151
|
Pest MA, Pest CA, Bellini MR, Feng Q, Beier F. Deletion of Dual Specificity Phosphatase 1 Does Not Predispose Mice to Increased Spontaneous Osteoarthritis. PLoS One 2015; 10:e0142822. [PMID: 26562438 PMCID: PMC4643037 DOI: 10.1371/journal.pone.0142822] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/27/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease with poorly understood etiology and pathobiology. Mitogen activated protein kinases (MAPKs) including ERK and p38 play important roles in the mediation of downstream pathways involved in cartilage degenerative processes. Dual specificity phosphatase 1 (DUSP1) dephosphorylates the threonine/serine and tyrosine sites on ERK and p38, causing deactivation of downstream signalling. In this study we examined the role of DUSP1 in spontaneous OA development at 21 months of age using a genetically modified mouse model deficient in Dusp1 (DUSP1 knockout mouse). RESULTS Utilizing histochemical stains of paraffin embedded knee joint sections in DUSP1 knockout and wild type female and male mice, we showed similar structural progression of cartilage degeneration associated with OA at 21 months of age. A semi-quantitative cartilage degeneration scoring system also demonstrated similar scores in the various aspects of the knee joint articular cartilage in DUSP1 knockout and control mice. Examination of overall articular cartilage thickness in the knee joint demonstrated similar results between DUSP1 knockout and wild type mice. Immunostaining for cartilage neoepitopes DIPEN, TEGE and C1,2C was similar in the cartilage lesion sites and chondrocyte pericellular matrix of both experimental groups. Likewise, immunostaining for phosphoERK and MMP13 showed similar intensity and localization between groups. SOX9 immunostaining demonstrated a decreased number of positive cells in DUSP1 knockout mice, with correspondingly decreased staining intensity. Analysis of animal walking patterns (gait) did not show a discernable difference between groups. CONCLUSION Loss of DUSP1 does not cause changes in cartilage degeneration and gait in a mouse model of spontaneous OA at 21 months of age. Altered staining was observed in SOX9 immunostaining which may prove promising for future studies examining the role of DUSPs in cartilage and OA, as well as models of post-traumatic OA.
Collapse
Affiliation(s)
- Michael Andrew Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Courtney Alice Pest
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | | | - Qingping Feng
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Children’s Health Research Institute, London, ON, Canada
| |
Collapse
|
152
|
Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer 2015; 15:577-92. [PMID: 26399658 DOI: 10.1038/nrc4000] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of the ERK signalling pathway in cancer is thought to be most prominent in tumours in which mutations in the receptor tyrosine kinases RAS, BRAF, CRAF, MEK1 or MEK2 drive growth factor-independent ERK1 and ERK2 activation and thence inappropriate cell proliferation and survival. New drugs that inhibit RAF or MEK1 and MEK2 have recently been approved or are currently undergoing late-stage clinical evaluation. In this Review, we consider the ERK pathway, focusing particularly on the role of MEK1 and MEK2, the 'gatekeepers' of ERK1/2 activity. We discuss their validation as drug targets, the merits of targeting MEK1 and MEK2 versus BRAF and the mechanisms of action of different inhibitors of MEK1 and MEK2. We also consider how some of the systems-level properties (intrapathway regulatory loops and wider signalling network connections) of the ERK pathway present a challenge for the success of MEK1 and MEK2 inhibitors, discuss mechanisms of resistance to these inhibitors, and review their clinical progress.
Collapse
Affiliation(s)
- Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew J Sale
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Paul D Smith
- AstraZeneca, Oncology iMed, Cancer Biosciences, Cancer Research UK, Li Ka Shing Centre, Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
153
|
Sugimoto N, Leu H, Inoue N, Shimizu M, Toma T, Kuroda M, Saito T, Wada T, Yachie A. The critical role of lipopolysaccharide in the upregulation of aquaporin 4 in glial cells treated with Shiga toxin. J Biomed Sci 2015; 22:78. [PMID: 26385393 PMCID: PMC4575422 DOI: 10.1186/s12929-015-0184-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, there was an outbreak of Shiga toxin-producing Escherichia coli (STEC) infections in Japan. Approximately 62 % of patients with hemolytic-uremic syndrome also showed symptoms of encephalopathy. To determine the mechanisms of onset for encephalopathy during STEC infections, we conducted an in vitro study with glial cell lines and primary glial cells. Results Shiga toxin 2 (Stx-2) in combination with lipopolysaccharide (LPS), or LPS alone activates nuclear factor-κB (NF-κB) signaling in glial cells. Similarly, Stx-2 in combination with LPS, or LPS alone increases expression levels of aquaporin 4 (AQP4) in glial cells. It is possible that overexpression of AQP4 results in a rapid and increased influx of osmotic water across the plasma membrane into cells, thereby inducing cell swelling and cerebral edema. Conclusions We have showed that a combination of Stx-2 and LPS induced apoptosis of glial cells recently. Glial cells are indispensable for cerebral homeostasis; therefore, their dysfunction and death impairs cerebral homeostasis and results in encephalopathy. We postulate that the onset of encephalopathy in STEC infections occurs when Stx-2 attacks vascular endothelial cells of the blood–brain barrier, inducing their death. Stx-2 and LPS then attack the exposed glial cells that are no longer in contact with the endothelial cells. AQP4 is overexpressed in glial cells, resulting in their swelling and adversely affecting cerebral homeostasis. Once cerebral homeostasis is affected in such a way, encephalopathy is the likely result in STEC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0184-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hue Leu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan. .,Dan Phuong General Hospital, Hanoi, Vietnam.
| | - Natsumi Inoue
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomoko Toma
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Mondo Kuroda
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Takekatsu Saito
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Taizo Wada
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
154
|
Mandal R, Becker S, Strebhardt K. Stamping out RAF and MEK1/2 to inhibit the ERK1/2 pathway: an emerging threat to anticancer therapy. Oncogene 2015; 35:2547-61. [PMID: 26364606 DOI: 10.1038/onc.2015.329] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023]
Abstract
The RAS-RAF-MEK1/2-ERK1/2 pathway is a key signal transduction pathway in the cells. Critically, it remains constitutively active in approximately 30% of human cancers, having key roles in cancer development, maintenance and progression, while being responsible for poorer prognosis and drug resistance. Consequently, the inhibition of this pathway has been the subject of intense research for >25 years. The advent of better patient screening techniques has increasingly shown that upstream regulators like RAS and RAF remain persistently mutated in many cancer types. These gain-of-function mutations, such as KRAS-4B(G12V/G13D/Q61K), NRAS(Q61L/Q61R) or BRAF(V600E), lead to tremendous increase in their activities, resulting in constitutively active extracellular signal-regulated kinase 1/2 (ERK1/2). They were not efficiently targeted by the first-generation inhibitors such as Lonafarnib or Sorafenib, which were essentially broad spectrum inhibitors targeting pan-RAS and pan-RAF, respectively. This triggered the development of the second-generation inhibitors selective against the mutated proteins. Second generation inhibitors such as Vemurafenib (Zelboraf) and Dabrafenib (Tafinlar) targeting BRAF(V600E), Trametinib (Mekinist) targeting MEK1/2 and the first generation pan-RAF inhibitor Sorafenib (Nexavar) have already been approved for treating renal, hepatocellular, thyroid cancers and BRAF(V600E/K) harboring metastatic melanoma. Others against RAF and MEK1/2 are presently undergoing clinical trials. Their success would depend on the better understanding of the acquired resistance mechanisms to these drugs in the cancer cells and the identification of predictive biomarkers for the proper administration of suitable inhibitor(s).
Collapse
Affiliation(s)
- R Mandal
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Becker
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - K Strebhardt
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Gynaecology and Obstetrics, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
155
|
Park YJ, Lee JM, Shin SY, Kim YH. Constitutively active Ras negatively regulates Erk MAP kinase through induction of MAP kinase phosphatase 3 (MKP3) in NIH3T3 cells. BMB Rep 2015; 47:685-90. [PMID: 24602610 PMCID: PMC4345513 DOI: 10.5483/bmbrep.2014.47.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 11/20/2022] Open
Abstract
The Ras/Raf/MEK/Erk signaling pathway is important for regulation of cell growth, proliferation, differentiation, survival, and apoptosis in response to a variety of extracellular stimuli. Lack of Erk MAPK activation is observed in several cancer cells despite active activation of Ras. However, little is known about the modulation of Erk1/2 activity by active Ras. Here, we show that overexpression of active H-Ras (H-RasG12R) in NIH3T3 fibroblasts impaired FGF2-induced Erk1/2 phosphorylation, as compared to wild-type cells. Northern blot analysis revealed that prolonged expression of active Ras increased MAP kinase phosphatase 3 (MKP3) mRNA expression, a negative regulator of Erk MAPK. Inhibition of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway abrogated active Ras-induced up-regulation of MKP3 expression, leading to the rescue of Erk1/2 phosphorylation. Our results demonstrated that the Ras/Raf/MEK/Erk signaling cascade is negatively regulated by the PI3K/Akt dependent transcriptional activation of the MKP3 gene.
Collapse
Affiliation(s)
- Young Jae Park
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | - Jong Min Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Soon Young Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Konkuk University, Seoul 143-701, Korea
| | - Young Ho Kim
- Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
156
|
Luke JJ, Ott PA, Shapiro GI. The biology and clinical development of MEK inhibitors for cancer. Drugs 2015; 74:2111-28. [PMID: 25414119 DOI: 10.1007/s40265-014-0315-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mitogen-activated protein kinase kinases (MAPKK) MEK1 and MEK2 are integral members of the MAPK/ERK signaling pathway and are of interest in the development of anti-cancer therapeutics. The MAPK/ERK pathway is dysregulated in more than 30 % of cancers, predominately by mutations in RAS and BRAF proteins, and MEK serves as a potential downstream target for both of these. The biology of MEK inhibition is complex, as the molecule is differentially regulated by upstream RAS or RAF. This has impacted on the past development of MEK inhibitors as treatments for cancer and may be exploited in more rational, molecularly selected drug development plans in the future. The role of MEK in cancer and the mechanism of action of MEK inhibitors is reviewed. Furthermore, MEK inhibitors that are available in standard practice, as well as those most advanced in clinical development, are discussed. Finally, next steps in the development of MEK inhibitors are considered.
Collapse
Affiliation(s)
- Jason J Luke
- Melanoma and Developmental Therapeutics Clinics, University of Chicago Cancer Center, University of Chicago, 5841 S. Maryland Ave., MC2115, Chicago, IL, 60637, USA,
| | | | | |
Collapse
|
157
|
Chimento A, Sirianni R, Casaburi I, Zolea F, Rizza P, Avena P, Malivindi R, De Luca A, Campana C, Martire E, Domanico F, Fallo F, Carpinelli G, Cerquetti L, Amendola D, Stigliano A, Pezzi V. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo. Oncotarget 2015; 6:19190-203. [PMID: 26131713 PMCID: PMC4662484 DOI: 10.18632/oncotarget.4241] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/23/2015] [Indexed: 12/26/2022] Open
Abstract
We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Fabiana Zolea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Carmela Campana
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Emilia Martire
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Domanico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Fallo
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Lidia Cerquetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Rome, Italy
| | | | - Antonio Stigliano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Rome, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
158
|
Niu NK, Yin JJ, Yang YX, Wang ZL, Zhou ZW, He ZX, Chen XW, Zhang X, Duan W, Yang T, Zhou SF. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study. Drug Des Devel Ther 2015; 9:4441-70. [PMID: 26300629 PMCID: PMC4535548 DOI: 10.2147/dddt.s79369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is still a major public health issue in developing countries, and its chemotherapy is compromised by poor drug compliance and severe side effects. This study aimed to synthesize and characterize new multimodal PEGylated liposomes encapsulated with clinically commonly used anti-TB drugs with linkage to small interfering RNA (siRNA) against transforming growth factor-β1 (TGF-β1). The novel NP-siRNA liposomes could target THP-1-derived human macrophages that were the host cells of mycobacterium infection. The biological effects of the NP-siRNA liposomes were evaluated on cell cycle distribution, apoptosis, autophagy, and the gene silencing efficiency of TGF-β1 siRNA in human macrophages. We also explored the proteomic responses to the newly synthesized NP-siRNA liposomes using the stable isotope labeling with amino acids in cell culture approach. The results showed that the multifunctional PEGylated liposomes were successfully synthesized and chemically characterized with a mean size of 265.1 nm. The novel NP-siRNA liposomes functionalized with the anti-TB drugs and TGF-β1 siRNA were endocytosed efficiently by human macrophages as visualized by transmission electron microscopy and scanning electron microscopy. Furthermore, the liposomes showed a low cytotoxicity toward human macrophages. There was no significant effect on cell cycle distribution and apoptosis in THP-1-derived macrophages after drug exposure at concentrations ranging from 2.5 to 62.5 μg/mL. Notably, there was a 6.4-fold increase in the autophagy of human macrophages when treated with the NP-siRNA liposomes at 62.5 μg/mL. In addition, the TGF-β1 and nuclear factor-κB expression levels were downregulated by the NP-siRNA liposomes in THP-1-derived macrophages. The Ingenuity Pathway Analysis data showed that there were over 40 signaling pathways involved in the proteomic responses to NP-siRNA liposome exposure in human macrophages, with 160 proteins mapped. The top five canonical signaling pathways were eukaryotic initiation factor 2 signaling, actin cytoskeleton signaling, remodeling of epithelial adherens junctions, epithelial adherens junction signaling, and Rho GDP-dissociation inhibitor signaling pathways. Collectively, the novel synthetic targeting liposomes represent a promising delivery system for anti-TB drugs to human macrophages with good selectivity and minimal cytotoxicity.
Collapse
Affiliation(s)
- Ning-Kui Niu
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
- Department of Spinal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Juan-Juan Yin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Yin-Xue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zi-Li Wang
- Department of Orthopedics, General Hospital of Tianjin Medical University, Tianjin, People’s Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Xiao-Wu Chen
- Department of General Surgery, The First People’s Hospital of Shunde Affiliated to Southern Medical University, Shunde, Foshan, Guangdong, People’s Republic of China
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| |
Collapse
|
159
|
Kraus I, Besong Agbo D, Otto M, Wiltfang J, Klafki H. Detection and Differentiation of Threonine- and Tyrosine-Monophosphorylated Forms of ERK1/2 by Capillary Isoelectric Focusing-Immunoassay. Sci Rep 2015; 5:12767. [PMID: 26235103 PMCID: PMC4522687 DOI: 10.1038/srep12767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
The extracellular signal regulated kinases ERK1/2 play important roles in the regulation of diverse cellular functions and have been implicated in several human diseases. In addition to the fully activated, diphosphorylated ERK1/2 protein, monophosphorylated forms of ERK1/2 have been observed, which may have distinct biological functions. We report here on the highly sensitive detection and differentiation of unphosphorylated, threonine-phosphorylated (pT), tyrosine-phosphorylated (pY) and diphosphorylated ERK1 and ERK2 by capillary isoelectric focusing followed by immunological detection (CIEF-immunoassay). Eight different phosphorylated and unphosphorylated forms of ERK1/2 were resolved according to charge. The unequivocal identification and differentiation of ERK1 and ERK2 forms monophosphorylated at either threonine or tyrosine was achieved by competitive blocking with specific phospho-peptides and different phosphorylation-sensitive antibodies. The suitability of the additional pT-ERK1/2 and pY-ERK1/2 differentiation for the time-resolved in-depth study of phospho-form distribution in response to specific stimuli is demonstrated in human neuroblastoma SH-SY5Y and monocytic THP-1 cell lines, and in human peripheral blood mononuclear cells.
Collapse
Affiliation(s)
- Inga Kraus
- 1] LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Research Site Goettingen, Germany [3] Dept. of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August-University Goettingen, Germany
| | - Daniela Besong Agbo
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Jens Wiltfang
- 1] Dept. of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August-University Goettingen, Germany [2] German Center for Neurodegenerative Diseases (DZNE), Research Site Goettingen, Germany
| | - Hans Klafki
- 1] LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, Essen, Germany [2] Dept. of Psychiatry and Psychotherapy, University Medical Center Goettingen (UMG), Georg-August-University Goettingen, Germany
| |
Collapse
|
160
|
Wang H, Zheng X, Fei T, Wang J, Li X, Liu Y, Zhang F. Towards pathway-centric cancer therapies via pharmacogenomic profiling analysis of ERK signalling pathway. Clin Transl Med 2015. [PMID: 26220863 PMCID: PMC4518023 DOI: 10.1186/s40169-015-0066-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Genomic heterogeneity in human cancers complicates gene-centric personalized medicine. Malignant tumors often share a core group of pathways that are perturbed by diverse genetic mutations. Therefore, one possible solution to overcome the heterogeneity challenge is a shift from gene-centric to pathway-centric therapies. Pathway-centric perspectives, which underscore the need to understand key pathways and their critical properties, could address the complexity of cancer heterogeneity better than gene-centric approaches to aid cancer drug discovery and therapy. Methods We used large-scale pharmacogenomic profiling data provided by the Cancer Genome Project of the Wellcome Trust Sanger Institute and the Cancer Cell Line Encyclopedia. In a systematic in silico investigation of ERK signalling pathway components and topological structures determines their influences on pathway activity and targeted therapies. Mann–Whitney U test was used to identify gene alterations associated with drug sensitivity with p values and Benjamini–Hochberg correction for multiple hypotheses testing. Results The analysis demonstrated that genetic alterations were crucial to activation of effector pathway and subsequent tumorigenesis, however drug sensitivity suffered from both drug effector and non-effector pathways, which were determined by not only underlying genomic alterations, but also interplay and topological relationship of components in pathway, suggesting that the combinatorial targets of key nodes in perturbed pathways may yield better treatment outcome. Furthermore, we proposed a model to provide a more comprehensive insight and understanding of pathway-centric cancer therapies. Conclusions Our study provides a holistic view of factors influencing drug sensitivity and sheds light on pathway-centric cancer therapies. Electronic supplementary material The online version of this article (doi:10.1186/s40169-015-0066-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiyun Wang
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China,
| | | | | | | | | | | | | |
Collapse
|
161
|
Wijayagunawardane MPB, Hambruch N, Haeger JD, Pfarrer C. Effect of epidermal growth factor (EGF) on the phosphorylation of mitogen-activated protein kinase (MAPK) in the bovine oviduct in vitro: Alteration by heat stress. J Reprod Dev 2015; 61:383-9. [PMID: 26050642 PMCID: PMC4623143 DOI: 10.1262/jrd.2014-061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidermal growth factor (EGF) has been shown to be involved in control of the oviductal microenvironment. To elucidate the potential mechanisms responsible for the detrimental effect of heat stress and to identify the relation with the endocrine status, the effects of EGF on the level of phosphorylated mitogen-activated-protein kinase (MAPK) and proliferation of bovine oviductal epithelial cells (OECs) exposed to different cyclic ovarian steroidal environments (luteal phase (LP), follicular phase (FP) and postovulatory phase (PO)) and temperatures (mild heat stress (40 C) and severe heat stress (43 C)) were investigated. Western blot was performed to evaluate phosphorylated MAPK, while proliferation was analyzed by MTT assay. Stimulation of OECs with EGF alone or with EGF in the PO and FP environments significantly increased the amount of phosphorylated MAPK, with MAPK 44 phosphorylation being highest during exposure to PO conditions. These effects were not observed in the
LP. Heat treatment completely blocked effects of EGF on phosphorylated MAPK. Additionally, severe heat stress led to a significantly lower basal level of phosphorylated MAPK. PD98059 (MAPK inhibitor) completely abolished EGF-stimulated MAPK phosphorylation and OECs proliferation. Overall the results indicate that EGF has the potential to increase the amount of phosphorylated MAPK in OECs and therefore could be involved in regulation of the bovine oviductal microenvironment. However, these regulatory mechanisms may be compromised in the presence of heat stress (high ambient temperature), leading to low fertility rates and impaired embryo survival.
Collapse
|
162
|
Wu XY, Hao CP, Ling M, Guo CH, Ma W. Hypoxia-induced apoptosis is blocked by adrenomedullin via upregulation of Bcl-2 in human osteosarcoma cells. Oncol Rep 2015; 34:787-94. [PMID: 26035796 DOI: 10.3892/or.2015.4011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/11/2015] [Indexed: 11/06/2022] Open
Abstract
Adrenomedullin (ADM), a multifunctional regulatory peptide, is potentially induced by hypoxia in physiological and pathological tissues, including many types of malignant tumors. Recent research has demonstrated that ADM expression is highly associated with the prognosis and disease severity of human osteosarcoma. However, the effect of ADM on the apoptosis of osteosarcoma cells and its possible mechanism remain to be elucidated. In the present study, we observed that mRNA and protein levels of ADM were increased in human osteosarcoma SOSP-F5M2 cells under a hypoxic microenvironment induced by cobalt chloride (CoCl2) in a time-dependent manner. Treatment with ADM significantly blunted hypoxic-induced apoptosis, evaluated by Hoechst 33342 staining and Annexin V-FITC/PI labeling. The expression of B-cell lymphoma-2 (Bcl-2) was increased by administration of ADM; meanwhile, this effect was reversed by exogenously adding U0126, a selective inhibitor of MEK or ADM22-52 (ADM-specific receptor antagonist). These results demonstrated that ADM acted as a survival factor to inhibit hypoxic-induced apoptosis via interacting with its receptors CRLR-RAMP (2,3) in osteosarcoma cells. The anti-apoptotic function of ADM was found to be mediated by upregulation of the expression of Bcl-2 partially through activation of the MEK/ERK1/2 signaling pathway. Therefore, targeting of the ADM/ADM acceptors/ERK1/2/Bcl-2 pathway may provide a potential strategy through which to induce the apoptosis of osteosarcoma cells.
Collapse
Affiliation(s)
- Xue-Yuan Wu
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Cui-Pei Hao
- Department of Gynaecology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ming Ling
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Chi-Hua Guo
- Department of Orthopedics, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Ma
- Department of Orthopedics, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
163
|
Hirata H, Sokabe M. A novel role of actomyosin bundles in ERK signaling. Commun Integr Biol 2015; 8:e1017176. [PMID: 26479219 PMCID: PMC4594555 DOI: 10.1080/19420889.2015.1017176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 01/15/2023] Open
Abstract
Intracellular and extracellular mechanical environments have a significant impact on survival and proliferation of cells. While the extracellular signal-regulated kinase (ERK) subfamily of MAP kinases plays critical roles in regulations of these cellular behaviors, activation of ERK is affected by mechanical conditions of cells. We have recently found that ERK is activated on contractile actomyosin bundles. ERK activation on actomyosin bundles depends on tension in the bundles, which is generated by either myosin II activity of external forces. In this Addendum, we discuss a novel, potential role of actomyosin bundles in ERK signaling and mechanical regulation of cell survival and proliferation.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Institute; National University of Singapore ; Singapore
| | - Masahiro Sokabe
- Mechanobiology Institute; National University of Singapore ; Singapore ; Mechanobiology Laboratory; Nagoya University Graduate School of Medicine ; Nagoya, Japan
| |
Collapse
|
164
|
Ortutay Z, Oksanen A, Aittomäki S, Ortutay C, Pesu M. Proprotein convertase FURIN regulates T cell receptor-induced transactivation. J Leukoc Biol 2015; 98:73-83. [PMID: 25926688 DOI: 10.1189/jlb.2a0514-257rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Antigen emergence rapidly stimulates T cells, which leads to changes in cytokine production, cell proliferation, and differentiation. Some of the key molecules involved in these events, such as TGF-β1 and NOTCH1, are synthesized initially as inactive precursors and are proteolytically activated during T cell activation. PCSKs regulate proprotein maturation by catalyzing the proteolytic cleavage of their substrates. The prototype PCSK FURIN is induced upon TCR activation, and its expression in T cells is critical for the maintenance of peripheral immune tolerance. In this study, we tested the hypothesis that FURIN regulates T cell activation. Our data demonstrate that IL-2 is increased initially in FURIN-deficient mouse CD4(+) T cells, but the TCR-induced IL-2 mRNA expression is not sustained in the absence of FURIN. Accordingly, the inhibition of FURIN in human Jurkat T cell lines also results in a decrease in IL-2 production, whereas the overexpression of WT FURIN is associated with elevated IL-2 levels. In Jurkat cells, FURIN is dispensable for immediate TCR signaling steps, such as ERK, ZAP70, or LAT phosphorylation. However, with the use of gene reporter assays, we demonstrate that FURIN regulates the AP-1, NFAT, and NF-κB transcription factors. Finally, by performing a transcription factor-binding site enrichment analysis on FURIN-dependent transcriptomes, we identify the FURIN-regulated transcription factors in mouse CD4(+) T cell subsets. Collectively, our work confirms the hypothesis that the TCR-regulated protease FURIN plays an important role in T cell activation and that it can specifically modulate TCR-activated transactivation.
Collapse
Affiliation(s)
- Zsuzsanna Ortutay
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Anna Oksanen
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Saara Aittomäki
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Csaba Ortutay
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| | - Marko Pesu
- *Immunoregulation, BioMediTech, University of Tampere, Finland; HiDucator Oy, Kangasala, Finland; and Department of Dermatology and Fimlab Laboratories, Tampere University Hospital, Pirkanmaa Hospital District, Tampere, Finland
| |
Collapse
|
165
|
Neuroprotective role of an N-acetyl serotonin derivative via activation of tropomyosin-related kinase receptor B after subarachnoid hemorrhage in a rat model. Neurobiol Dis 2015; 78:126-33. [PMID: 25862938 DOI: 10.1016/j.nbd.2015.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/27/2014] [Accepted: 01/30/2015] [Indexed: 12/12/2022] Open
Abstract
N-[2-(5-hydroxy-1H-indol-3-yl) ethyl]-2-oxopiperidine-3-carboxamide (HIOC), an N-acetyl serotonin derivative, selectively activates tropomyosin-related kinase receptor B (TrkB). This study is to investigate a potential role of HIOC on ameliorating early brain injury after experimental subarachnoid hemorrhage (SAH). One hundred and fifty-six adult male Sprague-Dawley rats were used. SAH model was induced by endovascular perforation. TrkB small interfering RNA (siRNA) or scramble siRNA was injected intracerebroventricularly 24h before SAH. HIOC was administrated intracerebroventricularly 3h after SAH and compared with brain-derived neurotrophic factor (BDNF). SAH grade and neurologic scores were evaluated for the outcome study. For the mechanism study, the expression of TrkB, phosphorylated TrkB (p-TrkB), phosphorylated extracellular signal regulated kinase (p-ERK), B-cell lymphoma 2 (Bcl-2) and cleaved caspase 3 (CC3) was detected by Western blots, and neuronal injury was determined by double immunofluorescence staining of neuronal nuclei and terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling. Knocking down of TrkB decreased the expression of Bcl-2 and aggravated neurologic deficits 24h after SAH. HIOC activated TrkB/ERK pathway, decreased neuronal cell death, and improved neurobehavioral outcome, and these effects were abolished by TrkB siRNA. HIOC was more potent than BDNF in reduction of apoptosis 24h post-SAH. Thus, we conclude that administration of HIOC activated TrkB/ERK signaling cascade and attenuated early brain injury after SAH. HIOC may be a promising agent for further treatment for SAH and other stroke events.
Collapse
|
166
|
Gupta RK, Patel AK, Shah N, Chaudhary AK, Jha UK, Yadav UC, Gupta PK, Pakuwal U. Oxidative stress and antioxidants in disease and cancer: a review. Asian Pac J Cancer Prev 2015; 15:4405-9. [PMID: 24969860 DOI: 10.7314/apjcp.2014.15.11.4405] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Reactive oxygen species (ROS), highly reactive molecules, are produced by living organisms as a result of normal cellular metabolism and environmental factors, and can damage nucleic acids and proteins, thereby altering their functions. The human body has several mechanisms to counteract oxidative stress by producing antioxidants. A shift in the balance between oxidants and antioxidants in favor of oxidants is termed as "oxidative stress". Paradoxically, there is a large body of research demonstrating the general effect of oxidative stress on signaling pathways, less is known about the initial and direct regulation of signaling molecules by ROS, or what we term the "oxidative interface." This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival (MAP kinases and PI3 kinase), ROS homeostasis, and antioxidant gene regulation (Ref-1 and Nrf-2). This review also deals with classification as well as mechanisms of formation of free radicals, examining their beneficial and deleterious effects on cellular activities and focusing on the potential role of antioxidants in preventing and repairing damage caused by oxidative stress. A discussion of the role of phytochemical antioxidants in oxidative stress, disease and the epigenome is included.
Collapse
Affiliation(s)
- Rakesh Kumar Gupta
- Department of Biochemistry, National Medical College, Birgunj, Nepal E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Siddappa D, Beaulieu É, Gévry N, Roux PP, Bordignon V, Duggavathi R. Effect of the transient pharmacological inhibition of Mapk3/1 pathway on ovulation in mice. PLoS One 2015; 10:e0119387. [PMID: 25803847 PMCID: PMC4372293 DOI: 10.1371/journal.pone.0119387] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Mitogen-activated protein kinase 3/1 (Mapk3/1) pathway is critical for LH signal transduction during ovulation. However, the mechanisms remain incompletely understood. We hypothesized that Mapk pathway regulates ovulation through transcriptional regulation of ovulatory genes. To test this hypothesis we used immature mice superovulated with equine and human chorionic gonadotropins (eCG and hCG) and PD0325901, to inhibit hCG-induced Mapk3/1 activity. Mice received either the inhibitor PD0325901 (25 μg/g, i.p.) or vehicle at 2h before hCG stimulation. Administration of the inhibitor abolished Mapk3/1 phosphorylation in granulosa cells. While vehicle-treated mice ovulated normally, there were no ovulations in inhibitor-treated mice. First, we analyzed gene expression in granulosa cells at 0h, 1h and 4h post-hCG. There was expected hCG-driven increase in mRNA abundance of many ovulation-related genes including Ptgs2 in vehicle-treated granulosa cells, but not (P<0.05) in inhibitor-treated group. There was also reduced mRNA and protein abundance of the transcription factor, early growth response 1 (Egr1) in inhibitor-treated granulosa cells. We then used GRMO2 cell-line to test if Egr1 is recruited to promoter of Ptgs2 followed by chromatin immunoprecipitation with either Egr1 or control antibody. Enrichment of the promoter regions in immunoprecipitants of Egr1 antibody indicated that Egr1 binds to the Ptgs2 promoter. We then knocked down Egr1 expression in mouse primary granulosa cells using siRNA technology. Treatment with Egr1-siRNA inhibited Egr1 transcript accumulation, which was associated with reduced expression of Ptgs2 when compared to control-siRNA treated granulosa cells. These data demonstrate that transient inhibition of LH-stimulated MAPK3/1 activity abrogates ovulation in mice. We conclude that Mapk3/1 regulates ovulation, at least in part, through Egr1 and its target gene, Ptgs2 in granulosa cells of ovulating follicles in mice.
Collapse
Affiliation(s)
- Dayananda Siddappa
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Élaine Beaulieu
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Nicolas Gévry
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | - Vilceu Bordignon
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Raj Duggavathi
- Department of Animal Science, McGill University, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- * E-mail:
| |
Collapse
|
168
|
H-Ras mediates the inhibitory effect of epidermal growth factor on the epithelial Na+ channel. PLoS One 2015; 10:e0116938. [PMID: 25774517 PMCID: PMC4361710 DOI: 10.1371/journal.pone.0116938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/01/2014] [Indexed: 11/21/2022] Open
Abstract
The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current. The H-Ras-mediated signalling pathway that inhibits activity of ENaC involves c-Raf, and that the inhibitory effect of H-Ras on ENaC is abolished by the MEK1/2 inhibitor, PD98059. The inhibitory effect of H-Ras is not mediated by Nedd4-2, a ubiquitin protein ligase that regulates the abundance of ENaC at the cell surface membrane, or by a negative effect of H-Ras on proteolytic activation of the channel. The inhibitory effects of EGF and H-Ras on ENaC, however, were not observed in cells in which expression of caveolin-1 (Cav-1) had been knocked down by siRNA. These findings suggest that the inhibitory effect of EGF on ENaC-dependent Na+ absorption is mediated via the H-Ras/c-Raf, MEK/ERK signalling pathway, and that Cav-1 is an essential component of this EGF-activated signalling mechanism. Taken together with reports that mice expressing a constitutive mutant of H-Ras develop renal cysts, our findings suggest that H-Ras may play a key role in the regulation of renal ion transport and renal development.
Collapse
|
169
|
Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp Cell Res 2015; 333:228-237. [PMID: 25773777 DOI: 10.1016/j.yexcr.2015.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade.
Collapse
|
170
|
You B, Yang YL, Xu Z, Dai Y, Liu S, Mao JH, Tetsu O, Li H, Jablons DM, You L. Inhibition of ERK1/2 down-regulates the Hippo/YAP signaling pathway in human NSCLC cells. Oncotarget 2015; 6:4357-4368. [PMID: 25738359 PMCID: PMC4414195 DOI: 10.18632/oncotarget.2974] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/20/2014] [Indexed: 12/31/2022] Open
Abstract
Alterations of the EGFR/ERK and Hippo/YAP pathway have been found in non-small cell lung cancer (NSCLC). Herein, we show that ERK1 and ERK2 have an effect on the Hippo/YAP pathway in human NSCLC cells. Firstly, inhibition of ERK1/2 by siRNA or small-molecular inhibitors decreased the YAP protein level, the reporter activity of the Hippo pathway, and the mRNA levels of the Hippo downstream genes, CTGF, Gli2, and BIRC5. Secondly, degradation of YAP protein was accelerated after ERK1/2 depletion in NSCLC cell lines, in which YAP mRNA level was not decreased. Thirdly, forced over-expression of the ERK2 gene rescued the YAP protein level and Hippo reporter activity after siRNA knockdown targeting 3'UTR of the ERK2 gene in NSCLC cells. Fourthly, depletion of ERK1/2 reduced the migration and invasion of NSCLC cells. Combined depletion of ERK1/2 had a greater effect on cell migration than depletion of either one separately. Finally, the MEK1/2 inhibitor Trametinib decreased YAP protein level and transcriptional activity of the Hippo pathway in NSCLC cell lines. Our results suggest that ERK1/2 inhibition participates in reducing YAP protein level, which in turn down-regulates expression of the downstream genes of the Hippo pathway to suppress migration and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Bin You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - Yi-Lin Yang
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Zhidong Xu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yuyuan Dai
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA, USA
| | - Osamu Tetsu
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Hui Li
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, People's Republic of China
| | - David M. Jablons
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
171
|
Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol 2015; 43:42-60. [PMID: 25728938 DOI: 10.1016/j.matbio.2015.02.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 02/20/2015] [Accepted: 02/20/2015] [Indexed: 12/29/2022]
Abstract
The 17β-estradiol (E2)/estrogen receptor alpha (ERα) signaling pathway is one of the most important pathways in hormone-dependent breast cancer. E2 plays pivotal roles in cancer cell growth, survival, and architecture as well as in gene expression regulatory mechanisms. In this study, we established stably transfected MCF-7 cells by knocking down the ERα gene (designated as MCF-7/SP10+ cells), using specific shRNA lentiviral particles, and compared them with the control cells (MCF-7/c). Interestingly, ERα silencing in MCF-7 cells strongly induced cellular phenotypic changes accompanied by significant changes in gene and protein expression of several markers typical of epithelial to mesenchymal transition (EMT). Notably, these cells exhibited enhanced cell proliferation, migration and invasion. Moreover, ERα suppression strongly affected the gene and protein expression of EGFR and HER2 receptor tyrosine kinases, and various extracellular matrix (ECM) effectors, including matrix metalloproteinases and their endogenous inhibitors (MMPs/TIMPs) and components of the plasminogen activation system. The action caused by E2 in MCF-7/c cells in the expression of HER2, MT1-MMP, MMP1, MMP9, uPA, tPA, and PAI-1 was abolished in MCF-7/SP10+ cells lacking ERα. These data suggested a regulatory role for the E2/ERα pathway in respect to the composition and activity of the extracellular proteolytic molecular network. Notably, loss of ERα promoted breast cancer cell migration and invasion by inducing changes in the expression levels of certain matrix macromolecules (especially uPA, tPA, PAI-1) through the EGFR-ERK signaling pathway. In conclusion, loss of ERα in breast cancer cells results in a potent EMT characterized by striking changes in the expression profile of specific matrix macromolecules highlighting the potential nodal role of matrix effectors in breast cancer endocrine resistance.
Collapse
|
172
|
Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. Semin Cell Dev Biol 2015; 39:43-55. [PMID: 25724561 DOI: 10.1016/j.semcdb.2015.02.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 02/12/2015] [Accepted: 02/19/2015] [Indexed: 12/15/2022]
Abstract
Autophagy in cancer is an intensely debated concept in the field of translational research. The dual nature of autophagy implies that it can potentially modulate the pro-survival and pro-death mechanisms in tumor initiation and progression. There is a prospective molecular relationship between defective autophagy and tumorigenesis that involves the accumulation of damaged mitochondria and protein aggregates, which leads to the production of reactive oxygen species (ROS) and ultimately causes DNA damage that can lead to genomic instability. Moreover, autophagy regulates necrosis and is followed by inflammation, which limits tumor metastasis. On the other hand, autophagy provides a survival advantage to detached, dormant metastatic cells through nutrient fueling by tumor-associated stromal cells. Manipulating autophagy for induction of cell death, inhibition of protective autophagy at tissue-and context-dependent for apoptosis modulation has therapeutic implications. This review presents a comprehensive overview of the present state of knowledge regarding autophagy as a new approach to treat cancer.
Collapse
Affiliation(s)
- Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Prajna Paramita Naik
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
173
|
Ai X. SR calcium handling dysfunction, stress-response signaling pathways, and atrial fibrillation. Front Physiol 2015; 6:46. [PMID: 25745402 PMCID: PMC4333799 DOI: 10.3389/fphys.2015.00046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/30/2015] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia. It is associated with a markedly increased risk of premature death due to embolic stroke and also complicates co-existing cardiovascular diseases such as heart failure. The prevalence of AF increases dramatically with age, and aging has been shown to be an independent risk of AF. Due to an aging population in the world, a growing body of AF patients are suffering a diminished quality of life and causing an associated economic burden. However, effective pharmacologic treatments and prevention strategies are lacking due to a poor understanding of the molecular and electrophysiologic mechanisms of AF in the failing and/or aged heart. Recent studies suggest that altered atrial calcium handling contributes to the onset and maintenance of AF. Here we review the role of stress-response kinases and calcium handling dysfunction in AF genesis in the aged and failing heart.
Collapse
Affiliation(s)
- Xun Ai
- Department of Cell and Molecular Physiology, Loyola University Chicago Maywood, IL, USA
| |
Collapse
|
174
|
Li S, Bhave D, Chow JM, Riera TV, Schlee S, Rauch S, Atanasova M, Cate RL, Whitty A. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem 2015; 290:10018-36. [PMID: 25635057 DOI: 10.1074/jbc.m114.602268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Indexed: 01/16/2023] Open
Abstract
A major goal of current signaling research is to develop a quantitative understanding of how receptor activation is coupled to downstream signaling events and to functional cellular responses. Here, we measure how activation of the RET receptor tyrosine kinase on mouse neuroblastoma cells by the neurotrophin artemin (ART) is quantitatively coupled to key downstream effectors. We show that the efficiency of RET coupling to ERK and Akt depends strongly on ART concentration, and it is highest at the low (∼100 pM) ART levels required for neurite outgrowth. Quantitative discrimination between ERK and Akt pathway signaling similarly is highest at this low ART concentration. Stimulation of the cells with 100 pM ART activated RET at the rate of ∼10 molecules/cell/min, leading at 5-10 min to a transient peak of ∼150 phospho-ERK (pERK) molecules and ∼50 pAkt molecules per pRET, after which time the levels of these two signaling effectors fell by 25-50% while the pRET levels continued to slowly rise. Kinetic experiments showed that signaling effectors in different pathways respond to RET activation with different lag times, such that the balance of signal flux among the different pathways evolves over time. Our results illustrate that measurements using high, super-physiological growth factor levels can be misleading about quantitative features of receptor signaling. We propose a quantitative model describing how receptor-effector coupling efficiency links signal amplification to signal sensitization between receptor and effector, thereby providing insight into design principles underlying how receptors and their associated signaling machinery decode an extracellular signal to trigger a functional cellular outcome.
Collapse
Affiliation(s)
- Simin Li
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Devayani Bhave
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Jennifer M Chow
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Thomas V Riera
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Sandra Schlee
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Simone Rauch
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Mariya Atanasova
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Richard L Cate
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| | - Adrian Whitty
- From the Department of Chemistry, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
175
|
Sorafenib reverses resistance of gastric cancer to treatment by cisplatin through down-regulating MDR1 expression. Med Oncol 2015; 32:470. [DOI: 10.1007/s12032-014-0470-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|
176
|
Hirata H, Gupta M, Vedula SRK, Lim CT, Ladoux B, Sokabe M. Actomyosin bundles serve as a tension sensor and a platform for ERK activation. EMBO Rep 2014; 16:250-7. [PMID: 25550404 DOI: 10.15252/embr.201439140] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tensile forces generated by stress fibers drive signal transduction events at focal adhesions. Here, we report that stress fibers per se act as a platform for tension-induced activation of biochemical signals. The MAP kinase, ERK is activated on stress fibers in a myosin II-dependent manner. In myosin II-inhibited cells, uniaxial stretching of cell adhesion substrates restores ERK activation on stress fibers. By quantifying myosin II- or mechanical stretch-mediated tensile forces in individual stress fibers, we show that ERK activation on stress fibers correlates positively with tensile forces acting on the fibers, indicating stress fibers as a tension sensor in ERK activation. Myosin II-dependent ERK activation is also observed on actomyosin bundles connecting E-cadherin clusters, thus suggesting that actomyosin bundles, in general, work as a platform for tension-dependent ERK activation.
Collapse
Affiliation(s)
- Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Mukund Gupta
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | | | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore Institut Jacques Monod (IJM), CNRS UMR 7592 Université Paris Diderot, Paris, France
| | - Masahiro Sokabe
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
177
|
Døssing KBV, Binderup T, Kaczkowski B, Jacobsen A, Rossing M, Winther O, Federspiel B, Knigge U, Kjær A, Friis-Hansen L. Down-Regulation of miR-129-5p and the let-7 Family in Neuroendocrine Tumors and Metastases Leads to Up-Regulation of Their Targets Egr1, G3bp1, Hmga2 and Bach1. Genes (Basel) 2014; 6:1-21. [PMID: 25546138 PMCID: PMC4377830 DOI: 10.3390/genes6010001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/09/2014] [Indexed: 01/12/2023] Open
Abstract
Expression of miRNAs in Neuroendocrine Neoplasms (NEN) is poorly characterized. We therefore wanted to examine the miRNA expression in Neuroendocrine Tumors (NETs), and identify their targets and importance in NET carcinogenesis. miRNA expression in six NEN primary tumors, six NEN metastases and four normal intestinal tissues was characterized using miRNA arrays, and validated by in-situ hybridization and qPCR. Among the down-regulated miRNAs miR-129-5p and the let-7f/let-7 family, were selected for further characterization. Transfection of miR-129-5p inhibited growth of a pulmonary and an intestinal carcinoid cell line. Analysis of mRNA expression changes identified EGR1 and G3BP1 as miR-129-5p targets. They were validated by luciferase assay and western blotting, and found robustly expressed in NETs by immunohistochemistry. Knockdown of EGR1 and G3BP1 mimicked the growth inhibition induced by miR-129-5p. let-7 overexpression inhibited growth of carcinoid cell lines, and let-7 inhibition increased protein content of the transcription factor BACH1 and its targets MMP1 and HMGA2, all known to promote bone metastases. Immunohistochemistry analysis revealed that let-7 targets are highly expressed in NETs and metastases. We found down-regulation of miR-129-5p and the let-7 family, and identified new neuroendocrine specific targets for these miRNAs, which contributes to the growth and metastatic potential of these tumors.
Collapse
Affiliation(s)
- Kristina B V Døssing
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Tina Binderup
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Bogumil Kaczkowski
- The Bioinformatics Center, Department of Biology and Biotech and Research Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Anders Jacobsen
- The Bioinformatics Center, Department of Biology and Biotech and Research Innovation Centre, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ole Winther
- DTU Informatics, Technical University of Denmark, Anker Engelunds Vej 1, 2800 Kongens Lyngby, Denmark.
| | - Birgitte Federspiel
- Department of Pathology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Ulrich Knigge
- Cluster for Molecular Imaging, Faculty of Health Sciences, Blegdamsvej 3B, 2100 Copenhagen, Denmark.
| | - Andreas Kjær
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | - Lennart Friis-Hansen
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| |
Collapse
|
178
|
Shan J, Donelan W, Hayner JN, Zhang F, Dudenhausen EE, Kilberg MS. MAPK signaling triggers transcriptional induction of cFOS during amino acid limitation of HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:539-48. [PMID: 25523140 DOI: 10.1016/j.bbamcr.2014.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
Abstract
Amino acid (AA) deprivation in mammalian cells activates a collection of signaling cascades known as the AA response (AAR), which is characterized by transcriptional induction of stress-related genes, including FBJ murine osteosarcoma viral oncogene homolog (cFOS). The present study established that the signaling mechanism underlying the AA-dependent transcriptional regulation of the cFOS gene in HepG2 human hepatocellular carcinoma cells is independent of the classic GCN2-eIF2-ATF4 pathway. Instead, a RAS-RAF-MEK-ERK cascade mediates AAR signaling to the cFOS gene. Increased cFOS transcription is observed from 4-24 h after AAR-activation, exhibiting little or no overlap with the rapid and transient increase triggered by the well-known serum response. Furthermore, serum is not required for the AA-responsiveness of the cFOS gene and no phosphorylation of promoter-bound serum response factor (SRF) is observed. The ERK-phosphorylated transcription factor E-twenty six-like (p-ELK1) is increased in its association with the cFOS promoter after activation of the AAR. This research identified cFOS as a target of the AAR and further highlights the importance of AA-responsive MAPK signaling in HepG2 cells.
Collapse
Affiliation(s)
- Jixiu Shan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - William Donelan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jaclyn N Hayner
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Elizabeth E Dudenhausen
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610.
| |
Collapse
|
179
|
Oncogenic KRAS signalling promotes the Wnt/β-catenin pathway through LRP6 in colorectal cancer. Oncogene 2014; 34:4914-27. [PMID: 25500543 PMCID: PMC4687460 DOI: 10.1038/onc.2014.416] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 12/14/2022]
Abstract
Aberrant regulation of the Wnt/β-catenin signaling pathway is one of the major causes of colorectal cancer (CRC). Loss-of-function mutations in APC are commonly found in CRC, leading to inappropriate activation of canonical Wnt signaling. Conversely, gain-of-function mutations in KRAS and BRAF genes are detected in up to 60% of CRCs. Whereas KRAS/mitogen-activated protein kinase (MAPK) and canonical Wnt/β-catenin pathways are critical for intestinal tumorigenesis, mechanisms integrating these two important signaling pathways during CRC development are unknown. Results herein demonstrate that transformation of normal intestinal epithelial cells (IECs) by oncogenic forms of KRAS, BRAF or MEK1 was associated with a marked increase in β-catenin/TCF4 and c-MYC promoter transcriptional activities and mRNA levels of c-Myc, Axin2 and Lef1. Notably, expression of a dominant-negative mutant of T-Cell Factor 4 (ΔNTCF4) severely attenuated IEC transformation induced by oncogenic MEK1 and markedly reduced their tumorigenic and metastatic potential in immunocompromised mice. Interestingly, the Frizzled co-receptor LRP6 was phosphorylated in a MEK-dependent manner in transformed IECs and in human CRC cell lines. Expression of LRP6 mutant in which serine/threonine residues in each particular ProlineProlineProlineSerine/ThreonineProline motif were mutated to alanines (LRP6-5A) significantly reduced β-catenin/TCF4 transcriptional activity. Accordingly, MEK inhibition in human CRC cells significantly diminished β-catenin/TCF4 transcriptional activity and c-MYC mRNA and protein levels without affecting β-catenin expression or stability. Lastly, LRP6 phosphorylation was also increased in human colorectal tumors, including adenomas, in comparison with healthy adjacent normal tissues. Our data indicate that oncogenic activation of KRAS/BRAF/MEK signaling stimulates the canonical Wnt/β-catenin pathway, which in turn promotes intestinal tumor growth and invasion. Moreover, LRP6 phosphorylation by ERK1/2 may provide a unique point of convergence between KRAS/MAPK and Wnt/β-catenin signalings during oncogenesis.
Collapse
|
180
|
Singhai A, Wakefield DL, Bryant KL, Hammes SR, Holowka D, Baird B. Spatially defined EGF receptor activation reveals an F-actin-dependent phospho-Erk signaling complex. Biophys J 2014; 107:2639-51. [PMID: 25468343 DOI: 10.1016/j.bpj.2014.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/19/2014] [Accepted: 09/30/2014] [Indexed: 12/24/2022] Open
Abstract
We investigated the association of signaling proteins with epidermal growth factor (EGF) receptors (EGFR) using biotinylated EGF bound to streptavidin that is covalently coupled in an ordered array of micron-sized features on silicon surfaces. Using NIH-3T3 cells stably expressing EGFR, we observe concentration of fluorescently labeled receptors and stimulated tyrosine phosphorylation that are spatially confined to the regions of immobilized EGF and quantified by cross-correlation analysis. We observe recruitment of phosphorylated paxillin to activated EGFR at these patterned features, as well as β1-containing integrins that preferentially localize to more peripheral EGF features, as quantified by radial fluorescence analysis. In addition, we detect recruitment of EGFP-Ras, MEK, and phosphorylated Erk to patterned EGF in a process that depends on F-actin and phosphoinositides. These studies reveal and quantify the coformation of multiprotein EGFR signaling complexes at the plasma membrane in response to micropatterned growth factors.
Collapse
Affiliation(s)
- Amit Singhai
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Devin L Wakefield
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Kirsten L Bryant
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | | | - David Holowka
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Barbara Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
181
|
Kim B, Roy J, Shum WWC, Da Silva N, Breton S. Role of testicular luminal factors on Basal cell elongation and proliferation in the mouse epididymis. Biol Reprod 2014; 92:9. [PMID: 25411392 DOI: 10.1095/biolreprod.114.123943] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A subset of basal cells (BCs) in the initial segment (IS) of the mouse epididymis has a slender body projection between adjacent epithelial cells. We show here that these projections occasionally cross the apical tight junctions and are in contact with the luminal environment. Luminal testicular factors are critical for the establishment of the IS epithelium, and we investigated their role in the regulation of this luminal sensing property. Efferent duct ligation (EDL) was performed to block luminal flow from the testis without affecting blood flow. Cytokeratin 5 (KRT5) labeling showed a time-dependent reduction of the percentage of BCs with intercellular projections from 1 to 5 days after EDL, compared to controls. Double labeling for caspase-3 and KRT5 showed that a subset of BCs undergoes apoptosis 1 day after EDL. Ki67/KRT5 double labeling showed a low rate of BC proliferation under basal conditions. However, EDL induced a marked increase in the proliferation rate of a subset of BCs 2 days after EDL. A 2-wk treatment with the androgen receptor antagonist flutamide did not affect the number of BCs with intercellular projections, but reduced BC proliferation. Flutamide treatment also reduced the increase in BC proliferation induced 2 days after EDL. We conclude that, in the adult mouse IS, 1) luminal testicular factors play an important role in the ability of BCs to extend their body projection towards the lumen, and are essential for the survival of a subset of BCs; 2) androgens play an important role in the proliferation of some of the BCs that survive the initial insult induced by EDL; and 3) the formation and elongation of BC intercellular projections do not depend on androgens.
Collapse
Affiliation(s)
- Bongki Kim
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jeremy Roy
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Winnie W C Shum
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nicolas Da Silva
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Center for Systems Biology, Program in Membrane Biology and Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
182
|
Tseng PC, Chen CL, Shan YS, Chang WT, Liu HS, Hong TM, Hsieh CY, Lin SH, Lin CF. An increase in integrin-linked kinase non-canonically confers NF-κB-mediated growth advantages to gastric cancer cells by activating ERK1/2. Cell Commun Signal 2014; 12:69. [PMID: 25398317 PMCID: PMC4255431 DOI: 10.1186/s12964-014-0069-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/19/2014] [Indexed: 12/31/2022] Open
Abstract
Background Increased activity or expression of integrin-linked kinase (ILK), which regulates cell adhesion, migration, and proliferation, leads to oncogenesis. We identified the molecular basis for the regulation of ILK and its alternative role in conferring ERK1/2/NF-κB-mediated growth advantages to gastric cancer cells. Results Inhibiting ILK with short hairpin RNA or T315, a putative ILK inhibitor, abolished NF-κB-mediated the growth in the human gastric cancer cells AGS, SNU-1, MKN45, and GES-1. ILK stimulated Ras activity to activate the c-Raf/MEK1/2/ERK1/2/ribosomal S6 kinase/inhibitor of κBα/NF-κB signaling by facilitating the formation of the IQ motif-containing GTPase-activating protein 1 (IQGAP1)–Ras complex. Forced enzymatic ILK expression promoted cell growth by facilitating ERK1/2/NF-κB signaling. PI3K activation or decreased PTEN expression prolonged ERK1/2 activation by protecting ILK from proteasome-mediated degradation. C-terminus of heat shock cognate 70 interacting protein, an HSP90-associated E3 ubiquitin ligase, mediated ILK ubiquitination to control PI3K- and HSP90-regulated ILK stabilization and signaling. In addition to cell growth, the identified pathway promoted cell migration and reduced the sensitivity of gastric cancer cells to the anticancer agents 5-fluorouracil and cisplatin. Additionally, exogenous administration of EGF as well as overexpression of EGFR triggered ILK- and IQGAP1-regulated ERK1/2/NF-κB activation, cell growth, and migration. Conclusion An increase in ILK non-canonically promotes ERK1/2/NF-κB activation and leads to the growth of gastric cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s12964-014-0069-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Po-Chun Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chia-Ling Chen
- Center for Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Wen-Teng Chang
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan.
| | - Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Tse-Ming Hong
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chia-Yuan Hsieh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Sheng-Hsiang Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Chiou-Feng Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan. .,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan. .,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
183
|
Deng Y, Shipps GW, Cooper A, English JM, Annis DA, Carr D, Nan Y, Wang T, Zhu HY, Chuang CC, Dayananth P, Hruza AW, Xiao L, Jin W, Kirschmeier P, Windsor WT, Samatar AA. Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase. J Med Chem 2014; 57:8817-26. [PMID: 25313996 DOI: 10.1021/jm500847m] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An affinity-based mass spectrometry screening technology was used to identify novel binders to both nonphosphorylated and phosphorylated ERK2. Screening of inactive ERK2 identified a pyrrolidine analogue 1 that bound to both nonphosphorylated and phosphorylated ERK2 and inhibited ERK2 kinase activity. Chemical optimization identified compound 4 as a novel, potent, and highly selective ERK1,2 inhibitor which not only demonstrated inhibition of phosphorylation of ERK substrate p90RSK but also demonstrated inhibition of ERK1,2 phosphorylation on the activation loop. X-ray cocrystallography revealed that upon binding of compound 4 to ERK2, Tyr34 undergoes a rotation (flip) along with a shift in the poly-Gly rich loop to create a new binding pocket into which 4 can bind. This new binding mode represents a novel mechanism by which high affinity ATP-competitive compounds may achieve excellent kinase selectivity.
Collapse
Affiliation(s)
- Yongqi Deng
- Merck Research Laboratories , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Nyman E, Rajan MR, Fagerholm S, Brännmark C, Cedersund G, Strålfors P. A single mechanism can explain network-wide insulin resistance in adipocytes from obese patients with type 2 diabetes. J Biol Chem 2014; 289:33215-30. [PMID: 25320095 DOI: 10.1074/jbc.m114.608927] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The response to insulin is impaired in type 2 diabetes. Much information is available about insulin signaling, but understanding of the cellular mechanisms causing impaired signaling and insulin resistance is hampered by fragmented data, mainly obtained from different cell lines and animals. We have collected quantitative and systems-wide dynamic data on insulin signaling in primary adipocytes and compared cells isolated from healthy and diabetic individuals. Mathematical modeling and experimental verification identified mechanisms of insulin control of the MAPKs ERK1/2. We found that in human adipocytes, insulin stimulates phosphorylation of the ribosomal protein S6 and hence protein synthesis about equally via ERK1/2 and mTORC1. Using mathematical modeling, we examined the signaling network as a whole and show that a single mechanism can explain the insulin resistance of type 2 diabetes throughout the network, involving signaling both through IRS1, PKB, and mTOR and via ERK1/2 to the nuclear transcription factor Elk1. The most important part of the insulin resistance mechanism is an attenuated feedback from the protein kinase mTORC1 to IRS1, which spreads signal attenuation to all parts of the insulin signaling network. Experimental inhibition of mTORC1 using rapamycin in adipocytes from non-diabetic individuals induced and thus confirmed the predicted network-wide insulin resistance.
Collapse
Affiliation(s)
- Elin Nyman
- From the Department of Clinical and Experimental Medicine and
| | | | - Siri Fagerholm
- From the Department of Clinical and Experimental Medicine and
| | | | - Gunnar Cedersund
- From the Department of Clinical and Experimental Medicine and the Department of Biomedical Engineering, Linköping University, SE58185 Linköping, Sweden
| | - Peter Strålfors
- From the Department of Clinical and Experimental Medicine and
| |
Collapse
|
185
|
Beyer HM, Naumann S, Weber W, Radziwill G. Optogenetic control of signaling in mammalian cells. Biotechnol J 2014; 10:273-83. [DOI: 10.1002/biot.201400077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 11/08/2022]
|
186
|
Chattergoon NN, Louey S, Stork PJ, Giraud GD, Thornburg KL. Unexpected maturation of PI3K and MAPK-ERK signaling in fetal ovine cardiomyocytes. Am J Physiol Heart Circ Physiol 2014; 307:H1216-25. [PMID: 25128174 DOI: 10.1152/ajpheart.00833.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the first two-thirds of gestation, ovine fetal cardiomyocytes undergo mitosis to increase cardiac mass and accommodate fetal growth. Thereafter, some myocytes continue to proliferate while others mature and terminally differentiate into binucleated cells. At term (145 days gestational age; dGA) about 60% of cardiomyocytes become binucleated and exit the cell cycle under hormonal control. Rising thyroid hormone (T3) levels near term (135 dGA) inhibit proliferation and stimulate maturation. However, the degree to which intracellular signaling patterns change with age in response to T3 is unknown. We hypothesized that in vitro activation of ERK, Akt, and p70(S6K) by two regulators of cardiomyocyte cell cycle activity, T3 and insulin like growth factor-1 (IGF-1), would be similar in cardiomyocytes at gestational ages 100 and 135 dGA. IGF-1 and T3 each independently stimulated phosphorylation of ERK, Akt, and p70(S6K) in cells at both ages. In the younger mononucleated myocytes, the phosphorylation of ERK and Akt was reduced in the presence of IGF-1 and T3. However, the same hormone combination led to a dramatic twofold increase in the phosphorylation of these signaling proteins in the 135 dGA cardiomyocytes-even in cells that were not proliferating. In the older cells, both mono- and binucleated cells were affected. In conclusion, fetal ovine cardiomyocytes undergo profound maturation-related changes in signaling in response to T3 and IGF-1, but not to either factor alone. Differences in age-related response are likely to be related to milestones in fetal cardiac development as the myocardium prepares for ex utero life.
Collapse
Affiliation(s)
- N N Chattergoon
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon;
| | - S Louey
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| | - P J Stork
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Vollum Institute for Advanced Biomedical Research, Oregon Health and Science University, Portland, Oregon; and
| | - G D Giraud
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon; Portland Veterans Affairs Medical Center, Portland, Oregon
| | - K L Thornburg
- Center for Developmental Health, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
187
|
Abstract
Recent clinical data with BRAF and MEK1/2 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase 1/2] inhibitors have demonstrated the remarkable potential of targeting the RAF-MEK1/2-ERK1/2 signalling cascade for the treatment of certain cancers. Despite these advances, however, only a subset of patients respond to these agents in the first instance, and, of those that do, acquired resistance invariably develops after several months. Studies in vitro have identified various mechanisms that can underpin intrinsic and acquired resistance to MEK1/2 inhibitors, and these frequently recapitulate those observed clinically. In the present article, we review these mechanisms and also discuss recent advances in our understanding of how MEK1/2 inhibitor activity is influenced by pathway feedback.
Collapse
Affiliation(s)
- Matthew J Sale
- *Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Simon J Cook
- *Signalling Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
188
|
Li D, Fan J, Li Z, Xu C. DNA methylation dynamics in the rat EGF gene promoter after partial hepatectomy. Genet Mol Biol 2014; 37:439-43. [PMID: 25071410 PMCID: PMC4094617 DOI: 10.1590/s1415-47572014000300017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 03/18/2014] [Indexed: 11/23/2022] Open
Abstract
Epidermal growth factor (EGF), a multifunctional growth factor, is a regulator in a wide variety of physiological processes. EGF plays an important role in the regulation of liver regeneration. This study was aimed at investigating the methylation level of EGF gene throughout liver regeneration. DNA of liver tissue from control rats and partial hepatectomy (PH) rats at 10 time points was extracted and a 354 bp fragment including 10 CpG sites from the transcription start was amplified after DNA was modified by sodium bisulfate. The result of sequencing suggested that methylation ratio of four CpG sites was found to be significantly changed when PH group was compared to control group, in particular two of them were extremely striking. mRNA expression of EGF was down-regulated in total during liver regeneration. We think that the rat EGF promoter region is regulated by variation in DNA methylation during liver regeneration.
Collapse
Affiliation(s)
- Deming Li
- Key Laboratory for Cell Differentiation Regulation , Xinxiang , China . ; College of Life Science , Henan Normal University , Xinxiang , China
| | - Jinyu Fan
- Key Laboratory for Cell Differentiation Regulation , Xinxiang , China . ; College of Life Science , Henan Normal University , Xinxiang , China
| | - Ziwei Li
- Key Laboratory for Cell Differentiation Regulation , Xinxiang , China . ; College of Life Science , Henan Normal University , Xinxiang , China
| | - Cunshuan Xu
- Key Laboratory for Cell Differentiation Regulation , Xinxiang , China . ; College of Life Science , Henan Normal University , Xinxiang , China
| |
Collapse
|
189
|
Chen WC, Lin HH, Tang MJ. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components. Am J Physiol Renal Physiol 2014; 307:F695-707. [PMID: 25056346 DOI: 10.1152/ajprenal.00684.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To explore whether matrix stiffness affects cell differentiation, proliferation, and transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) in primary cultures of mouse proximal tubular epithelial cells (mPTECs), we used a soft matrix made from monomeric collagen type I-coated polyacrylamide gel or matrigel (MG). Both kinds of soft matrix benefited primary mPTECs to retain tubular-like morphology with differentiation and growth arrest and to evade TGF-β1-induced EMT. However, the potent effect of MG on mPTEC differentiation was suppressed by glutaraldehyde-induced cross-linking and subsequently stiffening MG or by an increasing ratio of collagen in the soft mixed gel. Culture media supplemented with MG also helped mPTECs to retain tubular-like morphology and a differentiated phenotype on stiff culture dishes as soft MG did. We further found that the protein level and activity of ERK were scaled with the matrix stiffness. U-0126, a MEK inhibitor, abolished the stiff matrix-induced dedifferentiation and proliferation. These data suggest that the ERK signaling pathway plays a vital role in matrix stiffness-regulated cell growth and differentiation. Taken together, both compliant property and specific MG signals from the matrix are required for the regulation of epithelial differentiation and proliferation. This study provides a basic understanding of how physical and chemical cues derived from the extracellular matrix regulate the physiological function of proximal tubules and the pathological development of renal fibrosis.
Collapse
Affiliation(s)
- Wan-Chun Chen
- Institute of Basic Medical Sciences, National Cheng-Kung University Medical College, Tainan, Taiwan; and
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng-Kung University Medical College, Tainan, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, National Cheng-Kung University Medical College, Tainan, Taiwan; and Department of Physiology, National Cheng-Kung University Medical College, Tainan, Taiwan
| |
Collapse
|
190
|
Jo C, Kim S, Cho SJ, Choi KJ, Yun SM, Koh YH, Johnson GVW, Park SI. Sulforaphane induces autophagy through ERK activation in neuronal cells. FEBS Lett 2014; 588:3081-8. [PMID: 24952354 DOI: 10.1016/j.febslet.2014.06.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/30/2014] [Accepted: 06/08/2014] [Indexed: 01/07/2023]
Abstract
Sulforaphane (SFN), an activator of nuclear factor E2-related factor 2 (Nrf2), has been reported to induce autophagy in several cells. However, little is known about its signaling mechanism of autophagic induction. Here, we provide evidence that SFN induces autophagy with increased levels of LC3-II through extracellular signal-regulated kinase (ERK) activation in neuronal cells. Pretreatment with NAC (N-acetyl-l-cysteine), a well-known antioxidant, completely blocked the SFN-induced increase in LC3-II levels and activation of ERK. Knockdown or overexpression of Nrf2 did not affect autophagy. Together, the results suggest that SFN-mediated generation of reactive oxygen species (ROS) induces autophagy via ERK activation, independent of Nrf2 activity in neuronal cells.
Collapse
Affiliation(s)
- Chulman Jo
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea.
| | - Sunhyo Kim
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | - Sun-Jung Cho
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | - Ki Ju Choi
- Division of Respiratory Viruses, Center for Infectious Diseases, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | - Sang-Moon Yun
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | - Young Ho Koh
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester Medical Center, University of Rochester, 601 Elmwood Ave., Rochester, NY, USA
| | - Sang Ick Park
- Division of Brain Diseases, Center for Biomedical Sciences, Korea National Institute of Health, 187 Osongsaengmyeong2(i)-ro, Osong-eup, Cheongwon-gun, Chungcheongbuk-do 363-951, Republic of Korea.
| |
Collapse
|
191
|
Brown WS, Khalili JS, Rodriguez-Cruz TG, Lizee G, McIntyre BW. B-Raf regulation of integrin α4β1-mediated resistance to shear stress through changes in cell spreading and cytoskeletal association in T cells. J Biol Chem 2014; 289:23141-23153. [PMID: 24936068 DOI: 10.1074/jbc.m114.562918] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The regulation of integrin-mediated adhesion is of vital importance to adaptive and innate immunity. Integrins are versatile proteins and mediate T cell migration and trafficking by binding to extracellular matrix or other cells as well as initiating intracellular signaling cascades promoting survival or activation. The MAPK pathway is known to be downstream from integrins and to regulate survival, differentiation, and motility. However, secondary roles for canonical MAPK pathway members are being discovered. We show that chemical inhibition of RAF by sorafenib or shRNA-mediated knockdown of B-Raf reduces T cell resistance to shear stress to α4β1 integrin ligands vascular cell adhesion molecule 1 (VCAM-1) and fibronectin, whereas inhibition of MEK/ERK by U0126 had no effect. Microscopy showed that RAF inhibition leads to significant inhibition of T cell spreading on VCAM-1. The association of α4β1 integrin with the actin cytoskeleton was shown to be dependent on B-Raf activity or expression, whereas α4β1 integrin affinity for soluble VCAM-1 was not. These effects were shown to be specific for α4β1 integrin and not other integrins, such as α5β1 or LFA-1, or a variety of membrane proteins. We demonstrate a novel role for B-Raf in the selective regulation of α4β1 integrin-mediated adhesion.
Collapse
Affiliation(s)
- Wells S Brown
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and
| | - Jahan S Khalili
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Tania G Rodriguez-Cruz
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Greg Lizee
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Bradley W McIntyre
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and.
| |
Collapse
|
192
|
Epithelial adhesion mediated by pilin SpaC is required for Lactobacillus rhamnosus GG-induced cellular responses. Appl Environ Microbiol 2014; 80:5068-77. [PMID: 24928883 DOI: 10.1128/aem.01039-14] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lactobacillus rhamnosus GG is a widely used probiotic, and the strain's salutary effects on the intestine have been extensively documented. We previously reported that strain GG can modulate inflammatory signaling, as well as epithelial migration and proliferation, by activating NADPH oxidase 1-catalyzed generation of reactive oxygen species (ROS). However, how strain GG induces these responses is unknown. Here, we report that strain GG's probiotic benefits are dependent on the bacterial-epithelial interaction mediated by the SpaC pilin subunit. By comparing strain GG to an isogenic mutant that lacks SpaC (strain GGΩspaC), we establish that SpaC is necessary for strain GG to adhere to gut mucosa, that SpaC contributes to strain GG-induced epithelial generation of ROS, and that SpaC plays a role in strain GG's capacity to stimulate extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling in enterocytes. In addition, we show that SpaC is required for strain GG-mediated stimulation of cell proliferation and protection against radiologically inflicted intestinal injury. The identification of a critical surface protein required for strain GG to mediate its probiotic influence advances our understanding of the molecular basis for the symbiotic relationship between some commensal bacteria of the gut lumen and enterocytes. Further insights into this relationship are critical for the development of novel approaches to treat intestinal diseases.
Collapse
|
193
|
Javadov S, Jang S, Agostini B. Crosstalk between mitogen-activated protein kinases and mitochondria in cardiac diseases: therapeutic perspectives. Pharmacol Ther 2014; 144:202-25. [PMID: 24924700 DOI: 10.1016/j.pharmthera.2014.05.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/30/2014] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases cause more mortality and morbidity worldwide than any other diseases. Although many intracellular signaling pathways influence cardiac physiology and pathology, the mitogen-activated protein kinase (MAPK) family has garnered significant attention because of its vast implications in signaling and crosstalk with other signaling networks. The extensively studied MAPKs ERK1/2, p38, JNK, and ERK5, demonstrate unique intracellular signaling mechanisms, responding to a myriad of mitogens and stressors and influencing the signaling of cardiac development, metabolism, performance, and pathogenesis. Definitive relationships between MAPK signaling and cardiac dysfunction remain elusive, despite 30 years of extensive clinical studies and basic research of various animal/cell models, severities of stress, and types of stimuli. Still, several studies have proven the importance of MAPK crosstalk with mitochondria, powerhouses of the cell that provide over 80% of ATP for normal cardiomyocyte function and play a crucial role in cell death. Although many questions remain unanswered, there exists enough evidence to consider the possibility of targeting MAPK-mitochondria interactions in the prevention and treatment of heart disease. The goal of this review is to integrate previous studies into a discussion of MAPKs and MAPK-mitochondria signaling in cardiac diseases, such as myocardial infarction (ischemia), hypertrophy and heart failure. A comprehensive understanding of relevant molecular mechanisms, as well as challenges for studies in this area, will facilitate the development of new pharmacological agents and genetic manipulations for therapy of cardiovascular diseases.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA.
| | - Sehwan Jang
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| | - Bryan Agostini
- Department of Physiology, School of Medicine, University of Puerto Rico, PR, USA
| |
Collapse
|
194
|
Lee HS, Hwang CY, Shin SY, Kwon KS, Cho KH. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci Signal 2014; 7:ra52. [PMID: 24894995 DOI: 10.1126/scisignal.2005260] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS.
Collapse
Affiliation(s)
- Ho-Sung Lee
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Chae Young Hwang
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea
| | - Sung-Young Shin
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Ki-Sun Kwon
- Laboratory of Cell Signaling, Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea.
| | - Kwang-Hyun Cho
- Laboratory for Systems Biology and Bio-Inspired Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea. Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea.
| |
Collapse
|
195
|
Morente V, Pérez-Sen R, Ortega F, Huerta-Cepas J, Delicado EG, Miras-Portugal MT. Neuroprotection elicited by P2Y13 receptors against genotoxic stress by inducing DUSP2 expression and MAPK signaling recovery. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1886-98. [PMID: 24851838 DOI: 10.1016/j.bbamcr.2014.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
Nucleotides activating P2Y13 receptors display neuroprotective actions against different apoptotic stimuli in cerebellar granule neurons. In the present study, P2Y13 neuroprotection was analyzed in conditions of genotoxic stress. Exposure to cisplatin and UV radiation induced caspase-3-dependent apoptotic cell death, and p38 MAPK signaling de-regulation. Pre-treatment with P2Y13 nucleotide agonist, 2methyl-thio-ADP (2MeSADP), restored granule neuron survival and prevented p38 long-lasting activation induced by cytotoxic treatments. Microarray gene expression analysis in 2MeSADP-stimulated cells revealed over-representation of genes related to protein phosphatase activity. Among them, dual-specificity phosphatase-2, DUSP2, was validated as a transcriptional target for P2Y13 receptors by QPCR. This effect could explain 2MeSADP ability to dephosphorylate a DUSP2 substrate, p38, reestablishing the inactive form. In addition, cisplatin-induced p38 sustained activation correlated perfectly with progressive reduction in DUSP2 expression. In conclusion, P2Y13 receptors regulate DUSP2 expression and contribute to p38 signaling homeostasis and survival in granule neurons.
Collapse
Affiliation(s)
- Verónica Morente
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain
| | - Raquel Pérez-Sen
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain.
| | - Felipe Ortega
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-Universität Mainz, Germany
| | - Jaime Huerta-Cepas
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), Dr. Aiguader, 88., Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Esmerilda G Delicado
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain
| | - M Teresa Miras-Portugal
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Institute of Neurochemistry (IUIN), Madrid, Spain; Health Research Institute of the Hospital Clinico San Carlos (IdISSC), Spain
| |
Collapse
|
196
|
Wend S, Wagner HJ, Müller K, Zurbriggen MD, Weber W, Radziwill G. Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 2014; 3:280-5. [PMID: 24090449 DOI: 10.1021/sb400090s] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light-dependent dimerization is the basis for recently developed noninvasive optogenetic tools. Here we present a novel tool combining optogenetics with the control of protein kinase activity to investigate signal transduction pathways. Mediated by Arabidopsis thaliana photoreceptor cryptochrome 2, we activated the protein kinase C-RAF by blue light-dependent dimerization, allowing for decoupling from upstream signaling events induced by surface receptors. The activation by light is fast, reversible, and not only time but also dose dependent as monitored by phosphorylation of ERK1/2. Additionally, light-activated C-RAF controls serum response factor-mediated gene expression. Light-induced heterodimerization of C-RAF with a kinase-dead mutant of B-RAF demonstrates the enhancing role of B-RAF as a scaffold for C-RAF activity, which leads to the paradoxical activation of C-RAF found in human cancers. This optogenetic tool enables reversible control of protein kinase activity in signal duration and strength. These properties can help to shed light onto downstream signaling processes of protein kinases in living cells.
Collapse
Affiliation(s)
- Sabrina Wend
- Faculty
of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann
Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
| | - Hanna J. Wagner
- Faculty
of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Konrad Müller
- Faculty
of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Wilfried Weber
- Faculty
of Biology, University of Freiburg, 79104 Freiburg, Germany
- Spemann
Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- BIOSS
Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Gerald Radziwill
- Faculty
of Biology, University of Freiburg, 79104 Freiburg, Germany
- BIOSS
Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
197
|
Greig FH, Nixon GF. Phosphoprotein enriched in astrocytes (PEA)-15: a potential therapeutic target in multiple disease states. Pharmacol Ther 2014; 143:265-74. [PMID: 24657708 PMCID: PMC4127788 DOI: 10.1016/j.pharmthera.2014.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phosphoprotein enriched in astrocytes-15 (PEA-15) is a cytoplasmic protein that sits at an important junction in intracellular signalling and can regulate diverse cellular processes, such as proliferation and apoptosis, dependent upon stimulation. Regulation of these processes occurs by virtue of the unique interaction of PEA-15 with other signalling proteins. PEA-15 acts as a cytoplasmic tether for the mitogen-activated protein kinases, extracellular signal-regulated kinase 1/2 (ERK1/2) preventing nuclear localisation. In order to release ERK1/2, PEA-15 requires to be phosphorylated via several potential pathways. PEA-15 (and its phosphorylation state) therefore regulates many ERK1/2-dependent processes, including proliferation, via regulating ERK1/2 nuclear translocation. In addition, PEA-15 contains a death effector domain (DED) which allows interaction with other DED-containing proteins. PEA-15 can bind the DED-containing apoptotic adaptor molecule, Fas-associated death domain protein (FADD) which is also dependent on the phosphorylation status of PEA-15. PEA-15 binding of FADD can inhibit apoptosis as bound FADD cannot participate in the assembly of apoptotic signalling complexes. Through these protein–protein interactions, PEA-15-regulated cellular effects have now been investigated in a number of disease-related studies. Changes in PEA-15 expression and regulation have been observed in diabetes mellitus, cancer, neurological disorders and the cardiovascular system. These changes have been suggested to contribute to the pathology related to each of these disease states. As such, new therapeutic targets based around PEA-15 and its associated interactions are now being uncovered and could provide novel avenues for treatment strategies in multiple diseases.
Collapse
Affiliation(s)
- Fiona H Greig
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Graeme F Nixon
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
198
|
Keshavarzy F, Bonnet C, Bezhadi G, Cespuglio R. Expression patterns of c-Fos early gene and phosphorylated ERK in the rat brain following 1-h immobilization stress: concomitant changes induced in association with stress-related sleep rebound. Brain Struct Funct 2014; 220:1793-804. [DOI: 10.1007/s00429-014-0728-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 02/07/2014] [Indexed: 12/23/2022]
|
199
|
Akhiani AA, Werlenius O, Aurelius J, Movitz C, Martner A, Hellstrand K, Thorén FB. Role of the ERK pathway for oxidant-induced parthanatos in human lymphocytes. PLoS One 2014; 9:e89646. [PMID: 24586933 PMCID: PMC3931820 DOI: 10.1371/journal.pone.0089646] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 01/26/2014] [Indexed: 01/12/2023] Open
Abstract
Reactive oxygen species (ROS) are formed by myeloid cells as a defense strategy against microorganisms. ROS however also trigger poly(ADP-ribose) polymerase 1- (PARP-1) dependent cell death (parthanatos) in adjacent lymphocytes, which has been forwarded as a mechanism of immune escape in several forms of cancer. The present study assessed the role of mitogen-activated protein kinases (MAPKs), in particular the extracellular signal-regulated kinase (ERK), in ROS-induced signal transduction leading to lymphocyte parthanatos. We report that inhibitors of ERK1/2 phosphorylation upheld natural killer (NK) cell-mediated cytotoxicity under conditions of oxidative stress and rescued NK cells and CD8+ T lymphocytes from cell death induced by ROS-producing monocytes. ERK1/2 phosphorylation inhibition also protected lymphocytes from cell death induced by exogenous hydrogen peroxide (H2O2) and from ROS generated by xanthine oxidase or glucose oxidase. Phosphorylation of ERK1/2 was observed in lymphocytes shortly after exposure to ROS. ROS-generating myeloid cells and exogenous H2O2 triggered PARP 1-dependent accumulation of poly ADP-ribose (PAR), which was prevented by ERK pathway inhibitors. ERK1/2 phosphorylation was induced by ROS independently of PARP-1. Our findings are suggestive of a role for ERK1/2 in ROS-induced lymphocyte parthanatos, and that the ERK axis may provide a therapeutic target for the protection of lymphocytes against oxidative stress.
Collapse
Affiliation(s)
- Ali A. Akhiani
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Werlenius
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Aurelius
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotta Movitz
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Martner
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Hellstrand
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Fredrik B. Thorén
- Sahlgrenska Cancer Center, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
200
|
Ji G, Ji H, Mo X, Li T, Yu Y, Hu Z. The role of GRASPs in morphological alterations of Golgi apparatus: mechanisms and effects. Rev Neurosci 2014; 24:485-97. [PMID: 24002661 DOI: 10.1515/revneuro-2013-0020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/10/2013] [Indexed: 11/15/2022]
Abstract
The Golgi apparatus (GA) is a pivotal organelle in cell metabolism, functioning not only in the processing and transportation of cargoes but also in ion homeostasis, cell apoptosis, and stress sensing. We are interested in the intricate role of GA and the recently present novel concept of 'GA stress'. GA shows various morphological alterations in many neurodegenerative diseases and cell apoptosis induced by biochemical reagents, mechanisms in which oxidative stress is strongly involved. In turn, the structural changes and morphological alterations of the GA could also transduce stress signals. Therefore, besides the biochemical changes, more attention should be paid to the morphological alterations of the GA itself during pathological processes and diseases. The Golgi reassembly and stacking proteins (GRASPs) have been identified as important components acting in the transformation of Golgi structure, and they may thus affect the Golgi functions and cell behavior. In this review, we will discuss the intricate role of the GRASPs in remodeling the GA morphology and focus on their mechanisms and effects in the processes of Golgi stacking, mitosis, cell apoptosis, and cargo secretion. We would also like to provide a further prospective of their potential biological values in neurodegenerative diseases.
Collapse
|