151
|
Wei J, Peng MY, Wang SN, Lu HX. CXCL4:NLRP3-mediated pyroptosis product that regulates cardiac fibrosis. Int Immunopharmacol 2024; 133:112096. [PMID: 38657496 DOI: 10.1016/j.intimp.2024.112096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Severe myocarditis is often accompanied by cardiac fibrosis, but the underlying mechanism has not been fully elucidated. NOD-like receptor protein 3 (NLRP3) inflammation is involved in the development of myocarditis and is closely related to the form of cell death. Inhibiting pyroptosis mediated by NLRP3 inflammasome can reduce cardiac fibrosis, although its exact mechanism remains unknown. In this study, we induced Viral myocarditis (VMC) via infection of CVB3 to explore the relationship between pyroptosis and fibrosis. Our results showed that intraperitoneal injection of an NLRP3 inhibitor MCC950 or use of NLRP3-/- mice inhibited cardiac pyroptosis mediated by NLRP3 inflammasome in VMC. CXCL4 is a chemokine that has been reported to have pro-inflammatory and pro-fibrotic functions. In VMC, we further found that pyroptosis of Mouse myocardial fibroblasts (MCF) promoted the secretion of CXCL4 by activating Wnt/β-Catenin signaling. Subsequently, the transcriptome sequencing data showed that CXCL4 could promote cardiac fibrosis by activating PI3K/AKT pathway. In summary, infection of CVB3 induced host oxidative stress to further activate the NLRP3 inflammasome and ultimately lead to heart pyroptosis, in which MCF secreted CXCL4 by activating Wnt/β-Catenin signaling and CXCL4 participated in cardiac fibrosis by activating PI3K/AKT pathway. Therefore, our findings revealed the role of CXCL4 in VMC and unveiled its underlying mechanism. CXCL4 appears to be a potential target for the treatment of VMC.
Collapse
Affiliation(s)
- Jing Wei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjng Medical University, Nanjing 210006, China
| | - Ming Yu Peng
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing 211100, China
| | - Sai Nan Wang
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing 211100, China
| | - Hong Xiang Lu
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing 211100, China; Department of Laboratory Medicine, Nanjing First Hospital, Nanjng Medical University, Nanjing 210006, China.
| |
Collapse
|
152
|
Vlachakis PK, Theofilis P, Kachrimanidis I, Giannakopoulos K, Drakopoulou M, Apostolos A, Kordalis A, Leontsinis I, Tsioufis K, Tousoulis D. The Role of Inflammasomes in Heart Failure. Int J Mol Sci 2024; 25:5372. [PMID: 38791409 PMCID: PMC11121241 DOI: 10.3390/ijms25105372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Heart failure (HF) poses a significant world health challenge due to the increase in the aging population and advancements in cardiac care. In the pathophysiology of HF, the inflammasome has been correlated with the development, progression, and complications of HF disease. Discovering biomarkers linked to inflammasomes enhances understanding of HF diagnosis and prognosis. Directing inflammasome signaling emerges as an innovative therapeutic strategy for managing HF. The present review aims to delve into this inflammatory cascade, understanding its role in the development of HF, its potential role as biomarker, as well as the prospects of modulating inflammasomes as a therapeutic approach for HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitris Tousoulis
- 1st Department of Cardiology, “Hippokration” General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.K.V.); (P.T.); (I.K.); (K.G.); (M.D.); (A.A.); (A.K.); (I.L.); (K.T.)
| |
Collapse
|
153
|
Zhang X, Zhang Z, Zhao Y, Jin L, Tai Y, Tang Y, Geng S, Zhang H, Zhai Y, Yang Y, Pan P, He P, Fang S, Sun C, Chen Y, Zhou M, Liu L, Wang H, Xu L, Zhang T, Hua J, Wang H, Zhang L. Sodium chloride promotes macrophage pyroptosis and aggravates rheumatoid arthritis by activating SGK1 through GABA receptors Slc6a12. Int J Biol Sci 2024; 20:2922-2942. [PMID: 38904021 PMCID: PMC11186373 DOI: 10.7150/ijbs.93242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/07/2024] [Indexed: 06/22/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and the production of autoantibodies. Previous studies have indicated an association between high-salt diets (HSD) and an increased risk of RA, yet the underlying mechanisms remain unclear. Macrophage pyroptosis, a pro-inflammatory form of cell death, plays a pivotal role in RA. In this study, we demonstrate that HSD exacerbates the severity of arthritis in collagen-induced arthritis (CIA) mice, correlating with macrophage infiltration and inflammatory lesions. Given the significant alterations observed in macrophages from CIA mice subjected to HSD, we specifically investigate the impact of HSD on macrophage responses in the inflammatory milieu of RA. In our in vitro experiments, pretreatment with NaCl enhances LPS-induced pyroptosis in RAW.264.7 and THP-1 cells through the p38 MAPK/NF-κB signaling pathway. Subsequent experiments reveal that Slc6a12 inhibitors and SGK1 silencing inhibit sodium-induced activation of macrophage pyroptosis and the p38 MAPK/NF-κB signaling pathway, whereas overexpression of the SGK1 gene counteracts the effect of sodium on macrophages. In conclusion, our findings verified that high salt intake promotes the progression of RA and provided a detailed elucidation of the activation of macrophage pyroptosis induced by sodium transportation through the Slc6a12 channel.
Collapse
Affiliation(s)
- Xianzheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Tai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yujing Tang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Shuo Geng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yufang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Pin Pan
- Department of orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Peng He
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuqi Fang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Chenlong Sun
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Yu Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Tianjing Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Jinghan Hua
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anti-inflammatory Immune Drugs Collaborative Innovation Center, Anhui Province, Hefei, China
| |
Collapse
|
154
|
Li L, Liu F, Feng C, Chen Z, Zhang N, Mao J. Role of mitochondrial dysfunction in kidney disease: Insights from the cGAS-STING signaling pathway. Chin Med J (Engl) 2024; 137:1044-1053. [PMID: 38445370 PMCID: PMC11062705 DOI: 10.1097/cm9.0000000000003022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 03/07/2024] Open
Abstract
ABSTRACT Over the past decade, mitochondrial dysfunction has been investigated as a key contributor to acute and chronic kidney disease. However, the precise molecular mechanisms linking mitochondrial damage to kidney disease remain elusive. The recent insights into the cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthetase (cGAS)-stimulator of interferon gene (STING) signaling pathway have revealed its involvement in many renal diseases. One of these findings is that mitochondrial DNA (mtDNA) induces inflammatory responses via the cGAS-STING pathway. Herein, we provide an overview of the mechanisms underlying mtDNA release following mitochondrial damage, focusing specifically on the association between mtDNA release-activated cGAS-STING signaling and the development of kidney diseases. Furthermore, we summarize the latest findings of cGAS-STING signaling pathway in cell, with a particular emphasis on its downstream signaling related to kidney diseases. This review intends to enhance our understanding of the intricate relationship among the cGAS-STING pathway, kidney diseases, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lu Li
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Chunyue Feng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Nan Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
155
|
Holloway AJ, Saito TB, Naqvi KF, Huante MB, Fan X, Lisinicchia JG, Gelman BB, Endsley JJ, Endsley MA. Inhibition of caspase pathways limits CD4 + T cell loss and restores host anti-retroviral function in HIV-1 infected humanized mice with augmented lymphoid tissue. Retrovirology 2024; 21:8. [PMID: 38693565 PMCID: PMC11064318 DOI: 10.1186/s12977-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.
Collapse
Affiliation(s)
- Alex J Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Current at the Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 59840, Hamilton, MT, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Medicine, University of Toledo, 43614, Toledo, OH, USA
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA.
| |
Collapse
|
156
|
Li Y, Lin Z, Yu J, Liu Y, Li S, Huang Y, Ayodele Olaolu O, Fu Q. Neutrophil accumulation raises defence against Streptococcus equi ssp. zooepidemicus in the absence of Gasdermin D. Int Immunopharmacol 2024; 131:111891. [PMID: 38498953 DOI: 10.1016/j.intimp.2024.111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Streptococcus equi ssp. zooepidemicus (SEZ) predominantly acts as a zoonotic pathogen, capable of infecting a diverse range of animal species including human. Gasdermin D (GSDMD) exhibited comprehensive functions in host against different pathogenic microorganism. This study aimed to investigate the role of GSDMD in host against SEZ. Mice were administrated with SEZ via intranasal intubation for 24 h (3 × 106CFU), GSDMD protein expression significantly increased in the lung tissue of mice infected with SEZ. For further research on the role of GSDMD during SEZ infection, GSDMD-/- mice and WT mice were treated with SEZ via intranasal intubation for 24 h (3 × 106CFU). GSDMD-/- mice showed less severe lung tissue due to fewer bacteria colonization. Numerous neutrophils were recruited into lung tissues in GSDMD-/- mice, related to the release of CXCL1 and CXCL2 regulated by p65 phosphorylation. In further study, neutrophils of WT and GSDMD-/- mice were isolated and treated with SEZ (multiplicity of infection, MOI = 10, 4 h). The absence of GSDMD alleviated the death of neutrophils, in addition, GSDMD deficiency could promote translocation of p65 from the cytoplasm into the nucleus in neutrophil, which may contribute to the release of IL-1β and TNF-α. This study demonstrated a novel function of GSDMD in host immune response to SEZ invading, indicating that GSDMD deficiency ameliorated SEZ infection through enhancing neutrophil accumulation into infected site, and activating NF-κB pathway in neutrophil to release cytokines against SEZ. Our study suggested that inhibition of host GSDMD may be an effective method against SEZ.
Collapse
Affiliation(s)
- Yajuan Li
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Zihua Lin
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Jingyu Yu
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Guangdong, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China
| | - Oladejo Ayodele Olaolu
- Department of Animal Health Technology, Oyo State College of Agriculture and Technolog Igboor, Igboora, Nigeria
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Guangdong, China; Foshan University Veterinary Teaching Hospital, Foshan University, Guangdong, China.
| |
Collapse
|
157
|
Ma M, Jiang W, Zhou R. DAMPs and DAMP-sensing receptors in inflammation and diseases. Immunity 2024; 57:752-771. [PMID: 38599169 DOI: 10.1016/j.immuni.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous danger molecules produced in cellular damage or stress, and they can activate the innate immune system. DAMPs contain multiple types of molecules, including nucleic acids, proteins, ions, glycans, and metabolites. Although these endogenous molecules do not trigger immune response under steady-state condition, they may undergo changes in distribution, physical or chemical property, or concentration upon cellular damage or stress, and then they become DAMPs that can be sensed by innate immune receptors to induce inflammatory response. Thus, DAMPs play an important role in inflammation and inflammatory diseases. In this review, we summarize the conversion of homeostatic molecules into DAMPs; the diverse nature and classification, cellular origin, and sensing of DAMPs; and their role in inflammation and related diseases. Furthermore, we discuss the clinical strategies to treat DAMP-associated diseases via targeting DAMP-sensing receptors.
Collapse
Affiliation(s)
- Ming Ma
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, Anhui, China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
158
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
159
|
Huang B, Zou Z, Li Y, Chen H, Lai K, Yuan Y, Xu Y. Gasdermin D-Mediated Pyroptosis Promotes the Development of Atherosclerosis. J Transl Med 2024; 104:100337. [PMID: 38266921 DOI: 10.1016/j.labinv.2024.100337] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 12/16/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory cardiovascular disease with a high-morbidity and mortality rate. An increasing number of studies have addressed the crucial contribution of gasdermin D (GSDMD)-mediated pyroptosis, which is triggered by the inflammasomes to the development of atherosclerosis. However, the underlying mechanism is still unclear. This study aimed to uncover the detailed role of GSDMD in the development of atherosclerosis. An atherosclerotic model was established in Gsdmd-/-/Ldlr-/- mice and Gsdmd+/+/Ldlr-/- mice fed with a high-fat diet. The atherosclerotic lesions, the activation of GSDMD, and the expression level of inflammatory cytokines and chemokines were evaluated. Gsdmd deletion ameliorated the atherosclerotic lesion sizes and the infiltration of immune cells and inflammatory cells in the aortas of mice. Additionally, Gsdmd deletion suppressed the pyroptosis of macrophages and endothelial cells induced by the serum of Ldlr-/- mice fed with a high-fat diet. Furthermore, the formation of neutrophil extracellular traps was also attenuated by knockout of Gsdmd. Bone marrow chimeras confirmed that the genetic deficiency of Gsdmd in both immune cells and intrinsic cells played a role in the promotion of arteriosclerosis. Collectively, our study demonstrated that Gsdmd deletion hindered the pathogenesis of atherosclerosis by inhibiting endothelial cell and macrophage cell death, and the formation of neutrophil extracellular traps.
Collapse
Affiliation(s)
- Bangbang Huang
- Department of Geriatrics, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhenhuan Zou
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yinshuang Li
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hui Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kunmei Lai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
160
|
Johri N, Matreja PS, Agarwal S, Nagar P, Kumar D, Maurya A. Unraveling the Molecular Mechanisms of Activated Protein C (APC) in Mitigating Reperfusion Injury and Cardiac Ischemia: a Promising Avenue for Novel Therapeutic Interventions. J Cardiovasc Transl Res 2024; 17:345-355. [PMID: 37851312 DOI: 10.1007/s12265-023-10445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Ischemic heart disease, which results from plaque formation in the coronary arteries, hinders the flow of oxygenated blood to the heart, leading to ischemia. Reperfusion injury remains a significant challenge for researchers, and the mechanisms underlying myocardial ischemia-reperfusion injury (MIRI) are not entirely understood. The review directs future research into potential targets in clinical treatment based on our present understanding of the pathophysiological mechanisms of MIRI. The study provides insights into the mechanisms underlying MIRI and offers direction for future research in this area. The use of targeted therapies may hold promise in improving cardiac function in the elderly and minimizing the adverse effects of revascularization therapies. The purpose of this review is to analyze the role of activated protein C (APC) in the pathogenesis of ischemic heart disease, heart failure, and myocardial ischemia-reperfusion injury, and discuss the potential of APC-based therapeutics.
Collapse
Affiliation(s)
- Nishant Johri
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India.
- School of Health & Psychological Sciences, City, University of London, London, United Kingdom.
| | - Prithpal S Matreja
- Department of Pharmacology, Teerthanker Mahaveer Medical College and Research Centre, Moradabad, Uttar Pradesh, India
| | - Shalabh Agarwal
- Department of Cardiology, Teerthanker Mahaveer Hospital & Research Centre, Moradabad, Uttar Pradesh, India
| | - Priya Nagar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Deepanshu Kumar
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| | - Aditya Maurya
- Department of Pharmacy Practice & Pharmacology, Teerthanker Mahaveer College of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
161
|
Bhat AA, Riadi Y, Afzal M, Bansal P, Kaur H, Deorari M, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Dureja H, Singh SK, Dua K, Gupta G. Exploring ncRNA-mediated pathways in sepsis-induced pyroptosis. Pathol Res Pract 2024; 256:155224. [PMID: 38452584 DOI: 10.1016/j.prp.2024.155224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Sepsis, a potentially fatal illness caused by an improper host response to infection, remains a serious problem in the world of healthcare. In recent years, the role of ncRNA has emerged as a pivotal aspect in the intricate landscape of cellular regulation. The exploration of ncRNA-mediated regulatory networks reveals their profound influence on key molecular pathways orchestrating pyroptotic responses during septic conditions. Through a comprehensive analysis of current literature, we navigate the diverse classes of ncRNAs, including miRNAs, lncRNAs, and circRNAs, elucidating their roles as both facilitators and inhibitors in the modulation of pyroptotic processes. Furthermore, we highlight the potential diagnostic and therapeutic implications of targeting these ncRNAs in the context of sepsis, aiming to cover the method for novel and effective strategies to mitigate the devastating consequences of septic pathogenesis. As we unravel the complexities of this regulatory axis, a deeper understanding of the intricate crosstalk between ncRNAs and pyroptosis emerges, offering promising avenues for advancing our approach to sepsis intervention. The intricate pathophysiology of sepsis is examined in this review, which explores the dynamic interaction between ncRNAs and pyroptosis, a highly regulated kind of programmed cell death.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh 247341, India; Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand 831001, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 3467, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Hairsh Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman 3469, United Arab Emirates; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| |
Collapse
|
162
|
Chiu HW, Wu CH, Lin WY, Wong WT, Tsai WC, Hsu HT, Ho CL, Cheng SM, Cheng CC, Yang SP, Li LH, Hua KF. The Angiotensin II Receptor Neprilysin Inhibitor LCZ696 Inhibits the NLRP3 Inflammasome By Reducing Mitochondrial Dysfunction in Macrophages and Alleviates Dextran Sulfate Sodium-induced Colitis in a Mouse Model. Inflammation 2024; 47:696-717. [PMID: 38319541 DOI: 10.1007/s10753-023-01939-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/12/2023] [Accepted: 11/24/2023] [Indexed: 02/07/2024]
Abstract
The intracellular sensor protein complex known as the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome plays a crucial role in regulating inflammatory diseases by overseeing the production of interleukin (IL)-1β and IL-18. Targeting its abnormal activation with drugs holds significant promise for inflammation treatment. This study highlights LCZ696, an angiotensin receptor-neprilysin inhibitor, as an effective suppressor of NLRP3 inflammasome activation in macrophages stimulated by ATP, nigericin, and monosodium urate. LCZ696 also reduces caspase-11 and GSDMD activation, lactate dehydrogenase release, propidium iodide uptake, and the extracellular release of NLRP3 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) in ATP-activated macrophages, suggesting a potential mitigation of pyroptosis. Mechanistically, LCZ696 lowers mitochondrial reactive oxygen species and preserves mitochondrial integrity. Importantly, it does not significantly impact NLRP3, proIL-1β, inducible nitric oxide synthase, cyclooxygenase-2 expression, or NF-κB activation in lipopolysaccharide-activated macrophages. LCZ696 partially inhibits the NLRP3 inflammasome through the induction of autophagy. In an in vivo context, LCZ696 alleviates NLRP3-associated colitis in a mouse model by reducing colonic expression of IL-1β and tumor necrosis factor-α. Collectively, these findings suggest that LCZ696 holds significant promise as a therapeutic agent for ameliorating NLRP3 inflammasome activation in various inflammatory diseases, extending beyond its established use in hypertension and heart failure treatment.
Collapse
Affiliation(s)
- Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Che Tsai
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
163
|
Wang J, Hou J, Peng C. Phospholipid transfer protein ameliorates sepsis-induced cardiac dysfunction through NLRP3 inflammasome inhibition. Open Med (Wars) 2024; 19:20240915. [PMID: 38584827 PMCID: PMC10996989 DOI: 10.1515/med-2024-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 04/09/2024] Open
Abstract
Cardiomyocyte pyroptosis is a primary contributor to sepsis-induced cardiac dysfunction (SICD). Recombinant phospholipid transfer protein (PLTP) have been demonstrated to possess anti-inflammatory and antiseptic properties. However, the effect of PLTP on SICD remains unknown. In this study, we established the in vivo and in vitro sepsis model with the recombinant PLTP treatment. The survival rates of mice, mouse cardiac function, cell viability, the protein level of proinflammatory cytokine, and lactate dehydrogenase level were evaluated. The cardiomyocyte pyroptotic changes were observed. The distribution of PLTP and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) in mouse myocardial tissue and expression of PLTP, apoptosis associated speck like protein containing a CARD (ASC), NLRP3, caspase-1, interleukin (IL)-1β, and Gasdermin D (GSDMD) were detected. PLTP ameliorated the cecal ligation and puncture-induced mouse survival rate decrease and cardiac dysfunction, inhibited the IL-1β, IL-18, and tumor necrosis factor (TNF)-α release, and blocked the NLRP3 inflammasome/GSDMD signaling pathway in septic mice. In vitro, PLTP reversed the lipopolysaccharide-induced cardiomyocyte pyroptosis, expression of IL-1β, IL-6, TNF-α, and activation of the NLRP3 inflammasome/GSDMD signal pathway. Moreover, PLTP could bind to NLRP3 and negatively regulate the activity of the NLRP3 inflammasome/GSDMD signal pathway. This study demonstrated that PLTP can ameliorate SICD by inhibiting inflammatory responses and cardiomyocyte pyroptosis by blocking the activation of the NLRP3 inflammasome/GSDMD signaling pathway.
Collapse
Affiliation(s)
- Jian Wang
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Jing Hou
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| | - Chaohua Peng
- Emergency and Intensive Care Medicine Center, Guang’an People’s Hospital, Guang’an city, Sichuan 638500, PR China
| |
Collapse
|
164
|
Xie Y, Wang Z, Song G, Ma H, Feng B. GSDMD induces hepatocyte pyroptosis to trigger alcoholic hepatitis through modulating mitochondrial dysfunction. Cell Div 2024; 19:10. [PMID: 38532477 DOI: 10.1186/s13008-024-00114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Mechanisms and consequences of Gasdermin D (GSDMD) activation in alcoholic hepatitis (AH) are unclear. In the present study, we investigated whether GSDMD induces hepatocyte pyroptosis by regulating mitochondrial dysfunction in AH. RESULTS Liver damage in AH mice was assessed by HE staining, serum levels of AST, ALT, TC, and TG. The levels of IL-1β, IL-18, LDH, inflammasome-associated proteins and hepatocyte death were assessed to determine pyroptosis. Mitochondrial dysfunction was assessed through various parameters including mitochondrial DNA (mtDNA) levels, ROS generation, mitochondrial membrane potential, ATP contents, levels of mitochondrial function-related proteins and morphological changes of mitochondria. AH induced gasdermin D (GSDMD) activation, leading to increased protein expression of N-terminal GSDMD (GSDMD-N), NLRP3, and Caspase 11 in liver tissues. Downregulation of GSDMD alleviated alcohol-induced hepatocyte pyroptosis. Alcohol also causes mitochondrial dysfunction in hepatocytes in AH, which was improved by inhibiting GSDMD. Furthermore, enhancing mitochondrial function suppressed alcohol-induced hepatocyte pyroptosis. Further, knockdown of GSDMD or dynamin-related protein 1 (Drp1) improved AH-induced liver injury, accompanied by a decrease in hepatocyte pyroptosis. CONCLUSION GSDMD induces hepatocyte pyroptosis by modulating mitochondrial dysfunction during AH-induced inflammation and liver injury. These findings may pave the way to develop new therapeutic treatments for AH.
Collapse
Affiliation(s)
- Yandi Xie
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China.
| | - Zilong Wang
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| | - Guangjun Song
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| | - Hui Ma
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| | - Bo Feng
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing International Cooperation Base for Science and Technology on NAFLD Diagnosis, No.11, Xizhimen South Street, Beijing, 100044, China
| |
Collapse
|
165
|
Liang Y, Lei P, An R, Du P, Liu S, Wei Y, Zhang H. Biodegradable Monometallic Aluminum as a Biotuner for Tumor Pyroptosis. Angew Chem Int Ed Engl 2024; 63:e202317304. [PMID: 38298089 DOI: 10.1002/anie.202317304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/01/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
Pyroptosis is an effective anti-tumor strategy. However, monometallic pyroptosis biotuners have not been explored until now. Here, we discover for the first time that biodegradable monometallic Al can act as a pyroptosis biotuner for tumor therapy. pH-sensitive Al nanoparticles (Al@P) are obtained by equipping polyethylene glycol-b-(poly(methyl methacrylate)-co-poly(4-vinylpyridine), which can exert their effect at the tumor site without affecting normal cells. The H2 and Al3+ release by Al@P in the acidic environment of tumors disrupts the redox balance and ionic homeostasis in tumor cells, thus generating large amounts of reactive oxygen species (ROS), leading to caspase-1 activation, gasdermin D cleavage, and IL-1β/LDH release, which induces canonical pyroptotic death. Meanwhile, the prodrug Doxorubicin (Pro-DOX) is successfully loaded onto Al@P (Al@P-P) and can be activated by ROS to release DOX in the tumor cells, thus further improving the tumor-killing efficiency. Ultimately, Al@P-P is degradable and exhibits efficient tumor inhibition.
Collapse
Affiliation(s)
- Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi, Ganzhou, 341000, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
| | - Ran An
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
| | - Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun, 130022, China
- University of Science and Technology of China, Anhui, Hefei, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Jiangxi, Ganzhou, 341000, China
| |
Collapse
|
166
|
Liang W, Wei R, Zhu X, Li J, Lin A, Chen J, Wu W, Jie Q. Downregulation of HMGB1 carried by macrophage-derived extracellular vesicles delays atherosclerotic plaque formation through Caspase-11-dependent macrophage pyroptosis. Mol Med 2024; 30:38. [PMID: 38493291 PMCID: PMC10943908 DOI: 10.1186/s10020-023-00753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 11/02/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Macrophage-derived extracellular vesicle (macrophage-EV) is highly studied for its regulatory role in atherosclerosis (AS). Our current study tried to elucidate the possible role of macrophage-EV loaded with small interfering RNA against high-mobility group box 1 (siHMGB1) affecting atherosclerotic plaque formation. METHODS In silico analysis was performed to find critical factors in mouse atherosclerotic plaque formation. EVs secreted by RAW 264.7 cells were collected by ultracentrifugation and characterized, followed by the preparation of macrophage-EV-loaded siHMGB1 (macrophage-EV/siHMGB1). ApoE-/- mice were used to construct an AS mouse model by a high-fat diet, followed by injection of macrophage-EV/siHMGB1 to assess the in vivo effect of macrophage-EV/siHMGB1 on AS mice. RAW264.7 cells were subjected to ox-LDL, LPS or macrophage-EV/siHMGB1 for analyzing the in vitro effect of macrophage-EV/siHMGB1 on macrophage pyrophosis and inflammation. RESULTS In silico analysis found that HMGB1 was closely related to the development of AS. Macrophage-EV/siHMGB could inhibit the release of HMGB1 from macrophages to outside cells, and the reduced HMGB1 release could inhibit foam cell formation. Besides, macrophage-EV/siHMGB also inhibited the LPS-induced Caspase-11 activation, thus inhibiting macrophage pyroptosis and preventing atherosclerotic plaque formation. CONCLUSION Our results proved that macrophage-EV/siHMGB could inhibit foam cell formation and suppress macrophage pyroptosis, finally preventing atherosclerotic plaque formation in AS mice.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Ruibin Wei
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Xingxing Zhu
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Jinliang Li
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Aiwen Lin
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Jun Chen
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China
| | - Wen Wu
- Department of Endocrinology, Guangdong Geriatrics Institute, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, No. 106, Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| | - Qiang Jie
- Department of Cardiology, Panyu Central Hospital, Cardiovascular Institute of Panyu District, No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, Guangdong Province, People's Republic of China.
| |
Collapse
|
167
|
Cai R, Gong X, Li X, Jiang Y, Deng S, Tang J, Ge H, Wu C, Tang H, Wang G, Xie L, Chen X, Hu X, Feng J. Dectin-1 aggravates neutrophil inflammation through caspase-11/4-mediated macrophage pyroptosis in asthma. Respir Res 2024; 25:119. [PMID: 38459541 PMCID: PMC10921740 DOI: 10.1186/s12931-024-02743-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.
Collapse
Grants
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 2022JJ30924 Natural Science Foundation of Hunan Province,China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 82270033 National Natural Science Foundation of China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
- 81873407 National Natural Science Foundation of China,China
Collapse
Affiliation(s)
- Runjin Cai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoxiao Gong
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaozhao Li
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanyuan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shuanglinzi Deng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jiale Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Ge
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chendong Wu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Tang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Guo Wang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lei Xie
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xuemei Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xinyue Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Juntao Feng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
168
|
Al Mamun A, Shao C, Geng P, Wang S, Xiao J. The Mechanism of Pyroptosis and Its Application Prospect in Diabetic Wound Healing. J Inflamm Res 2024; 17:1481-1501. [PMID: 38463193 PMCID: PMC10924950 DOI: 10.2147/jir.s448693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
Pyroptosis defines a form of pro-inflammatory-dependent programmed cell death triggered by gasdermin proteins, which creates cytoplasmic pores and promotes the activation and accumulation of immune cells by releasing several pro-inflammatory mediators and immunogenic substances upon cell rupture. Pyroptosis comprises canonical (mediated by Caspase-1) and non-canonical (mediated by Caspase-4/5/11) molecular signaling pathways. Numerous studies have explored the contributory roles of inflammasome and pyroptosis in the progression of multiple pathological conditions such as tumors, nerve injury, inflammatory diseases and metabolic disorders. Accumulating evidence indicates that the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome results in the activation of pyroptosis and inflammation. Current evidence suggests that pyroptosis-dependent cell death plays a progressive role in the development of diabetic complications including diabetic wound healing (DWH) and diabetic foot ulcers (DFUs). This review presents a brief overview of the molecular mechanisms underlying pyroptosis and addresses the current research on pyroptosis-dependent signaling pathways in the context of DWH. In this review, we also present some prospective therapeutic compounds/agents that can target pyroptotic signaling pathways, which may serve as new strategies for the effective treatment and management of diabetic wounds.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Chuxiao Shao
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Peiwu Geng
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Shuanghu Wang
- Central Laboratory of the Sixth Affiliated Hospital of Wenzhou Medical University, Lishui People's Hospital, Lishui City, Zhejiang, 323000, People's Republic of China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
- Department of Wound Healing, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
169
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
170
|
Wu X, Yang J, Wu J, Yang X. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome in systemic lupus erythematosus. Biomed Pharmacother 2024; 172:116261. [PMID: 38340397 DOI: 10.1016/j.biopha.2024.116261] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a pathogenesis that remains incompletely understood, resulting in limited treatment options. MCC950, a highly specific NLRP3 inflammasome inhibitor, effectively suppresses the activation of NLRP3, thus reducing the production of caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. This review highlights the pivotal role of NLRP3 inflammasome activation pathways in the pathogenesis of SLE and discusses the potential therapeutic application of MCC950 in SLE. Notably, it comprehensively elucidates the mechanism of MCC950 targeting the NLRP3 pathway in SLE treatment, outlining its potential role in regulating autophagy and necroptosis. The insights gained contribute to a deeper understanding of the value of MCC950 in SLE therapy, serving as a robust foundation for further research and potential clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155North Nanjing Street, Heping District, Shenyang 110001, China
| | - Juanjie Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xuyan Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
171
|
Xiong M, Chen Z, Tian J, Peng Y, Song D, Zhang L, Jin Y. Exosomes derived from programmed cell death: mechanism and biological significance. Cell Commun Signal 2024; 22:156. [PMID: 38424607 PMCID: PMC10905887 DOI: 10.1186/s12964-024-01521-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles present in bodily fluids that mediate intercellular communication by transferring bioactive molecules, thereby regulating a range of physiological and pathological processes. Exosomes can be secreted from nearly all cell types, and the biological function of exosomes is heterogeneous and depends on the donor cell type and state. Recent research has revealed that the levels of exosomes released from the endosomal system increase in cells undergoing programmed cell death. These exosomes play crucial roles in diseases, such as inflammation, tumors, and autoimmune diseases. However, there is currently a lack of systematic research on the differences in the biogenesis, secretion mechanisms, and composition of exosomes under different programmed cell death modalities. This review underscores the potential of exosomes as vital mediators of programmed cell death processes, highlighting the interconnection between exosome biosynthesis and the regulatory mechanisms governing cell death processes. Furthermore, we accentuate the prospect of leveraging exosomes for the development of innovative biomarkers and therapeutic strategies across various diseases.
Collapse
Affiliation(s)
- Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Zhen Chen
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Key Laboratory of Coal Health and Safety, Tangshan, 063000, China.
| |
Collapse
|
172
|
Wang H, Shu L, Lv C, Liu N, Long Y, Peng X, Ling H, Tao T, Tang J, Cheng Y, Liu S, Xiao D, Tao Y. BRCC36 Deubiquitinates HMGCR to Regulate the Interplay Between Ferroptosis and Pyroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304263. [PMID: 38178583 PMCID: PMC10953584 DOI: 10.1002/advs.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Various forms of programmed cell death (PCD) exhibit distinct characteristics depending on their specific molecular mechanisms, and there are interactions among these different forms. Ferroptosis, which is related to autophagy and apoptosis, has an unknown potential interaction with pyroptosis. This study revealed a mutually antagonistic relationship between ferroptosis and pyroptosis, with 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) playing a key role in their interaction. It is found that HMGCR predominantly localized to mitochondria during ferroptosis but shifted to the endoplasmic reticulum following treatment with a pyroptosis inducer. Furthermore, this study demonstrated that BRCC36 (BRCA1/BRCA2-containing complex subunit 36) deubiquitinated HMGCR in a manner dependent on deubiquitinating enzyme (DUB) activity, and inhibited ferroptosis and promoted pyroptosis. Moreover, as an oncogene in hepatocellular carcinoma (HCC), BRCC36 promoted cancer cell proliferation, migration, invasion, and tumor growth. Thiolutin, an inhibitor of BRCC36, effectively suppressed the interaction between BRCC36 and HMGCR, leading to the inhibition of HCC growth. Therefore, targeting BRCC36 can offer a novel and promising therapeutic strategy for HCC treatment. In conclusion, these findings provide new theoretical evidence for further characterizing tumor heterogeneity and offer new molecular targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- Academy of Biomedical EngineeringKunming Medical UniversityKunming650500China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Long Shu
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Cairui Lv
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Na Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Yao Long
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Xintong Peng
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Huli Ling
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Tania Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- Hunan Key Laboratory of Early Diagnosis and Precision TherapyDepartment of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
| | - Jun Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
| | - Yan Cheng
- Department of PharmacyThe Second Xiangya HospitalCentral South UniversityChangsha410011China
| | - Shuang Liu
- Department of OncologyInstitute of Medical SciencesNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Desheng Xiao
- Department of PathologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South UniversityMinistry of Education)Department of PathologyXiangya HospitalCentral South UniversityHunan410078China
- NHC Key Laboratory of CarcinogenesisCancer Research Institute and School of Basic MedicineCentral South UniversityChangshaHunan410078China
- Hunan Key Laboratory of Early Diagnosis and Precision TherapyDepartment of Thoracic SurgerySecond Xiangya HospitalCentral South UniversityChangsha410011China
- Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of MedicineCentral South UniversityChangshaHunan410031China
| |
Collapse
|
173
|
Oladapo A, Jackson T, Menolascino J, Periyasamy P. Role of pyroptosis in the pathogenesis of various neurological diseases. Brain Behav Immun 2024; 117:428-446. [PMID: 38336022 PMCID: PMC10911058 DOI: 10.1016/j.bbi.2024.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Pyroptosis, an inflammatory programmed cell death process, has recently garnered significant attention due to its pivotal role in various neurological diseases. This review delves into the intricate molecular signaling pathways governing pyroptosis, encompassing both caspase-1 dependent and caspase-1 independent routes, while emphasizing the critical role played by the inflammasome machinery in initiating cell death. Notably, we explore the Nucleotide-binding domain leucine-rich repeat (NLR) containing protein family, the Absent in melanoma 2-like receptor family, and the Pyrin receptor family as essential activators of pyroptosis. Additionally, we comprehensively examine the Gasdermin family, renowned for their role as executioner proteins in pyroptosis. Central to our review is the interplay between pyroptosis and various central nervous system (CNS) cell types, including astrocytes, microglia, neurons, and the blood-brain barrier (BBB). Pyroptosis emerges as a significant factor in the pathophysiology of each cell type, highlighting its far-reaching impact on neurological diseases. This review also thoroughly addresses the involvement of pyroptosis in specific neurological conditions, such as HIV infection, drug abuse-mediated pathologies, Alzheimer's disease, and Parkinson's disease. These discussions illuminate the intricate connections between pyroptosis, chronic inflammation, and cell death in the development of these disorders. We also conducted a comparative analysis, contrasting pyroptosis with other cell death mechanisms, thereby shedding light on their unique aspects. This approach helps clarify the distinct contributions of pyroptosis to neuroinflammatory processes. In conclusion, this review offers a comprehensive exploration of the role of pyroptosis in various neurological diseases, emphasizing its multifaceted molecular mechanisms within various CNS cell types. By elucidating the link between pyroptosis and chronic inflammation in the context of neurodegenerative disorders and infections, it provides valuable insights into potential therapeutic targets for mitigating these conditions.
Collapse
Affiliation(s)
- Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Thomas Jackson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Jueliet Menolascino
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
174
|
Wang R, Wang Y, Yang Q, Liu J, Lu Z, Xu W, Zhu J, Liu H, He W, Yan Y, Ruan Y, Zhou M. Xiaoqinglong decoction improves allergic rhinitis by inhibiting NLRP3-mediated pyroptosis in BALB/C mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117490. [PMID: 38030025 DOI: 10.1016/j.jep.2023.117490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoqinglong decoction (XQLD), first recorded in Shang Han Lun, is a traditional Chinese medicine prescribed for the treatment of allergic rhinitis (AR). XQLD alleviates the clinical symptoms of AR by inhibiting the occurrence of an inflammatory response, but the specific regulatory mechanism remains unclear. AIM OF THE STUDY NLRP3-mediated pyroptosis is closely related to AR pathogenesis. Hence, this study aimed to explore the potential role of NLRP3-mediated pyroptosis pathway in the AR-associated pharmacological mechanism of XQLD. MATERIALS AND METHODS BALB/C mice models of AR was established by using ovalbumin (OVA) and aluminum hydroxide sensitization. After intragastric administration of different dosages of XQLD, nasal allergic symptoms were observed. The expression of OVA-sIgE and Th2 inflammatory factors (IL-4, IL-5, and IL-13) in serum was detected by ELISA. The histopathological morphology and expression of inflammatory factors in nasal mucosa along with pyroptosis were investigated. Molecular docking was performed to analyze the binding of representative compounds of XQLD with NLRP3. Activation of the NLRP3 inflammasome was detected by immunofluorescence and western blotting. RESULTS XQLD significantly improved the nasal allergic symptoms of mice, reduced the degree of goblet cell proliferation, mast cell infiltration, and collagen fiber hyperplasia in nasal mucosa. Meanwhile, it could downregulate the expression of Th2 inflammatory factors (IL-4, IL-5, and IL-13) in serum and nasal mucosa. XQLD significantly reduced the number of GSDMD and TUNEL double-positive cells and IL-1β and IL-18 expression. Molecular docking confirmed that seven representative compounds of XQLD had good binding properties with NLRP3 and were able to inhibit the activation of the NLRP3 inflammasome. CONCLUSIONS The representative compounds of XQLD might inhibit pyroptosis in nasal mucosa mediated by the NLRP3 inflammasome to helping the recovery of AR, which provides a new modern pharmacological proof for XQLD to treat AR.
Collapse
Affiliation(s)
- Ruizhi Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yongchun Wang
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qintai Yang
- Department of Otolaryngology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Jiaming Liu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Zesheng Lu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weizhen Xu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Jinxiang Zhu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - He Liu
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weiping He
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China.
| | - Yajie Yan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China.
| | - Yan Ruan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou 510405, China.
| | - Min Zhou
- The First Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Allergy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| |
Collapse
|
175
|
Fu Q, Shen N, Fang T, Zhang H, Di Y, Liu X, Du C, Guo J. ACT001 alleviates inflammation and pyroptosis through the PPAR-γ/NF-κB signaling pathway in LPS-induced alveolar macrophages. Genes Genomics 2024; 46:323-332. [PMID: 37831404 DOI: 10.1007/s13258-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND ACT001 is an anti-inflammatory agent that has been widely investigated for its role in tumors, intracranial diseases, and fibrotic diseases, but its effect on acute lung injury is less known. OBJECTIVE The purpose of this study was to investigate the effect and mechanism of ACT001 on regulating inflammation and pyroptosis in lipopolysaccharide (LPS)-induced alveolar macrophages. METHODS NR8383 alveolar macrophages treated with LPS were used to replicate the proinflammatory macrophage phenotype observed during acute lung injury. After ACT001 treatment, we measured the secretion and expression levels of critical inflammatory cytokines, the rate of pyroptosis, and the expression of NLRP3 inflammasome-associated proteins and pyroptosis-associated proteins. In addition, we assessed the role of the PPAR-γ/NF-κB signaling pathways and further validated the results with a PPAR-γ inhibitor. RESULTS Our findings confirmed that ACT001 reduced the expression and release of inflammatory factors, attenuated cell pyroptosis, and downregulated the expression of NLRP3, ASC, caspase-1 p20, and GSDMD-N. These effects may be achieved by activating PPAR-γ expression and then inhibiting the NF-κB signaling pathway. When macrophages were treated with the PPAR-γ inhibitor, the protective effects of ACT001 were reversed. CONCLUSION ACT001 significantly ameliorated inflammation and pyroptosis via the PPAR-γ/NF-κB signaling pathways in LPS-induced NR8383 alveolar macrophages.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China.
| | - Na Shen
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Hewei Zhang
- Department of Intensive Care Unit, Tianjin 4th Central Hospital, No.1 Zhongshan Road, Tianjin, 300140, China
| | - Yanbo Di
- Central Laboratory, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Xuan Liu
- Pharmacy Department, Tianjin 4th Central Hospital, Tianjin, 300140, China
| | - Chao Du
- Emergency Surgical Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| |
Collapse
|
176
|
Li Z, Ma B, Xu H, Gong M, Gao P, Wang L, Xie J. Divinyl sulfone, an oxidative metabolite of sulfur mustard, induces caspase-independent pyroptosis in hepatocytes. Arch Toxicol 2024; 98:897-909. [PMID: 38172301 DOI: 10.1007/s00204-023-03662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Sulfur mustard (SM) is a highly toxic blister agent which has been used many times in several wars and conflicts and caused heavy casualties. Ease of production and lack of effective therapies make SM a potential threat to public health. SM intoxication causes severe damage on various target organs, such as the skin, eyes, and lungs. In addition, SM exposure can also lead to hepatotoxicity and severe liver injuries. However, despite decades of research, the molecular mechanism underlying SM-induced liver damage remains obscure. SM can be converted into various products via complex hepatic metabolism in vivo. There are some pieces of evidence that one of the oxidation products of SM, divinyl sulfone (DVS), exhibits even more significant toxicity than SM. Nevertheless, the molecular toxicology of DVS is still hardly known. In the present study, we confirmed that DVS is even more toxic than SM in the human hepatocellular carcinoma cell line HepG2. Further mechanistic study revealed that DVS exposure (200 μM) promotes pyroptosis in HepG2 cells, while SM (400 μM) mainly induces apoptosis. DVS induces gasdermin D (GSDMD) mediated pyroptosis, which is independent of caspases activation but depends on the large amounts of reactive oxygen species (ROS) and severe oxidative stress produced during DVS exposure. Our findings may provide novel insights for understanding the mechanism of SM poisoning and may be helpful to discover promising therapeutic strategies for SM intoxication.
Collapse
Affiliation(s)
- Zhi Li
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Bo Ma
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Hua Xu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Mengqiang Gong
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Pengxia Gao
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Lili Wang
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
177
|
Gouchoe DA, Lee YG, Kim JL, Zhang Z, Marshall JM, Ganapathi A, Zhu H, Black SM, Ma J, Whitson BA. Mitsugumin 53 mitigation of ischemia-reperfusion injury in a mouse model. J Thorac Cardiovasc Surg 2024; 167:e48-e58. [PMID: 37562677 PMCID: PMC12047617 DOI: 10.1016/j.jtcvs.2023.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Primary graft dysfunction is often attributed to ischemia-reperfusion injury, and prevention would be a therapeutic approach to mitigate injury. Mitsugumin 53, a myokine, is a component of the endogenous cell membrane repair machinery. Previously, exogenous administration of recombinant human (recombinant human mitsugumin 53) protein has been shown to mitigate acute lung injury. In this study, we aimed to quantify a therapeutic benefit of recombinant human mitsugumin 53 to mitigate a transplant-relevant model of ischemia-reperfusion injury. METHODS C57BL/6J mice were subjected to 1 hour of ischemia (via left lung hilar clamp), followed by 24 hours of reperfusion. mg53-/- mice were administered exogenous recombinant human mitsugumin 53 or saline before reperfusion. Tissue, bronchoalveolar lavage, and blood samples were collected at death and used to quantify the extent of lung injury via histology and biochemical assays. RESULTS Administration of recombinant human mitsugumin 53 showed a significant decrease in an established biometric profile of lung injury as measured by lactate dehydrogenase and endothelin-1 in the bronchoalveolar lavage and plasma. Biochemical markers of apoptosis and pyroptosis (interleukin-1β and tumor necrosis factor-α) were also significantly mitigated, overall demonstrating recombinant human mitsugumin 53's ability to decrease the inflammatory response of ischemia-reperfusion injury. Exogenous recombinant human mitsugumin 53 administration showed a trend toward decreasing overall cellular infiltrate and neutrophil response. Fluorescent colocalization imaging revealed recombinant human mitsugumin 53 was effectively delivered to the endothelium. CONCLUSIONS These data demonstrate that recombinant human mitsugumin 53 has the potential to prevent or reverse ischemia-reperfusion injury-mediated lung damage. Although additional studies are needed in wild-type mice to demonstrate efficacy, this work serves as proof-of-concept to indicate the potential therapeutic benefit of mitsugumin 53 administration to mitigate ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Doug A Gouchoe
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, WPAFB, Ohio
| | - Yong Gyu Lee
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jung Lye Kim
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Zhentao Zhang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joanna M Marshall
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Asvin Ganapathi
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hua Zhu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, Va
| | - Bryan A Whitson
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; The Davis Heart and Lung Research Institute at The Ohio State University Wexner Medical, College of Medicine, Columbus, Ohio.
| |
Collapse
|
178
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
179
|
Zhou H, Zhang Q, Liu C, Fan J, Huang W, Li N, Yang M, Wang H, Xie W, Kong H. NLRP3 inflammasome mediates abnormal epithelial regeneration and distal lung remodeling in silica‑induced lung fibrosis. Int J Mol Med 2024; 53:25. [PMID: 38240085 PMCID: PMC10836498 DOI: 10.3892/ijmm.2024.5349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome is closely related to silica particle‑induced chronic lung inflammation but its role in epithelial remodeling, repair and regeneration in the distal lung during development of silicosis remains to be elucidated. The present study aimed to determine the effects of the NLRP3 inflammasome on epithelial remodeling and cellular regeneration and potential mechanisms in the distal lung of silica‑treated mice at three time points. Pulmonary function assessment, inflammatory cell counting, enzyme‑linked immunosorbent assay, histological and immunological analyses, hydroxyproline assay and western blotting were used in the study. Single intratracheal instillation of a silica suspension caused sustained NLRP3 inflammasome activation in the distal lung. Moreover, a time‑dependent increase in airway resistance and a decrease in lung compliance accompanied progression of pulmonary fibrosis. In the terminal bronchiole, lung remodeling including pyroptosis (membrane‑distributed GSDMD+), excessive proliferation (Ki67+), mucus overproduction (mucin 5 subtype AC and B) and epithelial‑mesenchymal transition (decreased E‑Cadherin+ and increased Vimentin+), was observed by immunofluorescence analysis. Notably, aberrant spatiotemporal expression of the embryonic lung stem/progenitor cell markers SOX2 and SOX9 and ectopic distribution of bronchioalveolar stem cells were observed in the distal lung only on the 7th day after silica instillation (the early inflammatory phase of silicosis). Western blotting revealed that the Sonic hedgehog/Glioma‑associated oncogene (Shh/Gli) and Wnt/β‑catenin pathways were involved in NLRP3 inflammasome activation‑mediated epithelial remodeling and dysregulated regeneration during the inflammatory and fibrotic phases. Overall, sustained NLRP3 inflammasome activation led to epithelial remodeling in the distal lung of mice. Moreover, understanding the spatiotemporal profile of dysregulated epithelial repair and regeneration may provide a novel therapeutic strategy for inhalable particle‑related chronic inflammatory and fibrotic lung disease.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Pulmonary and Critical Care Medicine, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Qun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenyang Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jiahao Fan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wen Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Nan Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Mingxia Yang
- Department of Pulmonary and Critical Care Medicine, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, P.R. China
| | - Hong Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiping Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hui Kong
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
180
|
Zhang TM, Yang K, Jiao MN, Zhao Y, Xu ZY, Zhang GM, Wang HL, Liang SX, Yan YB. Temporal gene expression profiling during early-stage traumatic temporomandibular joint bony ankylosis in a sheep model. BMC Oral Health 2024; 24:284. [PMID: 38418977 PMCID: PMC10903020 DOI: 10.1186/s12903-024-03971-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Investigating the molecular biology underpinning the early-stage of traumatic temporomandibular joint (TMJ) ankylosis is crucial for discovering new ways to prevent the disease. This study aimed to explore the dynamic changes of transcriptome from the intra-articular hematoma or the newly generated ankylosed callus during the onset and early progression of TMJ ankylosis. METHODS Based on a well-established sheep model of TMJ bony ankylosis, the genome-wide microarray data were obtained from samples at postoperative Days 1, 4, 7, 9, 11, 14 and 28, with intra-articular hematoma at Day 1 serving as controls. Fold changes in gene expression values were measured, and genes were identified via clustering based on time series analysis and further categorised into three major temporal classes: increased, variable and decreased expression groups. The genes in these three temporal groups were further analysed to reveal pathways and establish their biological significance. RESULTS Osteoblastic and angiogenetic genes were found to be significantly expressed in the increased expression group. Genes linked to inflammation and osteoclasts were found in the decreased expression group. The various biological processes and pathways related to each temporal expression group were identified, and the increased expression group comprised genes exclusively involved in the following pathways: Hippo signaling pathway, Wnt signaling pathway and Rap 1 signaling pathway. The decreased expression group comprised genes exclusively involved in immune-related pathways and osteoclast differentiation. The variable expression group consisted of genes associated with DNA replication, DNA repair and DNA recombination. Significant biological pathways and transcription factors expressed at each time point postoperatively were also identified. CONCLUSIONS These data, for the first time, presented the temporal gene expression profiling and reveal the important process of molecular biology in the early-stage of traumatic TMJ bony ankylosis. The findings might contributed to identifying potential targets for the treatment of TMJ ankylosis.
Collapse
Affiliation(s)
- Tong-Mei Zhang
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Tianjin's Clinical Research Center for Cancer, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, West Huan-Hu Road, Ti Yuan Bei, Hexi District, Tianjin, 30060, PR China
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, PR China
| | - Kun Yang
- Department of Oromaxillofacial-Head and Neck Surgery, China Three Gorges University Affiliated Renhe Hospital, 410 Yiling Ave, Hubei, 443001, PR China
| | - Mai-Ning Jiao
- Department of Oral and Maxillofacial Surgery, Weifang people's Hospital, 151 GuangWen Street, KuiWen District, Weifang, ShanDong Province, 261000, PR China
| | - Yan Zhao
- Tianjin Medical University, 22 Qi-xiang-tai Road, Heping District, Tianjin, 300070, PR China
| | - Zhao-Yuan Xu
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
| | - Guan-Meng Zhang
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China
| | - Hua-Lun Wang
- Department of Oral and Maxillofacial Surgery, Jining Stomatological Hospital, 22 Communist Youth League Road, Rencheng District, Jining, ShanDong Province, 272000, PR China
| | - Su-Xia Liang
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
| | - Ying-Bin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, School of Medicine, Nankai University, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, 75 Dagu Road, Heping District, Tianjin, 300041, PR China.
| |
Collapse
|
181
|
Cai H, Zhang J, Xu H, Sun W, Wu W, Dong C, Zhou P, Xue C, Nan Y, Ni Y, Wu X, Gu Z, Chen M, Wang Y. ALOX5 drives the pyroptosis of CD4 + T cells and tissue inflammation in rheumatoid arthritis. Sci Signal 2024; 17:eadh1178. [PMID: 38412254 DOI: 10.1126/scisignal.adh1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
Pyroptosis, an inflammatory form of programmed cell death, is linked to the pathology of rheumatoid arthritis (RA). Here, we investigated the molecular mechanism underlying pyroptosis in T cells isolated from patients with RA. Compared with healthy individuals, patients with RA had more pyroptotic CD4+ T cells in blood and synovia, which correlated with clinical measures of disease activity. Moreover, the mRNA expression and protein abundance of arachidonate 5-lipoxygenase (ALOX5), which converts arachidonic acid to leukotriene A4 (LTA4), were increased in CD4+ T cells from patients with RA and, among patients with RA, were lowest in those in clinical remission. Knockdown or pharmacological inhibition of ALOX5 suppressed CD4+ T cell pyroptosis and improved symptoms in two rodent models of RA. Mechanistically, the increase in ALOX5 activity in RA CD4+ T cells enhanced the production of the LTA4 derivative LTB4, which stimulated Ca2+ influx through ORAI3 channels, leading to the activation of NLRP3 inflammasomes and pyroptosis. Our findings reveal a role for ALOX5 in RA and provide a molecular basis for further exploring the clinical utility of ALOX5 inhibition in RA and for using ALOX5 as a biomarker to distinguish active disease and remission in RA.
Collapse
Affiliation(s)
- Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Yingchen Ni
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xinyuan Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
182
|
Hu X, Zou M, Zheng W, Zhu M, Hou Q, Gao H, Zhang X, Liu Y, Cheng Z. Bhlhe40 deficiency attenuates LPS-induced acute lung injury through preventing macrophage pyroptosis. Respir Res 2024; 25:100. [PMID: 38402153 PMCID: PMC10894472 DOI: 10.1186/s12931-024-02740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. Recently, increasing evidence supports activated inflammation and gasdermin D (GSDMD)-mediated pyroptosis in macrophage are closely associated with ALI. Basic helix-loop-helix family member e40 (Bhlhe40) is a transcription factor that is comprehensively involved in inflammation. However, there is little experimental evidence connecting Bhlhe40 and GSDMD-driven pyroptosis. The study sought to verify the hypothesis that Bhlhe40 is required for GSDMD-mediated pyroptosis in lipopolysaccharide (LPS)-induced inflammatory injury. METHOD We performed studies using Bhlhe40-knockout (Bhlhe40 -/-) mice, small interfering RNA (siRNA) targeting Bhlhe40 and pyroptosis inhibitor disulfiram to investigate the potential roles of Bhlhe40 on LPS-induced ALI and the underlying mechanisms. RESULTS Bhlhe40 was highly expressed in total lung tissues and macrophages of LPS-induced mice. Bhlhe40-/- mice showed alleviative lung pathological injury and inflammatory response upon LPS stimulation. Meanwhile, we found that Bhlhe40 deficiency significantly suppressed GSDMD-mediated pyroptosis in macrophage in vivo and in vitro. By further mechanistic analysis, we demonstrated that Bhlhe40 deficiency inhibited GSDMD-mediated pyroptosis and subsequent ALI by repressing canonical (caspase-1-mediated) and non-canonical (caspase-11-mediated) signaling pathways in vivo and in vitro. CONCLUSION These results indicate Bhlhe40 is required for LPS-induced ALI. Bhlhe40 deficiency can inhibit GSDMD-mediated pyroptosis and therefore alleviate ALI. Targeting Bhlhe40 may be a potential therapeutic strategy for LPS-induced ALI.
Collapse
Affiliation(s)
- Xingxing Hu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Menglin Zou
- Fourth Ward of Medical Care Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Weishuai Zheng
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Minghui Zhu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qinhui Hou
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Han Gao
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Zhang
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yuan Liu
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhenshun Cheng
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
- Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment, Wuhan, China.
| |
Collapse
|
183
|
Jiang X, Zhang X, Cai X, Li N, Zheng H, Tang M, Zhu J, Su K, Zhang R, Ye N, Peng J, Zhao M, Wu W, Yang J, Ye H. NU6300 covalently reacts with cysteine-191 of gasdermin D to block its cleavage and palmitoylation. SCIENCE ADVANCES 2024; 10:eadi9284. [PMID: 38324683 PMCID: PMC10849585 DOI: 10.1126/sciadv.adi9284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024]
Abstract
Gasdermin D (GSDMD) serves as a vital mediator of inflammasome-driven pyroptosis. In our study, we have identified NU6300 as a specific GSDMD inhibitor that covalently interacts with cysteine-191 of GSDMD, effectively blocking its cleavage while not affecting earlier steps such as ASC oligomerization and caspase-1 processing in AIM2- and NLRC4-mediated inflammation. On the contrary, NU6300 robustly inhibits these earlier steps in NLRP3 inflammasome, confirming a unique feedback inhibition effect in the NLRP3-GSDMD pathway upon GSDMD targeting. Our study reveals a previously undefined mechanism of GSDMD inhibitors: NU6300 impairs the palmitoylation of both full-length and N-terminal GSDMD, impeding the membrane localization and oligomerization of N-terminal GSDMD. In vivo studies further demonstrate the efficacy of NU6300 in ameliorating dextran sodium sulfate-induced colitis and improving survival in lipopolysaccharide-induced sepsis. Overall, these findings highlight the potential of NU6300 as a promising lead compound for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyu Zheng
- School of Pharmacy, Chengdu Medical College, Chengdu 610500, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangli Zhu
- Department of Urology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Neng Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
184
|
Yan X, Fu P, Zhang Y, Ling D, Reynolds L, Hua W, Wang Z, Ma F, Li B, Yu J, Liu Y, Gong L, Zhang E. MCC950 Ameliorates Diabetic Muscle Atrophy in Mice by Inhibition of Pyroptosis and Its Synergistic Effect with Aerobic Exercise. Molecules 2024; 29:712. [PMID: 38338456 PMCID: PMC10856337 DOI: 10.3390/molecules29030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Diabetic muscle atrophy is an inflammation-related complication of type-2 diabetes mellitus (T2DM). Even though regular exercise prevents further deterioration of atrophic status, there is no effective mediator available for treatment and the underlying cellular mechanisms are less explored. In this study, we investigated the therapeutic potential of MCC950, a specific, small-molecule inhibitor of NLRP3, to treat pyroptosis and diabetic muscle atrophy in mice. Furthermore, we used MCC950 to intervene in the protective effects of aerobic exercise against muscle atrophy in diabetic mice. Blood and gastrocnemius muscle (GAS) samples were collected after 12 weeks of intervention and the atrophic state was assessed. We initially corroborated a diabetic muscle atrophy phenotype in db/db mice (D) by comparison with control m/m mice (W) by examining parameters such as fasting blood glucose (D vs. W: 24.47 ± 0.45 mmol L-1 vs. 4.26 ± 0.6 mmol L-1, p < 0.05), grip strength (D vs. W: 166.87 ± 15.19 g vs. 191.76 ± 14.13 g, p < 0.05), exercise time (D vs. W: 1082.38 ± 104.67 s vs. 1716 ± 168.55 s, p < 0.05) and exercise speed to exhaustion (D vs. W: 24.25 ± 2.12 m min-1 vs. 34.75 ± 2.66 m min-1, p < 0.05), GAS wet weight (D vs. W: 0.07 ± 0.01 g vs. 0.13 ± 0.01 g, p < 0.05), the ratio of GAS wet weight to body weight (D vs. W: 0.18 ± 0.01% vs. 0.54 ± 0.02%, p < 0.05), and muscle fiber cross-sectional area (FCSA) (D vs. W: 1875 ± 368.19 µm2 vs. 2747.83 ± 406.44 µm2, p < 0.05). We found that both MCC950 (10 mg kg-1) treatment and exercise improved the atrophic parameters that had deteriorated in the db/db mice, inhibited serum inflammatory markers and significantly attenuated pyroptosis in atrophic GAS. In addition, a combined MCC950 treatment with exercise (DEI) exhibited a further improvement in glucose uptake capacity and muscle performance. This combined treatment also improved the FCSA of GAS muscle indicated by Laminin immunofluorescence compared to the group with the inhibitor treatment alone (DI) (DEI vs. DI: 2597 ± 310.97 vs. 1974.67 ± 326.15 µm2, p < 0.05) or exercise only (DE) (DEI vs. DE: 2597 ± 310.97 vs. 2006.33 ± 263.468 µm2, p < 0.05). Intriguingly, the combination of MCC950 treatment and exercise significantly reduced NLRP3-mediated inflammatory factors such as cleaved-Caspase-1, GSDMD-N and prevented apoptosis and pyroptosis in atrophic GAS. These findings for the first time demonstrate that targeting NLRP3-mediated pyroptosis with MCC950 improves diabetic muscle homeostasis and muscle function. We also report that inhibiting pyroptosis by MCC950 can enhance the beneficial effects of aerobic exercise on diabetic muscle atrophy. Since T2DM and muscle atrophy are age-related diseases, the young mice used in the current study do not seem to fully reflect the characteristics of diabetic muscle atrophy. Considering the fragile nature of db/db mice and for the complete implementation of the exercise intervention, we used relatively young db/db mice and the atrophic state in the mice was thoroughly confirmed. Taken together, the current study comprehensively investigated the therapeutic effect of NLRP3-mediated pyroptosis inhibited by MCC950 on diabetic muscle mass, strength and exercise performance, as well as the synergistic effects of MCC950 and exercise intervention, therefore providing a novel strategy for the treatment of the disease.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Pengyu Fu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- Department of Physical Education, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yimin Zhang
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Dongmei Ling
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Lewis Reynolds
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 21428 Malmö, Sweden (E.Z.)
- NanoLund Center for NanoScience, Lund University, 22100 Lund, Sweden
| | - Weicheng Hua
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Zhiyuan Wang
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
| | - Fangyuan Ma
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- School of Life Sciences, Nankai University, Tianjin 300071, China
| | - Boxuan Li
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingjing Yu
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
| | - Yujia Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (P.F.); (D.L.); (W.H.); (Z.W.); (F.M.); (B.L.); (Y.L.)
- Institute of Physical Education, Jiangsu Normal University, Xuzhou 221116, China
| | - Lijing Gong
- Key Laboratory of Exercise and Physical Fitness of Ministry of Education, Beijing Sport University, Beijing 100084, China; (X.Y.); (J.Y.)
| | - Enming Zhang
- Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, 21428 Malmö, Sweden (E.Z.)
- NanoLund Center for NanoScience, Lund University, 22100 Lund, Sweden
| |
Collapse
|
185
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
186
|
Balci CN, Acar N. NLRP3 inflammasome pathway, the hidden balance in pregnancy: A comprehensive review. J Reprod Immunol 2024; 161:104173. [PMID: 38043434 DOI: 10.1016/j.jri.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The balance of the inflammatory response is indispensable during pregnancy. Inflammasomes are the cytosolic supramolecular protein complexes activated by pattern recognition receptors. These receptors recognize the pathogen and damage/danger-associated molecular patterns. NLRP3 inflammasome complex consists mainly of NLRP3 (leucine-rich repeat-containing and pyrin domain-containing protein 3), a cytosolic sensor molecule, ASC (apoptosis-associated speck-like protein containing a CARD) protein and a cysteine protease pro-caspase-1 as an effector molecule. This complex has a role in producing inflammatory cytokines, interleukin 1 beta and interleukin 18, and inflammasome-dependent programmed cell death pathway pyroptosis. In this review, we focused on and summarised the NLRP3 inflammasome and its roles in normal and pathological pregnancies. The NLRP3 inflammasome pathway influences endometrial receptivity and embryo invasion by inducing epithelial-mesenchymal transition. Abnormal inflammasome activation in the endometrium may adversely affect endometrial receptivity. In addition, NLRP3 inflammasome pathway overactivation may mediate the abnormal inflammatory response at the maternal-fetal interface and be associated with pregnancy complications, such as recurrent implantation failure, pregnancy loss, pre-term birth and pre-eclampsia. Therefore, targeting the NLRP3 inflammasome pathway could develop a new therapeutic approach to prevent the aforementioned pregnancy pathologies.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
187
|
Yang W, Wang Y, Huang Y, Wang T, Li C, Zhang P, Liu W, Yin Y, Li R, Tao K. Immune Response Gene-1 [IRG1]/itaconate protect against multi-organ injury via inhibiting gasdermin D-mediated pyroptosis and inflammatory response. Inflammopharmacology 2024; 32:419-432. [PMID: 37470905 DOI: 10.1007/s10787-023-01278-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Sepsis is a multiple organ dysfunction syndrome due to a dysregulated response to infection with unacceptably high mortality. Currently, no effective treatment exists for sepsis. IRG1/itaconate has been considered to play a protective role for various inflammatory diseases. In the present study, we explored the protective role and mechanisms of IRG1/itaconate on lipopolysaccharide (LPS)-induced multi-organ injury. The LPS-induced sepsis model was used. IRG1-/- and wild type mice were used to explore the protective role of IRG1/itaconate on multi-organ injury. GSDMD-/- mice were used to explore the effect of GSDMD-mediated pyroptosis on LPS-induced model. RAW264.7 cells and bone-marrow-derived macrophages (BMDMs) were used for in vitro studies. In vivo experiments, we found IRG1 deficiency aggravated LPS-induced multi-organ injury especially lung injury. 4-Octyl itaconate (4-OI), a derivative of itaconate, significantly ameliorated LPS-induced acute lung, liver, and kidney injury. Furthermore, IRG1/4-OI decreased serum interleukin-1β (IL-1β), IL-6, tumor necrosis factor-α (TNF-α) level, macrophage infiltration, and TUNEL-positive cells in lung and liver tissue. Western blot showed IRG1/itaconate decreased the expressions of p-ERK, p-P38, p-JNK, and p-P65 and increased the expression of Nrf2/HO-1 in lung tissue. Meanwhile, 4-OI inhibited the expression of GSDMD-N. In vitro experiments, 4-OI inhibited ROS production and promoted apoptosis under LPS stimulation in RAW264.7 cells. Furthermore, 4-OI inhibited nuclear factor-kappaB/mitogen-activated protein kinase pathways and GSDMD-medicated pyroptosis in BMDMs. Finally, we used GSDMD-/- mice to explore the effect of pyroptosis on LPS-induced multi-organ injury. The results showed that GSDMD deficiency significantly ameliorated lung injury. In conclusion, our data demonstrated that IRG1/itaconate protect against multi-organ injury via inhibiting inflammation response and GSDMD-indicated pyroptosis, which may be a promising agent for protecting against sepsis.
Collapse
Affiliation(s)
- Wenchang Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yongzhou Huang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
- Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Tao Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Chengguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Weizhen Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
188
|
Liu P, Zhang Z, Chen H, Chen Q. Pyroptosis: Mechanisms and links with diabetic cardiomyopathy. Ageing Res Rev 2024; 94:102182. [PMID: 38182080 DOI: 10.1016/j.arr.2023.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycaemia that seriously affects human health. Diabetic cardiomyopathy (DCM) is a major cardiovascular complication and one of the main causes of death in patients with DM. Although DCM attracts great attention, and new therapeutic methods are continuously developed, there is a lack of effective treatment strategies. Therefore, exploring and targeting new signalling pathways related to the evolution of DCM becomes a hotspot and difficulty in the prevention and treatment of DCM. Pyroptosis is a newly discovered regulated cell death that is heavily dependent on the formation of plasma membrane pores by members of the gasdermin protein family and is reported to be involved in the occurrence, development, and pathogenesis of DCM. In this review, we focus on the molecular mechanisms of pyroptosis, its involvement in the relevant signalling pathways of DCM, and potential pyroptosis-targeting therapeutic strategies for the treatment of DCM. Our review provides new insights into the use of pyroptosis as a useful tool for the prevention and treatment of DCM and clarifies future research directions.
Collapse
Affiliation(s)
- Pan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Zhengdong Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China; Department of Orthopedics, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China
| | - Huizhen Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, PR China.
| |
Collapse
|
189
|
Sun B, Bai L, Li Q, Sun Y, Li M, Wang J, Shi X, Zhao M. Knockdown of angiopoietin-like 4 suppresses sepsis-induced acute lung injury by blocking the NF-κB pathway activation and hindering macrophage M1 polarization and pyroptosis. Toxicol In Vitro 2024; 94:105709. [PMID: 37820748 DOI: 10.1016/j.tiv.2023.105709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
OBJECTIVE Sepsis-induced acute lung injury (ALI) is a life-threatening disease. Macrophage pyroptosis has been reported to exert function in ALI. We aimed to investigate the mechanisms of ANGPTL4-mediated cell pyroptosis in sepsis-induced ALI, thus providing new insights into the pathogenesis and prevention and treatment measures of sepsis-induced ALI. METHODS In vivo animal models and in vitro cell models were established by cecal ligation and puncture (CLP) method and lipopolysaccharide-induced macrophages RAW264.7. ANGPTL4 was silenced in CLP mice or macrophages, followed by the determination of ANGPTL4 expression in bronchoalveolar lavage fluid (BALF) or macrophages. Lung histopathology was observed by H&E staining, with pathological injury scores evaluated and lung wet and dry weight ratio recorded. M1/M2 macrophage marker levels (iNOS/CD86/Arg1), inflammatory factor (TNF-α/IL-6/IL-1β/iNOS) expression in BALF, cell death and pyroptosis, NLRP3 inflammasome, cell pyroptosis-related protein (NLRP3/Cleaved-caspase-1/caspase-1/GSDMD-N) levels, NF-κB pathway activation were assessed by RT-qPCR/ELISA/flow cytometry/Western blot, respectively. RESULTS ANGPTL4 was highly expressed in mice with sepsis-induced ALI, and ANGPTL4 silencing ameliorated sepsis-induced ALI in mice. In vivo, ANGPTL4 silencing repressed M1 macrophage polarization and macrophage pyroptosis in mice with sepsis-induced ALI. In vitro, ANGPTL4 knockout impeded LPS-induced activation and pyroptosis of M1 macrophages and hindered LPS-induced activation of the NF-κB pathway in macrophages. CONCLUSION Knockdown of ANGPTL4 blocks the NF-κB pathway activation, hinders macrophage M1 polarization and pyroptosis, thereby suppressing sepsis-induced ALI.
Collapse
Affiliation(s)
- Baisheng Sun
- Medical School of Chinese PLA, Beijing, China; Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lina Bai
- Department of Emergency, The Fifth Medical Centre of PLA General Hospital, Beijing, China
| | - Qinglin Li
- Department of Critical Care Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yubo Sun
- The Third Sanatorium, Dalian Rehabilitation and Recuperation Center of Joint Logistic Support Force, Dalian, China
| | - Mei Li
- Department of Radiography, General Hospital of Central Theater Command, PLA, Wuhan 430070, China
| | - Jiazhi Wang
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Xiaoli Shi
- The 63650 Brigade Hospital, Chinese People's Liberation Army, Xinjiang, China
| | - Meng Zhao
- Department of Infection Control, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
190
|
Zhou W, Feng M, Qi F, Qiao J, Fan L, Zhang L, Hu X, Huang C. A pyroptosis-related gene expression signature predicts immune microenvironment and prognosis in head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2024; 281:953-963. [PMID: 38063904 DOI: 10.1007/s00405-023-08316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a highly heterogeneous and aggressive malignancy with a poor prognosis. Pyroptosis triggered by gasdermins family proteins is reported vital for tumor microenvironment and cancer progression. However, pyroptosis-related gene expression and its relationship with immune infiltration and prognosis of HNSCC have not been fully defined. MATERIAL AND METHODS RNA-sequencing data of HNSCC patients were acquired from The Cancer Genome Atlas (TCGA) database. A pyroptosis-related gene expression signature and infiltrated immune cells were analyzed. Univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression and nomogram analyses were used to construct a clinical-molecular risk model for survival prognosis. RESULTS HNSCC was classified into three different molecular subtypes based on the expression information of pyroptosis-related genes. Immune cell infiltration was demonstrated to be distinct between the three subtypes. The segregation of patients into the high-risk group and low-risk group, were carried out using the signature of differential expression genes (DEGs) signature among the three molecular subtypes. The precision of this signature was corroborated by Receiver operating characteristic curve (ROC) analysis with the 3-year area under time-dependent ROC curve (AUC) reaching 0.711. The risk model was validated in another dataset from the Gene Expression Omnibus (GEO) database. Subsequently we established a clinical-molecular nomogram which combined the risk score with age and stage. The calibration plots for predicting the overall survival rate of 1-, 3-, and 5-years indicated that the nomogram performs well. CONCLUSION The expression signature that encompasses pyroptosis-related genes could be used as molecular classification for HNSCC and pyroptosis might be a promising therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Wenyuan Zhou
- Key Laboratory of Carcinogenesis and Translational Research, (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Mei Feng
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Fei Qi
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiao Qiao
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, 100191, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, China
| | - Lina Fan
- Department of Stomatology, The 900th Hospital of Joint Logistic Support Force, PLA, Fuzong Clinical Medical College, Fujian Medical University, Fuzhou, 350025, Fujian, China
| | - Long Zhang
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China
| | - Xuegang Hu
- Department of Stomatology, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| | - Chunyu Huang
- Medical Affairs Department, Shenzhen Guangming District People's Hospital, Songbai Road 4253, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
191
|
Guo H, Ma R, Zhang Y, Yin K, Du G, Yin F, Li H, Wang Z, Yin D. Ibuprofen inhibits anaplastic thyroid cells in vivo and in vitro by triggering NLRP3-ASC-GSDMD-dependent pyroptosis. Inflammopharmacology 2024; 32:733-745. [PMID: 37999895 PMCID: PMC10907488 DOI: 10.1007/s10787-023-01379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Pyroptosis is a novel type of proinflammatory programmed cell death that is associated with inflammation, immunity, and cancer. Anaplastic thyroid carcinoma (ATC) has a high fatality rate, and there is no effective or standard treatment. The disease progresses rapidly and these tumors can invade the trachea and esophagus, leading to breathing and swallowing difficulties. Hence, new treatment methods are greatly needed. Ibuprofen is a common drug that can exert antitumor effects in some cancers. In this study, we demonstrated in vitro and in vivo that ibuprofen can induce ATC pyroptosis. Hence, we treated C643 and OCUT-2C ATC cells with ibuprofen and found that several dying cells presented the characteristic morphological features of pyroptosis, such as bubble-like swelling and membrane rupture, accompanied by activation of ASC and NLRP3 and cleavage of GSDMD. Along with the increased release of LDH, ibuprofen treatment promoted apoptosis and inhibited viability, invasion, and migration. However, overexpression of GSDMD significantly inhibited ibuprofen-induced pyroptosis. In vivo, research has demonstrated that thyroid tumor growth in nude mice can be suppressed by ibuprofen-induced pyroptosis in a dose-dependent manner. In this research, we explored a new mechanism by which ibuprofen inhibits ATC growth and progression and highlighted its promise as a therapeutic agent for ATC.
Collapse
Affiliation(s)
- Haohao Guo
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, 450052, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, 450052, Henan, China
| | - Runsheng Ma
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yifei Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, 450052, Henan, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, 450052, Henan, China
| | - Keyu Yin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Gongbo Du
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fanxiang Yin
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongqiang Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ziyang Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Detao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, 450052, Henan, China.
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
192
|
Wang D, Shi Z, Liu C, Wang Q, Liu H, He J, Zhao H, Zhang C. E. globulus leaf EO exhibits anti-inflammatory effects by regulating GSDMD-mediated pyroptosis, thereby alleviating neurological impairment and neuroinflammation in experimental stroke mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117367. [PMID: 38380569 DOI: 10.1016/j.jep.2023.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 02/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aromatic and medicinal plants continue to be a major component of alternative and traditional medicine in the developing countries. Eucalyptus globulus (Labill.) is being employed to cultivation and production in China. However, few studies have reported the chemical composition and anti-inflammatory activity of Eucalyptus globulus (Labill.) leaf essential oil (E. globulus leaf EO) extracted from Eucalyptus globulus. AIM OF THE STUDY This study aimed to assess the composition of E. globulus leaf EO and identify its bacteriostatic action as well as anti-inflammatory activity. Importantly, we evaluated the effect of E. globulus leaf EO on neurological impairment and neuroinflammation in experimental stroke mice. MATERIALS AND METHODS Gas Chromatography-Mass Spectrometer (GC-MS) analyses was employed to evaluate the chemical components of E. globulus leaf EO, and the relative content of each component was determined by area normalization method. The antimicrobial activity of E. globulus leaf EO was determined by Oxford cup method and microbroth dilution assay. Cytotoxic activity of E. globulus leaf EO on THP-1 cells or BV2 cells in vitro was determined by CCK8 assay. In addition, the lipopolysaccharide (LPS)/ATP-induced inflammation model in THP-1 cells or BV2 cells were established, and the relative expression of TNF-α, IL-1β, MCP-1and IL-6 were confirmed by RT-PCR. Furthermore, the expression of protein GSDMD, IL-lβ, NLRP3 and NFκB signaling pathway were assessed by immunoblotting. In vivo,the experimental stroke model constructed by middle cerebral artery occlusion/reperfusion (MCAO/R) in mice was employed and subsequently treated with E. globulus leaf EO (50,100 mg/kg, subcutaneous injection) for 3 days to assess neurological impairment and neuroinflammation. Behavioral and neuronal damage were assessed using grip strength test, rod trarod test, and Nissl staining. Pro-inflammatory factors in serum or ischemic brain tissue was detected by ELISA kits. RESULTS GC-MS analyses revealed that the major compound in E. globulus leaf EO was eudesmol (71.967%). E. globulus leaf EO has antimicrobial activity against Staphylococcus aureus (gram positive bacteria, MIC = 0.0625 mg/mL), Escherichia coli (gram negative bacteria, MIC = 1 mg/mL), and Candida albicans (MIC = 4 mg/mL). E. globulus leaf EO (0.5312, 1.0625, and 2.15 mg/mL) significantly decreased the expression of inflammation-related genes, including IL-1β, TNF-α, MCP-1, and IL-6. Furthermore, reduced levels of TLR4, Myd88, phosphorylated NF-κB P65, and IκBα were found in the E. globulus leaf EO group for BV2 cells (1.025, and 2.125 mg/mL). In addition, the expression levels of GSDMD, NLRP3, IL-1β and AIM2 were significantly decreased in the E. globulus leaf EO group when compared with the LPS -stimulated group, regulating GSDMD-mediated pyroptosis. In vivo, E. globulus leaf EO improved neurological functional deficits, inhibited excessive activation of microglia, and reduced the secretion of pro-inflammatory factors IL-1β, TNF-α in the ischemic tissue and serum after MCAO/R. CONCLUSION E. globulus leaf EO has strong antibacterial and anti-inflammatory activity, which has been implicated in blocking GSDMD-mediated pyroptosis. Moreover, E. globulus leaf EO could exert neuroprotective effect on cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Zhengmei Shi
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Chaojie Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Qian Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Heng Liu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Junli He
- The First Affiliated Hospital of Dali University, Dali, Yunnan, PR China
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
193
|
Wu L, Shan L, Xu D, Lin D, Bai B. Pyroptosis in cancer treatment and prevention: the role of natural products and their bioactive compounds. Med Oncol 2024; 41:66. [PMID: 38281254 DOI: 10.1007/s12032-023-02293-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Targeting programmed cell death (PCD) has been emerging as a promising therapeutic strategy in cancer. Pyroptosis, as a type of PCDs, leads to the cleavage of the gasdermin family and the secretion of pro-inflammatory factors. Gasdermin D (GSDMD) and gasdermin E (GSDME) are the two main executors of pyroptosis. Pyroptosis in tumor and immune cells is essential for tumor progression. Natural products, especially Chinese medicinal herb and their bioactive compounds have recently been regarded as anti-tumor agents that regulate cell pyroptosis under different circumstances. Here, we review the underlying mechanisms of natural products that activate pyroptosis in tumor cells and inhibit pyroptosis in immune cells. Pyroptosis activation in tumor cells leads to tumor cell death, yet pyroptosis inhibition in immune cells may prevent tumor occurrence. Elucidation of the signaling pathways involved in pyroptosis contributes to the understanding of the anti-tumor role of natural products and their potential clinical applications. Therefore, we outline a promising strategy for cancer therapy and prevention using natural products via modulation of pyroptosis.
Collapse
Affiliation(s)
- Liyi Wu
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, 3# East Qingchun Road, Hangzhou, 310016, People's Republic of China
| | - Lina Shan
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengyong Xu
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Dengfeng Lin
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China
| | - Bingjun Bai
- Department of Colorectal Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, People's Republic of China.
| |
Collapse
|
194
|
Zeng Y, Li MX, Wu SQ, Xu C. Carvedilol induces pyroptosis through NLRP3-caspase1-ASC inflammasome by nuclear migration of NF-κB in prostate cancer models. Mol Biol Rep 2024; 51:201. [PMID: 38270665 DOI: 10.1007/s11033-023-09132-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Pyroptosis is an inflammatory type of programmed cell death, and could overcome the drug-resistance induced by anti-apoptotic effect of cancers. Carvedilol (CVL), a β-adrenergic receptors antagonist, has shown anti-inflammatory response and anti-cancer effect. The aim of this study is to investigate whether pyroptosis can be activated by CVL in prostate cancer (PCa). METHODS AND RESULTS Datasets were used to analyze the expressions of pyroptosis-related proteins. Intracellular morphological change, cell viability, LDH and Il-1β release by cells,, and Hoechst/PI staining were used to detect the occurrence of pyroptosis. Realtime-PCR, western blot, immunofluorescence, and immunohistochemistry (IHC) were used to investigate the expressions of pyroptosis-related proteins. Datasets analyze showed the expressions of NLRP3, Caspase 1, ASC and GSDMD were all decreased in PCa comparing with normal tissues, but without prognostic significance. CVL treatment weakened the viabilities of PCa cells. Cell morphology changing, cytoplasmic vacuole formation, membrane integrity loss, LDH and IL-1β release and PI positive cells increasing were observed. NLRP3, Caspase 1, ASC, GSDMD and N-GSDMD expressions were elevated after CVL treatment, accompanied by a tendency of NF-κB transferring into nucleus. In vivo, CVL inhibited the growth of subcutaneous transplanted tumor. IHC showed CVL increased the expressions of NLRP3, ASC, and GSDMD, and decreased the expression of Ki-67 in transplanted tumor tissues. CONCLUSION This study demonstrated that CVL could induce pyroptosis in PCa cells through NLRP3-caspase1-ASC inflammasome by promoting nuclear translocation of NF-κB, which would lay a foundation for the application of adrenergic receptor antagonist in PCa.
Collapse
Affiliation(s)
- Yan Zeng
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, China
| | - Mei-Xi Li
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, China
| | - Shi-Qi Wu
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, China
| | - Chen Xu
- Institute of Life Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong, Chongqing, 400016, China.
| |
Collapse
|
195
|
Xiong Z, Peng G, Deng J, Liu M, Ning X, Zhuang Y, Yang H, Sun H. Therapeutic targets and potential delivery systems of melatonin in osteoarthritis. Front Immunol 2024; 15:1331934. [PMID: 38327517 PMCID: PMC10847247 DOI: 10.3389/fimmu.2024.1331934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Osteoarthritis (OA) is a highly prevalent age-related musculoskeletal disorder that typically results in chronic pain and disability. OA is a multifactorial disease, with increased oxidative stress, dysregulated inflammatory response, and impaired matrix metabolism contributing to its onset and progression. The neurohormone melatonin, primarily synthesized by the pineal gland, has emerged as a promising therapeutic agent for OA due to its potential to alleviate inflammation, oxidative stress, and chondrocyte death with minimal adverse effects. The present review provides a comprehensive summary of the current understanding regarding melatonin as a promising pharmaceutical agent for the treatment of OA, along with an exploration of various delivery systems that can be utilized for melatonin administration. These findings may provide novel therapeutic strategies and targets for inhibiting the advancement of OA.
Collapse
Affiliation(s)
- Zhilin Xiong
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Guoxuan Peng
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jin Deng
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Miao Liu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xu Ning
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yong Zhuang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Sun
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Emergence Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
196
|
Huang E, Wang X, Chen L. Regulated Cell Death in Endometriosis. Biomolecules 2024; 14:142. [PMID: 38397379 PMCID: PMC10886833 DOI: 10.3390/biom14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Regulated cell death (RCD) represents a distinct mode of cell demise, differing from accidental cell death (ACD), characterized by specific signaling cascades orchestrated by diverse biomolecules. The regular process of cell death plays a crucial role in upholding internal homeostasis, acting as a safeguard against biological or chemical damage. Nonetheless, specific programmed cell deaths have the potential to activate an immune-inflammatory response, potentially contributing to diseases by enlisting immune cells and releasing pro-inflammatory factors. Endometriosis, a prevalent gynecological ailment, remains incompletely understood despite substantial progress in unraveling associated signaling pathways. Its complexity is intricately tied to the dysregulation of inflammatory immune responses, with various RCD processes such as apoptosis, autophagic cell death, pyroptosis, and ferroptosis implicated in its development. Notably, limited research explores the association between endometriosis and specific RCD pathways like pyroptosis and cuproptosis. The exploration of regulated cell death in the context of endometriosis holds tremendous potential for further advancements. This article thoroughly reviews the molecular mechanisms governed by regulated cell death and their implications for endometriosis. A comprehensive understanding of the regulated cell death mechanism in endometriosis has the potential to catalyze the development of promising therapeutic strategies and chart the course for future research directions in the field.
Collapse
Affiliation(s)
| | | | - Lijuan Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (E.H.)
| |
Collapse
|
197
|
Yang J, Jiang J. Gasdermins: a dual role in pyroptosis and tumor immunity. Front Immunol 2024; 15:1322468. [PMID: 38304430 PMCID: PMC10830654 DOI: 10.3389/fimmu.2024.1322468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gasdermin (GSDM) protein family plays a pivotal role in pyroptosis, a process critical to the body's immune response, particularly in combatting bacterial infections, impeding tumor invasion, and contributing to the pathogenesis of various inflammatory diseases. These proteins are adept at activating inflammasome signaling pathways, recruiting immune effector cells, creating an inflammatory immune microenvironment, and initiating pyroptosis. This article serves as an introduction to the GSDM protein-mediated pyroptosis signaling pathways, providing an overview of GSDMs' involvement in tumor immunity. Additionally, we explore the potential applications of GSDMs in both innovative and established antitumor strategies.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
198
|
Kwon EB, Kim B, Kim YS, Choi JG. Anastrozole Protects against Human Coronavirus Infection by Ameliorating the Reactive Oxygen Species-Mediated Inflammatory Response. Antioxidants (Basel) 2024; 13:116. [PMID: 38247540 PMCID: PMC10813058 DOI: 10.3390/antiox13010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The common human coronavirus (HCoV) exhibits mild disease with upper respiratory infection and common cold symptoms. HCoV-OC43, one of the HCoVs, can be used to screen drug candidates against SARS-CoV-2. We determined the antiviral effects of FDA/EMA-approved drug anastrozole (AZ) on two human coronaviruses, HCoV-OC43 and HCoV-229E, using MRC-5 cells in vitro. The AZ exhibited antiviral effects against HCoV-OC43 and HCoV-229E infection. Subsequent studies focused on HCoV-OC43, which is related to the SARS-CoV-2 family. AZ exhibited anti-viral effects and reduced the secretion of inflammatory cytokines, TNF-α, IL-6, and IL-1β. It also inhibited NF-κB translocation to effectively suppress the inflammatory response. AZ reduced intracellular calcium and reactive oxygen species (ROS) levels, including mitochondrial ROS and Ca2+, induced by the virus. AZ inhibited the expression of NLRP3 inflammasome components and cleaved IL-1β, suggesting that it blocks NLRP3 inflammasome activation in HCoV-OC43-infected cells. Moreover, AZ enhanced cell viability and reduced the expression of cleaved gasdermin D (GSDMD), a marker of pyroptosis. Overall, we demonstrated that AZ exhibits antiviral activity against HCoV-OC43 and HCoV-229E. We specifically focused on its efficacy against HCoV-OC43 and showed its potential to reduce inflammation, inhibit NLRP3 inflammasome activation, mitigate mitochondrial dysfunction, and suppress pyroptosis in infected cells.
Collapse
Affiliation(s)
| | | | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.)
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu 41062, Republic of Korea; (E.-B.K.); (B.K.)
| |
Collapse
|
199
|
Zhong Y, Huang T, Li X, Luo P, Zhang B. GSDMD suppresses keratinocyte differentiation by inhibiting FLG expression and attenuating KCTD6-mediated HDAC1 degradation in atopic dermatitis. PeerJ 2024; 12:e16768. [PMID: 38250727 PMCID: PMC10798152 DOI: 10.7717/peerj.16768] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Background Recent studies have shown that activated pyroptosis in atopic dermatitis (AD) switches inflammatory processes and causes abnormal cornification and epidermal barrier dysfunction. Little research has focused on the interaction mechanism between pyroptosis-related genes and human keratinocyte differentiation. Methods The AD dataset from the Gene Expression Omnibus (GEO) was used to identify differently expressed pyroptosis-related genes (DEPRGs). Hub genes were identified and an enrichment analysis was performed to select epithelial development-related genes. Lesions of AD patients were detected via immunohistochemistry (IHC) to verify the hub gene. Human keratinocytes cell lines, gasdermin D (GSDMD) overexpression, Caspase1 siRNA, Histone Deacetylase1 (HDAC1) siRNA, and HDAC1 overexpression vectors were used for gain-and-loss-of-function experiments. Regulation of cornification protein was determined by qPCR, western blot (WB), immunofluorescence (IF), dual-luciferase reporter assay, co-immunoprecipitation (Co-IP), and chromatin immunoprecipitation (ChIP). Results A total of 27 DEPRGs were identified between either atopic dermatitis non-lesional skin (ANL) and healthy control (HC) or atopic dermatitis lesional skin (AL) and HC. The enrichment analysis showed that these DEPRGs were primarily enriched in the inflammatory response and keratinocytes differentiation. Of the 10 hub genes identified via the protein-protein interaction network, only GSDMD was statistically and negatively associated with the expression of epithelial tight junction core genes. Furthermore, GSDMD was upregulated in AD lesions and inhibited human keratinocyte differentiation by reducing filaggrin (FLG) expression. Mechanistically, GSDMD activated by Caspase1 reduced FLG expression via HDAC1. HDAC1 decreased FLG expression by reducing histone acetylation at the FLG promoter. In addition, GSDMD blocked the interaction of Potassium Channel Tetramerization Domain Containing 6 (KCTD6) and HDAC1 to prohibit HDAC1 degradation. Conclusion This study revealed that GSDMD was upregulated in AD lesions and that GSDMD regulated keratinocytes via epigenetic modification, which might provide potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Dermatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Taoyuan Huang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xiaoli Li
- Department of Dermatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Peiyi Luo
- Department of Dermatology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
200
|
Liang X, Qin Y, Wu D, Wang Q, Wu H. Pyroptosis: a double-edged sword in lung cancer and other respiratory diseases. Cell Commun Signal 2024; 22:40. [PMID: 38225586 PMCID: PMC10790448 DOI: 10.1186/s12964-023-01458-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 01/17/2024] Open
Abstract
Pyroptosis is an active cell death process mediated by gasdermin family proteins including Gasdermin A (GSDMA), Gasdermin B (GSDMB), Gasdermin C (GSDMC), Gasdermin D (GSDMD), Gasdermin E (GSDME, DFNA5), and DFNB59. Emerging evidences have shown that pyroptosis contributes to many pulmonary diseases, especially lung cancer, and pneumonia. The exact roles of pyroptosis and gasdermin family proteins are tremendously intricate. Besides, there are evidences that pyroptosis contributes to these respiratory diseases. However, it often plays a dual role in these diseases which is a cause for concern and makes it difficult for clinical translation. This review will focus on the multifaceted roles of pyroptosis in respiratory diseases.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Ya Qin
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Dan Wu
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China
| | - Qiong Wang
- Department of Oncology, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| | - Hongshuai Wu
- Wuxi Key Laboratory of Biomaterials for Clinical Application, Department of Central Laboratory, the Affiliated Jiangyin Hospital of Nantong University, 163# Shoushan Road, Jiangyin, Jiangsu, 214400, P. R. China.
| |
Collapse
|