a process that requires a pulsatile, coordinated delivery of GnRH into the hypothalamo-hypophyseal portal system. Taken together, our findings show that estradiol controls the dialog between endothelial cells and astroglia to regulate neuroglial plasticity in the neuroendocrine brain.
Collapse
Affiliation(s)
- Sandrine de Seranno
- Institut National de la Santé et de la Recherche Médicale Unité 837, Bâtiment, Biserte, Place de Verdun, 59045 Lille Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Understanding wiring and volume transmission. ACTA ACUST UNITED AC 2010; 64:137-59. [PMID: 20347870 DOI: 10.1016/j.brainresrev.2010.03.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/23/2022]
Abstract
The proposal on the existence of two main modes of intercellular communication in the central nervous system (CNS) was introduced in 1986 and called wiring transmission (WT) and volume transmission (VT). The major criterion for this classification was the different characteristics of the communication channel with physical boundaries well delimited in the case of WT (axons and their synapses; gap junctions) but not in the case of VT (the extracellular fluid filled tortuous channels of the extracellular space and the cerebrospinal fluid filled ventricular space and sub-arachnoidal space). The basic dichotomic classification of intercellular communication in the brain is still considered valid, but recent evidence on the existence of unsuspected specialized structures for intercellular communication, such as microvesicles (exosomes and shedding vesicles) and tunnelling nanotubes, calls for a refinement of the original classification model. The proposed updating is based on criteria which are deduced not only from these new findings but also from concepts offered by informatics to classify the communication networks in the CNS. These criteria allowed the identification also of new sub-classes of WT and VT, namely the "tunnelling nanotube type of WT" and the "Roamer type of VT." In this novel type of VT microvesicles are safe vesicular carriers for targeted intercellular communication of proteins, mtDNA and RNA in the CNS flowing in the extracellular fluid along energy gradients to reach target cells. In the tunnelling nanotubes proteins, mtDNA and RNA can migrate as well as entire organelles such as mitochondria. Although the existence and the role of these new types of intercellular communication in the CNS are still a matter of investigation and remain to be fully demonstrated, the potential importance of these novel types of WT and VT for brain function in health and disease is discussed.
Collapse
|
160
|
Pinard CR, Mascagni F, Muller JF, McDonald AJ. Limited convergence of rhinal cortical and dopaminergic inputs in the rat basolateral amygdala: an ultrastructural analysis. Brain Res 2010; 1332:48-56. [PMID: 20346351 DOI: 10.1016/j.brainres.2010.03.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
The basolateral nuclear complex of the amygdala (BLC) receives robust sensory inputs from the rhinal cortices (RCx) that are important for the generation of emotional behavior. The BLC is also one of the main targets of the mesolimbic dopamine (DA) system. DA potentiates cortical sensory inputs to the BLC, which leads to an increase in the excitability of BLC pyramidal cells. These findings suggest that there may be convergence of RCx and DA inputs onto the dendrites of pyramidal cells in the BLC. In the present study we used dual-labeling immunohistochemistry and anterograde tract-tracing at the ultrastructural level to test this hypothesis in the rat brain. RCx axons were labeled by Phaseolus vulgaris leucoagglutinin (PHA-L) injections, whereas tyrosine hydroxylase (TH) was used as a marker for DA axons. The extent of convergence of these axons was analyzed in the posterior subdivision of the basolateral nucleus (BLp), which is densely innervated by both inputs. RCx synapses were asymmetrical and mainly contacted dendritic spines (86.4%) and dendritic shafts (12.1%). TH-positive (TH+) terminals also mainly formed synapses (symmetrical) and appositions with spines and shafts of dendrites. However, ultrastructural analysis found a very low percentage of RCx terminals converging with DA terminals onto unlabeled dendrites (9.4%) and axons (7.5 %), or exhibiting direct contacts with TH+ terminals (3.8%). These findings suggest that the association of specific behaviorally salient sensory stimuli with dopamine release in the BLC is not dependent on a point-to-point spatial relationship of cortical and DA inputs.
Collapse
Affiliation(s)
- Courtney R Pinard
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
161
|
|
162
|
Gandou C, Ohtani A, Senzaki K, Shiga T. Neurotensin promotes the dendrite elongation and the dendritic spine maturation of the cerebral cortex in vitro. Neurosci Res 2010; 66:246-55. [DOI: 10.1016/j.neures.2009.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/16/2009] [Accepted: 11/17/2009] [Indexed: 01/07/2023]
|
163
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
164
|
The catecholamine neuron: Historical and future perspectives. Prog Neurobiol 2009; 90:75-81. [PMID: 19853013 DOI: 10.1016/j.pneurobio.2009.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 10/09/2009] [Indexed: 01/22/2023]
Abstract
My goals for this perspective are to enumerate what I consider to have been the major discoveries in the investigations of the central catecholamine neuron systems from the synaptic, cellular and systems physiological and neurohistochemical perspectives. To do so, I will emphasize here the synaptic and physiological aspects of the central noradrenergic (NE) system, considering both the past research and what we may expect to witness in the decades ahead.
Collapse
|
165
|
Abstract
The choroid plexus is a specialized tissue that lines subdomains within the four ventricles of the brain where most of the cerebrospinal fluid is produced. Maintenance of an equilibrium in volume and composition of the cerebrospinal fluid (CSF) is vital for a normal brain function, ensuring an optimal environment for the neurons. The necessarily high water permeability of the choroid plexus barrier is made possible by the abundant expression of a water channel, Aquaporin-1 (AQP1), on the apical side of the membrane from early stages of development through adulthood. Data from studies of AQP1 suggest that it also can contribute as a gated ion channel, and suggest that the AQP1-mediated ionic conductance has physiological significance for the regulation of cerebrospinal fluid secretion. The regulation of AQP1 ion channels could be one of several transport mechanisms that contribute to the decreased CSF secretion in response to endogenous signaling molecules such as atrial natriuretic peptide. Numerous classes of ion channels and transporters are targeted specifically to each side of the cellular membrane, and they all work in concert to secrete CSF. Several signaling cascades have a direct effect on transporters and ion channels present in the choroid plexus epithelium, altering their transport activity and therefore modulating the net transcellular movement of solutes and water. Several neurotransmitters, neuropeptides, and growth factors can influence CSF secretion by direct effect on transport mechanisms of the epithelium. The mammalian choroid plexus receives innervation from noradrenergic sympathetic fibers, cholinergic and peptidergic fibers that modulate CSF secretion. Water imbalance in the brain can have life-threatening consequences resulting from altered excitability and neurodegeneration, disruption of the supply of nutrients, loss of signaling molecules, and the accumulation of unwanted toxins and metabolites. Understanding the mechanisms involved in the modulation of CSF secretion is of fundamental importance. An appreciation of AQP1 as an ion channel in addition to its role as a water channel should offer new targets for therapeutic strategies in diseases involving water imbalance in the brain.
Collapse
Affiliation(s)
- Daniela Boassa
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | |
Collapse
|
166
|
Dendritic synthesis and release of the neuropeptide galanin: Morphological evidence from studies on rat locus coeruleus neurons. J Comp Neurol 2009; 516:199-212. [DOI: 10.1002/cne.22105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
167
|
Moráles I, Fuentes A, Gonzalez-Hernandez T, Rodríguez M. Osmosensitive response of glutamate in the substantia nigra. Exp Neurol 2009; 220:335-40. [PMID: 19766632 DOI: 10.1016/j.expneurol.2009.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/09/2009] [Accepted: 09/11/2009] [Indexed: 11/18/2022]
Abstract
Previous studies have suggested the increase of extracellular glutamate (GLU) in the substantia nigra (SN) as a cause of dopamine-cell degeneration (excitotoxicity) in Parkinson's disease (PD). However, the mechanisms involved in this increase remain unknown. The present work studied osmoregulation as a cause of GLU release in the SN. Microdialysis was used to change extracellular osmolarity, to administer drugs and to quantify the extracellular non-synaptic GLU (EnS-GLU). Two osmolarity modifications were performed, a moderate decrease (5%) resembling physiological modifications and a substantial decrease (>or=20% decrease) similar to that observed under pathological conditions. Hypo-osmolarity induced a dose-response (285-80 mOsm) increase of EnS-GLU which was detected after small osmolarity modifications (15 mOsm) and which was very marked (>1000%) after more intense osmolarity changes. This response disappeared after pre-treating rats with a P2 purinergic-receptor antagonist (pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid; 1 mM) suggesting ATP involvement in the osmosensitive EnS-GLU response. The EnS-GLU increase observed after administration of ATP (0.1-100 microM) and 2-methylthioadenosine triphosphate tetrasodium (P2-receptor agonist; 100 microM) and the lack of effects of adenosine administration (1 mM) suggest that the ATP action on P2 receptors is an amplificatory mechanism in the osmosensitive EnS-GLU response. The marked action of osmolarity on extracellular Glu suggests osmolarity regulation as a possible source for excitotoxicity in the SN.
Collapse
Affiliation(s)
- Ingrid Moráles
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology Faculty of Medicine, University of La Laguna, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | |
Collapse
|
168
|
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent and debilitating disorder diagnosed on the basis of persistent and developmentally-inappropriate levels of overactivity, inattention and impulsivity. The etiology and pathophysiology of ADHD is incompletely understood. There is evidence of a genetic basis for ADHD but it is likely to involve many genes of small individual effect. Differences in the dimensions of the frontal lobes, caudate nucleus, and cerebellar vermis have been demonstrated. Neuropsychological testing has revealed a number of well documented differences between children with and without ADHD. These occur in two main domains: executive function and motivation although neither of these is specific to ADHD. In view of the recent advances in the neurobiology of reinforcement, we concentrate in this review on altered reinforcement mechanisms. Among the motivational differences, many pieces of evidence indicate that an altered response to reinforcement may play a central role in the symptoms of ADHD. In particular, sensitivity to delay of reinforcement appears to be a reliable finding. We review neurobiological mechanisms of reinforcement and discuss how these may be altered in ADHD, with particular focus on the neurotransmitter dopamine and its actions at the cellular and systems level. We describe how dopamine cell firing activity is normally associated with reinforcing events, and transfers to earlier time-points in the behavioural sequence as reinforcement becomes more predictable. We discuss how a failure of this transfer may give rise to many symptoms of ADHD, and propose that methylphenidate might act to compensate for the proposed dopamine transfer deficit.
Collapse
|
169
|
Noga BR, Johnson DMG, Riesgo MI, Pinzon A. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord. J Neurophysiol 2009; 102:1560-76. [PMID: 19571190 DOI: 10.1152/jn.91179.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT(7)/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80-100%) of locomotor cells, which were most abundant in lumbar segments L3-7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7-L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5-L7 segments (>90%) and decreased rostrally (to approximately 50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60-80 and 35-80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT(7)/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
170
|
Shi P, Raizada MK, Sumners C. Brain cytokines as neuromodulators in cardiovascular control. Clin Exp Pharmacol Physiol 2009; 37:e52-7. [PMID: 19566837 DOI: 10.1111/j.1440-1681.2009.05234.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. The role of cytokines in cardiovascular control, especially in neurogenic hypertension, has received considerable attention during the past few years. Brain cytokines have been shown to exert profound effects on neuronal activity. Recently, a number of studies have shown that administration of pro-inflammatory cytokines or anti-inflammatory cytokines into the central nervous system has a significant impact on sympathetic outflow, arterial pressure and cardiac remodelling in experimental models of hypertension and heart failure. 2. Our objective in this review is to present a succinct account of the effect of cytokines on neuronal activity and their role in cardiovascular disease. Furthermore, we propose a hypothesis for a neuromodulatory role of cytokines in the neural control of cardiovascular function.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology and Functional Genomics, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610-0274, USA
| | | | | |
Collapse
|
171
|
Koshimizu Y, Wu SX, Unzai T, Hioki H, Sonomura T, Nakamura KC, Fujiyama F, Kaneko T. Paucity of enkephalin production in neostriatal striosomal neurons: analysis with preproenkephalin-green fluorescent protein transgenic mice. Eur J Neurosci 2009; 28:2053-64. [PMID: 19046386 DOI: 10.1111/j.1460-9568.2008.06502.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Whether or not the striosome compartment of the neostriatum contained preproenkephalin (PPE)-expressing neurons remained unresolved. To address this question by developing a sensitive detection method, we generated transgenic mice expressing enhanced green fluorescent protein (GFP) under the specific transcriptional control of the PPE gene. Eight transgenic lines were established, and three of them showed GFP expression which was distributed in agreement with the reported localization of PPE mRNA in the central nervous system. Furthermore, in the matrix compartment of the neostriatum of the three lines, intense GFP immunoreactivity was densely distributed in the neuronal cell bodies and neuropil, and matrix neurons displayed > 94% co-localization for GFP and PPE immunoreactivities. In sharp contrast, GFP immunoreactivity was very weak in the striosome compartment, which was characterized by intense immunoreactivity for mu-opioid receptors (MOR). Although neostriatal neurons were divided into GFP-immunopositive and -negative groups in both the striosome and matrix compartments, GFP immunoreactivity of cell bodies was much weaker (~1/5) in GFP-positive striosomal neurons than in GFP-positive matrix neurons. A similar reciprocal organization of PPE and MOR expression was also suggested in the ventral striatum, because GFP immunoreactivity was weaker in intensely MOR-immunopositive regions than in the surrounding MOR-negative regions. As PPE-derived peptides are endogenous ligands for MOR in the neostriatum and few axon collaterals of matrix neurons enter the striosome compartment, the present results raised the question of the target of those peptides produced abundantly by matrix neurons.
Collapse
Affiliation(s)
- Yoshinori Koshimizu
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Emerich DF, Borlongan CV. Potential of choroid plexus epithelial cell grafts for neuroprotection in Huntington's disease: what remains before considering clinical trials. Neurotox Res 2009; 15:205-11. [PMID: 19384593 DOI: 10.1007/s12640-009-9021-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 11/03/2008] [Accepted: 11/03/2008] [Indexed: 12/23/2022]
Abstract
The choroid plexuses (CPs) help maintain the extracellular milieu of the brain by modulating chemical exchange between the cerebrospinal fluid and brain parenchyma, surveying the chemical and immunological status of the brain, detoxifying the brain, secreting a nutritive "cocktail" of polypeptides, and participating in repair processes following trauma. Based on recent pre-clinical studies in animal models, a novel therapeutic approach has been suggested that involves transplanting CP for treating acute and chronic brain diseases. To date most studies have focused on rodent and primate models of Huntington's disease (HD) with demonstrations that transplants of CP can prevent the behavioral and anatomical consequences of striatal degeneration. Despite the encouraging results that lend support to the possibility of protecting vulnerable neurons in HD, critical basic science issues remain unexamined that limit the translation of the pre-clinical findings into clinical evaluations of CP transplants for HD. Here we briefly outline the logic behind using this novel cell source for transplantation, the pre-clinical data supporting this concept, and most importantly identify several critical, gating issues that remain prior to moving this approach forward in a meaningful clinical manner.
Collapse
Affiliation(s)
- Dwaine F Emerich
- InCytu Inc., 701 George Washington Highway, Lincoln, RI 02865, USA.
| | | |
Collapse
|
173
|
Kaushalya SK, Desai R, Arumugam S, Ghosh H, Balaji J, Maiti S. Three-photon microscopy shows that somatic release can be a quantitatively significant component of serotonergic neurotransmission in the mammalian brain. J Neurosci Res 2009; 86:3469-80. [PMID: 18709651 DOI: 10.1002/jnr.21794] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent experiments on monoaminergic neurons have shown that neurotransmission can originate from somatic release. However, little is known about the quantity of monoamine available to be released through this extrasynaptic pathway or about the intracellular dynamics that mediate such release. Using three-photon microscopy, we directly imaged serotonin autofluorescence and investigated the total serotonin content, release competence, and release kinetics of somatic serotonergic vesicles in the dorsal raphe neurons of the rat. We found that the somata of primary cultured neurons contain a large number of serotonin-filled vesicles arranged in a perinuclear fashion. A similar distribution is also observed in fresh tissue slice preparations obtained from the rat dorsal raphe. We estimate that the soma of a cultured neuron on an average contains about 9 fmoles of serotonin in about 450 vesicles (or vesicle clusters) of < or =370 nm average diameter. A substantial fraction (>30%) of this serotonin is released with a time scale of several minutes by K(+)-induced depolarization or by para-chloroamphetamine treatment. The amount of releasable serotonin stored in the somatic vesicles is comparable to the total serotonin content of all the synaptic vesicles in a raphe neuron, indicating that somatic release can potentially play a major role in serotonergic neurotransmission in the mammalian brain.
Collapse
Affiliation(s)
- S K Kaushalya
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | | | |
Collapse
|
174
|
A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 2008; 28:11221-30. [PMID: 18971464 DOI: 10.1523/jneurosci.2780-08.2008] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Interactions between glutamatergic corticostriatal afferents and dopaminergic nigrostriatal afferents are central to basal ganglia function. The thalamostriatal projection provides a glutamatergic innervation of similar magnitude to the corticostriatal projection. We tested the hypotheses that (1) thalamostriatal synapses have similar spatial relationships with dopaminergic axons as corticostriatal synapses do and (2) the spatial relationships between excitatory synapses and dopaminergic axons are selective associations. We examined at the electron microscopic level rat striatum immunolabeled to reveal vesicular glutamate transporters (VGluTs) 1 and 2, markers of corticostriatal and thalamostriatal terminals, respectively, together with tyrosine hydroxylase (TH) to reveal dopaminergic axons. Over 80% of VGluT-positive synapses were within 1 microm of a TH-positive axon and >40% were within 1 microm of a TH-positive synapse. Of structures postsynaptic to VGluT1- or VGluT2-positive terminals, 21 and 27%, respectively, were apposed by a TH-positive axon and about half of these made synaptic contact. When structures postsynaptic to VGluT-positive terminals and VGluT-positive terminals themselves were normalized for length of plasma membrane, the probability of them being apposed by, or in synaptic contact with, a TH-positive axon was similar to that of randomly selected structures. Extrapolation of the experimental data to more closely reflect the distribution in 3D reveals that all structures in the striatum are within approximately 1 microm of a TH-positive synapse. We conclude that (1) thalamostriatal synapses are in a position to be influenced by released dopamine to a similar degree as corticostriatal synapses are and (2) these associations arise from a nonselective dopaminergic axon lattice.
Collapse
|
175
|
Caraty A, Skinner DC. Gonadotropin-releasing hormone in third ventricular cerebrospinal fluid: endogenous distribution and exogenous uptake. Endocrinology 2008; 149:5227-34. [PMID: 18566120 PMCID: PMC2582921 DOI: 10.1210/en.2007-1636] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH is detectable in the cerebrospinal fluid (CSF), but its source remains unidentified. Previous studies have harvested CSF for GnRH analysis from the median eminence region, but it is unknown whether GnRH in CSF is restricted to this region. If CSF-GnRH plays a physiological role, through volume transmission, to communicate with brain regions that express GnRH receptors but are not evidently innervated by GnRH neurons, then it is essential to establish whether GnRH is more pervasive throughout the cerebroventricular system. Three cannulae were placed in the supraoptic, infundibular, and pineal recesses of the third ventricle. GnRH was undetectable in lateral ventricle CSF. GnRH pulses were detected in all ewes in infundibular recess CSF, but at sites more rostral (supraoptic) and caudal (pineal), GnRH pulse frequency and amplitude significantly (P<0.05) decreased. A GnRH surge was evident in CSF collected simultaneously from all cannulae, but the amplitude was greatest (P<0.05) at the infundibular recess. A final study established whether iv administered GnRH enters the CSF. A 250-ng GnRH dose did not affect CSF-GnRH concentrations (1.6+/-0.3 pg/ml), but 2.5 microg (2.7+/-0.2 pg/ml; P<0.001) and 1 mg (38.5+/-10.6 pg/ml; P<0.05) significantly increased CSF-GnRH concentrations. The present study shows: 1) the median eminence region is likely to be the major, if not only, source of GnRH entering the cerebroventricular system; and 2) exogenous GnRH crosses the blood-brain barrier, but extremely high doses are required to elevate CSF concentrations to physiological levels. Thus, CSF-GnRH may affect sites that are closer in proximity to the infundibular recess region than previously thought.
Collapse
Affiliation(s)
- Alain Caraty
- Unité Mixte de Recherche 6175, Physiologie de la Reproduction et des Comportements (Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université Tours/Haras Nationaux), 37380, Nouzilly, France.
| | | |
Collapse
|
176
|
Peddie C, Davies H, Colyer F, Stewart M, Rodríguez J. Dendritic colocalisation of serotonin1B receptors and the glutamate NMDA receptor subunit NR1 within the hippocampal dentate gyrus: An ultrastructural study. J Chem Neuroanat 2008; 36:17-26. [DOI: 10.1016/j.jchemneu.2008.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/08/2008] [Accepted: 05/06/2008] [Indexed: 10/22/2022]
|
177
|
Descarries L, Bérubé-Carrière N, Riad M, Bo GD, Mendez JA, Trudeau LÉ. Glutamate in dopamine neurons: Synaptic versus diffuse transmission. ACTA ACUST UNITED AC 2008; 58:290-302. [DOI: 10.1016/j.brainresrev.2007.10.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/16/2007] [Accepted: 10/18/2007] [Indexed: 10/22/2022]
|
178
|
Random-walk model of diffusion in three dimensions in brain extracellular space: comparison with microfiberoptic photobleaching measurements. Biophys J 2008; 95:1785-94. [PMID: 18469079 DOI: 10.1529/biophysj.108.131466] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Diffusion through the extracellular space (ECS) in brain is important in drug delivery, intercellular communication, and extracellular ionic buffering. The ECS comprises approximately 20% of brain parenchymal volume and contains cell-cell gaps approximately 50 nm. We developed a random-walk model to simulate macromolecule diffusion in brain ECS in three dimensions using realistic ECS dimensions. Model inputs included ECS volume fraction (alpha), cell size, cell-cell gap geometry, intercellular lake (expanded regions of brain ECS) dimensions, and molecular size of the diffusing solute. Model output was relative solute diffusion in water versus brain ECS (D(o)/D). Experimental D(o)/D for comparison with model predictions was measured using a microfiberoptic fluorescence photobleaching method involving stereotaxic insertion of a micron-size optical fiber into mouse brain. D(o)/D for the small solute calcein in different regions of brain was in the range 3.0-4.1, and increased with brain cell swelling after water intoxication. D(o)/D also increased with increasing size of the diffusing solute, particularly in deep brain nuclei. Simulations of measured D(o)/D using realistic alpha, cell size and cell-cell gap required the presence of intercellular lakes at multicell contact points, and the contact length of cell-cell gaps to be least 50-fold smaller than cell size. The model accurately predicted D(o)/D for different solute sizes. Also, the modeling showed unanticipated effects on D(o)/D of changing ECS and cell dimensions that implicated solute trapping by lakes. Our model establishes the geometric constraints to account quantitatively for the relatively modest slowing of solute and macromolecule diffusion in brain ECS.
Collapse
|
179
|
Sánchez E, Singru PS, Fekete C, Lechan RM. Induction of type 2 iodothyronine deiodinase in the mediobasal hypothalamus by bacterial lipopolysaccharide: role of corticosterone. Endocrinology 2008; 149:2484-93. [PMID: 18218695 PMCID: PMC2329263 DOI: 10.1210/en.2007-1697] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 01/17/2008] [Indexed: 11/19/2022]
Abstract
To determine whether endotoxin-induced activation of type 2 iodothyronine deiodinase (D2) in the mediobasal hypothalamus is dependent on circulating levels of corticosterone, the effect of bacterial lipopolysaccharide (LPS) on D2 gene expression was studied in adrenalectomized, corticosterone-clamped adult, male, Sprague Dawley rats. In sham-adrenalectomized animals, LPS (250 microg/100 g body weight) increased circulating levels of corticosterone and IL-6, as well as tanycyte D2 mRNA in the mediobasal hypothalamus. Adrenalectomized, corticosterone-clamped animals showed no significant rise in corticosterone after LPS, compared with saline-treated controls but increased IL-6 levels and tanycyte D2 mRNA similar to LPS-treated sham controls. To further clarify the potential role of corticosterone in the regulation of D2 gene expression by LPS, animals were administered high doses of corticosterone to attain levels similar to that observed in the LPS-treated group. No significant increase in D2 mRNA was observed in the mediobasal hypothalamus with the exception of a small subpopulation of cells in the lateral walls of the third ventricle. These data indicate that the LPS-induced increase in D2 mRNA in the mediobasal hypothalamus is largely independent of circulating corticosterone and indicate that mechanisms other than adrenal activation are involved in the regulation of most tanycyte D2-expressing cells by endotoxin.
Collapse
Affiliation(s)
- Edith Sánchez
- Tupper Research Institute and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Tufts-New England Medical Center, , Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
180
|
Ciliary neurotrophic factor mediates dopamine D2 receptor-induced CNS neurogenesis in adult mice. J Neurosci 2008; 28:2231-41. [PMID: 18305256 DOI: 10.1523/jneurosci.3574-07.2008] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurogenesis continues in the adult forebrain subventricular zone (SVZ) and the dentate gyrus of the hippocampal formation. Degeneration of dopaminergic projections in Parkinson's disease and animals reduces, whereas ciliary neurotrophic factor (CNTF) promotes, neurogenesis. We tested whether the dopaminergic system promotes neurogenesis through CNTF. Astrocytes of the SVZ and dentate gyrus expressed CNTF and were close to dopaminergic terminals. Dopaminergic denervation in adult mice reduced CNTF mRNA by approximately 60%, whereas systemic treatment with the D2 agonist quinpirole increased CNTF mRNA in the SVZ and hippocampal formation, and in cultured astrocytes by 1.5-5 fold. The effect of quinpirole in vitro was blocked by the D2 antagonist eticlopride and did not cause astroglial proliferation or hypertrophy. Systemic quinpirole injections increased proliferation in wild-type mice by approximately 25-75% but not in CNTF-/- littermates or in the SVZ of mice infused with CNTF antibodies. Quinpirole increased the number of neuroblasts in wild-type but not in CNTF-/- littermates. Neurogenesis was reduced by approximately 20% in CNTF-/- mice, confirming the endogenous role of CNTF. Nigrostriatal denervation did not affect SVZ proliferation in CNTF-/- mice, suggesting that the dopaminergic innervation normally regulates neurogenesis through CNTF. Quinpirole acted on postsynaptic receptors as it reversed the reduced proliferation seen after dopaminergic denervation in wild-type mice. Thus, CNTF mediates dopaminergic innervation- and D2 receptor-induced neurogenesis in the adult forebrain. Because CNTF is predominantly expressed in the nervous system, this mechanism and the ability to pharmacologically modulate it have implications for Parkinson's disease and cell-replacement therapies for other disorders.
Collapse
|
181
|
Noradrenergic modulation of electrical coupling in GABAergic networks of the hippocampus. J Neurosci 2008; 28:1804-15. [PMID: 18287497 DOI: 10.1523/jneurosci.4616-07.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Noradrenergic modulation of cortical circuits is involved in information processing, regulation of higher functions, and prevention of epileptic activity. Here, we studied the effects of noradrenaline on the functional connectivity of GABAergic networks of the hippocampus and show that electrical synapses between interneurons are a novel target of noradrenergic modulation in vitro. Application of noradrenaline or of the selective beta-adrenergic agonist isoproterenol decreased gap junction-based coupling in paired recordings from stratum lacunosum-moleculare interneurons by approximately 40%. Similar results were obtained after pharmacological stimulation of the adenylyl cyclase with forskolin. In contrast, the adenylyl cyclase antagonist MDL12330A [cis-N-(2-phenylcyclopentyl)azacyclotridec-1-en-2-amine] or the specific protein kinase A (PKA) inhibitor H89 (N-[2-(p-bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride) enhanced the basal strength of coupling by approximately 30%. In addition, PKA-mediated phosphorylation was critical for both isoproterenol- and forskolin-dependent regulation of coupling, because inclusion of the PKA antagonist KT5720 [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylicacid hexyl ester] in the recording pipettes prevented modulation. Lastly, we studied the effects of beta-adrenergic modulation on mixed polysynaptic transmission within the GABAergic network. Isoproterenol depressed propagation of GABA(A) receptor-mediated synaptic currents, but did not change significantly direct GABAergic input, indicating that regulation of electrical coupling adds flexibility to the information flow generated by chemical synapses. In conclusion, activation of beta-adrenergic receptors in stratum lacunosum-moleculare GABAergic networks reduces electrical synaptic transmission via a cAMP/PKA signaling cascade, and affects the degree of synaptic divergence within the circuit. We propose that this dynamic modulation and interplay between electrical and chemical synaptic transmission in GABAergic networks contributes to the tuning of memory processes in vivo, and prevents hypersynchronous activity.
Collapse
|
182
|
Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodríguez JJ. Colocalisation of serotonin2A receptors with the glutamate receptor subunits NR1 and GluR2 in the dentate gyrus: an ultrastructural study of a modulatory role. Exp Neurol 2008; 211:561-73. [PMID: 18439999 DOI: 10.1016/j.expneurol.2008.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/24/2022]
Abstract
The serotonin(2A) receptor (5-HT(2A)R) is implicated in many neurological disorders and has a role in cognitive processes, reliant upon hippocampal glutamate receptors. Recent studies show that 5-HT(2A)R agonists and/or antagonists can influence cognitive function, suggesting a critical hippocampal role for these receptors, yet their cellular and subcellular distribution within this region has not been comprehensively analysed. Here, we have conducted an electron microscopic examination of 5-HT(2A)R distribution with the glutamate N-methyl-D-aspartate (NMDA) and amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor subunits NR1 and GluR2 in the hippocampal dentate gyrus (DG) in order to investigate whether 5-HT(2A)R location is compatible with a modulatory role over NMDA and/or AMPA receptor mediated neurotransmission. Of 5-HT(2A)R positive profiles, 56% were dendrites and 16% were dendritic spines. Labelling was both cytoplasmic and membranous. Spinous labelling was more frequently membranous at peri- and extra-synaptic sites, though was also associated with synaptic specialisations. Profiles displaying colocalisation of immunoreactivity for 5-HT(2A)Rs with NR1 or GluR2 were predominantly dendrites, representing 11% and 8% of 5-HT(2A)R positive profiles, respectively. Additionally, 12% of 5-HT(2A)R labelled profiles also displayed immunoreactivity for gamma-aminobutyric acid (GABA). These data indicate most 5-HT(2A)Rs are expressed on granule cell projections, with a smaller subpopulation expressed on GABAergic interneurons.
Collapse
Affiliation(s)
- C J Peddie
- Department of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | |
Collapse
|
183
|
Cook ND. The neuron-level phenomena underlying cognition and consciousness: synaptic activity and the action potential. Neuroscience 2008; 153:556-70. [PMID: 18406536 DOI: 10.1016/j.neuroscience.2008.02.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/25/2008] [Accepted: 02/26/2008] [Indexed: 01/24/2023]
Abstract
An unusual property of the neuron is its capability for cell-to-cell communication via synapses, known to be the neuron-level "protophenomenon" underlying the brain-level "real phenomenon" of cognition. The temporal synchronization of such synaptic activity is the leading candidate for explaining "cognitive binding" and therefore the unity of mind. An equally-unusual property of the neuron is the action potential, the means by which the neuron sends a signal down the axon. Although infrequently noted by researchers in relation to consciousness, signal propagation within the neuron entails the momentary permeability of the neuronal membrane, allowing a massive influx of charged ions into the cellular interior. Such openness to the extracellular world is arguably the protophenomenon of neuronal "sentience," literally, feeling the charge-state of the electrochemical environment. Sensitivity to the external pH is a common feature of all living cells, but is greatly amplified during the neuron's action potential. Synchronization of the action potentials of the same neurons that are involved in cognitive binding is the likely mechanism by which the sentience of individual neurons is coordinated into the brain-level phenomenon of subjective awareness. I conclude that a proper understanding of the permeability of the neuronal membrane during the action potential is as important for consciousness studies as is a proper understanding of synaptic transmission for the explication of the cognition made possible by neurons.
Collapse
Affiliation(s)
- N D Cook
- Department of Informatics, Kansai University, Takatsuki, Osaka 569-1089, Japan.
| |
Collapse
|
184
|
Clasadonte J, Poulain P, Beauvillain JC, Prevot V. Activation of neuronal nitric oxide release inhibits spontaneous firing in adult gonadotropin-releasing hormone neurons: a possible local synchronizing signal. Endocrinology 2008; 149:587-96. [PMID: 18006627 DOI: 10.1210/en.2007-1260] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The activation of nitric oxide (NO) signaling pathways in hypothalamic neurons plays a key role in the control of GnRH secretion that is central to reproductive function. It is unknown whether NO directly modulates the firing behavior of GnRH neurons in the preoptic region of the mature brain. Using patch-clamp recordings from GnRH neurons expressing green fluorescent protein in adult mice brain slices, we demonstrate that the NO precursor, L-arginine (Arg), or the NO donor, diethylamine/NO, induced a robust and reversible reduction in the spontaneous firing activity of GnRH neurons, including bursting activity. The effects of L-Arg were prevented by the NO synthase inhibitor N omega-nitro-L-Arg methyl ester hydrochloride. Histochemical studies revealing a close anatomical relationship between neurons producing NO and GnRH perikarya, together with the loss of the L-Arg-mediated inhibition of GnRH neuronal activity via the selective blockade of neuronal NO synthase, suggested that the primary source of local NO production in the mouse preoptic region was neuronal. Synaptic transmission uncoupling did not alter the effect of NO, suggesting that NO affects the firing pattern of GnRH neurons by acting at a postsynaptic site. We also show that the NO-mediated changes in membrane properties in the GnRH neurons require soluble guanylyl cyclase activity and may involve potassium conductance. By revealing that NO is a direct modulator of GnRH neuronal activity, our results introduce the intriguing possibility that this gaseous neurotransmitter may be used by the sexual brain to modulate burst firing patterns. It may set into phase the bursting activity of GnRH neurons at key stages of reproductive physiology.
Collapse
Affiliation(s)
- Jérôme Clasadonte
- Inserm, Jean-Pierre Aubert Research Center, Unité 837, Development and Plasticity of the Postnatal Brain, Place de Verdun, 59045, Lille Cedex, France
| | | | | | | |
Collapse
|
185
|
Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol 2008; 209:145-54. [DOI: 10.1016/j.expneurol.2007.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 08/13/2007] [Accepted: 09/11/2007] [Indexed: 11/19/2022]
|
186
|
Abstract
Neurons send out a multitude of chemical signals, called neurotransmitters, to communicate between neurons in brain, and between neurons and target cells in the periphery. The most important of these communication processes is synaptic transmission, which accounts for the ability of the brain to rapidly process information, and which is characterized by the fast and localized transfer of a signal from a presynaptic neuron to a postsynaptic cell. Other communication processes, such as the modulation of the neuronal state in entire brain regions by neuromodulators, provide an essential component of this information processing capacity. A large number of diverse neurotransmitters are used by neurons, ranging from classical fast transmitters such as glycine and glutamate over neuropeptides to lipophilic compounds and gases such as endocannabinoids and nitric oxide. Most of these transmitters are released by exocytosis, the i.e. the fusion of secretory vesicles with the plasma membrane, which exhibits distinct properties for different types of neurotransmitters. The present chapter will provide an overview of the process of neurotransmitter release and its historical context, and give a reference point for the other chapters in this book.
Collapse
Affiliation(s)
- Thomas C Süudhof
- Department of Neuroscience and Molecular Genetics, and Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
187
|
Syková E, Vargová L. Extrasynaptic transmission and the diffusion parameters of the extracellular space. Neurochem Int 2008; 52:5-13. [PMID: 17513016 DOI: 10.1016/j.neuint.2007.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 04/10/2007] [Indexed: 12/22/2022]
Abstract
Extrasynaptic volume transmission, mediated by the diffusion of neuroactive substances in the extracellular space (ECS), plays an important role in short- and long-distance communication between nerve cells. The ability of a substance to reach extrasynaptic high-affinity receptors via diffusion depends on the ECS diffusion parameters, ECS volume fraction alpha (alpha=ECS volume/total tissue volume) and tortuosity lambda (lambda2=free/apparent diffusion coefficient), which reflects the presence of diffusion barriers represented by, e.g., fine astrocytic processes or extracellular matrix molecules. These barriers channel the migration of molecules in the ECS, so that diffusion may be facilitated in a certain direction, i.e. anisotropic. The diffusion parameters alpha and lambda differ in various brain regions, and diffusion in the CNS is therefore inhomogeneous. Changes in diffusion parameters have been found in many physiological and pathological states, such as development and aging, neuronal activity, lactation, ischemia, brain injury, degenerative diseases, tumor growth and others, in which cell swelling, glial remodeling and extracellular matrix changes are key factors influencing diffusion. Changes in ECS volume, tortuosity and anisotropy significantly affect the accumulation and diffusion of neuroactive substances and thus extrasynaptic transmission, neuron-glia communication, mediator "spillover" and synaptic crosstalk as well as, cell migration. The various changes occurring during pathological states can be important for diagnosis, drug delivery and treatment.
Collapse
Affiliation(s)
- Eva Syková
- Department of Neuroscience, Charles University, 2nd Medical Faculty, Prague, Czech Republic.
| | | |
Collapse
|
188
|
Harris AZ, Pettit DL. Recruiting extrasynaptic NMDA receptors augments synaptic signaling. J Neurophysiol 2007; 99:524-33. [PMID: 18057106 DOI: 10.1152/jn.01169.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-d-aspartate receptor (NMDAR) activation may promote cell survival or initiate cell death, with the outcome dependent on whether synaptic or extrasynaptic receptors are activated. Similarly, this differential activation has been proposed to govern the direction of plasticity. However, the physiological parameters necessary to activate extrasynaptic NMDARs in brain slices remain unknown. Using the irreversible use-dependent NMDAR antagonist MK-801 to isolate extrasynaptic NMDARs, we have tested the ability of short-stimulation trains from 5 to 400 Hz to activate these receptors on CA1 hippocampal slice pyramidal neurons. Frequencies as low as 25 Hz engage extrasynaptic NMDARs, with maximal activation at frequencies between 100 and 200 Hz. Since similar bursts of synaptic input occur during exploratory behavior in rats, our results demonstrate that "extrasynaptic" NMDARs regularly participate in synaptic transmission. Further, 175-Hz-stimulation trains activate all available synaptic and extrasynaptic dendritic NMDARs, suggesting these NMDARs act as synaptic receptors as needed, transiently increasing synaptic strength. Thus extrasynaptic NMDARs play a vital role in synaptic physiology, calling into question their status as "extrasynaptic."
Collapse
Affiliation(s)
- Alexander Z Harris
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
189
|
Pocock JM, Kettenmann H. Neurotransmitter receptors on microglia. Trends Neurosci 2007; 30:527-35. [PMID: 17904651 DOI: 10.1016/j.tins.2007.07.007] [Citation(s) in RCA: 502] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 01/23/2023]
Abstract
Microglia are the intrinsic immune cells of the brain and express chemokine and cytokine receptors that interact with the peripheral immune cells. Recent studies have indicated that microglia also respond to the brain's classical signalling substances, the neurotransmitters. Here, we review the evidence for the expression of neurotransmitter receptors on microglia and the consequences of this receptor activation for microglial behaviour. It is evident that neurotransmitters instruct microglia to perform distinct types of responses, such as triggering an inflammatory cascade or acquiring a neuroprotective phenotype. Understanding how microglia respond to different neurotransmitters will thus have important implications for controlling the reactivity of these cells in acute injury, as well as for treating chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Jennifer M Pocock
- Cell Signalling Laboratory, Department of Neuroinflammation, Institute of Neurology, University College London, 1 Wakefield Street, London WC1N 1PJ, UK.
| | | |
Collapse
|
190
|
Wilson CG, Akhter S, Mayer CA, Kc P, Balan KV, Ernsberger P, Haxhiu MA. Allergic lung inflammation affects central noradrenergic control of cholinergic outflow to the airways in ferrets. J Appl Physiol (1985) 2007; 103:2095-104. [PMID: 17872402 DOI: 10.1152/japplphysiol.01182.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain stem noradrenergic cell groups mediating autonomic responses to stress project to airway-related vagal preganglionic neurons (AVPNs). In ferrets, their activation produces withdrawal of cholinergic outflow to the airways via release of norepinephrine and activation of alpha(2A)-adrenergic receptors (alpha(2A)-AR) expressed by AVPNs. In these studies, we examined the effects of allergen exposure of the airway (AE) with ovalbumin on noradrenergic transmission regulating the activity of AVPNs and, consequently, airway smooth muscle tone. Experiments were performed in vehicle control (Con) and AE ferrets. Microperfusion of an alpha(2A)-AR agonist (guanabenz) in close proximity to AVPNs elicited more pronounced effects in Con than AE ferrets, including a decrease in unit activity and reflexly evoked responses of putative AVPN neurons with a corresponding decrease in cholinergic outflow to the airways. Although no differences were found in the extent of noradrenergic innervation of the AVPNs, RT-PCR and Western blot studies demonstrated that AE and repeated exposure to antigen significantly reduced expression of alpha(2A)-ARs at message and protein levels. These findings indicate that, in an animal model of allergic asthma, sensitization and repeated challenges with a specific allergen diminish central inhibitory noradrenergic modulation of AVPNs, possibly via downregulation of alpha(2A)-AR expression by these neurons.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Pediatrics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-6010, USA.
| | | | | | | | | | | | | |
Collapse
|
191
|
Ciarlo M, Bruzzone F, Angelini C, Vallarino M, Vaudry H. Ontogeny of PAC1-R and VPAC1-R in the frog, Rana esculenta. Peptides 2007; 28:1738-45. [PMID: 17524522 DOI: 10.1016/j.peptides.2007.04.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 03/26/2007] [Accepted: 04/10/2007] [Indexed: 11/19/2022]
Abstract
The distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP receptors in the brain of amphibians has been previously described. In the present study, we have investigated the ontogeny of the selective PACAP receptor, PAC1-R, and the PACAP-vasoactive intestinal polypeptide (VIP) mutual receptor, VPAC1-R, in frog embryos by whole-mount in situ hybridization histochemistry. At stage 20, expression of PAC1-R and/or VPAC1-R mRNAs was detected in the brain, the auditory vesicles, the external gills, the buds of the lateral lines and the coelomatic cavity. At stage 25, PAC1-R and/or VPAC1-R mRNAs were observed in the buds of the orbital lateral line, the pancreas and heart. At stage 30, PAC1-R and VPAC1-R mRNAs were widely distributed in the telencephalon and diencephalon as well as in the bud of the lateral line, the heart and the pancreas. The anatomical distribution of PAC1-R and VPAC1-R mRNAs, although similar, did not totally overlap, indicating that PACAP and VIP may exert differential effects in frog during development.
Collapse
Affiliation(s)
- Monica Ciarlo
- Department of Biology, University of Genova, 16132 Genova, Italy
| | | | | | | | | |
Collapse
|
192
|
Zambotti-Villela L, Marinho CE, Alponti RF, Silveira PF. Hypothalamic activity during altered salt and water balance in the snake Bothrops jararaca. J Comp Physiol B 2007; 178:57-66. [PMID: 17703311 DOI: 10.1007/s00360-007-0199-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/20/2007] [Accepted: 07/28/2007] [Indexed: 11/29/2022]
Abstract
The effects of water and salt overload on the activities of the supraoptic and paraventricular nuclei and the adjacent periventricular zone of the hypothalamus of the snake Bothrops jararaca were investigated by measurements of Fos-like immunoreactivity (Fos-ir). Both water and salt overload resulted in changes in body mass, plasma osmolality, and plasma concentrations of sodium, potassium, and chloride. Hyper-osmolality increased Fos immunoreactivity in the rostral supraoptic nucleus (SON), the paraventricular nucleus (PVN), and adjacent periventricular areas. Both hyper- and hypo-osmolality increased Fos immunoreactivity in the intermediate SON, but not in other areas of the hypothalamus. Immunostaining was abundant in cerebrospinal fluid (CSF)-contacting tanycyte-like cells in the ependymal layer of the third ventricle. These data highlight some features of regional distribution of Fos immunoreactivity that are consistent with vasotocin functioning as a hormone, and support the role of hypothalamic structures in the response to disruption of salt and water balance in this snake.
Collapse
|
193
|
Guidolin D, Fuxe K, Neri G, Nussdorfer GG, Agnati LF. On the role of receptor–receptor interactions and volume transmission in learning and memory. ACTA ACUST UNITED AC 2007; 55:119-33. [PMID: 17408566 DOI: 10.1016/j.brainresrev.2007.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
Learning and memory seem to be inherent to a biological neural network. To emerge, they need an extensive functional connectivity, enabling a large repertoire of possible responses to stimuli, and sensitivity of the connectivity to activity, allowing for the selection of adaptive responses. According to the classical view about the organization of the CNS, the connectivity issue is realized by the huge amount of synaptic contacts each neuron establishes, while the adaptation of the network to specific tasks is obtained by mechanisms of activity-dependent synaptic plasticity. The discovery of direct receptor-receptor interactions at the level of the plasma membrane and the existence in the brain of two main modes of communication, the wiring transmission (such as the synaptic transmission) and the volume transmission (based on the diffusion of signals in the extracellular space), provided a broader view of the functional organization of the CNS with potential important consequences on the understanding of learning and memory processes. Owing to receptor-receptor interactions clusters of receptors, the receptor mosaics (RM), can be formed at the plasma membrane where they can work as collective functional units. As a consequence, the connections between the cells become themselves networks (molecular networks) able to adapt their function according to the stimuli they receive. Learning, therefore, can occur also at the level of RMs. Thus, memory formation seems not only to be a distributed process, but also to follow a hierarchical morpho-functional organization. Furthermore, the combination of the two different forms of transmission could allow processes of correlation and coordination to be established between networks and network elements without the need of additional physical connections, leading to a significant increase of the degrees of freedom available to the CNS for learning.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Human Anatomy and Physiology, Section of Anatomy, University of Padova Medical School, via Gabelli 65, I-35121 Padua, Italy.
| | | | | | | | | |
Collapse
|
194
|
Santos JG, Vömel M, Struck R, Homberg U, Nässel DR, Wegener C. Neuroarchitecture of peptidergic systems in the larval ventral ganglion of Drosophila melanogaster. PLoS One 2007; 2:e695. [PMID: 17668072 PMCID: PMC1933254 DOI: 10.1371/journal.pone.0000695] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/15/2007] [Indexed: 11/24/2022] Open
Abstract
Recent studies on Drosophila melanogaster and other insects have revealed important insights into the functions and evolution of neuropeptide signaling. In contrast, in- and output connections of insect peptidergic circuits are largely unexplored. Existing morphological descriptions typically do not determine the exact spatial location of peptidergic axonal pathways and arborizations within the neuropil, and do not identify peptidergic in- and output compartments. Such information is however fundamental to screen for possible peptidergic network connections, a prerequisite to understand how the CNS controls the activity of peptidergic neurons at the synaptic level. We provide a precise 3D morphological description of peptidergic neurons in the thoracic and abdominal neuromeres of the Drosophila larva based on fasciclin-2 (Fas2) immunopositive tracts as landmarks. Comparing the Fas2 "coordinates" of projections of sensory or other neurons with those of peptidergic neurons, it is possible to identify candidate in- and output connections of specific peptidergic systems. These connections can subsequently be more rigorously tested. By immunolabeling and GAL4-directed expression of marker proteins, we analyzed the projections and compartmentalization of neurons expressing 12 different peptide genes, encoding approximately 75% of the neuropeptides chemically identified within the Drosophila CNS. Results are assembled into standardized plates which provide a guide to identify candidate afferent or target neurons with overlapping projections. In general, we found that putative dendritic compartments of peptidergic neurons are concentrated around the median Fas2 tracts and the terminal plexus. Putative peptide release sites in the ventral nerve cord were also more laterally situated. Our results suggest that i) peptidergic neurons in the Drosophila ventral nerve cord have separated in- and output compartments in specific areas, and ii) volume transmission is a prevailing way of peptidergic communication within the CNS. The data can further be useful to identify colocalized transmitters and receptors, and develop peptidergic neurons as new landmarks.
Collapse
Affiliation(s)
- Jonathan G. Santos
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Matthias Vömel
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Rafael Struck
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| | - Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Christian Wegener
- Emmy Noether Neuropeptide Group, Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
- Animal Physiology, Department of Biology, Philipps-University, Marburg, Germany
| |
Collapse
|
195
|
Fekete C, Lechan RM. Negative feedback regulation of hypophysiotropic thyrotropin-releasing hormone (TRH) synthesizing neurons: role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 2007; 28:97-114. [PMID: 17588648 PMCID: PMC2000455 DOI: 10.1016/j.yfrne.2007.04.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/01/2007] [Accepted: 04/23/2007] [Indexed: 11/26/2022]
Abstract
Hypophysiotropic thyrotropin-releasing hormone (TRH): synthesizing neurons reside in the hypothalamic paraventricular nucleus (PVN) and are the central regulators of the hypothalamic-pituitary-thyroid (HPT) axis. TRH synthesis and release from these neurons are primarily under negative feedback regulation by thyroid hormone. Under certain conditions such as cold exposure and fasting, however, inputs from neurons in the brainstem and hypothalamic arcuate and dorsomedial nuclei alter the set point for negative feedback through regulation of CREB phosphorylation. Thus, during cold exposure, adrenergic neurons stimulate the HPT axis, while fasting-induced central hypothyroidism is mediated through an arcuato-paraventricular pathway. Feedback regulation of TRH neurons may also be modified by local tissue levels of thyroid hormone regulated by the activation of type 2 iodothyronine deiodinase (D2), the primary enzyme in the brain that catalyzes T4 to T3 conversion. During infection, endotoxin or endotoxin induced cytokines increase D2 activity in the mediobasal hypothalamus, which by inducing local hyperthyroidism, may play an important role in infection-induced inhibition of hypophysiotropic TRH neurons.
Collapse
Affiliation(s)
- Csaba Fekete
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest 1083, Hungary.
| | | |
Collapse
|
196
|
Balcita-Pedicino JJ, Rinaman L. Noradrenergic axon terminals contact gastric preautonomic neurons in the paraventricular nucleus of the hypothalamus in rats. J Comp Neurol 2007; 501:608-18. [PMID: 17278138 DOI: 10.1002/cne.21267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hypothalamic neural activity is modulated by viscerosensory signals that are carried in large part by noradrenergic (NA) inputs to the paraventricular nucleus of the hypothalamus (PVN). The present study examined the ultrastructural relationship of NA axon varicosities with the somata and dendrites of identified gastric preautonomic PVN neurons in adult male rats. NA varicosities were visualized by immunoperoxidase labeling of dopamine beta hydroxylase (DbH), and gastric preautonomic PVN neurons were identified by immunogold labeling of pseudorabies virus (PRV) transported retrogradely and transneuronally from injection sites in the stomach wall. Among 1,136 DbH-positive varicosities identified within the parvocellular PVN in four rats, approximately 36% formed either a close apposition or a synaptic contact with a somatic or dendritic profile. The majority of identified contacts between DbH- and PRV-positive profiles were classified as close appositions that lacked clear synaptic specializations. Approximately 65% of identified synaptic contacts between DbH- and PRV-positive profiles were classified as symmetric (Gray's type II) synapses. DbH-positive terminals formed close appositions and synaptic contacts with dendritic and somatic compartments of PRV-positive neurons, although dendrites were contacted nearly five times more often than somata. These findings invite continued work to delineate the functional role of NA signaling pathways in conveying interoceptive signals to preautonomic PVN neurons under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- J J Balcita-Pedicino
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
197
|
Apolloni B, Bassis S. A feed-forward neural logic based on synaptic and volume transmission. ACTA ACUST UNITED AC 2007; 55:108-18. [PMID: 17418422 DOI: 10.1016/j.brainresrev.2007.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/02/2007] [Accepted: 03/03/2007] [Indexed: 11/29/2022]
Abstract
We consider a homeostatic mechanism to maintain a plastic layer of a feed-forward neural network reactive to a long sequence of signals, with neither falling in a fixed point of the state space nor undergoing in overfitting. Homeostasis is achieved without asking the neural network to be able to pursue an offset through local feedbacks. Rather, each neuron evolves monotonically in the direction increasing its own parameter, while a global feedback emerges from volume transmission of a homostatic signal. Namely: 1) each neuron is triggered to increase its own parameter in order to exceed the mean value of all of the other neurons' parameters, and 2) a global feedback on the population emerges from the composition of the single neurons behavior paired with a reasonable rule through which surrounding neurons in the same layer are activated. We provide a formal description of the model that we implement in an ad hoc version of pi-calculus. Some numerical simulations will depict some typical behaviors that seem to show a plausible biological interpretation.
Collapse
Affiliation(s)
- Bruno Apolloni
- Dipartimento di Scienze dell'Informazione, Università degli Studi di Milano, Via Comelico 39/41, 20135 Milan, Italy.
| | | |
Collapse
|
198
|
Mathew TC. Diversity in the surface morphology of adjacent epithelial cells of the choroid plexus: an ultrastructural analysis. Mol Cell Biochem 2007; 301:235-9. [PMID: 17318408 DOI: 10.1007/s11010-007-9416-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Accepted: 01/19/2007] [Indexed: 10/23/2022]
Abstract
It is generally known that the luminal surface of the choroidal epithelial cells is covered with a luxuriant coat of slender microvilli and cilia. However, extensive ultrastructural studies on the surface morphology of choroidal epithelial cells are lacking. This study, therefore, is focused on the detailed surface morphology of the choroid plexus of the lateral ventricle of adult Wistar rats using transmission and scanning electron microscopy. The animals were anesthetized, perfused with 0.9% oxygenated saline followed by 3% gluteraldehyde and the choroid plexus was processed for routine electron microscopy. The results of the ultrastructural observations presented in this study show that even the neighboring choroidal epithelial cells may express distinct morphology. In addition to the usually described morphology of choroidal epithelial cells, in this study, the presence of cells with uniform small blebs, crenulated or doughnut shaped structures, large mature blebs, or cells with an extensive network of fibers were observed. Although, dissimilar surface morphology of adjacent choroidal epithelial cells may indicate their distinct functional status, further studies are necessary to understand the physiological relevance of the varied surface morphology of choroidal epithelial cells.
Collapse
Affiliation(s)
- Thazhumpal Chacko Mathew
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Sulaibekhat, Kuwait.
| |
Collapse
|
199
|
Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 2007; 8:171-81. [PMID: 17299454 DOI: 10.1038/nrn2092] [Citation(s) in RCA: 898] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Sleep and wakefulness are regulated to occur at appropriate times that are in accordance with our internal and external environments. Avoiding danger and finding food, which are life-essential activities that are regulated by emotion, reward and energy balance, require vigilance and therefore, by definition, wakefulness. The orexin (hypocretin) system regulates sleep and wakefulness through interactions with systems that regulate emotion, reward and energy homeostasis.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Department of Pharmacology, Institute of Basic Medical Science, University of Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
200
|
Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci 2007; 30:62-9. [PMID: 17173981 DOI: 10.1016/j.tins.2006.12.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/01/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
In recent years, dopamine has emerged as a key neurotransmitter that is crucially involved in incentive motivation and reinforcement learning. Dopamine release is evoked by rewards. The extensive divergence of outputs from a small number of dopaminergic neurons suggests a spatially nonselective action of dopamine, but it reinforces the specific actions that led to reward. How is this achieved? We propose that the selectivity of dopamine effects is achieved by the timing of dopamine release in relation to the activity of glutamatergic synapses, rather than by spatial localization of the dopamine signal to specific synaptic contacts. The synaptic mechanisms of these actions are unknown but reduced levels of dopamine, for example in Parkinson's disease, leads to a paucity of behavioural output, whereas its excess production has been associated with psychiatric problems. Clearly, there are therapeutic imperatives that require a better understanding of how dopamine functions at a synaptic level.
Collapse
Affiliation(s)
- Gordon W Arbuthnott
- The University of Edinburgh, School of Biomedical and Clinical Laboratory Sciences, Division of Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK.
| | | |
Collapse
|