151
|
Kutlu MG, Tumolo JM, Holliday E, Garrett B, Gould TJ. Acute nicotine enhances spontaneous recovery of contextual fear and changes c-fos early gene expression in infralimbic cortex, hippocampus, and amygdala. ACTA ACUST UNITED AC 2016; 23:405-14. [PMID: 27421892 PMCID: PMC4947235 DOI: 10.1101/lm.042655.116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/18/2016] [Indexed: 11/24/2022]
Abstract
Exposure therapy, which focuses on extinguishing fear-triggering cues and contexts, is widely used to treat post-traumatic stress disorder (PTSD). Yet, PTSD patients who received successful exposure therapy are vulnerable to relapse of fear response after a period of time, a phenomenon known as spontaneous recovery (SR). Increasing evidence suggests ventral hippocampus, basolateral amygdala, and infralimbic cortex may be involved in SR. PTSD patients also show high rates of comorbidity with nicotine dependence. While the comorbidity between smoking and PTSD might suggest nicotine may alter SR, the effects of nicotine on SR of contextual fear are unknown. In the present study, we tested the effects of acute nicotine administration on SR of extinguished contextual fear memories and c-fos immediate early gene immunohistochemistry in mice. Our results demonstrated that acute nicotine enhanced SR of extinguished fear whereas acute nicotine did not affect retrieval of unextinguished contextual memories. This suggests that the effect of acute nicotine on SR is specific for memories that have undergone extinction treatment. C-fos immunoreactive (IR) cells in the ventral hippocampus and basolateral amygdala were increased in the nicotine-treated mice following testing for SR, whereas the number of IR cells in the infralimbic cortex was decreased in the same group. Overall, this study suggests that nicotine may adversely affect context-specific relapse of fear memories and this effect is potentially mediated by the suppression of cortical regions and increased activity in the ventral hippocampus and amygdala.
Collapse
Affiliation(s)
- Munir G Kutlu
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jessica M Tumolo
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Erica Holliday
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Brendan Garrett
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Weiss Hall, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
152
|
Pitts EG, Taylor JR, Gourley SL. Prefrontal cortical BDNF: A regulatory key in cocaine- and food-reinforced behaviors. Neurobiol Dis 2016; 91:326-35. [PMID: 26923993 PMCID: PMC4913044 DOI: 10.1016/j.nbd.2016.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) affects synaptic plasticity and neural structure and plays key roles in learning and memory processes. Recent evidence also points to important, yet complex, roles for BDNF in rodent models of cocaine abuse and addiction. Here we examine the role of prefrontal cortical (PFC) BDNF in reward-related decision making and behavioral sensitivity to, and responding for, cocaine. We focus on BDNF within the medial and orbital PFC, its regulation by cocaine during early postnatal development and in adulthood, and how BDNF in turn influences responding for drug reinforcement, including in reinstatement models. When relevant, we draw comparisons and contrasts with experiments using natural (food) reinforcers. We also summarize findings supporting, or refuting, the possibility that BDNF in the medial and orbital PFC regulate the development and maintenance of stimulus-response habits. Further investigation could assist in the development of novel treatment approaches for cocaine use disorders.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Interdepartmental Neuroscience Program, Department of Psychology, Yale University, New Haven, CT, United States
| | - Shannon L Gourley
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States; Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States.
| |
Collapse
|
153
|
Ulrich-Lai YM, Christiansen AM, Wang X, Song S, Herman JP. Statistical modeling implicates neuroanatomical circuit mediating stress relief by 'comfort' food. Brain Struct Funct 2016; 221:3141-56. [PMID: 26246177 PMCID: PMC4744589 DOI: 10.1007/s00429-015-1092-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
A history of eating highly palatable foods reduces physiological and emotional responses to stress. For instance, we have previously shown that limited sucrose intake (4 ml of 30 % sucrose twice daily for 14 days) reduces hypothalamic-pituitary-adrenocortical (HPA) axis responses to stress. However, the neural mechanisms underlying stress relief by such 'comfort' foods are unclear, and could reveal an endogenous brain pathway for stress mitigation. As such, the present work assessed the expression of several proteins related to neuronal activation and/or plasticity in multiple stress- and reward-regulatory brain regions of rats after limited sucrose (vs. water control) intake. These data were then subjected to a series of statistical analyses, including Bayesian modeling, to identify the most likely neurocircuit mediating stress relief by sucrose. The analyses suggest that sucrose reduces HPA activation by dampening an excitatory basolateral amygdala-medial amygdala circuit, while also potentiating an inhibitory bed nucleus of the stria terminalis principle subdivision-mediated circuit, resulting in reduced HPA activation after stress. Collectively, the results support the hypothesis that sucrose limits stress responses via plastic changes to the structure and function of stress-regulatory neural circuits. The work also illustrates that advanced statistical methods are useful approaches to identify potentially novel and important underlying relationships in biological datasets.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 2170 East Galbraith Rd- ML 0506, Cincinnati, OH, 45237, USA.
| | - Anne M Christiansen
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 2170 East Galbraith Rd- ML 0506, Cincinnati, OH, 45237, USA
| | - Xia Wang
- Department of Mathematical Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, 45237, USA
| | - Seongho Song
- Department of Mathematical Sciences, McMicken College of Arts and Sciences, University of Cincinnati, Cincinnati, OH, 45237, USA
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, 2170 East Galbraith Rd- ML 0506, Cincinnati, OH, 45237, USA
| |
Collapse
|
154
|
Stress-Induced Increases in Levels of Caspases in the Prefrontal Cortex in a Rat Model of PTSD. NEUROPHYSIOLOGY+ 2016. [DOI: 10.1007/s11062-016-9563-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
155
|
Gourley SL, Taylor JR. Going and stopping: Dichotomies in behavioral control by the prefrontal cortex. Nat Neurosci 2016; 19:656-664. [PMID: 29162973 DOI: 10.1038/nn.4275] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The rodent dorsal medial prefrontal cortex (PFC), specifically the prelimbic cortex (PL), regulates the expression of conditioned fear and behaviors interpreted as reward-seeking. Meanwhile, the ventral medial PFC, namely the infralimbic cortex (IL), is essential to extinction conditioning in both appetitive and aversive domains. Here we review evidence that supports, or refutes, this "PL-go/IL-stop" dichotomy. We focus on the extinction of conditioned fear and the extinction and reinstatement of cocaine- or heroin-reinforced responding. We then synthesize evidence that the PL is essential for developing goal-directed response strategies, while the IL supports habit behavior. Finally, we propose that some functions of the orbital PFC parallel those of the medial PFC in the regulation of response selection. Integration of these discoveries may provide points of intervention for inhibiting untethered drug seeking in drug use disorders, failures in extinction in Post-traumatic Stress Disorder, or co-morbidities between the two.
Collapse
Affiliation(s)
- Shannon L Gourley
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine; Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine; Interdepartmental Neuroscience Program, Department of Psychology, Yale University, New Haven, CT
| |
Collapse
|
156
|
Bocchio M, McHugh SB, Bannerman DM, Sharp T, Capogna M. Serotonin, Amygdala and Fear: Assembling the Puzzle. Front Neural Circuits 2016; 10:24. [PMID: 27092057 PMCID: PMC4820447 DOI: 10.3389/fncir.2016.00024] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/21/2016] [Indexed: 11/13/2022] Open
Abstract
The fear circuitry orchestrates defense mechanisms in response to environmental threats. This circuitry is evolutionarily crucial for survival, but its dysregulation is thought to play a major role in the pathophysiology of psychiatric conditions in humans. The amygdala is a key player in the processing of fear. This brain area is prominently modulated by the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). The 5-HT input to the amygdala has drawn particular interest because genetic and pharmacological alterations of the 5-HT transporter (5-HTT) affect amygdala activation in response to emotional stimuli. Nonetheless, the impact of 5-HT on fear processing remains poorly understood.The aim of this review is to elucidate the physiological role of 5-HT in fear learning via its action on the neuronal circuits of the amygdala. Since 5-HT release increases in the basolateral amygdala (BLA) during both fear memory acquisition and expression, we examine whether and how 5-HT neurons encode aversive stimuli and aversive cues. Next, we describe pharmacological and genetic alterations of 5-HT neurotransmission that, in both rodents and humans, lead to altered fear learning. To explore the mechanisms through which 5-HT could modulate conditioned fear, we focus on the rodent BLA. We propose that a circuit-based approach taking into account the localization of specific 5-HT receptors on neurochemically-defined neurons in the BLA may be essential to decipher the role of 5-HT in emotional behavior. In keeping with a 5-HT control of fear learning, we review electrophysiological data suggesting that 5-HT regulates synaptic plasticity, spike synchrony and theta oscillations in the BLA via actions on different subcellular compartments of principal neurons and distinct GABAergic interneuron populations. Finally, we discuss how recently developed optogenetic tools combined with electrophysiological recordings and behavior could progress the knowledge of the mechanisms underlying 5-HT modulation of fear learning via action on amygdala circuits. Such advancement could pave the way for a deeper understanding of 5-HT in emotional behavior in both health and disease.
Collapse
Affiliation(s)
- Marco Bocchio
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| | - Stephen B McHugh
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford Oxford, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford Oxford, UK
| | - Marco Capogna
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford Oxford, UK
| |
Collapse
|
157
|
Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex. eNeuro 2016; 3:eN-NWR-0002-16. [PMID: 27022632 PMCID: PMC4804386 DOI: 10.1523/eneuro.0002-16.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 11/21/2022] Open
Abstract
Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex.
Collapse
|
158
|
McDonald AJ, Mott DD. Functional neuroanatomy of amygdalohippocampal interconnections and their role in learning and memory. J Neurosci Res 2016; 95:797-820. [PMID: 26876924 DOI: 10.1002/jnr.23709] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/01/2015] [Accepted: 12/14/2015] [Indexed: 01/31/2023]
Abstract
The amygdalar nuclear complex and hippocampal/parahippocampal region are key components of the limbic system that play a critical role in emotional learning and memory. This Review discusses what is currently known about the neuroanatomy and neurotransmitters involved in amygdalo-hippocampal interconnections, their functional roles in learning and memory, and their involvement in mnemonic dysfunctions associated with neuropsychiatric and neurological diseases. Tract tracing studies have shown that the interconnections between discrete amygdalar nuclei and distinct layers of individual hippocampal/parahippocampal regions are robust and complex. Although it is well established that glutamatergic pyramidal cells in the amygdala and hippocampal region are the major players mediating interconnections between these regions, recent studies suggest that long-range GABAergic projection neurons are also involved. Whereas neuroanatomical studies indicate that the amygdala only has direct interconnections with the ventral hippocampal region, electrophysiological studies and behavioral studies investigating fear conditioning and extinction, as well as amygdalar modulation of hippocampal-dependent mnemonic functions, suggest that the amygdala interacts with dorsal hippocampal regions via relays in the parahippocampal cortices. Possible pathways for these indirect interconnections, based on evidence from previous tract tracing studies, are discussed in this Review. Finally, memory disorders associated with dysfunction or damage to the amygdala, hippocampal region, and/or their interconnections are discussed in relation to Alzheimer's disease, posttraumatic stress disorder (PTSD), and temporal lobe epilepsy. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
159
|
Carcamo CR. Dysfunctional Relationship Between the Prefrontal Cortex and Amygdala for Explaining Posttraumatic CRPS Syndrome. PAIN MEDICINE 2016; 17:1379-1382. [DOI: 10.1093/pm/pnv091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/15/2015] [Accepted: 11/28/2015] [Indexed: 11/14/2022]
|
160
|
Hadad-Ophir O, Brande-Eilat N, Richter-Levin G. Differential Effects of Controllable Stress Exposure on Subsequent Extinction Learning in Adult Rats. Front Behav Neurosci 2016; 9:366. [PMID: 26793083 PMCID: PMC4709827 DOI: 10.3389/fnbeh.2015.00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/21/2015] [Indexed: 02/05/2023] Open
Abstract
Deficits in fear extinction are thought to be related to various anxiety disorders. While failure to extinguish conditioned fear may result in pathological anxiety levels, the ability to quickly and efficiently attenuate learned fear through extinction processes can be extremely beneficial for the individual. One of the factors that may affect the efficiency of the extinction process is prior experience of stressful situations. In the current study, we examined whether exposure to controllable stress, which is suggested to induce stress resilience, can affect subsequent fear extinction. Here, following prolonged two-way shuttle (TWS) avoidance training and a validation of acquired stress controllability, adult rats underwent either cued or contextual fear-conditioning (FC), followed by an extinction session. We further evaluated long lasting alterations of GABAergic targets in the medial pre-frontal cortex (mPFC), as these were implicated in FC and extinction and stress controllability. In cued, but not in contextual fear extinction, within-session extinction was enhanced following controllable stress compared to a control group. Interestingly, impaired extinction recall was detected in both extinction types following the stress procedure. Additionally, stress controllability-dependent alterations in GABAergic markers expression in infralimbic (IL), but not prelimbic (PL) cortex, were detected. These alterations are proposed to be related to the within-session effect, but not the recall impairment. The results emphasize the contribution of prior experience on coping with subsequent stressful experiences. Moreover, the results emphasize that exposure to controllable stress does not generally facilitate future stress coping as previously claimed, but its effects are dependent on specific features of the events taking place.
Collapse
Affiliation(s)
- Osnat Hadad-Ophir
- "Sagol" Department of Neurobiology, University of HaifaHaifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), University of HaifaHaifa, Israel
| | | | - Gal Richter-Levin
- "Sagol" Department of Neurobiology, University of HaifaHaifa, Israel; The Institute for the Study of Affective Neuroscience (ISAN), University of HaifaHaifa, Israel; Department of Psychology, University of HaifaHaifa, Israel
| |
Collapse
|
161
|
Fu J, Xing X, Han M, Xu N, Piao C, Zhang Y, Zheng X. Region-specific roles of the prelimbic cortex, the dorsal CA1, the ventral DG and ventral CA1 of the hippocampus in the fear return evoked by a sub-conditioning procedure in rats. Neurobiol Learn Mem 2016; 128:80-91. [PMID: 26768356 DOI: 10.1016/j.nlm.2015.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/28/2015] [Accepted: 12/20/2015] [Indexed: 01/23/2023]
Abstract
The return of learned fear is an important issue in anxiety disorder research since an analogous process may contribute to long-term fear maintenance or clinical relapse. A number of studies demonstrate that mPFC and hippocampus are important in the modulation of post-extinction re-expression of fear memory. However, the region-specific role of these structures in the fear return evoked by a sub-threshold conditioning (SC) is not known. In the present experiments, we first examined specific roles of the prelimbic cortex (PL), the dorsal hippocampus (DH, the dorsal CA1 area in particular), the ventral hippocampus (the ventral dentate gyrus (vDG) and the ventral CA1 area in particular) in this fear return process. Then we examined the role of connections between PL and vCA1 with this behavioral approach. Rats were subjected to five tone-shock pairings (1.0-mA shock) to induce conditioned fear (freezing), followed by three fear extinction sessions (25 tone-alone trials each session). After a post-test for extinction memory, some rats were retrained with the SC procedure to reinstate tone-evoked freezing. Rat groups were injected with low doses of the GABAA agonist muscimol to selectively inactivate PL, DH, vDG, or vCA1 120 min before the fear return test. A disconnection paradigm with ipsilateral or contralateral muscimol injection of the PL and the vCA1 was used to examine the role of this pathway in the fear return. We found that transient inactivation of these areas significantly impaired fear return (freezing): inactivation of the prelimbic cortex blocked SC-evoked fear return in particular but did not influence fear expression in general; inactivation of the DH area impaired fear return, but had no effect on the extinction retrieval process; both ventral DG and ventral CA1 are required for the return of extinguished fear whereas only ventral DG is required for the extinction retrieval. These findings suggest that PL, DH, vDG, and vCA1 all contribute to the fear return and connections between PL and vCA1 may be involved in the modulation of this process.
Collapse
Affiliation(s)
- Juan Fu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Department of Life Sciences, Binzhou University, Binzhou, Shandong Province, PR China
| | - Xiaoli Xing
- School of Education Science, Henan University, Kaifeng, Henan Province, PR China
| | - Mengfi Han
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Na Xu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Chengji Piao
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Yue Zhang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xigeng Zheng
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
162
|
Callaghan BL, Tottenham N. The Neuro-Environmental Loop of Plasticity: A Cross-Species Analysis of Parental Effects on Emotion Circuitry Development Following Typical and Adverse Caregiving. Neuropsychopharmacology 2016; 41:163-76. [PMID: 26194419 PMCID: PMC4677125 DOI: 10.1038/npp.2015.204] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
Early experiences critically shape the structure and function of the brain. Perturbations in typical/species-expected early experiences are known to have profound neural effects, especially in regions important for emotional responding. Parental care is one species-expected stimulus that plays a fundamental role in the development of emotion neurocircuitry. Emerging evidence across species suggests that phasic variation in parental presence during the sensitive period of childhood affects the recruitment of emotional networks on a moment-to-moment basis. In addition, it appears that increasing independence from caregivers cues the termination of the sensitive period for environmental input into emotion network development. In this review, we examine how early parental care, the central nervous system, and behavior come together to form a 'neuro-environmental loop,' contributing to the formation of stable emotion regulation circuits. To achieve this end, we focus on the interaction of parental care and the developing amygdala-medial prefrontal cortex (mPFC) network-that is at the core of human emotional functioning. Using this model, we discuss how individual or group variations in parental independence, across chronic and brief timescales, might contribute to neural and emotional phenotypes that have implications for long-term mental health.
Collapse
Affiliation(s)
| | - Nim Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| |
Collapse
|
163
|
Delli Pizzi S, Padulo C, Brancucci A, Bubbico G, Edden RA, Ferretti A, Franciotti R, Manippa V, Marzoli D, Onofrj M, Sepede G, Tartaro A, Tommasi L, Puglisi-Allegra S, Bonanni L. GABA content within the ventromedial prefrontal cortex is related to trait anxiety. Soc Cogn Affect Neurosci 2015; 11:758-66. [PMID: 26722018 DOI: 10.1093/scan/nsv155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 12/16/2015] [Indexed: 11/13/2022] Open
Abstract
The ventromedial prefrontal cortex (vmPFC) plays a key role in emotion processing and regulation. vmPFC dysfunction may lead to disinhibition of amygdala causing high anxiety levels. γ-Aminobutyric acid (GABA) inter-neurons within vmPFC shape the information flow to amygdala. Thus, we hypothesize that GABA content within vmPFC could be relevant to trait anxiety. Forty-three healthy volunteers aged between 20 and 88 years were assessed for trait anxiety with the Subscale-2 of the State-Trait-Anxiety Inventory (STAI-Y2) and were studied with proton magnetic resonance spectroscopy to investigate GABA and Glx (glutamate+glutamine) contents within vmPFC. Total creatine (tCr) was used as internal reference. Partial correlations assessed the association between metabolite levels and STAI-Y2 scores, removing the effect of possible nuisance factors including age, educational level, volumes of gray matter and white matter within magnetic resonance spectroscopy voxel. We observed a positive relationship between GABA/tCr and STAI-Y2 scores. No significant relationships were found between Glx/tCr and STAI-Y2 and between tCr/water and STAI-Y2. No differences were found between males and females as regards to age, STAI-Y2, GABA/tCr, Glx/tCr, tCr/water, gray matter and white matter volumes. We suggest a close relationship between GABA content within vmPFC and trait anxiety providing new insights in the physiology of emotional brain.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Caterina Padulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Alfredo Brancucci
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Richard A Edden
- Russell H. Morgan Department of Radiology, "The Johns Hopkins University" School of Medicine, Baltimore, MD, USA, F.M. Kirby Center for Functional MRI, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Antonio Ferretti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Raffaella Franciotti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Valerio Manippa
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Daniele Marzoli
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Gianna Sepede
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University "A. Moro" of Bari, Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological Sciences, Health, and the Territory, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, University "La Sapienza" of Roma, Italy, and Foundation Santa Lucia, IRCCS, Rome, Italy
| | - Laura Bonanni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy, Aging Research Centre, Ce.S.I., University "G. d'Annunzio" of Chieti-Pescara, Italy,
| |
Collapse
|
164
|
Hu C, Zhang LB, Chen H, Xiong Y, Hu B. Neurosubstrates and mechanisms underlying the extinction of associative motor memory. Neurobiol Learn Mem 2015. [DOI: 10.1016/j.nlm.2015.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
165
|
Giustino TF, Maren S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front Behav Neurosci 2015; 9:298. [PMID: 26617500 PMCID: PMC4637424 DOI: 10.3389/fnbeh.2015.00298] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Once acquired, a fearful memory can persist for a lifetime. Although learned fear can be extinguished, extinction memories are fragile. The resilience of fear memories to extinction may contribute to the maintenance of disorders of fear and anxiety, including post-traumatic stress disorder (PTSD). As such, considerable effort has been placed on understanding the neural circuitry underlying the acquisition, expression, and extinction of emotional memories in rodent models as well as in humans. A triad of brain regions, including the prefrontal cortex, hippocampus, and amygdala, form an essential brain circuit involved in fear conditioning and extinction. Within this circuit, the prefrontal cortex is thought to exert top-down control over subcortical structures to regulate appropriate behavioral responses. Importantly, a division of labor has been proposed in which the prelimbic (PL) and infralimbic (IL) subdivisions of the medial prefrontal cortex (mPFC) regulate the expression and suppression of fear in rodents, respectively. Here, we critically review the anatomical and physiological evidence that has led to this proposed dichotomy of function within mPFC. We propose that under some conditions, the PL and IL act in concert, exhibiting similar patterns of neural activity in response to aversive conditioned stimuli and during the expression or inhibition of conditioned fear. This may stem from common synaptic inputs, parallel downstream outputs, or cortico-cortical interactions. Despite this functional covariation, these mPFC subdivisions may still be coding for largely opposing behavioral outcomes, with PL biased towards fear expression and IL towards suppression.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| | - Stephen Maren
- Department of Psychology and Institute for Neuroscience, Texas A&M University College Station, TX, USA
| |
Collapse
|
166
|
Dysfunction in amygdala-prefrontal plasticity and extinction-resistant avoidance: A model for anxiety disorder vulnerability. Exp Neurol 2015; 275 Pt 1:59-68. [PMID: 26546833 DOI: 10.1016/j.expneurol.2015.11.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/17/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022]
Abstract
Individuals exhibiting an anxiety disorder are believed to possess an innate vulnerability that makes them susceptible to the disorder. Anxiety disorders are also associated with abnormalities in the interconnected brain regions of the amygdala and prefrontal cortex (PFC). However, the link between anxiety vulnerability and amygdala-PFC dysfunction is currently unclear. Accordingly, the present study sought to determine if innate dysfunction within the amygdala to PFC projection underlies the susceptibility to develop anxiety-like behavior, using an anxiety vulnerable rodent model. The inbred Wistar Kyoto (WKY) rat was used to model vulnerability, as this strain naturally expresses extinction-resistant avoidance; a behavior that models the symptom of avoidance present in anxiety disorders. Synaptic plasticity was assessed within the projection from the basolateral nucleus of the amygdala (BLA) to the prelimbic cortical subdivision of the PFC in WKY and Sprague Dawley (SD) rats. While WKY rats exhibited normal paired-pulse plasticity, they did not maintain long-term potentiation (LTP) as SD rats. Thus, impaired plasticity within the BLA-PL cortex projection may contribute to extinction resistant avoidance of WKY, as lesions of the PL cortex in SD rats impaired extinction of avoidance similar to WKY rats. Treatment with d-cycloserine to reverse the impaired LTP in WKY rats was unsuccessful. The lack of LTP in WKY rats was associated with a significant reduction of NMDA receptors containing NR2A subunits in the PL cortex. Thus, dysfunction in amygdala-PFC plasticity is innate in anxiety vulnerable rats and may promote extinction-resistant avoidance by disrupting communication between the amygdala and prefrontal cortex.
Collapse
|
167
|
Acute tianeptine treatment selectively modulates neuronal activation in the central nucleus of the amygdala and attenuates fear extinction. Mol Psychiatry 2015; 20:1420-7. [PMID: 25560759 DOI: 10.1038/mp.2014.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022]
Abstract
Antidepressant drugs are commonly prescribed treatments for anxiety disorders, and there is growing interest in understanding how these drugs impact fear extinction because extinction learning is pivotal to successful exposure-based therapy (EBT). A key objective within this domain is understanding how antidepressants alter the activation of specific elements of the limbic-based network that governs such fear processing. Chronic treatment with the antidepressant tianeptine has been shown to reduce the acquisition of extinction learning in rats, yet the drug's acute influence on activation in prefrontal and amygdalar regions, and on extinction learning are not well understood. To assess its influence on cellular activation, rats were injected with tianeptine and Fos immunoreactivity was measured in these regions. Acute tianeptine treatment selectively altered Fos expression within subdivisions of the central nucleus of the amygdala (CEA) in a bidirectional manner that varied in relation to ongoing activation within the capsular subdivision and its prefrontal and intra-amygdalar inputs. This pattern of results suggests that the drug can conditionally modulate the activation of CEA subdivisions, which contain microcircuits strongly implicated in fear processing. The effect of acute tianeptine was also examined with respect to the acquisition, consolidation and expression of fear extinction in rats. Acute tianeptine attenuated extinction learning as well as the recall of extinction memory, which underscores that acute dosing with the drug could alter learning during EBT. Together these findings provide a new perspective for understanding the mechanism supporting tianeptine's clinical efficacy, as well as its potential influence on CEA-based learning mechanisms.
Collapse
|
168
|
Arruda-Carvalho M, Clem RL. Prefrontal-amygdala fear networks come into focus. Front Syst Neurosci 2015; 9:145. [PMID: 26578902 PMCID: PMC4626554 DOI: 10.3389/fnsys.2015.00145] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/09/2015] [Indexed: 11/25/2022] Open
Abstract
The ability to form associations between aversive threats and their predictors is fundamental to survival. However, fear and anxiety in excess are detrimental and are a hallmark of psychiatric diseases such as post-traumatic stress disorder (PTSD). PTSD symptomatology includes persistent and intrusive thoughts of an experienced trauma, suggesting an inability to downregulate fear when a corresponding threat has subsided. Convergent evidence from human and rodent studies supports a role for the medial prefrontal cortex (mPFC)-amygdala network in both PTSD and the regulation of fear memory expression. In particular, current models stipulate that the prelimbic (PL) and infralimbic (IL) subdivisions of the rodent mPFC bidirectionally regulate fear expression via differential recruitment of amygdala neuronal subpopulations. However, an array of recent studies that employ new technical approaches has fundamentally challenged this interpretation. Here we explore how a new emphasis on the contribution of inhibitory neuronal populations, subcortical structures and the passage of time is reshaping our understanding of mPFC-amygdala circuits and their control over fear.
Collapse
Affiliation(s)
- Maithe Arruda-Carvalho
- Fishberg Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| | - Roger L Clem
- Fishberg Department of Neuroscience and The Friedman Brain Institute, Icahn School of Medicine at Mount Sinai New York, NY, USA
| |
Collapse
|
169
|
Zhang QJ, Du CX, Tan HH, Zhang L, Li LB, Zhang J, Niu XL, Liu J. Activation and blockade of serotonin7 receptors in the prelimbic cortex regulate depressive-like behaviors in a 6-hydroxydopamine-induced Parkinson's disease rat model. Neuroscience 2015; 311:45-55. [PMID: 26470809 DOI: 10.1016/j.neuroscience.2015.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 01/27/2023]
Abstract
The role of serotonin7 (5-HT7) receptors in the regulation of depression is poorly understood, particularly in Parkinson's disease-associated depression. Here we examined whether 5-HT7 receptors in the prelimbic (PrL) sub-region of the ventral medial prefrontal cortex (mPFC) involve in the regulation of depressive-like behaviors in sham-operated rats and rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. The lesion induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-PrL injection of 5-HT7 receptor agonist AS19 (0.5, 1 and 2 μg/rat) increased sucrose consumption, and decreased immobility time in sham-operated and the lesioned rats, indicating the induction of antidepressant-like effects. Further, intra-PrL injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6 μg/rat) decreased sucrose consumption, and increased immobility time, indicating the induction of depressive-like responses. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of AS19 (2 μg/rat) increased dopamine, 5-hydroxytryptamine (5-HT) and noradrenaline (NA) levels in the mPFC, habenula and ventral hippocampus (vHip) in sham-operated and the lesioned rats; whereas SB269970 (6 μg/rat) decreased 5-HT levels in the habenula and vHip, and the levels of NA in the mPFC, habenula and vHip in the two groups of rats. The results suggest that 5-HT7 receptors in the PrL play an important role in the regulation of these behaviors, which attribute to changes in monoamine levels in the limbic and limbic-related brain regions after activation and blockade of 5-HT7 receptors.
Collapse
Affiliation(s)
- Q J Zhang
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - C X Du
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - H H Tan
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - L Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - L B Li
- Department of Rehabilitation Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - X L Niu
- Department of Medicine, The Second Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - J Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| |
Collapse
|
170
|
Takita M, Kikusui T. Early weaning influences short-term synaptic plasticity in the medial prefrontal-anterior basolateral amygdala pathway. Neurosci Res 2015; 103:48-53. [PMID: 26325007 DOI: 10.1016/j.neures.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 01/01/2023]
Abstract
Early weaning in rodents reportedly influences behavioral and emotional traits and triggers precocious myelin formation in the anterior basolateral amygdala (aBLA; Ono et al., 2008), where prefrontal efferents terminate. We studied the correlation between behavior and the synaptic properties of the prefrontal-aBLA pathway. Open-field behaviors of adult male rats weaned at either 16 days or 30 days were measured on two consecutive days. On the first day, the rats received a slight footshock that was reportedly insufficient for fear conditioning. Electrophysiological recordings in the prefrontal-aBLA were then performed under urethane anesthesia. Without group differences in the stimulus intensity or the first evoked response, the overall paired-pulse facilitation was significantly lower in the early-weaned group from 25 to 100 ms. At the 25-ms interval, regression values between paired-pulse facilitation and locomotion on the second day were positive/insignificant and negative/significant in early- and control-weaned groups, respectively, and were statistically different between the groups.
Collapse
Affiliation(s)
- Masatoshi Takita
- Brain Function Measurement Research Group, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan; Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan.
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Kanagawa, Japan
| |
Collapse
|
171
|
Abstract
The capacity for self-regulation allows people to control their thoughts, behaviors, emotions, and desires. In spite of this impressive ability, failures of self-regulation are common and contribute to numerous societal problems, from obesity to drug addiction. Such failures frequently occur following exposure to highly tempting cues, during negative moods, or after self-regulatory resources have been depleted. Here we review the available neuroscientific evidence regarding self-regulation and its failures. At its core, self-regulation involves a critical balance between the strength of an impulse and an individual's ability to inhibit the desired behavior. Although neuroimaging and patient studies provide consistent evidence regarding the reward aspects of impulses and desires, the neural mechanisms that underlie the capacity for control have eluded consensus, with various executive control regions implicated in different studies. We outline the necessary properties for a self-regulation control system and suggest that the use of resting-state functional connectivity analyses may be useful for understanding how people regulate their behavior and why they sometimes fail in their attempts.
Collapse
Affiliation(s)
- William M. Kelley
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Dylan D. Wagner
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
| | - Todd F. Heatherton
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
172
|
Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, Colacicco G, Busch E, Patel S, Singewald N, Holmes A. Prefrontal inputs to the amygdala instruct fear extinction memory formation. SCIENCE ADVANCES 2015; 1:e1500251. [PMID: 26504902 PMCID: PMC4618669 DOI: 10.1126/sciadv.1500251] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Persistent anxiety after a psychological trauma is a hallmark of many anxiety disorders. However, the neural circuits mediating the extinction of traumatic fear memories remain incompletely understood. We show that selective, in vivo stimulation of the ventromedial prefrontal cortex (vmPFC)-amygdala pathway facilitated extinction memory formation, but not retrieval. Conversely, silencing the vmPFC-amygdala pathway impaired extinction formation and reduced extinction-induced amygdala activity. Our data demonstrate a critical instructional role for the vmPFC-amygdala circuit in the formation of extinction memories. These findings advance our understanding of the neural basis of persistent fear, with implications for posttraumatic stress disorder and other anxiety disorders.
Collapse
Affiliation(s)
- Olena Bukalo
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20853, USA
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Corresponding author. E-mail:
| | - Courtney R. Pinard
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20853, USA
| | - Shana Silverstein
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20853, USA
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Christina Brehm
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Nolan D. Hartley
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nigel Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Giovanni Colacicco
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20853, USA
| | - Erica Busch
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20853, USA
| | - Sachin Patel
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80-82/III, A-6020 Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20853, USA
| |
Collapse
|
173
|
Li X, Han F, Shi Y. IRE1α-XBP1 Pathway Is Activated Upon Induction of Single-Prolonged Stress in Rat Neurons of the Medial Prefrontal Cortex. J Mol Neurosci 2015; 57:63-72. [PMID: 25976074 DOI: 10.1007/s12031-015-0577-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/05/2015] [Indexed: 01/23/2023]
Abstract
Endoplasmic reticulum stress (ERS) is associated with many nervous system diseases. IRElα is considered as ERS sensor that, upon activation, initiates the nonconventional splicing of the precursor unspliced form of X-box binding protein 1 (XBP1u) messenger RNA (mRNA) to yield an active transcription factor-XBP1s. The goal of this study is to detect whether there is activation of IRE1α-XBP1 pathway in the medial prefrontal cortex (mPFC) of posttraumatic stress disorder (PTSD) model rats. This study adopted single-prolonged stress (SPS) model. Behavioral functions including anxiety-like behavior, exploration behavior, and spatial memory were assessed by open field test and Morris water maze test. We detected the IRE1α and XBP1 by using methods of double-labeling immunofluorescence, Western blot, and quantitative real-time reverse transcription-PCR (qRT-PCR). We also observed neuronal apoptosis by transferase-mediated dUTP Nick-end-labeling (TUNEL) staining and the expression of caspase-12 by qRT-PCR. Our results showed that the expression of IRE1α, XBP1u, and total XBP1 significantly increased at 1 day after SPS and then decreased gradually. At the same time, XBP1s appeared and peaked at 4 days after SPS, which indicated that IRE1α-XBP1 pathway was activated upon induction of SPS stimulation. We also noted that the mRNA of caspase-12 was upregulated after SPS. Our study preliminarily showed that ERS mediated by IRE1α-XBP1 pathway was closely related to PTSD and it might be a pathogenesis of PTSD.
Collapse
Affiliation(s)
- Xiaoyan Li
- PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China
| | | | | |
Collapse
|
174
|
Becker B, Wagner D, Koester P, Tittgemeyer M, Mercer-Chalmers-Bender K, Hurlemann R, Zhang J, Gouzoulis-Mayfrank E, Kendrick KM, Daumann J. Smaller amygdala and medial prefrontal cortex predict escalating stimulant use. Brain 2015; 138:2074-86. [PMID: 25971784 DOI: 10.1093/brain/awv113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
Drug addiction is a chronic, relapsing brain disorder. The identification of biomarkers that render individuals vulnerable for the transition from occasional drug use to addiction is of key importance to develop early intervention strategies. The aim of the present study was to prospectively assess brain structural markers for escalating drug use in two independent samples of occasional amphetamine-type stimulant users. At baseline occasional users of amphetamine and 3,4-methylenedioxymethamphetamine (cumulative lifetime use ≤10 units) underwent structural brain imaging and were followed up at 12 months and 24 months (Study 1, n = 38; Study 2, n = 28). Structural vulnerability markers for escalating amphetamine-type drug use were examined by comparing baseline grey matter volumes of participants who increased use with those who maintained or reduced use during the follow-up period. Participants in both samples who subsequently increased amphetamine-type drugs use displayed smaller medial prefrontal cortex volumes and, additionally, in the basolateral amygdala (Study 1) and dorsal striatum (Study 2). In both samples the baseline volumes were significantly negatively correlated with stimulant use during the subsequent 12 and 24 months. Additional multiple regression analyses on the pooled data sets revealed some evidence of a compound-specific association between the baseline volume of the left basolateral amygdala and the subsequent use of amphetamine. These findings indicate that smaller brain volumes in fronto-striato-limbic regions implicated in impulsivity and decision-making might render an individual vulnerable for the transition from occasional to escalating amphetamine-type stimulant use.
Collapse
Affiliation(s)
- Benjamin Becker
- 1 Division of Medical Psychology, University of Bonn, Germany 2 Department of Psychiatry and Psychotherapy, University of Bonn, Germany
| | - Daniel Wagner
- 3 Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Philip Koester
- 3 Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Marc Tittgemeyer
- 4 Max-Planck Institute for Neurological Research, Cologne, Germany
| | | | - René Hurlemann
- 1 Division of Medical Psychology, University of Bonn, Germany 2 Department of Psychiatry and Psychotherapy, University of Bonn, Germany
| | - Jie Zhang
- 6 Centre for Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, PR China 7 Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, PR China
| | - Euphrosyne Gouzoulis-Mayfrank
- 3 Department of Psychiatry and Psychotherapy, University of Cologne, Germany 8 LVR Clinics of Cologne, Cologne, Germany
| | - Keith M Kendrick
- 9 Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Joerg Daumann
- 3 Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| |
Collapse
|
175
|
Ferreira AN, Yousuf H, Dalton S, Sheets PL. Highly differentiated cellular and circuit properties of infralimbic pyramidal neurons projecting to the periaqueductal gray and amygdala. Front Cell Neurosci 2015; 9:161. [PMID: 25972785 PMCID: PMC4412064 DOI: 10.3389/fncel.2015.00161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/11/2015] [Indexed: 01/24/2023] Open
Abstract
The infralimbic (IL) cortex is a key node in an inter-connected network involved in fear and emotion processing. The cellular and circuit-level mechanisms whereby IL neurons receive, filter, and modulate incoming signals they project onward to diverse downstream nodes in this complex network remain poorly understood. Using the mouse as our model, we applied anatomical labeling strategies, brain slice electrophysiology, and focal activation of caged glutamate via laser scanning photostimulation (glu-LSPS) for quantitative neurophysiological analysis of projectionally defined neurons in IL. Injection of retrograde tracers into the periaqueductal gray (PAG) and basolateral amygdala (BLA) was used to identify cortico-PAG (CP) and cortico-BLA (CA) neurons in IL. CP neurons were found exclusively in layer 5 (L5) of IL whereas CA neurons were detected throughout layer 2, 3, and 5 of IL. We also identified a small percentage of IL neurons that project to both the PAG and the BLA. We found that L5 CP neurons have a more extensive dendritic structure compared to L5 CA neurons. Neurophysiological recordings performed on retrogradely labeled neurons in acute brain slice showed that CP and CA neurons in IL could be broadly classified in two groups: neuronal resonators and non-resonators. Layer 2 CA neurons were the only class that was exclusively non-resonating. CP, CA, and CP/CA neurons in layers 3 and 5 of IL consisted of heterogeneous populations of resonators and non-resonators showing that projection target is not an exclusive predictor of intrinsic physiology. Circuit mapping using glu-LSPS revealed that the strength and organization of local excitatory and inhibitory inputs were stronger to CP compared to CA neurons in IL. Together, our results establish an organizational scheme linking cellular neurophysiology with microcircuit parameters of defined neuronal subclasses in IL that send descending commands to subcortical structures involved in fear behavior.
Collapse
Affiliation(s)
- Ashley N Ferreira
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Hanna Yousuf
- Department of Pharmacology and Toxicology, Indiana University School of Medicine-South Bend South Bend, IN, USA
| | - Sarah Dalton
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA
| | - Patrick L Sheets
- Department of Biological Sciences, University of Notre Dame Notre Dame, IN, USA ; Department of Pharmacology and Toxicology, Indiana University School of Medicine-South Bend South Bend, IN, USA
| |
Collapse
|
176
|
Asede D, Bosch D, Lüthi A, Ferraguti F, Ehrlich I. Sensory inputs to intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 2015; 86:541-54. [PMID: 25843406 DOI: 10.1016/j.neuron.2015.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/07/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that parallel plastic processes in the amygdala involve inhibitory elements to control fear and extinction memory. GABAergic medial paracapsular intercalated cells (mpITCs) are thought to relay activity from basolateral nucleus (BLA) and prefrontal cortex to inhibit central amygdala output during suppression of fear. Recently, projection diversity and differential behavioral activation of mpITCs in distinct fear states suggest additional functions. Here, we show that mpITCs receive convergent sensory thalamic and cortical inputs that undergo fear learning-related changes and are dynamically modulated via presynaptic GABAB receptors recruited by GABA released from the mpITC network. Among mpITCs, we identify cells that inhibit but are also mutually activated by BLA principal neurons. Thus, mpITCs take part in fear learning-modulated feedforward and feedback inhibitory circuits to simultaneously control amygdala input and output nuclei. Our findings place mpITCs in a unique position to gate acquired amygdala-dependent behaviors via their direct sensory inputs.
Collapse
Affiliation(s)
- Douglas Asede
- Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany; Graduate School of Neural and Behavioral Sciences, International Max Planck Research School, University of Tübingen, Österbergstrasse 3, 72074 Tübingen, Germany
| | - Daniel Bosch
- Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Francesco Ferraguti
- Department of Pharmacology, Innsbruck Medical University, Peter Mayr Straße 1a, 6020 Innsbruck, Austria
| | - Ingrid Ehrlich
- Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany; Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany.
| |
Collapse
|
177
|
Do-Monte FH, Quinones-Laracuente K, Quirk GJ. A temporal shift in the circuits mediating retrieval of fear memory. Nature 2015; 519:460-3. [PMID: 25600268 PMCID: PMC4376623 DOI: 10.1038/nature14030] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 11/03/2014] [Indexed: 01/16/2023]
Abstract
Fear memories allow animals to avoid danger, thereby increasing their chances of survival. Fear memories can be retrieved long after learning, but little is known about how retrieval circuits change with time. Here we show that the dorsal midline thalamus of rats is required for the retrieval of auditory conditioned fear at late (24 hours, 7 days, 28 days), but not early (0.5 hours, 6 hours) time points after learning. Consistent with this, the paraventricular nucleus of the thalamus (PVT), a subregion of the dorsal midline thalamus, showed increased c-Fos expression only at late time points, indicating that the PVT is gradually recruited for fear retrieval. Accordingly, the conditioned tone responses of PVT neurons increased with time after training. The prelimbic (PL) prefrontal cortex, which is necessary for fear retrieval, sends dense projections to the PVT. Retrieval at late time points activated PL neurons projecting to the PVT, and optogenetic silencing of these projections impaired retrieval at late, but not early, time points. In contrast, silencing of PL inputs to the basolateral amygdala impaired retrieval at early, but not late, time points, indicating a time-dependent shift in retrieval circuits. Retrieval at late time points also activated PVT neurons projecting to the central nucleus of the amygdala, and silencing these projections at late, but not early, time points induced a persistent attenuation of fear. Thus, the PVT may act as a crucial thalamic node recruited into cortico-amygdalar networks for retrieval and maintenance of long-term fear memories.
Collapse
Affiliation(s)
- Fabricio H. Do-Monte
- Corresponding Author: Fabricio H. Do-Monte, DVM, PhD., Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan, Puerto Rico, 00936, Phone 787-999-3057,
| | | | | |
Collapse
|
178
|
Strobel C, Marek R, Gooch HM, Sullivan RKP, Sah P. Prefrontal and Auditory Input to Intercalated Neurons of the Amygdala. Cell Rep 2015; 10:1435-1442. [PMID: 25753409 DOI: 10.1016/j.celrep.2015.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/17/2015] [Accepted: 01/29/2015] [Indexed: 01/12/2023] Open
Abstract
The basolateral amygdala (BLA) and prefrontal cortex (PFC) are partners in fear learning and extinction. Intercalated (ITC) cells are inhibitory neurons that surround the BLA. Lateral ITC (lITC) neurons provide feed-forward inhibition to BLA principal neurons, whereas medial ITC (mITC) neurons form an inhibitory interface between the BLA and central amygdala (CeA). Notably, infralimbic prefrontal (IL) input to mITC neurons is thought to play a key role in fear extinction. Here, using targeted optogenetic stimulation, we show that lITC neurons receive auditory input from cortical and thalamic regions. IL inputs innervate principal neurons in the BLA but not mITC neurons. These results suggest that (1) these neurons may play a more central role in fear learning as both lITCs and mITCs receive auditory input and that (2) mITC neurons cannot be driven directly by the IL, and their role in fear extinction is likely mediated via the BLA.
Collapse
Affiliation(s)
- Cornelia Strobel
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Roger Marek
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Helen M Gooch
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert K P Sullivan
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Pankaj Sah
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
179
|
Parnaudeau S, Taylor K, Bolkan SS, Ward RD, Balsam PD, Kellendonk C. Mediodorsal thalamus hypofunction impairs flexible goal-directed behavior. Biol Psychiatry 2015; 77:445-53. [PMID: 24813335 PMCID: PMC4177020 DOI: 10.1016/j.biopsych.2014.03.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/20/2014] [Accepted: 03/13/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cognitive inflexibility is a core symptom of several mental disorders including schizophrenia. Brain imaging studies in schizophrenia patients performing cognitive tasks have reported decreased activation of the mediodorsal thalamus (MD). Using a pharmacogenetic approach to model MD hypofunction, we recently showed that decreasing MD activity impairs reversal learning in mice. While this demonstrates causality between MD hypofunction and cognitive inflexibility, questions remain about the elementary cognitive processes that account for the deficit. METHODS Using the Designer Receptors Exclusively Activated by Designer Drugs system, we reversibly decreased MD activity during behavioral tasks assessing elementary cognitive processes inherent to flexible goal-directed behaviors, including extinction, contingency degradation, outcome devaluation, and Pavlovian-to-instrumental transfer (n = 134 mice). RESULTS While MD hypofunction impaired reversal learning, it did not affect the ability to learn about nonrewarded cues or the ability to modulate action selection based on the outcome value. In contrast, decreasing MD activity delayed the ability to adapt to changes in the contingency between actions and their outcomes. In addition, while Pavlovian learning was not affected by MD hypofunction, decreasing MD activity during Pavlovian learning impaired the ability of conditioned stimuli to modulate instrumental behavior. CONCLUSIONS Mediodorsal thalamus hypofunction causes cognitive inflexibility reflected by an impaired ability to adapt actions when their consequences change. Furthermore, it alters the encoding of environmental stimuli so that they cannot be properly utilized to guide behavior. Modulating MD activity could be a potential therapeutic strategy for promoting adaptive behavior in human subjects with cognitive inflexibility.
Collapse
Affiliation(s)
- Sébastien Parnaudeau
- Departments of Psychiatry (SP, KT, SSB, RDW, PDB, CK), Columbia University, New York, New York; Department of Pharmacology, Columbia University, New York, New York
| | - Kathleen Taylor
- Departments of Psychiatry (SP, KT, SSB, RDW, PDB, CK), Columbia University, New York, New York
| | - Scott S Bolkan
- Departments of Psychiatry (SP, KT, SSB, RDW, PDB, CK), Columbia University, New York, New York; Department of Pharmacology, Columbia University, New York, New York
| | - Ryan D Ward
- Departments of Psychiatry (SP, KT, SSB, RDW, PDB, CK), Columbia University, New York, New York
| | - Peter D Balsam
- Departments of Psychiatry (SP, KT, SSB, RDW, PDB, CK), Columbia University, New York, New York
| | - Christoph Kellendonk
- Departments of Psychiatry (SP, KT, SSB, RDW, PDB, CK), Columbia University, New York, New York; Department of Pharmacology, Columbia University, New York, New York..
| |
Collapse
|
180
|
Jean-Richard-Dit-Bressel P, McNally GP. The role of the basolateral amygdala in punishment. Learn Mem 2015; 22:128-37. [PMID: 25593299 PMCID: PMC4341368 DOI: 10.1101/lm.035907.114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
Abstract
Aversive stimuli not only support fear conditioning to their environmental antecedents, they also punish behaviors that cause their occurrence. The amygdala, especially the basolateral nucleus (BLA), has been critically implicated in Pavlovian fear learning but its role in punishment remains poorly understood. Here, we used a within-subjects punishment task to assess the role of the BLA in the acquisition and expression of punishment as well as aversive choice. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused footshock deliveries (punished lever) but continued pressing a second lever that did not cause footshock (unpunished lever). Infusions of GABA agonists baclofen and muscimol (BM) into the BLA significantly impaired the acquisition of this suppression. BLA inactivations using BM also reduced the expression of well-trained punishment. There was anatomical segregation within the BLA so that caudal, not rostral, BLA was implicated in punishment. However, when presented with punished and unpunished levers simultaneously in a choice test without deliveries of shock punisher, rats expressed a preference for unpunished over the punished lever and BLA inactivations had no effect on this preference. Taken together, these findings indicate that the BLA is important for both the acquisition and expression of punishment but not for aversive choice. This role appears to be linked to neurons in the caudal BLA, rather than rostral BLA, although the circuitry that contributes to this functional segregation is currently unknown, and is most parsimoniously interpreted as a role for caudal BLA in determining the aversive value of the shock punisher.
Collapse
Affiliation(s)
| | - Gavan P McNally
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
181
|
Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry 2015; 77:276-284. [PMID: 24673881 PMCID: PMC4145052 DOI: 10.1016/j.biopsych.2014.02.014] [Citation(s) in RCA: 303] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/23/2014] [Accepted: 02/19/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Dysfunction in the ventromedial prefrontal cortex (vmPFC) is believed to play a pivotal role in the pathogenesis of mood and anxiety disorders. Leading neurocircuitry models of these disorders propose that hypoactivity in the vmPFC engenders disinhibited activity of the amygdala and, consequently, pathologically elevated levels of negative affect. This model predicts that a selective loss or diminution of function of the vmPFC would result in heightened activity of the amygdala. Although this prediction has been borne out in rodent lesion and electrophysiologic studies using fear conditioning and extinction paradigms, there has not yet been a definitive test of this prediction in humans. METHODS We tested this prediction through a novel use of functional magnetic resonance imaging in four neurosurgical patients with focal, bilateral vmPFC damage. RESULTS Relative to neurologically healthy comparison subjects, the patients with vmPFC lesions exhibited potentiated amygdala responses to aversive images and elevated resting-state amygdala functional connectivity. No comparable group differences were observed for activity in other brain regions. CONCLUSIONS These results provide unique evidence for the critical role of the vmPFC in regulating activity of the amygdala in humans and help elucidate the causal neural interactions that underlie mental illness.
Collapse
Affiliation(s)
- Julian C. Motzkin
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
,Neuroscience Training Program, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin, 53706, USA
,Medical Scientist Training Program, University of Wisconsin-Madison, 750 Highland Ave., Madison, Wisconsin, 53705, USA
| | - Carissa L. Philippi
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Richard C. Wolf
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
,Neuroscience Training Program, University of Wisconsin-Madison, 1300 University Ave., Madison, Wisconsin, 53706, USA
| | - Mustafa K. Baskaya
- Department of Neurological Surgery, University of Wisconsin-Madison, 600 Highland Ave., Madison, Wisconsin, 53792, USA
| | - Michael Koenigs
- Departments of Psychiatry (JCM, CLP, RCW, MK), University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
182
|
Cocker P, Winstanley C. Irrational beliefs, biases and gambling: Exploring the role of animal models in elucidating vulnerabilities for the development of pathological gambling. Behav Brain Res 2015; 279:259-73. [DOI: 10.1016/j.bbr.2014.10.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/25/2014] [Accepted: 10/29/2014] [Indexed: 12/23/2022]
|
183
|
Abstract
Conditioned fear requires neural activity in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), structures that are densely interconnected at the synaptic level. Previous work has suggested that anatomical subdivisions of mPFC make distinct contributions to fear expression and inhibition, and that the functional output of this processing is relayed to the BLA complex. However, it remains unknown whether synaptic plasticity in mPFC-BLA networks contributes to fear memory encoding. Here we use optogenetics and ex vivo electrophysiology to reveal the impact of fear conditioning on BLA excitatory and feedforward inhibitory circuits formed by projections from infralimbic (IL) and prelimbic (PL) cortices. In naive mice, these pathways recruit equivalent excitation and feedforward inhibition in BLA principal neurons. However, fear learning leads to a selective decrease in inhibition:excitation balance in PL circuits that is attributable to a postsynaptic increase in AMPA receptor function. These data suggest a pathway-specific mechanism for fear memory encoding by adjustment of mPFC-BLA transmission. Upon reengagement of PL by conditioned cues, these modifications may serve to amplify emotional responses.
Collapse
|
184
|
Abstract
Lines of evidence coming from many branches of neuroscience indicate that anxiety disorders arise from a dysfunction in the modulation of brain circuits which regulate emotional responses to potentially threatening stimuli. The concept of anxiety disorders as a disturbance of emotional response regulation is a useful one as it allows anxiety to be explained in terms of a more general model of aberrant salience and also because it identifies avenues for developing psychological, behavioral, and pharmacological strategies for the treatment of anxiety disorder. These circuits involve bottom-up activity from the amygdala, indicating the presence of potentially threatening stimuli, and top-down control mechanisms originating in the prefrontal cortex, signaling the emotional salience of stimuli. Understanding the factors that control cortical mechanisms may open the way to identification of more effective cognitive behavioral strategies for managing anxiety disorders. The brain circuits in the amygdala are thought to comprise inhibitory networks of γ-aminobutyric acid-ergic (GABAergic) interneurons and this neurotransmitter thus plays a key role in the modulation of anxiety responses both in the normal and pathological state. The presence of allosteric sites on the GABAA receptor allows the level of inhibition of neurons in the amygdala to be regulated with exquisite precision, and these sites are the molecular targets of the principal classes of anxiolytic drugs. Changes in the levels of endogenous modulators of these allosteric sites as well as changes in the subunit composition of the GABAA receptor may represent mechanisms whereby the level of neuronal inhibition is downregulated in pathological anxiety states. Neurosteroids are synthesized in the brain and act as allosteric modulators of the GABAA receptor. Since their synthesis is itself regulated by stress and by anxiogenic stimuli, targeting the neurosteroid-GABAA receptor axis represents an attractive target for the modulation of anxiety.
Collapse
Affiliation(s)
- Philippe Nuss
- Department of Psychiatry, Hôpital St Antoine, AP-HP, Paris, France ; UMR 7203, INSERM ERL 1057 - Bioactive Molecules Laboratory, Pierre and Marie Curie University, Paris, France
| |
Collapse
|
185
|
Ishikawa J, Nishimura R, Ishikawa A. Early-life stress induces anxiety-like behaviors and activity imbalances in the medial prefrontal cortex and amygdala in adult rats. Eur J Neurosci 2015; 41:442-53. [DOI: 10.1111/ejn.12825] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Junko Ishikawa
- Systems Neuroscience; Department of Neuroscience; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| | - Ryoichi Nishimura
- Systems Neuroscience; Department of Neuroscience; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| | - Akinori Ishikawa
- Systems Neuroscience; Department of Neuroscience; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
186
|
Abstract
Early-life serotonin [5-hydroxytryptamine (5-HT)] signaling modulates brain development, which impacts adult behavior, but 5-HT-sensitive periods, neural substrates, and behavioral consequences remain poorly understood. Here we identify the period ranging from postnatal day 2 (P2) to P11 as 5-HT sensitive, with 5-HT transporter (5-HTT) blockade increasing anxiety- and depression-like behavior, and impairing fear extinction learning and memory in adult mice. Concomitantly, P2-P11 5-HTT blockade causes dendritic hypotrophy and reduced excitability of infralimbic (IL) cortex pyramidal neurons that normally promote fear extinction. By contrast, the neighboring prelimbic (PL) pyramidal neurons, which normally inhibit fear extinction, become more excitable. Excitotoxic IL but not PL lesions in adult control mice reproduce the anxiety-related phenotypes. These findings suggest that increased 5-HT signaling during P2-P11 alters adult mPFC function to increase anxiety and impair fear extinction, and imply a differential role for IL and PL neurons in regulating affective behaviors. Together, our results support a developmental mechanism for the etiology and pathophysiology of affective disorders and fear-related behaviors.
Collapse
|
187
|
Serotonin in fear conditioning processes. Behav Brain Res 2015; 277:68-77. [DOI: 10.1016/j.bbr.2014.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 12/17/2022]
|
188
|
Hui YP, Wang T, Han LN, Li LB, Sun YN, Liu J, Qiao HF, Zhang QJ. Anxiolytic effects of prelimbic 5-HT1A receptor activation in the hemiparkinsonian rat. Behav Brain Res 2015; 277:211-20. [DOI: 10.1016/j.bbr.2014.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|
189
|
Ohashi M, Saitoh A, Yamada M, Oka JI, Yamada M. Riluzole in the prelimbic medial prefrontal cortex attenuates veratrine-induced anxiety-like behaviors in mice. Psychopharmacology (Berl) 2015; 232:391-8. [PMID: 25127925 DOI: 10.1007/s00213-014-3676-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 06/25/2014] [Indexed: 10/24/2022]
Abstract
RATIONALE We previously demonstrated in mice that the activation of prelimbic medial prefrontal cortex (PL) with the sodium channel activator veratrine induces anxiety-like behaviors via NMDA receptor-mediated glutamatergic neurotransmission. Riluzole directly affects the glutamatergic system and has recently been suggested to have an anxiolytic-like effect in both experimental animals and patients with anxiety disorders. OBJECTIVES We investigated the effects of co-perfusion of riluzole on veratrine-induced anxiety-like behaviors in mice. METHODS Extracellular glutamate levels were measured in 7-week-old male C57BL6 mice by using an in vivo microdialysis-HPLC/ECD system, and behaviors were assessed simultaneously in an open field (OF) test. Basal levels of glutamate were measured by collecting samples every 10 min for 60 min. The medium containing drugs was perfused for 30 min, and the OF test was performed during the last 10 min of drug perfusion. After the drug treatments, the drug-containing medium was switched to perfusion of control medium lacking drugs, and then samples were collected for another 90 min. RESULTS Riluzole co-perfusion attenuated veratrine-induced increase in extracellular glutamate levels in the PL and completely diminished veratrine-induced anxiety-like behaviors. Interestingly, riluzole perfusion alone in the PL did not affect the basal levels of glutamate and anxiety-like behaviors. CONCLUSIONS Our results suggest that compounds like riluzole that inhibit glutamatergic function in the PL are possible candidates for novel anxiolytics.
Collapse
Affiliation(s)
- Masanori Ohashi
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashimachi, Kodaira, Tokyo, 187-8553, Japan
| | | | | | | | | |
Collapse
|
190
|
Hartley CA, Lee FS. Sensitive periods in affective development: nonlinear maturation of fear learning. Neuropsychopharmacology 2015; 40:50-60. [PMID: 25035083 PMCID: PMC4262897 DOI: 10.1038/npp.2014.179] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 12/11/2022]
Abstract
At specific maturational stages, neural circuits enter sensitive periods of heightened plasticity, during which the development of both brain and behavior are highly receptive to particular experiential information. A relatively advanced understanding of the regulatory mechanisms governing the initiation, closure, and reinstatement of sensitive period plasticity has emerged from extensive research examining the development of the visual system. In this article, we discuss a large body of work characterizing the pronounced nonlinear changes in fear learning and extinction that occur from childhood through adulthood, and their underlying neural substrates. We draw upon the model of sensitive period regulation within the visual system, and present burgeoning evidence suggesting that parallel mechanisms may regulate the qualitative changes in fear learning across development.
Collapse
Affiliation(s)
- Catherine A Hartley
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA,Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA,Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA, Tel: +212 746 3781, Fax: +212 746 5755, E-mail:
| | - Francis S Lee
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College, New York, NY, USA,Department of Psychiatry, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
191
|
Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct Funct 2014; 221:1033-65. [PMID: 25503449 DOI: 10.1007/s00429-014-0954-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/30/2014] [Indexed: 02/03/2023]
Abstract
The medial amygdaloid nucleus (Me) is a key node in the socio-sexual brain, composed of anterior (MeA), posteroventral (MePV) and posterodorsal (MePD) subdivisions. These subdivisions have been suggested to play a different role in reproductive and defensive behaviours. In the present work we analyse the afferents of the three Me subdivisions using restricted injections of fluorogold in female outbred CD1 mice. The results reveal that the MeA, MePV and MePD share a common pattern of afferents, with some differences in the density of retrograde labelling in several nuclei. Common afferents to Me subdivisions include: the accessory olfactory bulbs, piriform cortex and endopiriform nucleus, chemosensory amygdala (receiving direct inputs from the olfactory bulbs), posterior part of the medial bed nucleus of the stria terminalis (BSTM), CA1 in the ventral hippocampus and posterior intralaminar thalamus. Minor projections originate from the basolateral amygdala and amygdalo-hippocampal area, septum, ventral striatum, several allocortical and periallocortical areas, claustrum, several hypothalamic structures, raphe and parabrachial complex. MeA and MePV share minor inputs from the frontal cortex (medial orbital, prelimbic, infralimbic and dorsal peduncular cortices), but differ in the lack of main olfactory projections to the MePV. By contrast, the MePD receives preferential projections from the rostral accessory olfactory bulb, the posteromedial BSTM and the ventral premammillary nucleus. In summary, the common pattern of afferents to the Me subdivisions and their interconnections suggest that they play cooperative instead of differential roles in the various behaviours (e.g., sociosexual, defensive) in which the Me has been shown to be involved.
Collapse
|
192
|
Skórzewska A, Lehner M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Krząścik P, Płaźnik A. Midazolam treatment before re-exposure to contextual fear reduces freezing behavior and amygdala activity differentially in high- and low-anxiety rats. Pharmacol Biochem Behav 2014; 129:34-44. [PMID: 25482326 DOI: 10.1016/j.pbb.2014.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/18/2014] [Accepted: 11/29/2014] [Indexed: 12/11/2022]
Abstract
The aim of this study was to examine the effects of benzodiazepine (midazolam) administration on rat conditioned fear responses and on local brain activity (c-Fos and CRF expressions) of low- (LR) and high- (HR)anxiety rats after the first and second contextual fear test sessions. The animals were divided into LR and HR groups based on the duration of their conditioned freezing response in the first contextual fear test. The fear-re-conditioned LR and HR animals (28 days later) had increased freezing durations compared with those durations during the first conditioned fear test. These behavioral effects were accompanied by increased c-Fos expression in the medial amygdala (MeA), the basolateral amygdala (BLA), and the paraventricular hypothalamic nuclei and elevated CRF expression in the MeA. All these behavioral and immunochemical effects of fear re-conditioning were stronger in the LR group compared with the effects in the HR group. Moreover, in the LR rats, the re-conditioning led to decreased CRF expression in the primary motor cortex (M1) and to increased CRF expression in the BLA. The pretreatment of rats with midazolam before the second exposure to the aversive context significantly attenuated the conditioned fear response, lowered the serum corticosterone concentration, decreased c-Fos and CRF expressions in the MeA and in the BLA, and increased CRF complex density in M1 area only in the LR group. These studies have demonstrated that LR rats are more sensitive to re-exposure to fear stimuli and that midazolam pretreatment was associated with modified brain activity in the amygdala and in the prefrontal cortex in this group of animals. The current data may facilitate a better understanding of the neurobiological mechanisms responsible for individual differences in the psychopathological processes accompanying some anxiety disorders characterized by stronger reactivity to re-exposure to stressful challenges, e.g., posttraumatic stress disorder.
Collapse
Affiliation(s)
- Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Paweł Krząścik
- Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
193
|
Transcranial direct current stimulation of the prefrontal cortex: a means to modulate fear memories. Neuroreport 2014; 25:480-4. [PMID: 24384505 DOI: 10.1097/wnr.0000000000000119] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Targeting memory processes by noninvasive interventions is a potential gateway to modulate fear memories as shown by animal and human studies in recent years. Modulation of fear memories by noninvasive brain stimulation techniques might be an attractive approach, which, however, has not been examined so far. We investigated the effect of transcranial direct current stimulation (tDCS) applied to the right dorsolateral prefrontal cortex and left supraorbital region on fear memories in humans. Seventy-four young, healthy individuals were assigned randomly to two groups, which underwent fear conditioning with mild electric stimuli paired with a visual stimulus. Twenty-four hours later, both groups were shown a reminder of the conditioned fearful stimulus. Shortly thereafter, they received either tDCS (right prefrontal--anodal, left supraorbital--cathodal) for 20 min at 1 mA current intensity or sham stimulation. A day later, fear responses of both groups were compared by monitoring skin conductance. On day 3, during fear response assessment, the tDCS group had a significantly (P<0.05) higher mean skin conductance in comparison with the sham group. These results suggest that tDCS (right prefrontal--anodal, left supraorbital--cathodal) enhanced fear memories, possibly by influencing the prefrontal cortex-amygdala circuit underlying the memory for fear.
Collapse
|
194
|
Barker JM, Taylor JR. Habitual alcohol seeking: modeling the transition from casual drinking to addiction. Neurosci Biobehav Rev 2014; 47:281-94. [PMID: 25193245 PMCID: PMC4258136 DOI: 10.1016/j.neubiorev.2014.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 07/17/2014] [Accepted: 08/25/2014] [Indexed: 12/29/2022]
Abstract
The transition from goal-directed actions to habitual ethanol seeking models the development of addictive behavior that characterizes alcohol use disorders. The progression to habitual ethanol-seeking behavior occurs more rapidly than for natural rewards, suggesting that ethanol may act on habit circuit to drive the loss of behavioral flexibility. This review will highlight recent research that has focused on the formation and expression of habitual ethanol seeking, and the commonalities and distinctions between ethanol and natural reward-seeking habits, with the goal of highlighting important, understudied research areas that we believe will lead toward the development of novel treatment and prevention strategies for uncontrolled drinking.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Psychiatry, Yale University School of Medicine, Ribicoff Labs, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R Taylor
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
195
|
Rozeske RR, Valerio S, Chaudun F, Herry C. Prefrontal neuronal circuits of contextual fear conditioning. GENES BRAIN AND BEHAVIOR 2014; 14:22-36. [PMID: 25287656 DOI: 10.1111/gbb.12181] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 12/12/2022]
Abstract
Over the past years, numerous studies have provided a clear understanding of the neuronal circuits and mechanisms involved in the formation, expression and extinction phases of conditioned cued fear memories. Yet, despite a strong clinical interest, a detailed understanding of these memory phases for contextual fear memories is still missing. Besides the well-known role of the hippocampus in encoding contextual fear behavior, growing evidence indicates that specific regions of the medial prefrontal cortex differentially regulate contextual fear acquisition and storage in both animals and humans that ultimately leads to expression of contextual fear memories. In this review, we provide a detailed description of the recent literature on the role of distinct prefrontal subregions in contextual fear behavior and provide a working model of the neuronal circuits involved in the acquisition, expression and generalization of contextual fear memories.
Collapse
Affiliation(s)
- R R Rozeske
- INSERM U862, Neurocenter Magendie, Bordeaux, France
| | | | | | | |
Collapse
|
196
|
Joels G, Lamprecht R. Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory. Front Behav Neurosci 2014; 8:324. [PMID: 25324744 PMCID: PMC4179742 DOI: 10.3389/fnbeh.2014.00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/01/2014] [Indexed: 11/22/2022] Open
Abstract
The formation of fear memory to a specific stimulus leads to subsequent fearful response to that stimulus. However, it is not apparent whether the formation of fear memory can affect other memories. We study whether specific fearful experience leading to fear memory affects different memories formation and extinction. We revealed that cued fear conditioning, but not unpaired or naïve training, inhibited the extinction of conditioned taste aversion (CTA) memory that was formed after fear conditioning training in rats. Fear conditioning had no effect on retrieval of CTA memory but specifically impaired its extinction. Extinguished fear memory, after fear extinction training, had no effect on future CTA memory extinction. Fear conditioning had no effect on CTA memory extinction if CTA memory was formed before fear conditioning. Conditioned taste aversion had no effect on fear conditioning memory extinction. We conclude that active cued fear conditioning memory can affect specifically the extinction, but not the formation, of future different memory.
Collapse
Affiliation(s)
- Gil Joels
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa Haifa, Israel
| | - Raphael Lamprecht
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa Haifa, Israel ; Department of Biology, Faculty of Natural Sciences, University of Haifa Haifa, Israel ; Center for Gene Manipulation in the Brain, University of Haifa Haifa, Israel ; Center for Brain and Behavior, University of Haifa Haifa, Israel
| |
Collapse
|
197
|
Marchant NJ, Kaganovsky K, Shaham Y, Bossert JM. Role of corticostriatal circuits in context-induced reinstatement of drug seeking. Brain Res 2014; 1628:219-32. [PMID: 25199590 DOI: 10.1016/j.brainres.2014.09.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Drug addiction is characterized by persistent relapse vulnerability during abstinence. In abstinent drug users, relapse is often precipitated by re-exposure to environmental contexts that were previously associated with drug use. This clinical scenario is modeled in preclinical studies using the context-induced reinstatement procedure, which is based on the ABA renewal procedure. In these studies, context-induced reinstatement of drug seeking is reliably observed in laboratory animals that were trained to self-administer drugs abused by humans. In this review, we summarize neurobiological findings from preclinical studies that have focused on the role of corticostriatal circuits in context-induced reinstatement of heroin, cocaine, and alcohol seeking. We also discuss neurobiological similarities and differences in the corticostriatal mechanisms of context-induced reinstatement across these drug classes. We conclude by briefly discussing future directions in the study of context-induced relapse to drug seeking in rat models. Our main conclusion from the studies reviewed is that there are both similarities (accumbens shell, ventral hippocampus, and basolateral amygdala) and differences (medial prefrontal cortex and its projections to accumbens) in the neural mechanisms of context-induced reinstatement of cocaine, heroin, and alcohol seeking.
Collapse
Affiliation(s)
- Nathan J Marchant
- Behavioral Neuroscience Branch, IRP, NIDA, Baltimore, MD, USA; Florey Institute of Neuroscience & Mental Health, University of Melbourne, Parkville, VIC, Australia.
| | | | - Yavin Shaham
- Behavioral Neuroscience Branch, IRP, NIDA, Baltimore, MD, USA
| | | |
Collapse
|
198
|
Barker JM, Taylor JR, Chandler LJ. A unifying model of the role of the infralimbic cortex in extinction and habits. ACTA ACUST UNITED AC 2014; 21:441-8. [PMID: 25128534 PMCID: PMC4138355 DOI: 10.1101/lm.035501.114] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The infralimbic prefrontal cortex (IL) has been shown to be critical for the regulation of flexible behavior, but its precise function remains unclear. This region has been shown to be critical for the acquisition, consolidation, and expression of extinction learning, leading many to hypothesize that IL suppresses behavior as part of a “stop” network. However, this framework is at odds with IL function in habitual behavior in which the IL has been shown to be required for the expression and acquisition of ongoing habitual behavior. Here, we will review the current state of knowledge of IL anatomy and function in behavioral flexibility and provide a testable framework for a single IL mechanism underlying its function in both extinction and habit learning.
Collapse
Affiliation(s)
- Jacqueline M Barker
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - L Judson Chandler
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| |
Collapse
|
199
|
Abstract
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning.
Collapse
|
200
|
Asaba A, Hattori T, Mogi K, Kikusui T. Sexual attractiveness of male chemicals and vocalizations in mice. Front Neurosci 2014; 8:231. [PMID: 25140125 PMCID: PMC4122165 DOI: 10.3389/fnins.2014.00231] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/14/2014] [Indexed: 12/04/2022] Open
Abstract
Male-female interaction is important for finding a suitable mating partner and for ensuring reproductive success. Male sexual signals such as pheromones transmit information and social and sexual status to females, and exert powerful effects on the mate preference and reproductive biology of females. Likewise, male vocalizations are attractive to females and enhance reproductive function in many animals. Interestingly, females' preference for male pheromones and vocalizations is associated with their genetic background, to avoid inbreeding. Moreover, based on acoustic cues, olfactory signals have significant effects on mate choice in mice, suggesting mate choice involves multisensory integration. In this review, we synopsize the effects of both olfactory and auditory cues on female behavior and neuroendocrine functions. We also discuss how these male signals are integrated and processed in the brain to regulate behavior and reproductive function.
Collapse
Affiliation(s)
- Akari Asaba
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Tatsuya Hattori
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Graduate School of Veterinary Medicine, Azabu University Kanagawa, Japan
| |
Collapse
|