151
|
Li J, Casanova JL, Puel A. Mucocutaneous IL-17 immunity in mice and humans: host defense vs. excessive inflammation. Mucosal Immunol 2018; 11:581-589. [PMID: 29186107 PMCID: PMC5975098 DOI: 10.1038/mi.2017.97] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/07/2017] [Indexed: 02/07/2023]
Abstract
Interleukin (IL)-17A is a pro-inflammatory cytokine in mice and humans. It is recognized as a key factor for the protection of mice against various pathogens, but it also underlies pathogenic inflammatory responses in numerous mouse models. The inborn errors of IL-17A- and IL-17F-mediated immunity identified in humans in the last decade have revealed that IL-17A and IL-17F are key players in mucocutaneous immunity to Candida albicans, and, to a lesser extent, Staphylococcus aureus. By contrast, there is currently no genetic evidence for a causal link between excess of IL-17 and autoimmunity, autoinflammation, or allergy in humans. We discuss here the physiological and pathological roles of mouse and human IL-17A and IL-17F in host defense and excessive inflammation. We highlight recent advances in our understanding of the consequences of deficient or excessive IL-17 immunity at various mucocutaneous sites, including the oral cavity, skin, intestine, lungs, and vagina.
Collapse
Affiliation(s)
- Juan Li
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France, EU
- Paris Descartes University, Imagine Institute, 75015 Paris, France, EU
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, 75015 Paris, France, EU
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, 75015 Paris, France, EU
- Paris Descartes University, Imagine Institute, 75015 Paris, France, EU
| |
Collapse
|
152
|
Kurte M, Luz-Crawford P, Vega-Letter AM, Contreras RA, Tejedor G, Elizondo-Vega R, Martinez-Viola L, Fernández-O'Ryan C, Figueroa FE, Jorgensen C, Djouad F, Carrión F. IL17/IL17RA as a Novel Signaling Axis Driving Mesenchymal Stem Cell Therapeutic Function in Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:802. [PMID: 29760692 PMCID: PMC5936796 DOI: 10.3389/fimmu.2018.00802] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/03/2018] [Indexed: 12/24/2022] Open
Abstract
The therapeutic effect of mesenchymal stem cells (MSCs) in multiple sclerosis (MS) and the experimental autoimmune encephalomyelitis (EAE) model has been well described. This effect is, in part, mediated through the inhibition of IL17-producing cells and the generation of regulatory T cells. While proinflammatory cytokines such as IFNγ, TNFα, and IL1β have been shown to enhance MSCs immunosuppressive function, the role of IL17 remains poorly elucidated. The aim of this study was, therefore, to investigate the role of the IL17/IL17R pathway on MSCs immunoregulatory effects focusing on Th17 cell generation in vitro and on Th17-mediated EAE pathogenesis in vivo. In vitro, we showed that the immunosuppressive effect of MSCs on Th17 cell proliferation and differentiation is partially dependent on IL17RA expression. This was associated with a reduced expression level of MSCs immunosuppressive mediators such as VCAM1, ICAM1, and PD-L1 in IL17RA-/- MSCs as compared to wild-type (WT) MSCs. In the EAE model, we demonstrated that while WT MSCs significantly reduced the clinical scores of the disease, IL17RA-/- MSCs injected mice exhibited a clinical worsening of the disease. The disability of IL17RA-/- MSCs to reduce the progression of the disease paralleled the inability of these cells to reduce the frequency of Th17 cells in the draining lymph node of the mice as compared to WT MSCs. Moreover, we showed that the therapeutic effect of MSCs was correlated with the generation of classical Treg bearing the CD4+CD25+Foxp3+ signature in an IL17RA-dependent manner. Our findings reveal a novel role of IL17RA on MSCs immunosuppressive and therapeutic potential in EAE and suggest that the modulation of IL17RA in MSCs could represent a novel method to enhance their therapeutic effect in MS.
Collapse
Affiliation(s)
- Mónica Kurte
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Ana María Vega-Letter
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Rafael A Contreras
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile.,Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Gautier Tejedor
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Roberto Elizondo-Vega
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Luna Martinez-Viola
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Catalina Fernández-O'Ryan
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | - Fernando E Figueroa
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Universidad de Los Andes, Santiago, Chile
| | | | - Farida Djouad
- IRMB, INSERM, Université de Montpellier, Montpellier, France
| | - Flavio Carrión
- Programa de Inmunología Traslacional, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
153
|
Monin L, Gaffen SL. Interleukin 17 Family Cytokines: Signaling Mechanisms, Biological Activities, and Therapeutic Implications. Cold Spring Harb Perspect Biol 2018; 10:a028522. [PMID: 28620097 PMCID: PMC5732092 DOI: 10.1101/cshperspect.a028522] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cytokines of the interleukin 17 (IL-17) family play a central role in the control of infections, especially extracellular fungi. Conversely, if unrestrained, these inflammatory cytokines contribute to the pathology of numerous autoimmune and chronic inflammatory conditions. Recent advances have led to the approval of IL-17A-blocking biologics for the treatment of moderate to severe plaque psoriasis, but much remains to be understood about the biological functions, regulation, and signaling pathways downstream of these factors. In this review, we outline the current knowledge of signal transduction and known physiological activities of IL-17 family cytokines. We will highlight in particular the current understanding of these cytokines in the context of skin manifestations of disease.
Collapse
Affiliation(s)
- Leticia Monin
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
154
|
IL-17 inhibition: is it the long-awaited savior for alopecia areata? Arch Dermatol Res 2018; 310:383-390. [DOI: 10.1007/s00403-018-1823-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/24/2018] [Accepted: 02/23/2018] [Indexed: 01/13/2023]
|
155
|
A positive feedback loop of IL-17B-IL-17RB activates ERK/β-catenin to promote lung cancer metastasis. Cancer Lett 2018; 422:44-55. [PMID: 29496538 DOI: 10.1016/j.canlet.2018.02.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 11/20/2022]
Abstract
Inflammation contributes to the development and progression of cancer. Interleukin-17 (IL-17) is an inflammatory cytokine that functions in inflammation and cancer, as well as several other cellular processes. In this study, we investigated the roles and the prognostic value of IL-17 and the IL-17 receptor (IL-17R) in lung cancer. Gene expression microarray analysis followed by Kaplan-Meier survival curve showed that IL-17B was associated with poor patient survival, and IL-17B receptor (IL-17RB) was up-regulated in lung cancer tissue compared with normal tissue. Expression of IL-17RB was associated with lymph node metastasis and distant metastasis, as well as poor patient survival. IL-17RB overexpression significantly increased cancer cell invasion/migration and metastasis in vitro and in vivo. IL-17RB induced ERK phosphorylation, resulting in GSK3β inactivation and leading to β-catenin up-regulation. IL-17RB also participated in IL-17B synthesis via the ERK pathway. IL-17RB activation is required for IL-17B-mediated ERK phosphorylation. Taken together, IL-17B-IL-17RB signaling and ERK participate in a positive feedback loop that enhances invasion/migration ability in lung cancer cell lines. IL-17RB may therefore serve as an independent prognostic factor and a therapeutic target for lung cancer.
Collapse
|
156
|
Role of Interleukin- (IL-) 17 in the Pathogenesis and Targeted Therapies in Spondyloarthropathies. Mediators Inflamm 2018; 2018:2403935. [PMID: 29670461 PMCID: PMC5833467 DOI: 10.1155/2018/2403935] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/18/2017] [Accepted: 12/31/2017] [Indexed: 12/11/2022] Open
Abstract
Spondyloarthropathy (SpA) is a unique type of joint inflammation characterized by coexisting erosive bone damage and pathological new bone formation. Previous genetic association studies have demonstrated that several cytokine pathways play a critical role in the pathogenesis of ankylosing spondylitis (AS), psoriatic arthritis (PsA), and other types of SpA. In addition to several well-known proinflammatory cytokines, recent studies suggest that IL-17 plays a pivotal role in the pathogenesis of SpA. Further evidence from human and animal studies have defined that IL-17 and IL-17-producing cells contribute to tissue inflammation, autoimmunity, and host defense, leading to the following pathologic events associated with SpA. Recently, several clinical trials targeting IL-17 pathways demonstrated the positive response of IL-17 blockade in treating AS, indicating a great potential of IL-17-targeting therapy in SpA. In this review article, we have discussed the contributing role of IL-17 and different IL-17-producing cells in the pathogenesis of SpA and provided an outline of therapeutic application of the IL-17 blockade in the treatment of SpA. Other targeted cytokines associated with IL-17 axis in SpA will also be included.
Collapse
|
157
|
Chamoun MN, Blumenthal A, Sullivan MJ, Schembri MA, Ulett GC. Bacterial pathogenesis and interleukin-17: interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection. Crit Rev Microbiol 2018; 44:465-486. [PMID: 29345518 DOI: 10.1080/1040841x.2018.1426556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.
Collapse
Affiliation(s)
- Michelle N Chamoun
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| | - Antje Blumenthal
- b The University of Queensland Diamantina Institute, Translational Research Institute , Brisbane , Australia
| | - Matthew J Sullivan
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| | - Mark A Schembri
- c School of Chemistry and Molecular Biosciences, and Australian Infectious Disease Research Centre , The University of Queensland , Brisbane , Australia
| | - Glen C Ulett
- a School of Medical Science, and Menzies Health Institute Queensland , Griffith University , Southport , Australia
| |
Collapse
|
158
|
Personalized Antidepressant Selection and Pathway to Novel Treatments: Clinical Utility of Targeting Inflammation. Int J Mol Sci 2018; 19:ijms19010233. [PMID: 29329256 PMCID: PMC5796181 DOI: 10.3390/ijms19010233] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/27/2017] [Accepted: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic condition that affects one in six adults in the US during their lifetime. The current practice of antidepressant medication prescription is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond to two or more antidepressant treatments. There are no valid clinical markers to personalize currently available antidepressant medications, all of which have similar mechanisms targeting monoamine neurotransmission. The goal of this review is to summarize the recent findings of immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize treatment selection, and the potential of targeting inflammation to develop novel antidepressant treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests. With this approach, 4.5 patients need to be treated for 1 additional remission as compared to a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin 6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients with chronic inflammatory conditions who report significant depressive symptoms. Additional novel antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer the potential not only to personalize antidepressant prescription but also to guide the development of novel mechanistically-guided antidepressant treatments.
Collapse
|
159
|
Hiltensperger M, Korn T. The Interleukin (IL)-23/T helper (Th)17 Axis in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029637. [PMID: 29101111 DOI: 10.1101/cshperspect.a029637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
T helper (Th)17 cells are responsible for host defense against fungi and certain extracellular bacteria but have also been reported to play a role in a variety of autoimmune diseases. Th17 cells respond to environmental cues, are very plastic, and might also be involved in tissue homeostasis and regeneration. The imprinting of pathogenic properties in Th17 cells in autoimmunity seems highly dependent on interleukin (IL)-23. Since Th17 cells were first described in experimental autoimmune encephalomyelitis, they have been suggested to also promote tissue damage in multiple sclerosis (MS). Indeed, some studies linked Th17 cells to disease severity in MS, and the efficacy of anti-IL-17A therapy in MS supported this idea. In this review, we will summarize molecular features of Th17 cells and discuss the evidence for their function in experimental models of autoimmune diseases and MS.
Collapse
Affiliation(s)
- Michael Hiltensperger
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany
| | - Thomas Korn
- Klinikum rechts der Isar, Department of Neurology, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
160
|
Abstract
Although autism spectrum disorder (ASD) has a strong genetic basis, its etiology is complex, with several genetic factors likely to be involved as well as environmental factors. Immune dysregulation has gained significant attention as a causal mechanism in ASD pathogenesis. ASD has been associated with immune abnormalities in the brain and periphery, including inflammatory disorders and autoimmunity in not only the affected individuals but also their mothers. Prenatal exposure to maternal immune activation (MIA) has been implicated as an environmental risk factor for ASD. In support of this notion, animal models have shown that MIA results in offspring with behavioral, neurological, and immunological abnormalities similar to those observed in ASD. This raises the question of how MIA exposure can lead to ASD in susceptible individuals. Recent evidence points to a potential inflammation pathway linking MIA-associated ASD with the activity of T helper 17 (Th17) lymphocytes and their effector cytokine interleukin-17A (IL-17A). IL-17A has been implicated from human studies and elevated IL-17A levels in the blood have been found to correlate with phenotypic severity in a subset of ASD individuals. In MIA model mice, elevated IL-17A levels also have been observed. Additionally, antibody blockade to inhibit IL-17A signaling was found to prevent ASD-like behaviors in offspring exposed to MIA. Therefore, IL-17A dysregulation may play a causal role in the development of ASD. The source of increased IL-17A in the MIA mouse model was attributed to maternal Th17 cells because genetic removal of the transcription factor RORγt to selectively inhibit Th17 differentiation in pregnant mice was able to prevent ASD-like behaviors in the offspring. Similar to ASD individuals, the MIA-exposed offspring also displayed cortical dysplasia which could be prevented by inhibition of IL-17A signaling in pregnant mice. This finding reveals one possible cellular mechanism through which ASD-related cognitive and behavioral deficits may emerge following maternal inflammation. IL-17A can exert strong effects on cell survival and differentiation and the activity of signal transduction cascades, which can have important consequences during cortical development on neural function. This review examines IL-17A signaling pathways in the context of both immunity and neural function that may contribute to the development of ASD associated with MIA.
Collapse
Affiliation(s)
- Helen Wong
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Charles Hoeffer
- Institute for Behavioral Genetics, University of Colorado-Boulder, CO 80303, United States; Department of Integrative Physiology, University of Colorado-Boulder, Boulder, CO 80303, United States; Linda Crnic Institute, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, United States.
| |
Collapse
|
161
|
Th17 cell responses in spondyloarthritis. Best Pract Res Clin Rheumatol 2017; 31:777-796. [DOI: 10.1016/j.berh.2018.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/09/2018] [Accepted: 07/17/2018] [Indexed: 01/01/2023]
|
162
|
Cervi AL, Moynes DM, Chisholm SP, Nasser Y, Vanner SJ, Lomax AE. A role for interleukin 17A in IBD-related neuroplasticity. Neurogastroenterol Motil 2017; 29. [PMID: 28560787 DOI: 10.1111/nmo.13112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/19/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Changes to the structure and function of the innervation of the gut contribute to symptom generation in inflammatory bowel diseases (IBD). However, delineation of the mechanisms of these effects has proven difficult. Previous work on sympathetic neurons identified interleukin (IL)-17A as a novel neurotrophic cytokine. Since IL-17A is involved in IBD pathogenesis, we tested the hypothesis that IL-17A contributes to neuroanatomical remodeling during IBD. METHODS Immunohistochemistry for tyrosine hydroxylase was used to identify sympathetic axons in mice with dextran sulphate sodium (DSS)-induced colitis and controls. Axon outgrowth from sympathetic neurons in response to incubation in cytokines or endoscopic patient biopsy supernatants was quantified. KEY RESULTS DSS-induced colitis led to an increase in tyrosine hydroxylase immunoreactivity in the inflamed colon but not the spleen. Colonic supernatants from mice with colitis and biopsy supernatants from Crohn's disease patients increased axon outgrowth from mouse sympathetic neurons compared to supernatants from uninflamed controls. An antibody that neutralized IL-17A blocked the ability of DSS-induced colitis and Crohn's disease supernatants to induce axon extension. CONCLUSIONS AND INFERENCES These findings identify IL-17A as a potential mediator of neuroanatomical remodeling of the gut innervation during IBD.
Collapse
Affiliation(s)
- A L Cervi
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - D M Moynes
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - S P Chisholm
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Y Nasser
- Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - S J Vanner
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| | - A E Lomax
- Gastrointestinal Diseases Research Unit, Departments of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Departments of Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
163
|
Jha MK, Minhajuddin A, Gadad BS, Greer TL, Mayes TL, Trivedi MH. Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: Novel T cell biomarker for antidepressant medication selection. Brain Behav Immun 2017; 66:103-110. [PMID: 28698115 PMCID: PMC5699207 DOI: 10.1016/j.bbi.2017.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/28/2017] [Accepted: 07/07/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Interleukin 17 (IL-17) is produced by highly inflammatory Th17 cells and has been implicated in pathophysiology of depression. IL-17 putatively disrupts the blood brain barrier and affects dopamine synthesis whereas dopamine has been shown to decrease Th17 cell-mediated immune response. Nevertheless, whether IL-17 can predict differential treatment outcome with antidepressants modulating dopaminergic transmission is unknown. METHODS IL-17 and other T cell and non-T cell markers (Th1, Th2 and non-T cell markers) were measured with the Bioplex Pro™ human cytokine 27-plex kit in the Combining Medications to Enhance Depression Outcomes (CO-MED) trial participants who provided baseline plasma and were treated with either bupropion plus escitalopram (bupropion-SSRI), escitalopram plus placebo (SSRI monotherapy), or venlafaxine plus mirtazapine (n=166). Differential changes in symptom severity and side-effects based on levels of IL-17 and other T and non-T cell markers were tested using a treatment-arm-by-biomarker interaction in separate repeated measures mixed model analyses. Subsequent analyses stratified by treatment arm were conducted for those markers with a significant interaction. RESULTS There was a significant treatment-arm-by-IL-17 interaction for depression severity (p=0.037) but not for side-effects (p=0.28). Higher baseline IL-17 level was associated with greater reduction in depression severity (effect size=0.78, p=0.008) in the bupropion-SSRI but not the other two treatment arms. Other T and non-T cell markers were not associated with differential treatment outcomes. CONCLUSION Higher baseline levels of IL-17 are selectively associated with greater symptomatic reduction in depressed patients treated with bupropion-SSRI combination.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Abu Minhajuddin
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bharathi S Gadad
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Tracy L Greer
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Taryn L Mayes
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
164
|
Sun B, Wang H, Zhang L, Yang X, Zhang M, Zhu X, Ji X, Wang H. Role of interleukin 17 in TGF-β signaling-mediated renal interstitial fibrosis. Cytokine 2017; 106:80-88. [PMID: 29111086 DOI: 10.1016/j.cyto.2017.10.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/20/2017] [Accepted: 10/17/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Several studies suggest IL-17 is involved in the pathogenesis of organ fibrosis. The exact role of IL-17 in renal interstitial fibrosis has not been fully elucidated. METHODS We compared the histopathology of renal fibrosis as well as profibrotic TGF-β signaling in wild-type (WT) and IL-17 knock-out (IL-17-/-) mice using UUO as the disease model. To find out the possible mechanisms involved in the exacerbated renal fibrosis happened to IL-17-/- mice, we analyzed the pattern of ECM synthesis by different fibroblasts cultured with IL-17 and associated signaling mediators. RESULTS On day3 and day7, IL-17-/- mice developed more severe renal fibrosis compared with WT mice. IL-17 had an inhibitory factor in TGF-β-induced renal fibroblast activation and ECM synthesis, and sequentially in renal interstitial fibrosis, via down-regulation of Smad -independent pathway (p38MAPK and AKT phosphorylations). CONCLUSION IL-17 acts an inhibitory factor in TGF-β-induced renal fibroblast activation and ECM synthesis, and sequentially in renal interstitial fibrosis, via down-regulation of Smad-independent pathway (p38MAPK and AKT phosphorylations). Clarifying the novel regulatory mechanisms of fibrosis by the cytokine IL-17 may lead to a new therapeutic approach for progressive renal disease and fibrosis.
Collapse
Affiliation(s)
- Bin Sun
- The First Affiliated Hospital of Nanjing Medical University, Division of Nephrology, Department of Internal Medicine, Nanjing, Jiangsu, China
| | - Hui Wang
- Jiangsu Jiankang Vocational College, Nanjing, Jiangsu, China
| | - Lu Zhang
- Nanjing Red Cross Blood Center, Nanjing, Jiangsu, China
| | - Xiaofan Yang
- Nanjing Medical University, Department of Immunology, Nanjing, Jiangsu, China
| | - Mingshun Zhang
- Nanjing Medical University, Department of Immunology, Nanjing, Jiangsu, China
| | - Xingxing Zhu
- Nanjing Medical University, Department of Immunology, Nanjing, Jiangsu, China
| | - Xiaohui Ji
- Nanjing Medical University, Department of Immunology, Nanjing, Jiangsu, China
| | - Huijuan Wang
- Nanjing Medical University, Department of Immunology, Nanjing, Jiangsu, China.
| |
Collapse
|
165
|
Wang W, Groves MR, Dömling A. Artificial Macrocycles as IL-17A/IL-17RA Antagonists. MEDCHEMCOMM 2017; 9:22-26. [PMID: 29750108 DOI: 10.1039/c7md00464h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interleukin 17(A) is a pro-inflammatory cytokine involved in several auto-immune and inflammatory diseases. Current antagonists against IL17(A) or its receptor (IL17R) that show efficacy in clinical trials are monoclonal-antibodies (mAbs). However, recently designed artificial macrocyles are potent IL17-IL17R antagonists. Based on Co-crystal structures, a better understanding the biological activity and SAR of the macrocycles has been elucidated, demonstrating that macrocycles can compete with mAbs for difficult targets such as PPIs.
Collapse
Affiliation(s)
- Wenjia Wang
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| | - Matthew R Groves
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| |
Collapse
|
166
|
Roos AB, Stampfli MR. Targeting Interleukin-17 signalling in cigarette smoke-induced lung disease: Mechanistic concepts and therapeutic opportunities. Pharmacol Ther 2017; 178:123-131. [PMID: 28438639 DOI: 10.1016/j.pharmthera.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is widely accepted that compromised lung function in chronic obstructive pulmonary disease (COPD) is, at least in part, a consequence of persistent airway inflammation caused by particles and noxious gases present in cigarette smoke and indoor air pollution from burning biomass fuel. Currently, the World Health Organization estimates that 80 million people have moderate or severe COPD worldwide. While there is a global need for effective medical treatment, current therapeutic interventions have shown limited success in preventing disease pathology and progression. This is, in large part, due to the complexity and heterogeneity of COPD, and an incomplete understanding of the molecular mechanisms governing inflammatory processes in individual patients. This review discusses recent discoveries related to the pro-inflammatory cytokine interleukin (IL)-17A, and its potential role in the pathogenesis of COPD. We propose that an intervention strategy targeting IL-17 signalling offers an exciting opportunity to mitigate inflammatory processes, and prevent the progression of tissue pathologies associated with COPD.
Collapse
Affiliation(s)
- Abraham B Roos
- Respiratory, Inflammation and Autoimmunity, Innovative Medicines, AstraZeneca R&D, Mölndal, Sweden and
| | - Martin R Stampfli
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada; Department of Medicine, Firestone Institute of Respiratory Health at St. Joseph's Health Care, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
167
|
Cruz JA, Childs EE, Amatya N, Garg AV, Beyaert R, Kane LP, Aneskievich BJ, Ma A, Gaffen SL. Interleukin-17 signaling triggers degradation of the constitutive NF-κB inhibitor ABIN-1. Immunohorizons 2017; 1:133-141. [PMID: 30761389 DOI: 10.4049/immunohorizons.1700035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IL-17 activates NF-κB and inducing expression of proinflammatory genes. IL-17 drives disease in autoimmune conditions, and anti-IL-17 antibodies have shown impressive success in the clinic. Although produced by lymphocytes, IL-17 predominantly signals in fibroblasts and epithelial cells. IL-17-driven inflammation is kept in check by negative feedback signaling molecules, including the ubiquitin editing enzyme A20, whose gene TNFΑIP3 is and similarly linked to autoimmune disease susceptibility. Accordingly, we hypothesized that ABIN-1 might play a role in negatively regulating IL-17 signaling activity. Indeed, ABIN-1 enhanced both tonic and IL-17-dependent NF-κB signaling in IL-17-responsive fibroblast cells. Interestingly, the inhibitory activities of ABIN-1 on IL-17 signaling were independent of A20. ABIN-1 is a known NF-κB target gene, and we found that IL-17-induced activation of NF-κB led to enhanced ABIN-1 mRNA expression and promoter activity. Surprisingly, however, the ABIN-1 protein was inducibly degraded following IL-17 signaling in a proteasome-dependent manner. Thus, ABIN-1, acting independently of A20, restricts both baseline and IL-17-induced inflammatory gene expression. We conclude that IL-17-induced signals lead to degradation of ABIN-1, thereby releasing a constitutive cellular brake on NF-κB activation.
Collapse
Affiliation(s)
- J Agustin Cruz
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Nilesh Amatya
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Rudi Beyaert
- VIB-UGent Center for Inflammation Research, Zwijnaarde, Ghent 9052, Belgium, and the Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde, Ghent 9052, Belgium
| | - Lawrence P Kane
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Brian J Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Averil Ma
- Department of Medicine, University of California, San Francisco, California 94143-0358, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
168
|
Gurczynski SJ, Moore BB. IL-17 in the lung: the good, the bad, and the ugly. Am J Physiol Lung Cell Mol Physiol 2017; 314:L6-L16. [PMID: 28860146 DOI: 10.1152/ajplung.00344.2017] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The IL-17 family of cytokines has emerged over the last two decades as a pleiotropic group of molecules that function in a wide variety of both beneficial and detrimental (pathological) processes, mainly in mucosal barrier tissue. The beneficial effects of IL-17 expression are especially important in the lung, where exposure to foreign agents is abundant. IL-17A plays an important role in protection from both extracellular bacteria and fungi, as well as viruses that infect cells of the mucosal tracts. IL-17 coregulated cytokines, such as IL-22, are involved in maintaining epithelial cell homeostasis and participate in epithelial cell repair/regeneration following inflammatory insults. Thus, the IL-17/IL-22 axis is important in both responding to, and recovering from, pathogens. However, aberrant expression or overexpression of IL-17 cytokines contributes to a number of pathological outcomes, including asthma, pneumonitis, and generation or exacerbation of pulmonary fibrosis. This review covers the good, bad, and ugly aspects of IL-17 in the lung.
Collapse
Affiliation(s)
- Stephen J Gurczynski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan , Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
169
|
Robert M, Miossec P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun Rev 2017; 16:984-991. [PMID: 28705781 DOI: 10.1016/j.autrev.2017.07.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 12/25/2022]
Abstract
Cardiovascular diseases remain the leading cause of death worldwide and account for most of the premature mortality observed in chronic inflammatory diseases. Common mechanisms underlie these two types of disorders, where the contribution of Interleukin (IL)-17A, the founding member of the IL-17 family, is highly suspected. While the local effects of IL-17A in inflammatory disorders have been well described, those on the cardiovascular system remain less studied. This review focuses on the effects of IL-17 on the cardiovascular system both on isolated cells and in vivo. IL-17A acts on vessel and cardiac cells, leading to inflammation, coagulation and thrombosis. In vivo and clinical studies have shown its involvement in the pathogenesis of cardiovascular diseases including atherosclerosis and myocardial infarction that occur prematurely in chronic inflammatory disorders. As new therapeutic approaches are targeting the IL-17 pathway, this review should help to better understand their positive and negative outcomes on the cardio-vascular system.
Collapse
Affiliation(s)
- Marie Robert
- Immunogenomics and Inflammation Research Unit, EA 4130, Department of Immunology and Rheumatology, University of Lyon, Lyon, France
| | - Pierre Miossec
- Immunogenomics and Inflammation Research Unit, EA 4130, Department of Immunology and Rheumatology, University of Lyon, Lyon, France.
| |
Collapse
|
170
|
Abstract
The cytokine IL-17 is now a target for an array of therapeutic monoclonal antibodies supposed to treat a variety of inflammatory diseases. The forerunner Secukinumab, an IL-17A neutralizing antibody, is meanwhile approved as first-line treatments for moderate-to-severe plaque psoriasis, and as second-line treatment for psoriatic arthritis and ankylosing spondylitis. Ixekizumab and Brodalumab, both also targeting the IL-17 pathway, were also recently approved by the FDA for plaque psoriasis. Using mice overexpressing IL-17A in a tissue of choice, we showed that the ectopic expression of this cytokine in keratinocytes resulted in a spontaneous and very strong form of psoriasis-like dermatitis. Interestingly, this model showed some typical comorbidities found in humans with psoriasis. In this review, we will discuss why IL-17 is a good target especially in psoriasis and what we learned from mouse models about its functions in pathological situations.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany.
| | - Sonja Moos
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, 55131, Germany
| |
Collapse
|
171
|
Veldhoen M. Interleukin 17 is a chief orchestrator of immunity. Nat Immunol 2017; 18:612-621. [DOI: 10.1038/ni.3742] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
|
172
|
Liu G, Wu H, Chen L, Xu J, Wang M, Li D, Lu P. Effects of interleukin-17 on human retinal vascular endothelial cell capillary tube formation in vitro. Mol Med Rep 2017; 16:865-872. [PMID: 28560397 DOI: 10.3892/mmr.2017.6623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/10/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of and mechanism underlying interleukin (IL)‑17 on human retinal vascular endothelial cell (HREC) capillary tube formation in vitro. The expression of IL‑17 receptor (IL‑17R) in human HRECs was quantified using reverse transcriptase‑polymerase chain reaction (RT‑PCR) and western blot analyses. The roles of IL‑17 in HREC migration and capillary tube formation were detected using a wound scratching assay and three‑dimensional Matrigel assay, respectively, in vitro. HREC proliferation was examined using a cell counting kit‑8 assay with administration of serial doses of IL‑17. The effects of IL‑17 on the expression of vascular endothelial growth factor (VEGF), intercellular cell adhesion molecule (ICAM)‑1, IL‑6 and IL‑8 in HRECs were evaluated using RT‑PCR and western blot analyses. The results revealed that the HRECs expressed IL‑17R, and the number of intact capillary tubes formed by HRECs in the presence of IL‑17 was markedly higher, compared with that in the blank control group. The wound scratching assay showed that the numbers of migrated HRECs stimulated with IL‑17 at concentrations of 100 or 500 ng/ml were significantly higher, compared with the number in the control group. The RT‑PCR and western blot analyses showed that IL‑17 significantly promoted the expression of VEGF, ICAM‑1, IL‑6 and IL‑8 by the HRECs. The proliferation of HRECs in the presence of IL‑17 was also significantly increased. Therefore, IL‑17 increased HREC capillary tube formation through promoting HREC migration, proliferation, and expression levels of VEGF, ICAM‑1, IL‑6 and IL-8.
Collapse
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongya Wu
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lei Chen
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jing Xu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mengjiao Wang
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dan Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
173
|
Raimondo A, Lembo S, Di Caprio R, Donnarumma G, Monfrecola G, Balato N, Ayala F, Balato A. Psoriatic cutaneous inflammation promotes human monocyte differentiation into active osteoclasts, facilitating bone damage. Eur J Immunol 2017; 47:1062-1074. [DOI: 10.1002/eji.201646774] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/18/2017] [Accepted: 04/05/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Annunziata Raimondo
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”; University of Salerno; Salerno Italy
| | - Roberta Di Caprio
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, Section of Microbiology and Clinical Microbiology; Second University of Naples; Napoli Italy
| | - Giuseppe Monfrecola
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Nicola Balato
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Fabio Ayala
- Department of Clinical Medicine and Surgery; University of Naples Federico II; Napoli Italy
| | - Anna Balato
- Department of Advanced Biomedical Sciences; University of Naples Federico II; Napoli Italy
| |
Collapse
|
174
|
Numasaki M, Tsukamoto H, Tomioka Y, Nishioka Y, Ohrui T. A Heterodimeric Cytokine, Consisting of IL-17A and IL-17F, Promotes Migration and Capillary-Like Tube Formation of Human Vascular Endothelial Cells. TOHOKU J EXP MED 2017; 240:47-56. [PMID: 27594509 DOI: 10.1620/tjem.240.47] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The interleukin (IL)-17 family, consisting of six homodimeric cytokines IL-17A, IL-17B, IL-17C, IL-17D, IL-17E/IL-25, and IL-17F, mediates a variety of biological activities including regulation of chemokine secretion and angiogenesis. Among the IL-17 family members, IL-17A and IL-17E/IL-25 are angiogenesis stimulators, while IL-17B and IL-17F are angiogenesis inhibitors. Recently, IL-17A/F heterodimer, comprised of the IL-17A and IL-17F subunits, was found as another member of the IL-17 cytokine family. However, to date, it has been unknown whether IL-17A/F has biological actions to affect the angiogenesis-related vascular endothelial functions. Therefore, in this study, we investigated the biological effects of IL-17A/F on the growth, migration and capillary-like tube formation of vascular endothelial cells. Recombinant IL-17A/F protein had no direct effects on the growth of human dermal microvascular endothelial cells (HMVECs), whereas, after 4-hour incubation in a modified Boyden Chemotaxicell chamber, IL-17A/F significantly induced migration of HMVECs over a wide range of doses via the phosphatidylinositol-3 kinase (PI3K) signaling pathway. We further investigated the biological effect of IL-17A/F on capillary-like tube formation using a co-culture system of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs), which mimicked the in vivo microenvironment. In this co-culture system, IL-17A/F significantly promoted capillary-like endothelial tube formation in a dose-dependent fashion via the PI3K and extracellular signal-regulated kinase (ERK) signaling pathways. Additionally, IL-17A/F up-regulated secretion of angiogenic growth factors such as IL-8 and growth-related oncogene (GRO)-α by HDFs. These findings identify a novel biological function for IL-17A/F as an indirect angiogenic agent.
Collapse
Affiliation(s)
- Muneo Numasaki
- Laboratory of Clinical Science and Biomedicine, Faculty of Pharmaceutical Sciences, Josai University
| | | | | | | | | |
Collapse
|
175
|
The Role of IL-17 and Related Cytokines in Inflammatory Autoimmune Diseases. Mediators Inflamm 2017; 2017:3908061. [PMID: 28316374 PMCID: PMC5337858 DOI: 10.1155/2017/3908061] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/01/2017] [Indexed: 12/12/2022] Open
Abstract
Interleukin-17 (IL-17) induces the production of granulocyte colony-stimulating factor (G-CSF) and chemokines such as CXCL1 and CXCL2 and is a cytokine that acts as an inflammation mediator. During infection, IL-17 is needed to eliminate extracellular bacteria and fungi, by inducing antimicrobial peptides such as defensin. This cytokine also plays an important role in chronic inflammation that occurs during the pathogenesis of autoimmune diseases and allergies such as human rheumatoid arthritis (RA) for which a mouse model of collagen-induced arthritis (CIA) is available. In autoimmune diseases such as RA and multiple sclerosis (MS), IL-17 is produced by helper T (Th) cells that are stimulated by IL-1β and IL-6 derived from phagocytes such as macrophages and from tissue cells. IL-17 contributes to various lesions that are produced by Th17 cells, one subset of helper T cells, and by γδ T cells and innate lymphoid cells. It strongly contributes to autoimmune diseases that are accompanied by chronic inflammation. Thus, a functional understanding of Th17 cells is extremely important. In this review, we highlight the roles of cytokines that promote the development and maintenance of pathogenic Th17 cells in autoimmune diseases.
Collapse
|
176
|
IL-17 Signaling: The Yin and the Yang. Trends Immunol 2017; 38:310-322. [PMID: 28254169 PMCID: PMC5411326 DOI: 10.1016/j.it.2017.01.006] [Citation(s) in RCA: 523] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Abstract
Interleukin (IL)-17 is the founding member of a novel family of inflammatory cytokines. While the proinflammatory properties of IL-17 are key to its host-protective capacity, unrestrained IL-17 signaling is associated with immunopathology, autoimmune disease, and cancer progression. In this review we discuss both the activators and the inhibitors of IL-17 signal transduction, and also the physiological implications of these events. We highlight the surprisingly diverse means by which these regulators control expression of IL-17-dependent inflammatory genes, as well as the major target cells that respond to IL-17 signaling.
Collapse
|
177
|
Miossec P. Update on interleukin-17: a role in the pathogenesis of inflammatory arthritis and implication for clinical practice. RMD Open 2017; 3:e000284. [PMID: 28243466 PMCID: PMC5318575 DOI: 10.1136/rmdopen-2016-000284] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 01/05/2023] Open
Abstract
Interleukin-17 (IL-17A) is a cytokine critical for the acute defence against extracellular bacterial and fungal infections. Excess production during chronic inflammation has been associated with many inflammatory and autoimmune disorders. The present review describes the key molecules of the IL-17 pathway, which are or could be targeted for treatment. Since targeting of IL-17A may affect defence mechanisms, the pathogenesis of such possible adverse events is analysed. Then the contributions of IL-17 to bone changes in various forms of arthritis are discussed. Finally, the results of current inhibitors of the IL-17 pathway in clinical trials are detailed. IL-17A inhibition has been first registered for the treatment of psoriasis, psoriatic arthritis and ankylosing spondylitis. Other therapeutic options are now tested in a long list of diseases.
Collapse
Affiliation(s)
- Pierre Miossec
- Immunogenomics and Inflammation Research Unit EA 4130, Department of Immunology and Rheumatology , University of Lyon , Lyon , France
| |
Collapse
|
178
|
Abstract
The discovery of the key roles of interleukin-17A (IL-17A) and IL-17A producing cells in inflammation, autoimmune diseases and host defense has led to the experimental targeting of the IL-17A pathway in animal models of diseases as well as in clinical trials in humans. These therapeutic agents include biological products that target IL-17A and IL-23, an upstream regulator of IL-17A production. IL-17A producing T helper cells (Th17 cells) are a distinct lineage from the Th1 and Th2 CD4+ lineages and have been suggested to represent a good drug target in certain inflammatory conditions. Targeting IL-17A has been proven to be a good approach as anti-IL-17A is FDA approved for the treatment of psoriasis in 2015. In host defense, IL-17A has been shown to be mostly beneficial against infection caused by extracellular bacteria and fungi. This review will overview the discovery of IL-17A, the receptors used by this cytokine and its role in mucosal immunity and inflammation.
Collapse
Affiliation(s)
- Kong Chen
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
179
|
Karri SK, Sheela A. Potential route of Th17/T reg cell dynamics in targeting type 1 diabetes and rheumatoid arthritis: an autoimmune disorder perspective. Br J Biomed Sci 2017; 74:8-15. [PMID: 28074676 DOI: 10.1080/09674845.2016.1264704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokines, small secreted proteins, have a specific effect on the interactions and communications between cells. They play a pivotal role in the pathogenesis of autoimmune diseases. Factors in the breakdown of self-tolerance and the subsequent events leading to the induction of pathogenic responses remain unclear for most of the autoimmune diseases. Large numbers of studies have revealed a general scheme in which pro-inflammatory cytokines contribute to the initiation and propagation of autoimmune inflammation, whereas anti-inflammatory cytokines facilitate the regression of inflammation and thereby recovery from the disease. The interleukin (IL)-17/IL-23 axis that emerged as the new paradigm has compelled us to critically re-examine the cytokine-driven immune events in the pathogenesis and treatment of autoimmunity. T-helper 17 cells and Regulatory T cells are two lymphocyte subsets with opposing action. In this review, we discuss the mechanism that promotes development of these cells from common precursors and specific factors that impact their cell numbers and function. Also presented are findings that suggest how the equilibrium between pre-inflammatory T helper and regulatory T-cell subsets might be pharmacologically restored for therapeutic benefit, emphasising type-1 diabetes and rheumatoid arthritis. Furthermore, the emerging clinical data showing anti-IL-17 and anti-IL-23 treatments for their efficacy in treating immune-mediated inflammatory diseases are presented.
Collapse
Affiliation(s)
- Suresh Kumar Karri
- a Department of Chemistry, School of Advanced Sciences , VIT University , Vellore , India
| | - A Sheela
- a Department of Chemistry, School of Advanced Sciences , VIT University , Vellore , India
| |
Collapse
|
180
|
Okuyama H, Tominaga A, Fukuoka S, Taguchi T, Kusumoto Y, Ono S. Spirulina lipopolysaccharides inhibit tumor growth in a Toll-like receptor 4-dependent manner by altering the cytokine milieu from interleukin-17/interleukin-23 to interferon-γ. Oncol Rep 2017; 37:684-694. [PMID: 28075473 PMCID: PMC5355664 DOI: 10.3892/or.2017.5346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/14/2016] [Indexed: 12/15/2022] Open
Abstract
Th17 cells and the cytokine they produce, interleukin (IL)-17, play an important role in tumor progression in humans and in mice. IL-6 and IL-23 are critical cytokines for the differentiation and propagation of Th17 cells, respectively. Bacterial lipopolysaccharides (LPS) are known to stimulate immune cells to produce such inflammatory cytokines. Contrary to Escherichia coli (E. coli) LPS, LPS from Spirulina has low toxicity and barely induces in vivo production of IL-6 and IL-23 in mice. We examined the antitumor effects of Spirulina LPS compared to E. coli LPS in an MH134 hepatoma model. Administration of Spirulina LPS suppressed tumor growth in C3H/HeN mice, but not in Toll-like receptor 4 (TLR4)-mutant C3H/HeJ mice, by reducing serum levels of IL-17 and IL-23, while increasing interferon (IFN)-γ levels. The antitumor activity and IFN-γ production were mediated by T cells. Moreover, in vitro experiments showed that Spirulina LPS impaired the antigen-presenting function that supports the generation of IL-17-producing cells in a toll-like receptor (TLR)4-dependent manner. Of note, injection of anti-IL-17 antibody in tumor-bearing C3H/HeN mice in the absence of Spirulina LPS markedly suppressed tumor growth and augmented IFN-γ responses. Thus, our results support the notion that IFN-γ and IL-17/IL-23 mutually regulate Th17 and Th1 responses in tumor-bearing hosts, and Spirulina LPS modulates the balance of the IFN-γ-IL-17/IL-23 axis towards IFN-γ production, which leads to tumor inhibition. Furthermore, Spirulina LPS effectively inhibited the spontaneous development of mammary tumors. This study has important implications for the exploitation of TLR-based immunomodulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Hiromi Okuyama
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Akira Tominaga
- Laboratory of Human Health and Medical Science, Graduate School of Kuroshio Science, and Department of Molecular Biology and Cellular Biology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Satoshi Fukuoka
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Takahiro Taguchi
- Laboratory of Human Health and Medical Science, Graduate School of Kuroshio Science, and Department of Molecular Biology and Cellular Biology, Kochi Medical School, Kochi University, Nankoku, Kochi 783-8505, Japan
| | - Yutaka Kusumoto
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka 584-8540, Japan
| |
Collapse
|
181
|
Farré D, Engel P, Angulo A. Novel Role of 3'UTR-Embedded Alu Elements as Facilitators of Processed Pseudogene Genesis and Host Gene Capture by Viral Genomes. PLoS One 2016; 11:e0169196. [PMID: 28033411 PMCID: PMC5199112 DOI: 10.1371/journal.pone.0169196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
Since the discovery of the high abundance of Alu elements in the human genome, the interest for the functional significance of these retrotransposons has been increasing. Primate Alu and rodent Alu-like elements are retrotransposed by a mechanism driven by the LINE1 (L1) encoded proteins, the same machinery that generates the L1 repeats, the processed pseudogenes (PPs), and other retroelements. Apart from free Alu RNAs, Alus are also transcribed and retrotranscribed as part of cellular gene transcripts, generally embedded inside 3' untranslated regions (UTRs). Despite different proposed hypotheses, the functional implication of the presence of Alus inside 3'UTRs remains elusive. In this study we hypothesized that Alu elements in 3'UTRs could be involved in the genesis of PPs. By analyzing human genome data we discovered that the existence of 3'UTR-embedded Alu elements is overrepresented in genes source of PPs. In contrast, the presence of other retrotransposable elements in 3'UTRs does not show this PP linked overrepresentation. This research was extended to mouse and rat genomes and the results accordingly reveal overrepresentation of 3'UTR-embedded B1 (Alu-like) elements in PP parent genes. Interestingly, we also demonstrated that the overrepresentation of 3'UTR-embedded Alus is particularly significant in PP parent genes with low germline gene expression level. Finally, we provide data that support the hypothesis that the L1 machinery is also the system that herpesviruses, and possibly other large DNA viruses, use to capture host genes expressed in germline or somatic cells. Altogether our results suggest a novel role for Alu or Alu-like elements inside 3'UTRs as facilitators of the genesis of PPs, particularly in lowly expressed genes. Moreover, we propose that this L1-driven mechanism, aided by the presence of 3'UTR-embedded Alus, may also be exploited by DNA viruses to incorporate host genes to their viral genomes.
Collapse
Affiliation(s)
- Domènec Farré
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- * E-mail:
| | - Pablo Engel
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Ana Angulo
- Immunology Unit, Department of Biomedical Sciences, Medical School, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
182
|
Abusleme L, Moutsopoulos NM. IL-17: overview and role in oral immunity and microbiome. Oral Dis 2016; 23:854-865. [PMID: 27763707 DOI: 10.1111/odi.12598] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (IL-17) is a multifaceted cytokine with diverse roles in both immune protection and also immunopathology. IL-17 has a well-recognized role in immune surveillance at mucosal and barrier surfaces, but also has been increasingly implicated as a driver of immunopathology in settings of autoimmunity and chronic inflammation. The current review introduces basic aspects of IL-17 biology and examines the protective and pathogenic roles of IL-17 with a focus on oral mucosal immunity and inflammation. Specific emphasis is given to the role of the IL-17 response as a catalyst in 'shaping the microbiome at the oral barrier'.
Collapse
Affiliation(s)
- L Abusleme
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - N M Moutsopoulos
- Oral Immunity and Inflammation Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
183
|
Interleukin-17A Promotes CD8+ T Cell Cytotoxicity To Facilitate West Nile Virus Clearance. J Virol 2016; 91:JVI.01529-16. [PMID: 27795421 PMCID: PMC5165211 DOI: 10.1128/jvi.01529-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/06/2016] [Indexed: 01/05/2023] Open
Abstract
CD8+ T cells are crucial components of immunity and play a vital role in recovery from West Nile virus (WNV) infection. Here, we identify a previously unrecognized function of interleukin-17A (IL-17A) in inducing cytotoxic-mediator gene expression and promoting CD8+ T cell cytotoxicity against WNV infection in mice. We find that IL-17A-deficient (Il17a-/-) mice are more susceptible to WNV infection and develop a higher viral burden than wild-type (WT) mice. Interestingly, the CD8+ T cells isolated from Il17a-/- mice are less cytotoxic and express lower levels of cytotoxic-mediator genes, which can be restored by supplying recombinant IL-17A in vitro and in vivo Importantly, treatment of WNV-infected mice with recombinant IL-17A, as late as day 6 postinfection, significantly reduces the viral burden and increases survival, suggesting a therapeutic potential for IL-17A. In conclusion, we report a novel function of IL-17A in promoting CD8+ T cell cytotoxicity, which may have broad implications in other microbial infections and cancers. IMPORTANCE Interleukin-17A (IL-17A) and CD8+ T cells regulate diverse immune functions in microbial infections, malignancies, and autoimmune diseases. IL-17A is a proinflammatory cytokine produced by diverse cell types, while CD8+ T cells (known as cytotoxic T cells) are major cells that provide immunity against intracellular pathogens. Previous studies have demonstrated a crucial role of CD8+ T cells in recovery from West Nile virus (WNV) infection. However, the role of IL-17A during WNV infection remains unclear. Here, we demonstrate that IL-17A protects mice from lethal WNV infection by promoting CD8+ T cell-mediated clearance of WNV. In addition, treatment of WNV-infected mice with recombinant IL-17A reduces the viral burden and increases survival of mice, suggesting a potential therapeutic. This novel IL-17A-CD8+ T cell axis may also have broad implications for immunity to other microbial infections and cancers, where CD8+ T cell functions are crucial.
Collapse
|
184
|
Valeri M, Raffatellu M. Cytokines IL-17 and IL-22 in the host response to infection. Pathog Dis 2016; 74:ftw111. [PMID: 27915228 PMCID: PMC5975231 DOI: 10.1093/femspd/ftw111] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/13/2016] [Accepted: 11/17/2016] [Indexed: 12/12/2022] Open
Abstract
Cytokines IL-17 and IL-22 play pivotal roles in host defense against microbes and in the development of chronic inflammatory diseases. These cytokines are produced by cells that are often located in epithelial barriers, including subsets of T cells and innate lymphoid cells. In general, IL-17 and IL-22 can be characterized as important cytokines in the rapid response to infectious agents, both by recruiting neutrophils and by inducing the production of antimicrobial peptides. Although each cytokine induces an innate immune response in epithelial cells, their functional spectra are generally distinct: IL-17 mainly induces an inflammatory tissue response and is involved in the pathogenesis of several autoimmune diseases, whereas IL-22 is largely protective and regenerative. In this review, we compare IL-17 and IL-22, describing overlaps and differences in their cellular sources as well as their regulation, signaling, biological functions and roles during disease, with a focus on the contribution of these cytokines to the gut mucosal barrier during bacterial infection.
Collapse
Affiliation(s)
- Maria Valeri
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, CA 92697-4025, USA
- Institute for Immunology, University of California Irvine School of Medicine, Irvine, CA 92697-4025, USA
| | - Manuela Raffatellu
- Department of Microbiology and Molecular Genetics, University of California Irvine School of Medicine, Irvine, CA 92697-4025, USA
- Institute for Immunology, University of California Irvine School of Medicine, Irvine, CA 92697-4025, USA
| |
Collapse
|
185
|
Ding Y, Ai C, Mu Y, Ao J, Chen X. Molecular characterization and evolution analysis of five interleukin-17 receptor genes in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 58:332-339. [PMID: 27633682 DOI: 10.1016/j.fsi.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/29/2016] [Accepted: 09/11/2016] [Indexed: 06/06/2023]
Abstract
Interleukin-17s (IL-17s) play critical roles in inflammatory response and host defense against extracellular pathogens. IL-17s induce the immune response signaling through the specific IL-17 receptors (IL-17Rs) that consist of five members (IL-17RA to E). In the present work, we have identified the five IL-17R orthologs (LycIL-17Rs) from large yellow croaker Larimichthys crocea. The deduced protein of each LycIL-17R exhibits a typical IL-17R domain architecture, including a signal peptide, the extracellular FNIII domain (IL-17RA/RB/RD) or IL-17_R_N domain (IL-17RC/RE), a transmembrane domain, and a SEFIR domain in cytoplasmic region. In particular, the extracellular regions of teleost IL-17RB are much shorter than those in mammals and lack an FNIII domain (FN2). Phylogenetic tree shows that IL-17Rs are classified into two main groups: IL-17RA/RB/RD group and IL-17RC/RE group, which is distinct from previous proposal that grouped IL-17RB into IL-17RC/RE. The surrounding genes of IL-17Rs are conservatively aligned in genomes between teleosts and mammals. The five LycIL-17Rs were constitutively expressed in all tissues examined, but with different expression patterns. Aeromonas hydrophila infection significantly upregulated LycIL-17RA, RC, RD and RE in both mucosal tissue (gills) and systemic immune tissues (head kidney and spleen), while the increase of LycIL-17RB expression could be detected in gills, indicating that LycIL-17Rs may be involved in host defense against bacterial infection. Thus, these results suggest that teleost IL-17Rs may function in mediating immune response as their mammalian orthologs. To our knowledge, this is the first report of molecular characterization of the five IL-17Rs (IL-17RA/RB/RD and IL-17RC/RE) in teleost fish.
Collapse
Affiliation(s)
- Yang Ding
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Chunxiang Ai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China
| | - Yinnan Mu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Jingqun Ao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China
| | - Xinhua Chen
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, PR China; Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen 361005, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.
| |
Collapse
|
186
|
The Role of Interleukin-17 in Lung Cancer. Mediators Inflamm 2016; 2016:8494079. [PMID: 27872514 PMCID: PMC5107223 DOI: 10.1155/2016/8494079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
Tumour-associated inflammation is a hallmark of malignant carcinomas, and lung cancer is a typical inflammation-associated carcinoma. Interleukin-17 (IL-17) is an important inflammatory cytokine that plays an important role in chronic inflammatory and autoimmune diseases and in inflammation-associated tumours. Numerous studies have shown that IL-17 directly or indirectly promotes tumour angiogenesis and cell proliferation and that it inhibits apoptosis via the activation of inflammatory signalling pathways. Therefore, IL-17 contributes to the metastasis and progression of lung cancer. Research advances with respect to the role of IL-17 in lung cancer will be presented as a review in this paper.
Collapse
|
187
|
Conti HR, Bruno VM, Childs EE, Daugherty S, Hunter JP, Mengesha BG, Saevig DL, Hendricks MR, Coleman BM, Brane L, Solis N, Cruz JA, Verma AH, Garg AV, Hise AG, Richardson JP, Naglik JR, Filler SG, Kolls JK, Sinha S, Gaffen SL. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis. Cell Host Microbe 2016; 20:606-617. [PMID: 27923704 DOI: 10.1016/j.chom.2016.10.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 08/16/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022]
Abstract
Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17raΔK13). Following oral Candida infection, Il17raΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra-/- mice. Susceptibility in Il17raΔK13 mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3-/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression.
Collapse
Affiliation(s)
- Heather R Conti
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA.
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Erin E Childs
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joseph P Hunter
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Bemnet G Mengesha
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Danielle L Saevig
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Matthew R Hendricks
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Bianca M Coleman
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lucas Brane
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Norma Solis
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - J Agustin Cruz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Akash H Verma
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Abhishek V Garg
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Amy G Hise
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Jonathan P Richardson
- Department of Mucosal and Salivary Biology, King's College London, London SE1 1UL, UK
| | - Julian R Naglik
- Department of Mucosal and Salivary Biology, King's College London, London SE1 1UL, UK
| | - Scott G Filler
- Division of Infectious Diseases, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Jay K Kolls
- Richard King Mellon Foundation for Pediatric Research, Children's Hospital of UPMC, Pittsburgh, PA 15224, USA
| | - Satrajit Sinha
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Sarah L Gaffen
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mucosal and Salivary Biology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
188
|
Vegfors J, Ekman AK, Stoll SW, Bivik Eding C, Enerbäck C. Psoriasin (S100A7) promotes stress-induced angiogenesis. Br J Dermatol 2016; 175:1263-1273. [PMID: 27155199 DOI: 10.1111/bjd.14718] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Vascular modifications occur early in the development of psoriasis, and angiogenesis is one of the key features in the pathogenesis of the disease. OBJECTIVES To identify the role of the S100 protein psoriasin in psoriasis-associated angiogenesis. METHODS The role of psoriasin in mediating angiogenesis was investigated by silencing psoriasin with small interfering RNA (siRNA) and measuring psoriasis-associated angiogenic factors in human epidermal keratinocytes. The secretion of psoriasin and the effect of psoriasin on general regulators of angiogenesis in keratinocytes, and on endothelial cell migration, proliferation, tube formation and production of angiogenic mediators, was evaluated. RESULTS Reactive oxygen species (ROS) and hypoxia induced the expression of psoriasin. Downregulation of psoriasin in keratinocytes using siRNA altered the ROS-induced expression of the psoriasis-associated angiogenic factors vascular endothelial growth factor (VEGF), heparin-binding epidermal growth factor-like growth factor, matrix metalloproteinase 1 and thrombospondin 1. Overexpression of psoriasin altered several regulators of angiogenesis and led to the secretion of psoriasin. Treatment with extracellular psoriasin induced proliferation, migration and tube formation in dermal-derived endothelial cells to a similar extent as VEGF and interleukin-17, and induced the expression and release of proangiogenic mediators. These effects were suggested to be mediated by the PI3K and nuclear factor kappa B pathways. CONCLUSIONS These findings suggest that psoriasin expression is promoted by oxidative stress in keratinocytes and amplifies the ROS-induced expression of angiogenic factors relevant to psoriasis. Moreover, extracellularly secreted psoriasin may act on dermal endothelial cells to contribute to key features angiogenesis.
Collapse
Affiliation(s)
- J Vegfors
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| | - A-K Ekman
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| | - S W Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, MI, U.S.A
| | - C Bivik Eding
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| | - C Enerbäck
- Department of Clinical and Experimental Medicine, Ingrid Asp Psoriasis Research Center, Linköping University, Linköping, Sweden
| |
Collapse
|
189
|
Mei J, Liu L. [Role of Interleukin 17 in Lung Carcinogenesis and Lung Cancer Progression]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 19:46-51. [PMID: 26805737 PMCID: PMC5999800 DOI: 10.3779/j.issn.1009-3419.2016.01.06] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
白介素-17(interleukin 17, IL-17)是一个重要的炎症因子,参与介导了机体的抗感染免疫及自身免疫性疾病相关的病理性炎症;此外,IL-17还与多种炎症相关的肿瘤有着密切联系。吸烟是导致肺癌的重要危险因素之一,而吸烟等因素所致的肺部慢性炎症反应伴有IL-17过表达,提示IL-17可能与肺癌的发生存在潜在联系;同时,IL-17还通过多种机制影响肺癌进展,本文对这一领域的相关研究进展进行了综述。
Collapse
Affiliation(s)
- Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China;Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Chengdu 610041, China
| |
Collapse
|
190
|
Koryem HK, Tayel MY, Eltawab SS, Moftah RF, Elazzay OE. Study of the association between nailfold capillaroscopic changes and serum level of interleukin-17 in rheumatoid: a clue for emerging vaculitis. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2016. [DOI: 10.4103/1110-161x.192254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
191
|
Kim BS, Park YJ, Chung Y. Targeting IL-17 in autoimmunity and inflammation. Arch Pharm Res 2016; 39:1537-1547. [DOI: 10.1007/s12272-016-0823-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/21/2016] [Indexed: 02/07/2023]
|
192
|
Maione F. Commentary: IL-17 in Chronic Inflammation: From Discovery to Targeting. Front Pharmacol 2016; 7:250. [PMID: 27561214 PMCID: PMC4980561 DOI: 10.3389/fphar.2016.00250] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 07/28/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Francesco Maione
- Department of Pharmacy, University of Naples Federico II Naples, Italy
| |
Collapse
|
193
|
Liu G, Wu H, Lu P, Zhang X. Interleukin (IL)-17A Promotes Angiogenesis in an Experimental Corneal Neovascularization Model. Curr Eye Res 2016; 42:368-379. [PMID: 27419340 DOI: 10.1080/02713683.2016.1196705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Hongya Wu
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| | - Xueguang Zhang
- Jiangsu Clinical Immunology Institute, The First Affiliated Hospital of Soochow University, Suzhou, P.R. China
| |
Collapse
|
194
|
Wang X, Dong Z, Zhu DD, Guan B. Expression Profile of Immune-Associated Genes in Nasal Polyps. Ann Otol Rhinol Laryngol 2016; 115:450-6. [PMID: 16805377 DOI: 10.1177/000348940611500609] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives: We performed this study to investigate the expression profile of immune-associated genes and to probe the role of related genes in the immune pathogenesis of nasal polyps. Methods: Microarray analysis was used to find the expression profile of 491 immune-associated genes in nasal polyps. In validation studies, immunohistochemical staining and Western blot analysis were used to detect interleukin (IL)–17 and IL-17 receptor (IL-17R) in nasal polyps and controls. Results: Eighty-seven genes were differentially expressed in the immune-associated gene profile of nasal polyps, and 15 genes showed differential expression in both chips. In nasal polyp tissues, IL-17 was expressed mainly in the cytoplasm of plasma cells and to a lesser degree in the prickle cell layer of the epithelium and the acinus of the serous gland. In turbinates, IL-17 was also expressed in the same location, but the expression of IL-17 in nasal polyps and that in turbinates differed significantly (p > .05). Both IL-17 and IL-17R displayed specific bands in nasal polyps and turbinates, but the bands of IL-17 and IL-17R in nasal polyps were stronger than those in turbinates. Conclusions: The differentially expressed genes in immune-associated gene chips will provide clues about, and a theoretical foundation for, the pathogenesis of nasal polyps. Furthermore, IL-17 may play an important role in the occurrence of nasal polyps by overexpression.
Collapse
Affiliation(s)
- Xin Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, China-Japan Union Hospital, Bethune Faculty of Medicine, Jilin University, Changchun, China
| | | | | | | |
Collapse
|
195
|
Abstract
The development of post-transplantation antibodies against non-HLA autoantigens is associated with rejection and decreased long-term graft survival. Although our knowledge of non-HLA antibodies is incomplete, compelling experimental and clinical findings demonstrate that antibodies directed against autoantigens such as angiotensin type 1 receptor, perlecan and collagen, contribute to the process of antibody-mediated acute and chronic rejection. The mechanisms that underlie the production of autoantibodies in the setting of organ transplantation is an important area of ongoing investigation. Ischaemia-reperfusion injury, surgical trauma and/or alloimmune responses can result in the release of organ-derived autoantigens (such as soluble antigens, extracellular vesicles or apoptotic bodies) that are presented to B cells in the context of the transplant recipient's antigen presenting cells and stimulate autoantibody production. Type 17 T helper cells orchestrate autoantibody production by supporting the proliferation and maturation of autoreactive B cells within ectopic tertiary lymphoid tissue. Conversely, autoantibody-mediated graft damage can trigger alloimmunity and the development of donor-specific HLA antibodies that can act in synergy to promote allograft rejection. Identification of the immunologic phenotypes of transplant recipients at risk of non-HLA antibody-mediated rejection, and the development of targeted therapies to treat such rejection, are sorely needed to improve both graft and patient survival.
Collapse
|
196
|
Bao Z, Lu G, Cui D, Yao Y, Yang G, Zhou J. IL-17A-producing T cells are associated with the progression of lung adenocarcinoma. Oncol Rep 2016; 36:641-50. [PMID: 27277161 PMCID: PMC4933549 DOI: 10.3892/or.2016.4837] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has shown that T cells are crucial in shaping the tumor microenvironment and regulating tumor development. However, the roles of IL-17A-producing T cells (IL-17A+CD4+ Th17, IL-17A+CD8+ Tc17 and IL-17A+ γδT17 cells) and related cytokines in the progression of lung cancer (LC) remain uncertain. Here, we found that the frequencies of both Th17 and γδT17 cells in the peripheral blood of patients with lung adenocarcinoma (LA) were higher than those in healthy controls (HCs), whereas the frequency of Tc17 cells in the patients with LA was decreased. In addition, the frequencies of circulating Th17 and γδT17 cells, but not Tc17 cells, were positively associated with tumor invasion and metastasis. Furthermore, the major source of IL-17A production was Th17 cells, followed by Tc17 and γδT17 cells, in peripheral blood from patients with LA and HCs; but the percentages of Th17 and γδT17 cells in total intracellular IL-17A+ cells obtained from the patients with LC were higher than those from HCs. Moreover, the protein and corresponding mRNA levels of IL-17A, IL-23, IL-1β, and TGF-β1 were much higher in the patients with LA than those in HCs, and the levels of IL-17A in patients were positively correlated with numbers of both Th17 and γδT17 cells, but not Tc17 cells. Finally, the frequencies of circulating Th17 and γδT17 cells, along with the levels of IL-17A, IL-23, IL-1β, and TGF-β1 were decreased in the patients with LA after tumor resection, whereas the frequency of circulating Tc17 cells was inversely increased in these patients. Our findings indicate that Th17, Tc17, γδT17 cells, and IL-17A-associated cytokines contribute to the development of LA and thus represent promising targets for therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guohua Lu
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Dawei Cui
- Center of Clinical Laboratory, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yinan Yao
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Guangdie Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jianying Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
197
|
Luganini A, Terlizzi ME, Gribaudo G. Bioactive Molecules Released From Cells Infected with the Human Cytomegalovirus. Front Microbiol 2016; 7:715. [PMID: 27242736 PMCID: PMC4865657 DOI: 10.3389/fmicb.2016.00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/29/2016] [Indexed: 01/01/2023] Open
Abstract
Following primary infection in humans, the human cytomegalovirus (HCMV) persists in a latent state throughout the host’s lifetime despite a strong and efficient immune response. If the host experiences some form of immune dysregulation, such as immunosuppression or immunodeficiency, HCMV reactivates, thereby emerging from latency. Thus, in the absence of effective functional immune responses, as occurs in immunocompromised or immunoimmature individuals, both HCMV primary infections and reactivations from latency can cause significant morbidity and mortality. However, even in immunocompetent hosts, HCMV represents a relevant risk factor for the development of several chronic inflammatory diseases and certain forms of neoplasia. HCMV infection may shift between the lytic and latent state, regulated by a delicate and intricate balance between virus-mediated immunomodulation and host immune defenses. Indeed, HCMV is a master in manipulating innate and adaptive host defense pathways, and a large portion of its genome is devoted to encoding immunomodulatory proteins; such proteins may thus represent important virulence determinants. However, the pathogenesis of HCMV-related diseases is strengthened by the activities of bioactive molecules, of both viral and cellular origin, that are secreted from infected cells and collectively named as the secretome. Here, we review the state of knowledge on the composition and functions of HCMV-derived secretomes. In lytic infections of fibroblasts and different types of endothelial cells, the majority of HCMV-induced secreted proteins act in a paracrine fashion to stimulate the generation of an inflammatory microenvironment around infected cells; this may lead to vascular inflammation and angiogenesis that, in turn, foster HCMV replication and its dissemination through host tissues. Conversely, the HCMV secretome derived from latently infected hematopoietic progenitor cells induces an immunosuppressive extracellular environment that interferes with immune recognition and elimination of latently infected cells, thereby promoting viral persistence. Characterization of the composition and biological activities of HCMV secretomes from different types of infected cells will lay the foundation for future advances in our knowledge about the pathogenesis HCMV diseases and may provide targets for the development of novel antiviral intervention strategies.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| | - Maria E Terlizzi
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin Turin, Italy
| |
Collapse
|
198
|
Bone marrow transplantation alters lung antigen-presenting cells to promote TH17 response and the development of pneumonitis and fibrosis following gammaherpesvirus infection. Mucosal Immunol 2016; 9:610-20. [PMID: 26376362 PMCID: PMC4794430 DOI: 10.1038/mi.2015.85] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/31/2015] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplantion (BMT) followed by infection with murine gamma herpesvirus-68 that results in pneumonitis and fibrosis and mimics human "noninfectious" HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection. CD4 T cells in BMT mice are skewed toward interleukin (IL)-17A rather than interferon (IFN)-γ production. Transplantation of bone marrow from Il-17a(-/-) donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more transforming growth factor beta-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest that "noninfectious" HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset.
Collapse
|
199
|
Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC. The Modulation of Apoptotic Pathways by Gammaherpesviruses. Front Microbiol 2016; 7:585. [PMID: 27199919 PMCID: PMC4847483 DOI: 10.3389/fmicb.2016.00585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/11/2016] [Indexed: 12/11/2022] Open
Abstract
Apoptosis or programmed cell death is a tightly regulated process fundamental for cellular development and elimination of damaged or infected cells during the maintenance of cellular homeostasis. It is also an important cellular defense mechanism against viral invasion. In many instances, abnormal regulation of apoptosis has been associated with a number of diseases, including cancer development. Following infection of host cells, persistent and oncogenic viruses such as the members of the Gammaherpesvirus family employ a number of different mechanisms to avoid the host cell’s “burglar” alarm and to alter the extrinsic and intrinsic apoptotic pathways by either deregulating the expressions of cellular signaling genes or by encoding the viral homologs of cellular genes. In this review, we summarize the recent findings on how gammaherpesviruses inhibit cellular apoptosis via virus-encoded proteins by mediating modification of numerous signal transduction pathways. We also list the key viral anti-apoptotic proteins that could be exploited as effective targets for novel antiviral therapies in order to stimulate apoptosis in different types of cancer cells.
Collapse
Affiliation(s)
- Shuvomoy Banerjee
- Amity Institute of Virology and Immunology, Amity University Noida, India
| | - Timsy Uppal
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roxanne Strahan
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, Center for Molecular Medicine, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
200
|
LaMarca B, Cornelius DC, Harmon AC, Amaral LM, Cunningham MW, Faulkner JL, Wallace K. Identifying immune mechanisms mediating the hypertension during preeclampsia. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1-9. [PMID: 27097659 DOI: 10.1152/ajpregu.00052.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022]
Abstract
Preeclampsia (PE) is a pregnancy-associated disorder that affects 5-8% of pregnancies and is a major cause of maternal, fetal, and neonatal morbidity and mortality. Hallmark characteristics of PE are new onset hypertension after 20 wk gestation with or without proteinuria, chronic immune activation, fetal growth restriction, and maternal endothelial dysfunction. However, the pathophysiological mechanisms that lead to the development of PE are poorly understood. Recent data from studies of both clinical and animal models demonstrate an imbalance in the subpopulations of CD4+ T cells and a role for these cells as mediators of inflammation and hypertension during pregnancy. Specifically, it has been proposed that the imbalance between two CD4+ T cell subtypes, regulatory T cells (Tregs) and T-helper 17 cells (Th17s), is involved in the pathophysiology of PE. Studies from our laboratory highlighting how this imbalance contributes to vasoactive factors, endothelial dysfunction, and hypertension during pregnancy will be discussed in this review. Therefore, the purpose of this review is to highlight hypertensive mechanisms stimulated by inflammatory factors in response to placental ischemia, thereby elucidating a role.
Collapse
Affiliation(s)
- Babbette LaMarca
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Denise C Cornelius
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Ashlyn C Harmon
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Lorena M Amaral
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Mark W Cunningham
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jessica L Faulkner
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Kedra Wallace
- Department of Obstetrics and Gynecology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|