151
|
Design and influence of γ-irradiation on the biopharmaceutical properties of nanoparticles containing an antigenic complex from Brucella ovis. Eur J Pharm Sci 2009; 37:563-72. [DOI: 10.1016/j.ejps.2009.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/03/2009] [Accepted: 05/03/2009] [Indexed: 11/24/2022]
|
152
|
Martins H, Garin-Bastuji B, Lima F, Flor L, Pina Fonseca A, Boinas F. Eradication of bovine brucellosis in the Azores, Portugal—Outcome of a 5-year programme (2002–2007) based on test-and-slaughter and RB51 vaccination. Prev Vet Med 2009; 90:80-9. [DOI: 10.1016/j.prevetmed.2009.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 04/01/2009] [Accepted: 04/07/2009] [Indexed: 11/16/2022]
|
153
|
Longo M, Mallardo K, Montagnaro S, De Martino L, Gallo S, Fusco G, Galiero G, Guarino A, Pagnini U, Iovane G. Shedding of Brucella abortus rough mutant strain RB51 in milk of water buffalo (Bubalus bubalis). Prev Vet Med 2009; 90:113-8. [PMID: 19362381 DOI: 10.1016/j.prevetmed.2009.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/05/2009] [Accepted: 03/14/2009] [Indexed: 11/26/2022]
Abstract
The objective of this study was to determine if Brucella abortus rough mutant strain RB51 (SRB51) is eliminated in buffalo milk. Thirty Brucella-free female buffaloes were used in this study: ten 4-5 years old were inoculated with the triple of the recommended calfhood dose of SRB51 by subcutaneous route, ten 2-3 years old at the first lactation were previously vaccinated twice as calves with triple the recommended calf dose of RB51, while five 4-5 years old and five 2-3 years old not vaccinated Brucella-free female buffaloes served as controls. Milk samples were taken aseptically on a daily basis for the first 30 days and weekly for the second and third months. The samples were inoculated on selective media for isolation of SRB51 and incubated for 11 days. Moreover, PCR analysis was also performed directly on milk samples. SRB51 was isolated from milk samples only during the first week post-vaccination while RB51 DNA was detected during the first week till the fourth week post-vaccination only in water buffaloes vaccinated as adults. The identification of Brucella RB51 in milk samples, strongly suggests that this Brucella vaccine could be excreted in milk of buffalo cows vaccinated as adults, while our data demonstrate that the vaccine is safe for use in buffaloes vaccinated as calves in which it was not excreted in milk.
Collapse
Affiliation(s)
- Mariangela Longo
- Department of Pathology and Animal Health, University of Naples Federico II, via F. Delpino 1, Naples 80137, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Bandara AB, Schurig GG, Sriranganathan N, Prasad R, Boyle SM. The putative penicillin-binding proteins 1 and 2 are important for viability, growth and cell morphology of Brucella melitensis. Vet Microbiol 2009; 133:387-93. [DOI: 10.1016/j.vetmic.2008.07.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Revised: 07/18/2008] [Accepted: 07/24/2008] [Indexed: 11/24/2022]
|
155
|
Pathological, Immunohistochemical and Bacteriological Study of Tissues and Milk of Cows and Fetuses Experimentally Infected with Brucella abortus. J Comp Pathol 2009; 140:149-57. [DOI: 10.1016/j.jcpa.2008.10.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 10/05/2008] [Indexed: 11/18/2022]
|
156
|
Protection levels in vaccinated heifers with experimental vaccines Brucella abortus M1-luc and INTA 2. Vet Microbiol 2008; 132:302-11. [DOI: 10.1016/j.vetmic.2008.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/08/2008] [Accepted: 05/06/2008] [Indexed: 11/18/2022]
|
157
|
Isolation of rifampicin resistant Flavobacterium psychrophilum strains and their potential as live attenuated vaccine candidates. Vaccine 2008; 26:5582-9. [DOI: 10.1016/j.vaccine.2008.07.083] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/24/2022]
|
158
|
Jensen AE, Halling SM. Effect of polymyxin B and environmental conditions on isolation of Brucella species and the vaccine strain RB51. Comp Immunol Microbiol Infect Dis 2008; 33:121-31. [PMID: 18814911 DOI: 10.1016/j.cimid.2008.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
Brucella are resistant to polymyxin B (PB), but their relative susceptibility to PB and its derivative, colistin (COL) has not been rigorously or systematically studied. Comparative susceptibility of Brucella reference strains, vaccine strain RB51, and Brucella isolates from marine mammals to these two cationic peptides were determined by Etest. Vast differences among Brucella species were found in susceptibility to both PB and COL. Brucella demonstrated similar pattern of relative susceptibility to PB as that of COL, but they were less susceptible to COL. Both B. melitensis and B. suis were the least susceptible to polymyxins and rough strains were more susceptible to both PB and COL than the smooth except for the BvrR mutant. Strains were generally less susceptible to PB when cultured in CO(2) rather than ambient air; some became more susceptible in acidified medium. Results show that environment cultural conditions must be considered when selecting for CO(2)-independent strains of Brucella especially the vaccine strain RB51 on selective media containing PB. Our observations extend basic knowledge of the differential resistance of Brucella to polymyxins.
Collapse
Affiliation(s)
- Allen E Jensen
- National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA.
| | | |
Collapse
|
159
|
Robles CA, Nielsen K, Gall D, Willems P. Evaluation of three different antigens in an indirect enzyme-linked immunoassay for the detection of antibodies against Brucella abortus SRB51 in vaccinated heifers. Vet Immunol Immunopathol 2008; 127:153-5. [PMID: 18980780 DOI: 10.1016/j.vetimm.2008.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 08/02/2008] [Accepted: 09/12/2008] [Indexed: 11/28/2022]
Abstract
The live attenuated Brucella abortus SRB51 (SRB51) is a partial O-chain-deprived mutant. The relative lack of the polysaccharide prevents it from inducing antibodies detectable by most of the serological tests used for the diagnosis of bovine brucellosis. The performance of three antigens used in an indirect enzyme-linked immunoassay test for detecting SRB51 antibodies were evaluated. A homogeneous group of twenty-five 10-month-old Hereford heifers was used. The animals were bled on day 0 and then subcutaneously vaccinated with 2 ml of a commercially available SRB51 vaccine (Schering-Plough) containing 1x10(7) to 3.4x10(7) viable cells. Blood samples without anticoagulant for sera obtaining were then collected at days 30, 90, 210 and 360 post-vaccination. To detect the SRB51 antibodies, Brucella ovis hot saline extract, B. ovis RLPS (RLPS), and SRB51-RLPS were used. The buffered antigen plate agglutination test and an indirect enzyme-linked immunoassay (I-ELISA) using the smooth LPS (SLPS) antigen from B. abortus were used as control tests. All the sera samples were negative in the BPA test and in the standard I-ELISA using the SLPS. The SRB51-RLPS and the B. ovis RLPS antigens performed better than the B. ovis hot saline extract antigen.
Collapse
Affiliation(s)
- C A Robles
- Animal Health Unit, The National Institute for Agricultural Technology (INTA), Bariloche, Argentina.
| | | | | | | |
Collapse
|
160
|
Adone R, Francia M, Ciuchini F. Evaluation of Brucella melitensis B115 as rough-phenotype vaccine against B. melitensis and B. ovis infections. Vaccine 2008; 26:4913-7. [DOI: 10.1016/j.vaccine.2008.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/02/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
|
161
|
Adone R, Francia M, Ciuchini F. Brucella melitensisB115-based complement fixation test to detect antibodies induced byBrucellarough strains. J Appl Microbiol 2008; 105:567-74. [DOI: 10.1111/j.1365-2672.2008.03787.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
162
|
Genomic island 2 of Brucella melitensis is a major virulence determinant: functional analyses of genomic islands. J Bacteriol 2008; 190:6243-52. [PMID: 18641138 DOI: 10.1128/jb.00520-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Brucella genomic islands (GIs) share similarities in their genomic organization to pathogenicity islands from other bacteria and are likely acquired by lateral gene transfer. Here, we report the identification of a GI that is important for the pathogenicity of Brucella melitensis. The deletion of GI-1, GI-5, or GI-6 did not affect bacterial growth in macrophages as well as their virulence in interferon regulatory factor 1-deficient (IRF-1(-/-)) mice, suggesting that these islands do not contribute to Brucella virulence. However, the deletion of GI-2 resulted in the attenuation of bacterial growth in macrophages and virulence in IRF-1(-/-) mice. The GI-2 mutant also displayed a rough lipopolysaccharide (LPS) phenotype indicated by acriflavin agglutination, suggesting that in vitro and in vivo attenuation is a result of LPS alteration. Further, systematic analysis of the entire GI-2 revealed two open reading frames (ORFs), BMEI0997 and I0998, that encode hypothetical sugar transferases and contribute to LPS alteration, as the deletion of either of these ORFs resulted in a rough phenotype similar to that of the GI-2 mutant. Complementation analyses indicated that in addition to I0997 and I0998, I0999 is required to restore the smooth LPS in the GI-2 mutant as well as its full in vitro and in vivo virulence. The I0999 sequence analysis suggested that it might function as a transporter to help facilitate the transport or linking of the O antigen to the LPS. Our study also indicated that the rough LPS resulting from the GI-2 deletion may affect pathogen-associated molecular pattern recognition by Toll-like receptors.
Collapse
|
163
|
Sáez D, Guzmán I, Andrews E, Cabrera A, Oñate A. Evaluation of Brucella abortus DNA and RNA vaccines expressing Cu–Zn superoxide dismutase (SOD) gene in cattle. Vet Microbiol 2008; 129:396-403. [DOI: 10.1016/j.vetmic.2007.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/13/2007] [Accepted: 11/15/2007] [Indexed: 01/18/2023]
|
164
|
Wiedenmayer AA, Klesius PH, Evans JJ, Shoemaker CA. The macrophage chemotactic activity of Edwardsiella tarda extracellular products. JOURNAL OF FISH DISEASES 2008; 31:331-342. [PMID: 18355182 DOI: 10.1111/j.1365-2761.2008.00905.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The chemoattractant capabilities of Edwardsiella tarda extracellular products (ECP) were investigated from two isolates, the virulent FL6-60 parent and less virulent RET-04 mutant. Chemotaxis and chemokinesis were assayed in vitro using blind well chambers with peritoneal macrophages obtained from Nile tilapia, Oreochromis niloticus, 5 days following squalene injection. Non-purified ECP derived from both isolates stimulated predominantly chemokinetic migration of macrophages. Additionally, the ECP were semi-purified by high pressure liquid chromatography. The FL6-60 parent ECP yielded higher molecular weight components than did the ECP from the RET-04 mutant. The chemotactic activity of the macrophages for both the FL6-60 parent and RET-04 mutant semi-purified ECP was increased over the non-purified ECP and overall migration was primarily chemotactic. Exposure to ECP derived from virulent and less virulent E. tarda isolates promoted chemokinetic movement of macrophages that may be involved in inflammatory responses of Nile tilapia to E. tarda infection.
Collapse
Affiliation(s)
- A A Wiedenmayer
- Aquatic Animal Health Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Auburn, AL 36830, USA
| | | | | | | |
Collapse
|
165
|
Immunization with a single dose of a microencapsulated Brucella melitensis mutant enhances protection against wild-type challenge. Infect Immun 2008; 76:2448-55. [PMID: 18362129 DOI: 10.1128/iai.00767-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of safe and efficacious immunization systems to prevent brucellosis is needed to overcome the disadvantages of the currently licensed vaccine strains that restrict their use in humans. Alginate microspheres coated with a protein of the parasite Fasciola hepatica (vitelline protein B [VpB]) and containing live Brucella melitensis attenuated mutant vjbR::Tn5 (BMEII1116) were evaluated for vaccine efficacy and immunogenicity in mice. A single immunization dose in BALB/c mice with the encapsulated vjbR mutant improved protection against wild-type B. melitensis 16M challenge compared to the nonencapsulated vaccine strain (P < 0.05). The encapsulated mutant was also shown to induce a sustained elevation of Immunoglobulin G levels. Cytokine secretion from spleen cells of mice vaccinated with the encapsulated vjbR::Tn5 revealed elevated secretion of gamma interferon and interleukin-12, but no interleukin-4, suggesting an induction of a T helper 1 response reflecting the enhanced immunity associated with microencapsulation. Together, these results suggest that microencapsulation of live attenuated organisms offers the ability to increase the efficacy of vaccine candidates.
Collapse
|
166
|
Ramírez-Pfeiffer C, Díaz-Aparicio E, Rodríguez-Padilla C, Morales-Loredo A, Alvarez-Ojeda G, Gomez-Flores R. Improved performance of Brucella melitensis native hapten over Brucella abortus OPS tracer on goat antibody detection by the fluorescence polarization assay. Vet Immunol Immunopathol 2008; 123:223-9. [PMID: 18359093 DOI: 10.1016/j.vetimm.2008.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 01/22/2008] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
The current method for goat brucellosis diagnosis is based on the World Organization for Animal Health (OIE) using the screening card test (CT), with antigen at 8% (CT8) or 3% (CT3) of cell concentrations, and the confirmatory complement fixation test (CFT). However, these tests do not differentiate antibodies induced by vaccination from those derived from field infections by Brucella species or other bacterial agents; in places like Mexico, where the prevalence of brucellosis and the vaccination rates are high, there is a considerable percentage of false positive reactions that causes significant unnecessary slaughter of animals. Furthermore, results of the fluorescence polarization assay (FPA) using the Brucella abortus O-polysaccharide (OPS) tracer in goats are poorer than those with cattle. The present study was undertaken to investigate a tracer prepared from the native hapten (NH) of the Rev. 1 strain of Brucella melitensis to improve FPA performance on goat brucellosis diagnosis. Evaluation of 48 positive samples and 96 negative samples showed that the NH tracer was more accurate (p<0.01) than the OPS tracer (97.2% vs. 93.8% accuracy, respectively). On the diagnostic performance evaluation, the NH tracer performed better (87.5% accuracy, 79.5% sensitivity, 84.3% specificity, and 163.8 performance index) than the OPS tracer (83.5%, 75.9%, 81.0%, and 156.9, respectively) using 1009 positive and 2039 negative Mexican field goat sera samples selected by test series approved by the OIE (card test 3% and CFT). We demonstrated a new application for the NH lipopolysaccharide on detecting antibodies against Brucella using the FPA, which may yield faster results (minutes vs. 24-72h) than the immunodiagnosis assays frequently used in bovine brucellosis. In addition, NH tracer produces similar or better performance results than the conventional OPS tracer, using the FPA in goat sera samples.
Collapse
Affiliation(s)
- C Ramírez-Pfeiffer
- Instituto Nacional de Investigaciones Forestales y Agropecuarias, Campo Experimental Río Bravo, Río Bravo, Tamaulipas, Mexico
| | | | | | | | | | | |
Collapse
|
167
|
Halling SM, Jensen AE, Olsen SC. Defensin susceptibility and colonization in the mouse model of AJ100, a polymyxin B-resistant, Brucella abortus RB51 isolate. Curr Microbiol 2008; 56:274-8. [PMID: 18214602 PMCID: PMC2233712 DOI: 10.1007/s00284-007-9074-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 10/06/2007] [Indexed: 11/30/2022]
Abstract
Intracellular pathogens selected for increased susceptibility to polycations are commonly attenuated, yet the effect of decreased susceptibility to polycations on pathogenicity has not been researched. The polymyxin-resistant mutant Brucella abortus AJ100 was characterized by comparing its susceptibility to the polycationic antibiotic polymyxin B, defensins, and lactoferricin, and its colonization and clearance in the mouse model to the parent strain RB51. MIC (minimum inhibitory concentration) values determined by Etest for AJ100 and RB51 were 1.5 and 0.25 μg/ml, respectively. Though AJ100 is less susceptible to polymyxin B than RB51, it was more susceptible than its parent strain to the cationic defensins melittin, magainin 2, and cecropin P1. In the mouse model, initial colonization of the spleen was lower for AJ100 than RB51, and the rate of clearance from the spleen was faster for AJ100 than RB51. However, initial colonization and clearance rates of AJ100 from the liver were indistinguishable from those of RB51. This study suggests that the susceptibility profile of Brucella to polycationic defensins rather than polymyxin B may be indicative of differential survival in the spleen and liver in the mouse and is indicative of spleen and liver residential macrophages’ differing ability to inactivate Brucella.
Collapse
Affiliation(s)
- Shirley M Halling
- Bacterial Diseases of Livestock Unit, National Animal Disease Center, Agricultural Research Service, US Department of Agriculture, 2300 Dayton Avenue North, PO Box 70, Ames, IA 50010, USA.
| | | | | |
Collapse
|
168
|
Ocampo-Sosa AA, García-Lobo JM. Demonstration of IS711 transposition in Brucella ovis and Brucella pinnipedialis. BMC Microbiol 2008; 8:17. [PMID: 18218072 PMCID: PMC2266754 DOI: 10.1186/1471-2180-8-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 01/24/2008] [Indexed: 01/16/2023] Open
Abstract
Background The Brucella genome contains an insertion sequence (IS) element called IS711 or IS6501, which is specific to the genus. The copy number of IS711 varies in the genome of the different Brucella species, ranging from 7 in B. abortus, B. melitensis and B. suis to more than 30 in B. ovis and in Brucella strains isolated from marine mammals. At present, there is no experimental evidence of transposition of IS711, but the occurrence of this element with a high copy number in some species, and the isolation of Brucella strains with "ectopic" copies of IS711 suggested that this IS could still transpose. Results In this study we obtained evidence of transposition of IS711 from the B. ovis and B. pinnipedialis chromosomes by using the "transposon trap" plasmid pGBG1. This plasmid expresses resistance to tetracycline only if the repressor gene that it contains is inactivated. The strains B. melitensis 16 M, B. abortus RB51, B. ovis BOC22 (field strain) and B. pinnipedialis B2/94, all containing the plasmid pGBG1, were grown in culture media with tetracycline until the appearance of tetracycline resistant mutants (TcR). TcR mutants due to IS711 transposition were only detected in B. ovis and B. pinnipedialis strains. Conclusion Four different copies of IS711 were found to transpose to the same target sequence in the plasmid pGBG1. This demonstrated that IS711 are active in vivo, specially in Brucella species with a high number of IS711 copies as B. ovis and B. pinnipedialis.
Collapse
Affiliation(s)
- Alain A Ocampo-Sosa
- Departamento de Biología Molecular, Universidad de Cantabria, Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC, CSIC-Universidad de Cantabria-IDICAN, Santander, Spain.
| | | |
Collapse
|
169
|
Ramamoorthy S, Sanakkayala N, Vemulapalli R, Jain N, Lindsay DS, Schurig GS, Boyle SM, Sriranganathan N. Prevention of vertical transmission of Neospora caninum in C57BL/6 mice vaccinated with Brucella abortus strain RB51 expressing N. caninum protective antigens. Int J Parasitol 2007; 37:1531-8. [PMID: 17575983 DOI: 10.1016/j.ijpara.2007.04.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/22/2007] [Accepted: 04/26/2007] [Indexed: 11/17/2022]
Abstract
Bovine abortions caused by the apicomplexan parasite Neospora caninum have been responsible for severe economic losses to the cattle industry. Infected cows either experience abortion or transmit the parasite transplacentally at a rate of up to 95%. Neospora caninum vaccines that can prevent vertical transmission and ensure disruption in the life cycle of the parasite greatly aid in the management of neosporosis in the cattle industry. Brucella abortus strain RB51, a commercially available vaccine for bovine brucellosis, can also be used as a vector to express plasmid-encoded proteins from other pathogens. Neospora caninum protective antigens MIC1, MIC3, GRA2, GRA6 and SRS2 were expressed in strain RB51. Female C57BL/6 mice were vaccinated with a recombinant strain RB51 expressing N. caninum antigen or irradiated tachyzoites, boosted 4 weeks later and then bred. Antigen-specific IgG, IFN-gamma and IL-10 were detected in vaccinated pregnant mice. Vaccinated mice were challenged with 5 x 10(6)N. caninum tachyzoites between days 11-13 of pregnancy. Brain tissue was collected from pups 3 weeks after birth and examined for the presence of N. caninum by real-time PCR. The RB51-MIC3, RB51-GRA6, irradiated tachyzoite vaccine, pooled strain RB51-Neospora vaccine, RB51-MIC1 and RB51-SRS2 vaccines elicited approximately 6-38% protection against vertical transmission. However, the differences in parasite burden in brain tissue of pups from the control and vaccinated groups were highly significant for all groups. Thus, B. abortus strain RB51 expressing the specific N. caninum antigens induced substantial protection against vertical transmission of N. caninum in mice.
Collapse
|
170
|
Mallick A, Singha H, Khan S, Anwar T, Ansari M, Khalid R, Chaudhuri P, Owais M. Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis. Vaccine 2007; 25:7873-84. [DOI: 10.1016/j.vaccine.2007.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
|
171
|
Meeusen ENT, Walker J, Peters A, Pastoret PP, Jungersen G. Current status of veterinary vaccines. Clin Microbiol Rev 2007; 20:489-510, table of contents. [PMID: 17630337 PMCID: PMC1932753 DOI: 10.1128/cmr.00005-07] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major goals of veterinary vaccines are to improve the health and welfare of companion animals, increase production of livestock in a cost-effective manner, and prevent animal-to-human transmission from both domestic animals and wildlife. These diverse aims have led to different approaches to the development of veterinary vaccines from crude but effective whole-pathogen preparations to molecularly defined subunit vaccines, genetically engineered organisms or chimeras, vectored antigen formulations, and naked DNA injections. The final successful outcome of vaccine research and development is the generation of a product that will be available in the marketplace or that will be used in the field to achieve desired outcomes. As detailed in this review, successful veterinary vaccines have been produced against viral, bacterial, protozoal, and multicellular pathogens, which in many ways have led the field in the application and adaptation of novel technologies. These veterinary vaccines have had, and continue to have, a major impact not only on animal health and production but also on human health through increasing safe food supplies and preventing animal-to-human transmission of infectious diseases. The continued interaction between animals and human researchers and health professionals will be of major importance for adapting new technologies, providing animal models of disease, and confronting new and emerging infectious diseases.
Collapse
Affiliation(s)
- Els N T Meeusen
- Animal Biotechnology Research Laboratories, Department of Physiology, Building 13f, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | |
Collapse
|
172
|
Brucella suis urease encoded by ure1 but not ure2 is necessary for intestinal infection of BALB/c mice. BMC Microbiol 2007; 7:57. [PMID: 17578575 PMCID: PMC1983905 DOI: 10.1186/1471-2180-7-57] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 06/19/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In prokaryotes, the ureases are multi-subunit, nickel-containing enzymes that catalyze the hydrolysis of urea to carbon dioxide and ammonia. The Brucella genomes contain two urease operons designated as ure1 and ure2. We investigated the role of the two Brucella suis urease operons on the infection, intracellular persistence, growth, and resistance to low-pH killing. RESULTS The deduced amino acid sequence of urease-alpha subunits of operons-1 and -2 exhibited substantial identity with the structural ureases of alpha- and beta-proteobacteria, Gram-positive and Gram-negative bacteria, fungi, and higher plants. Four ure deficient strains were generated by deleting one or more of the genes encoding urease subunits of B. suis strain 1330 by allelic exchange: strain 1330Deltaure1K (generated by deleting ureD and ureA in ure1 operon), strain 1330Deltaure2K (ureB and ureC in ure2 operon), strain 1330Deltaure2C (ureA, ureB, and ureC in ure2 operon), and strain 1330Deltaure1KDeltaure2C (ureD and ureA in ure1 operon and ureA, ureB, and ureC in ure2 operon). When grown in urease test broth, strains 1330, 1330Deltaure2K and 1330Deltaure2C displayed maximal urease enzyme activity within 24 hours, whereas, strains 1330Deltaure1K and 1330Deltaure1KDeltaure2C exhibited zero urease activity even 96 h after inoculation. Strains 1330Deltaure1K and 1330Deltaure1KDeltaure2C exhibited slower growth rates in tryptic soy broth relative to the wild type strain 1330. When the BALB/c mice were infected intraperitoneally with the strains, six weeks after inoculation, the splenic recovery of the ure deficient strains did not differ from the wild type. In contrast, when the mice were inoculated by gavage, one week after inoculation, strain 1330Deltaure1KDeltaure2C was cleared from livers and spleens while the wild type strain 1330 was still present. All B. suis strains were killed when they were incubated in-vitro at pH 2.0. When the strains were incubated at pH 2.0 supplemented with 10 mM urea, strain 1330Deltaure1K was completely killed, strain 1330Deltaure2C was partially killed, but strains 1330 and 1330Deltaure2K were not killed. CONCLUSION These findings suggest that the ure1 operon is necessary for optimal growth in culture, urease activity, resistance against low-pH killing, and in vivo persistence of B. suis when inoculated by gavage. The ure2 operon apparently enhances the resistance to low-pH killing in-vitro.
Collapse
|
173
|
Ramamoorthy S, Sanakkayala N, Vemulapalli R, Duncan RB, Lindsay DS, Schurig GS, Boyle SM, Kasimanickam R, Sriranganathan N. Prevention of lethal experimental infection of C57BL/6 mice by vaccination with Brucella abortus strain RB51 expressing Neospora caninum antigens. Int J Parasitol 2007; 37:1521-9. [PMID: 17568587 DOI: 10.1016/j.ijpara.2007.04.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 04/22/2007] [Accepted: 04/26/2007] [Indexed: 11/24/2022]
Abstract
Bovine abortions caused by the intracellular protozoal parasite Neospora caninum are a major concern to cattle industries worldwide. A strong Th1 immune response is required for protection against N. caninum. Brucella abortus strain RB51 is currently used as a live, attenuated vaccine against bovine brucellosis. Strain RB51 can also be used as an expression vector for heterologous protein expression. In this study, putative protective antigens of N. caninum MIC1, MIC3, GRA2, GRA6 and SRS2, were expressed individually in B. abortus strain RB51. The ability of each of the recombinant RB51 strains to induce N. caninum-specific immunity was assessed in C57BL/6 mice. Mice were immunised by two i.p. inoculations, 4 weeks apart. Five weeks after the second immunisation, spleen cells from the vaccinated mice secreted high levels of IFN-gamma and IL-10 upon in vitro stimulation with N. caninum whole cell lysate antigens. N. caninum-specific antibodies of both IgG1 and IgG2a subtypes were detected in the serum of the vaccinated mice. Mice in the vaccinated and control groups were challenged with 2 x 10(7)N. caninum tachyzoites i.p. and observed for 28 days after vaccination. All unvaccinated control mice died within 7 days. Mice in the MIC1 and GRA6 vaccine groups were completely protected while the mice in the SRS2, GRA2 and MIC3 vaccinated groups were partially protected and experienced 10-50% mortality. The non-recombinant RB51 vector control group experienced an average protection of 69%. These results suggest that expression of protective antigens of N. caninum in B. abortus strain RB51 is a novel approach towards the development of a multivalent vaccine against brucellosis and neosporosis.
Collapse
|
174
|
Mallick AI, Singha H, Chaudhuri P, Nadeem A, Khan SA, Dar KA, Owais M. Liposomised recombinant ribosomal L7/L12 protein protects BALB/c mice against Brucella abortus 544 infection. Vaccine 2007; 25:3692-704. [PMID: 17296251 DOI: 10.1016/j.vaccine.2007.01.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/08/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Brucella abortus, a facultative intracellular pathogen, is of tremendous zoonotic importance because of its ability to induce spontaneous abortion in cattle and other livestock. It is also known to cause persistent undulant fever, endocarditis, arthritis, osteomyelitis and meningitis in humans. The available vaccines against this dreadful infection suffer from limitations like short-term immunity, increased risk of hypersensitivity and low prophylactic index in the recipients. In the present study, we have demonstrated that liposomal form of a recombinant ribosomal L7/L12 protein, a B-T cell antigen of B. abortus, activates strong immune response in the host. In contrast, free antigen generates moderate immune response in the immunised animals. The liposomisation of rL7/L12 protein causes tremendous increase in cell-mediated immune response in terms of delayed type hypersensitivity, T-cell proliferation and up-regulation in type I cytokine expression, etc. Moreover, the liposome encapsulated antigen elicited stronger humoral immune response as compared to standard vaccine (S-19) or IFA-L7/L12 combination in the immunised animals. The effectiveness of liposome-based vaccine was also substantiated by better systemic clearance of bacterial load after challenging the animals with B. abortus 544 pathogen. The results of the present study suggest the potential of liposome-based rL7/L12 antigen as prospective and efficient candidate vaccine capable of eliciting both cell mediated as well as humoral immune responses against experimental murine brucellosis.
Collapse
Affiliation(s)
- A I Mallick
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh-202002, India
| | | | | | | | | | | | | |
Collapse
|
175
|
Mallardo K, Ioime P, Facello B, Galiero S, Guarino A, Gallo S, Pagnini U, Iovane G. Safety of B. abortusrough mutant strain RB51 administration in Buffalo cows. ITALIAN JOURNAL OF ANIMAL SCIENCE 2007. [DOI: 10.4081/ijas.2007.s2.889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
176
|
Shoemaker CA, Klesius PH, Evans JJ. Immunization of eyed channel catfish, Ictalurus punctatus, eggs with monovalent Flavobacterium columnare vaccine and bivalent F. columnare and Edwardsiella ictaluri vaccine. Vaccine 2007; 25:1126-31. [PMID: 17050050 DOI: 10.1016/j.vaccine.2006.09.055] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/17/2006] [Accepted: 09/13/2006] [Indexed: 11/29/2022]
Abstract
The efficacy of a modified live monovalent Flavobacterium columnare vaccine and bivalent F. columnare and Edwardsiella ictaluri vaccines were evaluated following immersion vaccination of eyed channel catfish (Ictalurus punctatus) eggs. The modified live F. columnare vaccine was grown in modified Shieh broth and administered at 1.35 x 10(7) CFU/ml for 15 min exposure (1l water). Booster immunization was conducted at day 34 with 2.17 x 10(7) CFU/ml for 15 min. Bivalent vaccines consisted of a 1:1 ratio of the modified live F. columnare and AQUAVAC-ESC vaccine for the 15 min exposure (1l immersion bath). Non-vaccinated controls were held in 1l water without vaccine for 15 min. Fish were challenged with F. columnare (ALG-00-530) by immersion at days 109, 116, and 137 post-primary immunization or E. ictaluri (AL-93-75) by immersion at day 116 (bivalent vaccine group). Efficacy of monovalent modified live F. columnare vaccine administered singly or with a booster vaccination was shown to be protective with relative percent survival (RPS) values ranging from 50.0 to 76.8. Some variation was seen in RPS values following bivalent immunization, ranging from 33.0 to 59.7 in the fish challenged with F. columnare and 44.5 to 66.7 in fish challenged with E. ictaluri. However, the RPS values were not statistically different. The results suggest that administration of live bivalent vaccine at the eyed-egg stage is safe and elicits protection upon single pathogen challenge.
Collapse
Affiliation(s)
- Craig A Shoemaker
- United States Department of Agriculture-Agricultural Research Service, Aquatic Animal Health Research Laboratory, P.O. Box 0952, Auburn, AL 36831, USA.
| | | | | |
Collapse
|
177
|
Bandara AB, Selem MN, Jordan CN, Lindsay DS, Shurig GG, Sriranganathan N. Brucella abortus strain RB51 can be used to express potentially protective antigens of Toxoplasma gondii. J Eukaryot Microbiol 2006; 53 Suppl 1:S166-8. [PMID: 17169047 DOI: 10.1111/j.1550-7408.2006.00218.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abey B Bandara
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | | | | | | | | | | |
Collapse
|
178
|
Connolly JP, Comerci D, Alefantis TG, Walz A, Quan M, Chafin R, Grewal P, Mujer CV, Ugalde RA, DelVecchio VG. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 2006; 6:3767-80. [PMID: 16739129 DOI: 10.1002/pmic.200500730] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brucella abortus is the etiologic agent of bovine brucellosis and causes a chronic disease in humans known as undulant fever. In livestock the disease is characterized by abortion and sterility. Live, attenuated vaccines such as S19 and RB51 have been used to control the spread of the disease in animals; however, they are considered unsafe for human use and they induce abortion in pregnant cattle. For the development of a safer and equally efficacious vaccine, immunoproteomics was utilized to identify novel candidate proteins from B. abortus cell envelope (CE). A total of 163 proteins were identified using 2-DE with MALDI-TOF MS and LC-MS/MS. Some of the major protein components include outer-membrane protein (OMP) 25, OMP31, Omp2b porin, and 60 kDa chaperonin GroEL. 2-DE Western blot analyses probed with antiserum from bovine and a human patient infected with Brucella identified several new immunogenic proteins such as fumarate reductase flavoprotein subunit, F0F1-type ATP synthase alpha subunit, and cysteine synthase A. The elucidation of the immunome of B. abortus CE identified a number of candidate proteins for developing vaccines against Brucella infection in bovine and humans.
Collapse
|
179
|
Halling SM, Jensen AE. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol 2006; 6:84. [PMID: 17014718 PMCID: PMC1617103 DOI: 10.1186/1471-2180-6-84] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 10/02/2006] [Indexed: 01/13/2023] Open
Abstract
Background Brucella spp. are highly similar, having identical 16S RNA. However, they have important phenotypic differences such as differential susceptibility to antibiotics binding the ribosome. Neither the differential susceptibility nor its basis has been rigorously studied. Differences found among other conserved ribosomal loci could further define the relationships among the classical Brucella spp. Results Minimum inhibitory concentration (MIC) values of Brucella reference strains and three marine isolates to antibiotics binding the ribosome ranged from 0.032 to >256 μg/ml for the macrolides erythromycin, clarithromycin, and azithromycin and 2 to >256 μg/ml for the lincosamide, clindamycin. Though sequence polymorphisms were identified among ribosome associated loci 23S rrn, rplV, tuf-1 and tuf-2 but not rplD, they did not correlate with antibiotic resistance phenotypes. When spontaneous erythromycin resistant (eryR) mutants were examined, mutation of the peptidyl transferase center (A2058G Ec) correlated with increased resistance to both erythromycin and clindamycin. Brucella efflux was examined as an alternative antibiotic resistance mechanism by use of the inhibitor L-phenylalanine-L-arginine β-naphthylamide (PAβN). Erythromycin MIC values of reference and all eryR strains, except the B. suis eryR mutants, were lowered variably by PAβN. A phylogenetic tree based on concatenated ribosomal associated loci supported separate evolutionary paths for B. abortus, B. melitensis, and B. suis/B. canis, clustering marine Brucella and B. neotomae with B. melitensis. Though Brucella ovis was clustered with B. abortus, the bootstrap value was low. Conclusion Polymorphisms among ribosomal loci from the reference Brucella do not correlate with their highly differential susceptibility to erythromycin. Efflux plays an important role in Brucella sensitivity to erythromycin. Polymorphisms identified among ribosome associated loci construct a robust phylogenetic tree supporting classical Brucella spp. designations.
Collapse
MESH Headings
- Anti-Bacterial Agents/metabolism
- Anti-Bacterial Agents/pharmacology
- Azithromycin/metabolism
- Azithromycin/pharmacology
- Binding, Competitive
- Brucella/classification
- Brucella/drug effects
- Brucella/genetics
- Clarithromycin/metabolism
- Clarithromycin/pharmacology
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Drug Resistance, Bacterial/genetics
- Drug Resistance, Multiple, Bacterial/genetics
- Erythromycin/metabolism
- Erythromycin/pharmacology
- Microbial Sensitivity Tests/methods
- Molecular Sequence Data
- Peptide Elongation Factor Tu/genetics
- Phylogeny
- Polymorphism, Genetic/genetics
- Protein Isoforms/genetics
- RNA, Ribosomal, 23S/genetics
- Ribosomal Proteins/genetics
- Ribosomes/genetics
- Ribosomes/metabolism
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Shirley M Halling
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 2300 Dayton Avenue, Ames, IA 50010, USA
| | - Allen E Jensen
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, 2300 Dayton Avenue, Ames, IA 50010, USA
| |
Collapse
|
180
|
Stoffregen WC, Olsen SC, Bricker BJ. Parenteral vaccination of domestic pigs withBrucella abortusstrain RB51. Am J Vet Res 2006; 67:1802-8. [PMID: 17014337 DOI: 10.2460/ajvr.67.10.1802] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the immunogenicity and efficacy of Brucella abortus strain RB51 (SRB51) as a vaccine in domestic pigs. ANIMALS Sixty-eight 6-week-old crossbred domestic pigs and twenty-four 4-month-old gilts. PROCEDURES In experiment 1, pigs were vaccinated IM (n = 51) with 2 x 10(10) CFUs of SRB51 or sham inoculated (17). Periodic blood samples were obtained to perform blood cultures, serologic evaluations, and cell-mediated immunity assays. Necropsies were performed at selected times between weeks 1 and 23 after vaccination to determine vaccine clearance. In experiment 2, gilts were similarly vaccinated (n = 18) or sham inoculated (8) and similar samples were obtained after vaccination. Gilts were bred and challenged conjunctivally with 5.0 x 10(7) CFUs of virulent Brucella suis strain 3B. Necropsies were performed on gilts and on fetuses or neonates after abortion or parturition, respectively. Bacterial cultures and serologic evaluations were performed on samples obtained at necropsy to determine vaccine efficacy. RESULTS Humoral and cell-mediated immune responses did not differ between vaccinates and controls. After vaccination, SRB51 was not isolated from blood cultures of either group and was isolated from lymphoid tissues of 3 pigs at 2 weeks (n = 2) and 4 weeks (1) after vaccination. No differences were found in isolation of B suis or in seroconversion between vaccinated and control gilts and between their neonates or aborted fetuses. CONCLUSIONS AND CLINICAL RELEVANCE Parenteral vaccination with SRB51 does not induce humoral or cell-mediated immune responses. Vaccination with SRB51 did not protect gilts or their neonates and fetuses from virulent challenge with B suis.
Collapse
Affiliation(s)
- William C Stoffregen
- Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, USDA, Ames, IA 50010, USA
| | | | | |
Collapse
|
181
|
Kahl-McDonagh MM, Ficht TA. Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 2006; 74:4048-57. [PMID: 16790778 PMCID: PMC1489724 DOI: 10.1128/iai.01787-05] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Research for novel Brucella vaccines has focused upon the development of live vaccine strains, which have proven more efficacious than killed or subunit vaccines. In an effort to develop improved vaccines, signature-tagged mutant banks were screened to identify mutants attenuated for survival. Mutants selected from these screens exhibited various degrees of attenuation characterized by the rate of clearance, ranging from a failure to grow in macrophages after 24 h of infection to a failure to persist in the mouse model beyond 8 weeks. Ideal vaccine candidates should be safe to the host, while evoking protective immunity. In the present work, we constructed unmarked deletion mutants of three gene candidates, manBA, virB2, and asp24, in both Brucella abortus and Brucella melitensis. The Deltaasp24 mutants, which persist for extended periods in vivo, are superior to current vaccine strains and to other deletion strains tested in the mouse model against homologous challenge infection after 12, 16, and 20 weeks postvaccination. The Deltaasp24 mutants also display superior protection compared to DeltamanBA and DeltavirB2 mutants against heterologous challenge in mice. From this study, a direct association between protection against infection and cytokine response was not apparent between all vaccine groups and, therefore, correlates of protective immunity will need to be considered further. A distinct correlation between persistence of the vaccine strain and protection against infection was corroborated.
Collapse
Affiliation(s)
- M M Kahl-McDonagh
- Texas A&M University, Department of Veterinary Pathobiology, MS 4467, College Station, TX 77843-4467, USA
| | | |
Collapse
|
182
|
Sanakkayala N, Sokolovska A, Gulani J, Hogenesch H, Sriranganathan N, Boyle SM, Schurig GG, Vemulapalli R. Induction of antigen-specific Th1-type immune responses by gamma-irradiated recombinant Brucella abortus RB51. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2006; 12:1429-36. [PMID: 16339067 PMCID: PMC1317079 DOI: 10.1128/cdli.12.12.1429-1436.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brucella abortus strain RB51 is an attenuated rough mutant used as the live vaccine against bovine brucellosis in the United States and other countries. We previously reported the development of strain RB51 as a bacterial vaccine vector for inducing Th1-type immune responses against heterologous proteins. Because safety concerns may preclude the use of strain RB51-based recombinant live vaccines, we explored the ability of a gamma-irradiated recombinant RB51 strain to induce heterologous antigen-specific immune responses in BALB/c mice. Exposure of strain RB51G/LacZ expressing Escherichia coli beta-galactosidase to a minimum of 300 kilorads of gamma radiation resulted in complete loss of replicative ability. These bacteria, however, remained metabolically active and continued to synthesize beta-galactosidase. A single intraperitoneal inoculation of mice with 10(9) CFU equivalents of gamma-irradiated, but not heat-killed, RB51G/LacZ induced a beta-galactosidase-specific Th1-type immune response. Though no obvious differences were detected in immune responses to B. abortus-specific antigens, mice vaccinated with gamma-irradiated, but not heat-killed, RB51G/LacZ developed significant protection against challenge with virulent B. abortus. In vitro experiments indicated that gamma-irradiated and heat-killed RB51G/LacZ induced maturation of dendritic cells; however, stimulation with gamma-irradiated bacteria resulted in more interleukin-12 secretion. These results suggest that recombinant RB51 strains exposed to an appropriate minimum dose of gamma radiation are unable to replicate but retain their ability to stimulate Th1 immune responses against the heterologous antigens and confer protection against B. abortus challenge in mice.
Collapse
Affiliation(s)
- Neelima Sanakkayala
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Kahl-McDonagh MM, Elzer PH, Hagius SD, Walker JV, Perry QL, Seabury CM, den Hartigh AB, Tsolis RM, Adams LG, Davis DS, Ficht TA. Evaluation of novel Brucella melitensis unmarked deletion mutants for safety and efficacy in the goat model of brucellosis. Vaccine 2006; 24:5169-77. [PMID: 16697090 DOI: 10.1016/j.vaccine.2006.04.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 03/27/2006] [Accepted: 04/04/2006] [Indexed: 11/28/2022]
Abstract
Pregnant goats were employed to assess unmarked deletion mutant vaccine candidates BMDeltaasp24, BMDeltacydBA, and BMDeltavirB2, as the target host species naturally infected with Brucella melitensis. Goats were assessed for the degree of pathology associated with the vaccine strains as well as the protective immunity afforded by each strain against abortion and infection after challenge with wild-type Brucella melitensis 16M. Both BMDeltaasp24 and BMDeltavirB2 were considered safe vaccine candidates in the pregnant goat model because they did not cause abortion or colonize fetal tissues. BMDeltaasp24 was isolated from the maternal tissues only, indicating a slower rate of clearance of the vaccine strain than for BMDeltavirB2, which was not isolated from any maternal or fetal tissues. Both strains were protective against abortion and against infection in the majority of pregnant goats, although BMDeltaasp24 was more efficacious than BMDeltavirB2 against challenge infection.
Collapse
Affiliation(s)
- Melissa M Kahl-McDonagh
- Department of Veterinary Pathobiology, Texas A&M University and Texas Agricultural Experiment Station, College Station, TX 77843-4467, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Poester FP, Gonçalves VSP, Paixão TA, Santos RL, Olsen SC, Schurig GG, Lage AP. Efficacy of strain RB51 vaccine in heifers against experimental brucellosis. Vaccine 2006; 24:5327-34. [PMID: 16713034 DOI: 10.1016/j.vaccine.2006.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 04/04/2006] [Accepted: 04/09/2006] [Indexed: 10/24/2022]
Abstract
With the goal of providing an additional tool for controlling bovine brucellosis in Brazil and evaluating the full calf dose in adult cattle, the efficacy of the rough Brucella abortus strain RB51 vaccine was tested in heifers. Thirty-three females of approximately 24 months of age were divided in two groups: one group (n=20) received the RB51 vaccine and the other group (n=13) were used as non-vaccinated control. Animals in the vaccinated group were split in two sub-groups. One sub-group (n=12) was vaccinated subcutaneously with 1.5x10(10) colony forming units (CFU) of RB51 at Day 0 of the experiment and the other sub-group (n=8) was vaccinated subcutaneously with 1.6x10(10) CFU of RB51 at 60 days of gestation (Day 260 of the experiment). All cattle were challenged between 6 and 7 months of pregnancy with 3x10(8) CFU of the virulent strain 2308 of B. abortus by the conjunctival route. Vaccination with RB51 vaccine did not result in the production of any antibodies against the O-side chain of lipopolysaccharide (LPS), as measured by conventional serological tests (rose bengal plate agglutination test (RBPAT), standard tube agglutination test (STAT), and 2-mercaptoethanol test (2ME)). A total of 25% cumulative incidence of abortions was found in the vaccinated group, whereas in the control group the cumulative incidence was 62%. B. abortus RB51 was not isolated from any sample, and no abortions were produced by RB51 vaccination of females at 60 days of pregnancy. The results indicate that vaccination with RB51 prevented 59.4% of abortions, 58.6% of cow infections, and 61.0% of fetal infections. The relative risk (RR) revealed that non-vaccinated animals have 2.462 (95% CI 1.029-5.889) times higher risk of aborting than RB51-vaccinated animals.
Collapse
Affiliation(s)
- Fernando P Poester
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte - MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
185
|
Miyoshi A, Bermúdez-Humarán LG, Ribeiro LA, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Heterologous expression of Brucella abortus GroEL heat-shock protein in Lactococcus lactis. Microb Cell Fact 2006; 5:14. [PMID: 16556312 PMCID: PMC1444932 DOI: 10.1186/1475-2859-5-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 03/23/2006] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Brucella abortus is a facultative intracellular pathogen that mainly infects cattle and humans. Current vaccines rely on live attenuated strains of B. abortus, which can revert to their pathogenic status and thus are not totally safe for use in humans. Therefore, the development of mucosal live vaccines using the food-grade lactic acid bacterium, Lactococcus lactis, as an antigen delivery vector, is an attractive alternative and a safer vaccination strategy against B. abortus. Here, we report the construction of L. lactis strains genetically modified to produce B. abortus GroEL heat-shock protein, a candidate antigen, in two cellular locations, intracellular or secreted. RESULTS Only the secreted form of GroEL was stably produced in L. lactis, suggesting a detrimental effect of GroEL protein when intracellularly produced in this bacterium. Only trace amounts of mature GroEL were detected in the supernatant fraction of induced lactococcal cultures, and the GroEL precursor remained stacked in the cell fraction. Attempts to raise the secretion yields were made, but even when GroEL was fused to a synthetic propeptide, secretion of this antigen was not improved. CONCLUSION We found that L. lactis is able to produce, and to secrete, a stable form of GroEL into the extracellular medium. Despite the low secretion efficiency of GroEL, which suggest that this antigen interacts with the cell envelope of L. lactis, secretion seems to be the best way to achieve both production and protein yields, regardless of cellular location. The L. lactis strain secreting GroEL has potential for in vivo immunization.
Collapse
Affiliation(s)
- Anderson Miyoshi
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte – MG, Brasil
| | - Luis G Bermúdez-Humarán
- Unité d'Ecologie et Physiologie du Sistème Digestif, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
| | - Luciana A Ribeiro
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte – MG, Brasil
| | - Yves Le Loir
- Laboratoire de Microbiologie, Institut National de la Recherche Agronomique, Rennes Cedex, France
| | - Sérgio C Oliveira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte – MG, Brasil
| | - Philippe Langella
- Unité d'Ecologie et Physiologie du Sistème Digestif, Institut National de la Recherche Agronomique, Jouy en Josas Cedex, France
| | - Vasco Azevedo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte – MG, Brasil
| |
Collapse
|
186
|
Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp noncanonical LPS: structure, biosynthesis, and interaction with host immune system. Microb Cell Fact 2006; 5:13. [PMID: 16556309 PMCID: PMC1435926 DOI: 10.1186/1475-2859-5-13] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 03/23/2006] [Indexed: 11/10/2022] Open
Abstract
Brucella spp. are facultative intracellular pathogens that have the ability to survive and multiply in professional and non-professional phagocytes, and cause abortion in domestic animals and undulant fever in humans. Several species are recognized within the genus Brucella and this classification is mainly based on the difference in pathogenicity and in host preference. Brucella strains may occur as either smooth or rough, expressing smooth LPS (S-LPS) or rough LPS (R-LPS) as major surface antigen. This bacterium possesses an unconventional non-endotoxic lipopolysaccharide that confers resistance to anti-microbial attacks and modulates the host immune response. The strains that are pathogenic for humans (B. abortus, B. suis, B. melitensis) carry a smooth LPS involved in the virulence of these bacteria. The LPS O-chain protects the bacteria from cellular cationic peptides, oxygen metabolites and complement-mediated lysis and it is a key molecule for Brucella survival and replication in the host. Here, we review i) Brucella LPS structure; ii) Brucella genome, iii) genes involved in LPS biosynthesis; iv) the interaction between LPS and innate immunity.
Collapse
Affiliation(s)
- Patrícia Gomes Cardoso
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Gilson Costa Macedo
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Vasco Azevedo
- Department of General Biology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, 30161-970, Brazil
| | - Sergio Costa Oliveira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| |
Collapse
|
187
|
Vemulapalli TH, Vemulapalli R, Schurig GG, Boyle SM, Sriranganathan N. Role in virulence of a Brucella abortus protein exhibiting lectin-like activity. Infect Immun 2006; 74:183-91. [PMID: 16368972 PMCID: PMC1346633 DOI: 10.1128/iai.74.1.183-191.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucella abortus is a facultative, intracellular zoonotic pathogen which can cause undulant fever in humans and abortions in cattle. A 14-kDa protein of B. abortus was previously identified to be immunogenic in animals infected with Brucella spp. In this study, we discovered that the 14-kDa protein possessed immunoglobulin binding and hemagglutination properties that appeared to be based on the protein's lectin-like properties. Hemagglutination inhibition experiments suggested that the 14-kDa protein has affinity towards mannose. Disruption of the gene encoding the 14-kDa protein in virulent B. abortus strain 2308 induced a rough-like phenotype with an altered smooth lipopolysaccharide (LPS) immunoblot profile and a significant reduction in the bacterium's ability to replicate in mouse spleens. However, the mutant strain was stably maintained in mouse spleens at 2.0 to 2.6 log(10) CFU/spleen from day 1 to week 6 after intraperitoneal inoculation with 4.65 log(10) CFU. In contrast to the case for the smooth virulent strain 2308, in the rough attenuated strain RB51 disruption of the 14-kDa protein's gene had no effect on the mouse clearance pattern. These findings indicate that the 14-kDa protein of B. abortus possesses lectin-like properties and is essential for the virulence of the species, probably because of its direct or indirect role in the synthesis of smooth LPS.
Collapse
Affiliation(s)
- Tracy H Vemulapalli
- Center for Molecular Medicine and Infectious Diseases, 1410 Prices Fork Road, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
188
|
González-Smith A, Vemulapalli R, Andrews E, Oñate A. Evaluation of Brucella abortus DNA vaccine by expression of Cu–Zn superoxide dismutase antigen fused to IL-2. Immunobiology 2006; 211:65-74. [PMID: 16446171 DOI: 10.1016/j.imbio.2005.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Accepted: 09/06/2005] [Indexed: 11/30/2022]
Abstract
The Cu-Zn superoxide dismutase (SOD) antigen of Brucella abortus was previously identified to be a T cell antigen which induces both proliferation of and gamma interferon (IFN-gamma) secretion by T cells from infected mice. In an earlier study, we demonstrated that intramuscular injection of mice with a plasmid DNA carrying the gene for SOD leads to the development of significant protection against B. abortus challenge. It has been reported that the antigen-specific immune responses generated by a DNA vaccine can be enhanced by co-delivery of certain cytokine genes. In this study, we evaluated the effect of delivering IL-2 on the efficacy of SOD DNA vaccine by generating a plasmid (pSecTag-SOD-IL2) that codes for a secretory fusion protein of SOD and IL-2. Another plasmid (pSecTag-SOD) that codes for only SOD as a secretory protein was used for comparison. BALB/c mice injected intramuscularly with pSecTag-SOD or pSecTag-SOD-IL2, but not the control plasmid pSecTag, developed SOD-specific antibody and T cell immune responses. Upon in vitro stimulation with recombinant SOD (rSOD) antigen, T cells from mice immunized with pSecTag-SOD-IL2, in comparison with those from mice immunized with pSecTag-SOD, exhibited a lower proliferation response but produced significantly higher concentrations of IFN-gamma. Both DNA vaccines, however, induced similar levels of SOD-specific antibodies and cytotoxic T cell response. Although mice immunized with pSecTag-SOD-IL2 showed increased resistance to challenge with B. abortus virulent strain 2308, this increase was not statistically significant from that of pSecTag-SOD vaccinated mice. These results suggest that a SOD DNA vaccine fused to IL2 did not improve protection efficacy.
Collapse
Affiliation(s)
- Andrés González-Smith
- Faculty of Biological Sciences, Molecular Immunology Laboratory, Department of Microbiology, Universidad de Concepción, P.O. Box 152-C, Concepción, Chile
| | | | | | | |
Collapse
|
189
|
Jacob J, Hort GM, Overhoff P, Mielke MEA. In vitro and in vivo characterization of smooth small colony variants of Brucella abortus S19. Microbes Infect 2005; 8:363-71. [PMID: 16239117 DOI: 10.1016/j.micinf.2005.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 06/14/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Brucella abortus is known to produce chronic infections in both humans and a variety of animal species. However, the mechanisms underlying the persistence of the bacteria in the presence of an ongoing immune response are still unknown. In this respect we made use of the observation that in vitro grown B. abortus S19 exhibits heterogenicity in colony size when plated onto TS agar, while experimental infection of mice uniformly results in the in vivo selection of the small colony variant. We demonstrate that the spontaneous smooth small colony variant is characterized not only by a slower growth rate in vitro but also by an increased tolerance to hyperosmotic medium and, most importantly, a less effective clearance from spleens and livers of experimentally infected mice. On a molecular level, a gene with homology to a formerly described galactoside transport ATP binding protein (mglA) was differentially expressed in small versus large colonies of B. abortus S19.
Collapse
Affiliation(s)
- J Jacob
- Robert Koch-Institut, Nordufer 20, 13353 Berlin, Germany.
| | | | | | | |
Collapse
|
190
|
Bandara AB, Sriranganathan N, Schurig GG, Boyle SM. Carboxyl-terminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J Bacteriol 2005; 187:5767-75. [PMID: 16077124 PMCID: PMC1196076 DOI: 10.1128/jb.187.16.5767-5775.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative carboxyl-terminal processing protease (CtpA) of Brucella suis 1330 is a member of a novel family of endoproteases involved in the maturation of proteins destined for the cell envelope. The B. suis CtpA protein shared up to 77% homology with CtpA proteins of other bacteria. A CtpA-deficient Brucella strain (1330DeltactpA), generated by allelic exchange, produced smaller colonies on enriched agar plates and exhibited a 50% decrease in growth rate in enriched liquid medium and no growth in salt-free enriched medium compared to the wild-type strain 1330 or the ctpA-complemented strain 1330DeltactpA[pBBctpA]. Electron microscopy revealed that in contrast to the native coccobacillus shape of wild-type strain 1330, strain 1330DeltactpA possessed a spherical shape, an increased cell diameter, and cell membranes partially dissociated from the cell envelope. In the J774 mouse macrophage cell line, 24 h after infection, the CFU of the strain 1330DeltactpA declined by approximately 3 log(10) CFU relative to wild-type strain 1330. Nine weeks after intraperitoneal inoculation of BALB/c mice, strain 1330DeltactpA had cleared from spleens but strain 1330 was still present. These observations suggest that the CtpA activity is necessary for the intracellular survival of B. suis. Relative to the saline-injected mice, strain 1330DeltactpA-vaccinated mice exhibited 4 to 5 log(10) CFU of protection against challenge with virulent B. abortus strain 2308 or B. suis strain 1330 but no protection against B. melitensis strain 16 M. This is the first report correlating a CtpA deficiency with cell morphology and attenuation of B. suis.
Collapse
Affiliation(s)
- Aloka B Bandara
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Rd., Blacksburg, VA 24061-0342, USA
| | | | | | | |
Collapse
|
191
|
Bandara AB, Sriranganathan N, Schurig GG, Boyle SM. Putative outer membrane autotransporter protein influences survival of Brucella suis in BALB/c mice. Vet Microbiol 2005; 109:95-104. [PMID: 15970403 DOI: 10.1016/j.vetmic.2005.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/29/2005] [Accepted: 05/09/2005] [Indexed: 11/25/2022]
Abstract
In Gram-negative bacteria, autotransporters are secreted proteins able to translocate themselves through the inner- and outer-membranes to the cell surface or to the extracellular environment. The influence of the putative outer membrane autotransporter (OmaA) protein to the persistence of Brucella suis was investigated. Sequence analyses revealed that the OmaA protein of B. suis strain 1330 consists of a signal peptide, a passenger alpha-domain, and a transporter beta-domain, which are the characteristic components of an autotransporter protein. The transporter beta-domain consists of 14 individual amphipathic beta-strands, and a 46-amino acid long alpha-helix lies upstream of the transporter domain, indicating that the B. suis OmaA is a type-I classical autotransporter. BLAST search and phylogenetic analyses revealed that the B. suis OmaA protein shares more similarities with adhesin autotransporter proteins than with protease autotransporter proteins of other bacteria. An OmaA-deficient strain (1330DeltaomaA) was generated by disrupting the DNA region encoding the passenger alpha-domain of the OmaA protein of B. suis wild type strain 1330. The omaA gene encoding the full-length OmaA protein was cloned and used to complement the OmaA-deficient strain. The OmaA-deficient strain did not differ from the wild type strain in terms of persistence in J774 macrophage cell line 24 and 48 h after inoculation, or clearance from the spleens of BALB/c mice at 1 week after intraperitoneal inoculation. These observations suggest that the function of the OmaA protein is dispensable during the acute phase of B. suis infection. However, the OmaA-deficient strain was cleared from the spleens of BALB/c mice faster than the wild type strain between the third and the ninth week after intraperitoneal inoculation, indicating that the OmaA may be important during the chronic phase of B. suis infection. Relative to the BALB/c mice injected with saline, those vaccinated with the OmaA-deficient strain exhibited 3.0-3.9log10 colony forming units protection against a challenge with B. suis strain 1330. This study is the first report correlating an autotransporter protein deficiency with persistence of B. suis in vitro and in vivo.
Collapse
Affiliation(s)
- Aloka B Bandara
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1800 Kraft Drive, Blacksburg, VA 24061-0484, USA.
| | | | | | | |
Collapse
|
192
|
Diptee MD, Adesiyun AA, Asgarali Z, Campbell M, Adone R. Serologic responses, biosafety and clearance of four dosages of Brucella abortus strain RB51 in 6-10 months old water buffalo (Bubalus bubalis). Vet Immunol Immunopathol 2005; 109:43-55. [PMID: 16112746 DOI: 10.1016/j.vetimm.2005.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 06/09/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Thirty water buffalo were obtained from a brucellosis-free farm in order to evaluate antibody responses, bacterial clearance and safety to Brucella abortus strain RB51 vaccine in a dose response study. The animals were randomly divided into five treatment groups. Groups I-V received the recommended dose of RB51 vaccine (RD) once, RD twice 4 weeks apart, double RD once, double RD twice 4 weeks apart and saline once, respectively. Antibody responses to RB51 were monitored at 2, 4, 6, 8, 10, 12, 16 18, 22, 24 and 27 post-initial-inoculation weeks (PIW). Clearance of RB51 from the prescapular lymph node was evaluated at 2, 4, 6, 12, 18 and 24 PIW for groups 1, III and V and at 6, 8, 10, 16, 22 and 27 PIW for groups II and IV. To evaluate shedding of the RB51 strain, nasal, conjunctival, vaginal or preputial swabs were taken from all experimental animals at 1, 2, 3, 4, 6, 8 and 12 PIW. Sera taken at all PIW were negative for field strain B. abortus by both the buffered plate agglutination test (BPAT) and competitive enzyme-linked immunosorbent assay (c-ELISA). Antibody responses to RB51 were demonstrated in all vaccinates but not in the controls, up to 12 PIW, by complement fixation test (CFT) and the dot-blot assay with an 83.7% agreement for both tests. Clearance of RB51 occurred between 6 and 12 PIW in group I but less than 2 weeks after booster vaccinations in groups II and IV and between 4 and 6 PIW in group III. RB51 was not recovered at any time from swabs obtained from either RB51-vaccinates or non-vaccinates. The results of this study indicate that serologic responses to RB51 vaccination can be monitored by both CFT and dot-blot assay in water buffalo. Our data also indicates that RB51 vaccination does not interfere with brucellosis sero-surveillance and is safe (no serological and bacteriological evidence of spread to non-vaccinates, no adverse clinical signs or detectable abnormalities on haematology and serum biochemistry) for use in water buffalo.
Collapse
Affiliation(s)
- M D Diptee
- Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, Champs Fleurs, Trinidad and Tobago.
| | | | | | | | | |
Collapse
|
193
|
Baloglu S, Boyle SM, Vemulapalli R, Sriranganathan N, Schurig GG, Toth TE. Immune responses of mice to vaccinia virus recombinants expressing either Listeria monocytogenes partial listeriolysin or Brucella abortus ribosomal L7/L12 protein. Vet Microbiol 2005; 109:11-7. [PMID: 15941627 DOI: 10.1016/j.vetmic.2005.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 04/22/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
The Brucella abortus L7/L12 gene encoding ribosomal protein L7/L12 and the Listeria monocytogenes partial hly gene encoding the protective region of the hemolysin (partial listeriolysin, pLLO) were cloned into vaccinia virus by homologous recombination to produce recombinants WRL7/L12 and WRpLLO, respectively. The ability of these recombinants to induce humoral, cell mediated and protective immune response in mice was assessed. Although mice inoculated with WRL7/L12 recombinant produced antibodies specific to vaccinia virus and L7/L12 antigens, they were not protected against a virulent challenge with B. abortus 2308 strain. In contrast, mice inoculated with WRpLLO were protected against a challenge with virulent L. monocytogenes. Stimulation with purified fusion listeriolysin protein (MBP-LLO), but not with unrelated control protein (MBP), induced splenocytes from WRpLLO-inoculated mice to secrete significantly higher amounts of IFN-gamma than saline inoculated mice. Mice inoculated with either WRpLLO or WRL7/L12 recombinants produced predominantly IgG2a isotype antibody responses, indicative of a Th1 type of immune response. The protective potential of the WRpLLO recombinant correlated with the level of IFN-gamma produced in these mice.
Collapse
Affiliation(s)
- Simge Baloglu
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathobiology, VA-MD Regional College of Veterinary Medicine, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, VA 24060, USA
| | | | | | | | | | | |
Collapse
|
194
|
Paranavitana C, Zelazowska E, Izadjoo M, Hoover D. Interferon-gamma associated cytokines and chemokines produced by spleen cells from Brucella-immune mice. Cytokine 2005; 30:86-92. [PMID: 15804600 DOI: 10.1016/j.cyto.2004.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 11/30/2004] [Accepted: 12/17/2004] [Indexed: 11/22/2022]
Abstract
It is known that interferon (IFN)-gamma plays a critical role in protection against brucellosis. In this study we have investigated several cytokines and chemokines that are associated with IFN-gamma for potential in vitro correlates of protection. We cultured spleen cells in vitro from mice immunized orally with a live, attenuated Brucella melitensis vaccine candidate (WR201) and stimulated these cells with a lysate of B. melitensis. Differential gene expression of several cytokines and chemokines in stimulated spleen cells was analysed by real-time PCR, and secreted proteins were determined by ELISA. Immunized mice produced higher levels of both protein and gene transcripts for IFN-gamma, interleukin (IL)-2, IL-18 and MIP1-alpha. Immunized mice also had elevated gene expression levels for IL12-p40, IL23-p19, IP-10, MIG and MCP-1 when compared to normal mice. In this study we have identified new cytokines and chemokines as potential immune correlates in responses to protection in Brucella-vaccinated mice.
Collapse
Affiliation(s)
- Chrysanthi Paranavitana
- Department of Bacterial Diseases, Walter Reed Army Institute of Research, Bldg 503, Room 3E10, Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
195
|
Diptee MD, Adesiyun AA, Asgarali Z, Campbell M, Fosgate GT. Evaluation of cell-mediated immune responses and bacterial clearance in 6–10 months old water buffalo (Bubalus bubalis) experimentally vaccinated with four dosages of commercial Brucella abortus strain RB51 vaccine. Vet Immunol Immunopathol 2005; 106:209-20. [PMID: 15963819 DOI: 10.1016/j.vetimm.2005.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2004] [Revised: 01/18/2005] [Accepted: 02/10/2005] [Indexed: 11/26/2022]
Abstract
Thirty water buffalo, obtained from a brucellosis-free farm, were used to evaluate cell-mediated immune responses and bacterial clearance in response to vaccination with Brucella abortus strain RB51 (RB51) in a dose-response study. The animals were randomly divided into five treatment groups. Groups I--V received the recommended dose (RD) of RB51 vaccine once, RD twice 4 weeks apart, double RD once, double RD twice 4 weeks apart and saline once, respectively. Cell-mediated immune response to RB51 was assessed by the histological examination of haematoxylin and eosin (H&E) stained sections of lymph nodes draining the sites of inoculation and by comparison of stimulation indices (SI) derived from gamma interferon (IFN-gamma) assay. A mixture of cytoplasmic proteins from B. melitensis B115 (brucellergene) was used as a specific antigenic stimulus to peripheral blood mononuclear cells (PBMC) and lymph node mononuclear cells (LNMC) up to 22 post-initial-inoculation week (PIW). Supernatants harvested at 18-24h after the in vitro antigenic stimulus were assayed for their IFN-gamma content by using a commercial sandwich enzyme-linked immunosorbent assay (ELISA) kit. Clearance of RB51 was assessed by the sequential immunohistochemical examination of sections of draining lymph nodes post-inoculation. There was no observable expansion of the deep cortex of lymph nodes on H&E sections indicating poor T-cell stimulation. All group V (control) water buffalo PBMC ELISA values were negative (SI<2.2) at all PIW sampling intervals. Overall PBMC IFN-gamma assay detected vaccinates from treatment groups' I--IV 67% (4/6), 83% (5/6), 33% (2/6) and 67% (4/6), respectively. LNMC IFN-gamma assay was unimpressive and there was a negative correlation (--.08) between the results of PBMC and LNMC of IFN-gamma assay. Clearance of RB51 occurred between 4 and 6 PIW in treatment groups I and III and between 6 and 12 PIW in groups II and IV. RB51 was not detected in any of the control animals at sampling intervals post-inoculation.
Collapse
Affiliation(s)
- M D Diptee
- Faculty of Medical Sciences, School of Veterinary Medicine, University of the West Indies, Champs Fleurs, Trinidad and Tobago.
| | | | | | | | | |
Collapse
|
196
|
Adone R, Ciuchini F, Marianelli C, Tarantino M, Pistoia C, Marcon G, Petrucci P, Francia M, Riccardi G, Pasquali P. Protective properties of rifampin-resistant rough mutants of Brucella melitensis. Infect Immun 2005; 73:4198-204. [PMID: 15972510 PMCID: PMC1168545 DOI: 10.1128/iai.73.7.4198-4204.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/02/2005] [Accepted: 03/08/2005] [Indexed: 11/20/2022] Open
Abstract
Vaccination against Brucella infections in animals is usually performed by administration of live attenuated smooth B. abortus strain S19 and B. melitensis strain Rev1. They are proven effective vaccines against B. abortus in cattle and against B. melitensis and B. ovis in sheep and goats, respectively. However, both vaccines have the main drawback of inducing O-polysaccharide-specific antibodies that interfere with serologic diagnosis of disease. In addition, they retain residual virulence, being a cause of abortion in pregnant animals and infection in humans. To overcome these problems, one approach is to develop defined rough mutant Brucella strains lacking O antigen of lipopolysaccharide. B. abortus rough strain RB51, a rifampin-resistant mutant of virulent strain B. abortus 2308, is used as a vaccine against B. abortus infection in cattle in some countries. However, RB51 is not effective in sheep, and there is only preliminary evidence that it is effective in goats. In this study, we tested the efficacies of six rifampin-resistant rough strains of B. melitensis in protecting BALB/c mice exposed to B. melitensis infection. The protective properties, as well as both humoral and cellular immune responses, were assessed in comparison with those provided by B. melitensis Rev1 and B. abortus RB51 vaccines. The results indicated that these rough mutants were able to induce a very good level of protection against B. melitensis infection, similar to that provided by Rev1 and superior to that of RB51, without inducing antibodies to O antigen. In addition, all B. melitensis mutants were able to stimulate good production of gamma interferon. The characteristics of these strains encourage further evaluation of them as alternative vaccines to Rev1 in primary host species.
Collapse
Affiliation(s)
- R Adone
- Istituto Superiore di Sanità, Dipartimento di Sanità Alimentare ed Animale, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Oñate AA, Donoso G, Moraga-Cid G, Folch H, Céspedes S, Andrews E. An RNA vaccine based on recombinant Semliki Forest virus particles expressing the Cu,Zn superoxide dismutase protein of Brucella abortus induces protective immunity in BALB/c mice. Infect Immun 2005; 73:3294-300. [PMID: 15908354 PMCID: PMC1111843 DOI: 10.1128/iai.73.6.3294-3300.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We constructed infectious but replication-deficient Semliki Forest virus (SFV) particles carrying recombinant RNA encoding Brucella abortus Cu,Zn superoxide dismutase (SOD). The recombinant SFV particles (SFV-SOD particles) were then evaluated for their ability to induce a T-cell immune response and to protect BALB/c mice against a challenge with B. abortus 2308. Intraperitoneal injection of mice with recombinant SFV-SOD particles did not lead to the induction of SOD-specific antibodies, at least until week 6 after immunization (the end of the experiment). In vitro stimulation of splenocytes from the vaccinated mice with either recombinant Cu,Zn SOD (rSOD) or crude Brucella protein resulted in a T-cell proliferative response and the induction of gamma interferon secretion but not interleukin-4. In addition, the splenocytes exhibited significant levels of cytotoxic T-lymphocyte activity against Brucella-infected cells. The SFV-SOD particles, but not the control virus particles, induced a significant level of protection in BALB/c mice against challenge with B. abortus virulent strain 2308. These findings indicated that an SFV-based vector carrying the SOD gene has potential for use as a vaccine to induce resistance against B. abortus infections.
Collapse
Affiliation(s)
- Angel A Oñate
- Department of Microbiology, Faculty of Biological Sciences, Universidad de Concepción, P.O. Box 152-C, Concepción, Chile.
| | | | | | | | | | | |
Collapse
|
198
|
Jiménez de Bagüés MP, Gross A, Terraza A, Dornand J. Regulation of the mitogen-activated protein kinases by Brucella spp. expressing a smooth and rough phenotype: relationship to pathogen invasiveness. Infect Immun 2005; 73:3178-83. [PMID: 15845529 PMCID: PMC1087367 DOI: 10.1128/iai.73.5.3178-3183.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By comparing smooth wild-type Brucella spp. to their rough mutants, we show that the LPS O chain restricted the activation of the ERK1/2 and p38 mitogen-activated protein kinase (MAPK) pathways, thus preventing the synthesis of immune mediators that regulate host defense. We conclude that the MAPKs are a target for immune intervention by virulent smooth Brucella.
Collapse
Affiliation(s)
- María P Jiménez de Bagüés
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Ap. 727, 50080 Zaragoza, Spain.
| | | | | | | |
Collapse
|
199
|
Vemulapalli R, Contreras A, Sanakkayala N, Sriranganathan N, Boyle SM, Schurig GG. Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice. Vet Microbiol 2005; 102:237-45. [PMID: 15327798 DOI: 10.1016/j.vetmic.2004.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 06/21/2004] [Accepted: 07/01/2004] [Indexed: 11/24/2022]
Abstract
Brucella abortus strain RB51 is an attenuated rough strain, currently being used as the official live vaccine for bovine brucellosis in the USA and several other countries. In strain RB51, the wboA gene, encoding a glycosyltransferase required for the O-side chain synthesis, is disrupted by an IS711 element. Recently, we have demonstrated that strain RB51WboA, RB51 complemented with a functional wboA gene, remains rough but expresses low quantities of O-side chain in the cytoplasm. Mice vaccinated with strain RB51WboA develop greatly enhanced resistance against challenge with B. abortus virulent strain 2308. We have also demonstrated that overexpression of Cu/Zn superoxide dismutase (SOD) in strain RB51 (RB51SOD) significantly increases its vaccine efficacy against strain 2308 challenge. In this study, we constructed a new recombinant strain, RB51SOD/WboA, that over expresses SOD with simultaneous expression of O-side chain in the cytoplasm. We tested the vaccine potential of strains RB51SOD, RB51WboA, RB51SOD/WboA against challenge with virulent Brucella melitensis 16M and B. abortus 2308 in mice. In comparison with strain RB51, strain RB51SOD induced better protection against strain 2308, but not strain 16M, challenge. Similar to strain RB51WboA, vaccination with strain RB51SOD/WboA resulted in complete protection of the mice from infection with strain 2308. When challenged with strain 16M, mice vaccinated with either strain RB51WboA or strain RB51SOD/WboA were significantly better protected than those vaccinated with strain RB51 or RB51SOD. These results suggest that strains RB51WboA and RB51SOD/WboA are good vaccine candidates for inducing enhanced protection against B. melitensis infection.
Collapse
Affiliation(s)
- Ramesh Vemulapalli
- Department of Veterinary Pathobiology, School of Veterinary Medicine, Purdue University, 725 Harrison Street, West Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
200
|
Marianelli C, Ciuchini F, Tarantino M, Pasquali P, Adone R. Genetic bases of the rifampin resistance phenotype in Brucella spp. J Clin Microbiol 2005; 42:5439-43. [PMID: 15583262 PMCID: PMC535235 DOI: 10.1128/jcm.42.12.5439-5443.2004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rifampin is one of the most potent and broad-spectrum antibiotics against bacterial pathogens. Its bactericidal activity is due to its ability to bind to the beta subunit of the DNA-dependent RNA polymerase encoded by the rpoB gene. Mutations of the rpoB gene have been characterized in rifampin-resistant (Rif(r)) strains of Escherichia coli and Mycobacterium tuberculosis. The genetic bases of Rif(r) in Brucella spp. are still unknown. In the present study, the nucleotide sequences of the rpoB gene of the Rif(r) vaccine strain Brucella abortus RB51 and of 20 Rif(r) clones derived in our laboratory from two Brucella melitensis isolates were determined. These sequences were then compared to those of the respective rifampin-susceptible (Rif(s)) parental strains and to the published B. melitensis strain 16M. All Rif(r) strains carried one or more missense mutations mapping in two regions of the rpoB gene. These two "hot" regions were investigated in eight additional Rif(r) Brucella laboratory mutants and in 20 reference Rif(s) Brucella strains. rpoB mutations were found in all Rif(r) mutants. In contrast, no missense mutations were found in any analyzed Rif(s) strains. Our results represent the first from a study of the molecular characterization of rpoB mutations in resistant Brucella strains and provide an additional proof of the association of specific rpoB mutations with the development of the Rif(r) phenotype in prokaryotes. In addition, because of the relationship between Rif(r) and the attenuation of virulence in Brucella spp., studies of virulence in these mutants may provide useful information about the genetic basis of pathogenesis in Brucella.
Collapse
Affiliation(s)
- Cinzia Marianelli
- Dipartimento di Sanità Alimentare ed Animale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | | | |
Collapse
|