151
|
Padhi A, Nain AS. ECM in Differentiation: A Review of Matrix Structure, Composition and Mechanical Properties. Ann Biomed Eng 2019; 48:1071-1089. [PMID: 31485876 DOI: 10.1007/s10439-019-02337-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022]
Abstract
Stem cell regenerative potential owing to the capacity to self-renew as well as differentiate into other cell types is a promising avenue in regenerative medicine. Stem cell niche not only provides physical scaffolding but also possess instructional capacity as it provides a milieu of biophysical and biochemical cues. Extracellular matrix (ECM) has been identified as a major dictator of stem cell lineage, thus understanding the structure of in vivo ECM pertaining to specific tissue differentiation will aid in devising in vitro strategies to improve the differentiation efficiency. In this review, we summarize details about the native architecture, composition and mechanical properties of in vivo ECM of the early embryonic stages and the later adult stages. Native ECM from adult tissues categorized on their origin from respective germ layers are discussed while engineering techniques employed to facilitate differentiation of stem cells into particular lineages are noted. Overall, we emphasize that in vitro strategies need to integrate tissue specific ECM biophysical cues for developing accurate artificial environments for optimizing stem cell differentiation.
Collapse
Affiliation(s)
- Abinash Padhi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Amrinder S Nain
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
152
|
Jahromi M, Razavi S, Bakhtiari A. The advances in nerve tissue engineering: From fabrication of nerve conduit to in vivo nerve regeneration assays. J Tissue Eng Regen Med 2019; 13:2077-2100. [PMID: 31350868 DOI: 10.1002/term.2945] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Peripheral nerve damage is a common clinical complication of traumatic injury occurring after accident, tumorous outgrowth, or surgical side effects. Although the new methods and biomaterials have been improved recently, regeneration of peripheral nerve gaps is still a challenge. These injuries affect the quality of life of the patients negatively. In the recent years, many efforts have been made to develop innovative nerve tissue engineering approaches aiming to improve peripheral nerve treatment following nerve injuries. Herein, we will not only outline what we know about the peripheral nerve regeneration but also offer our insight regarding the types of nerve conduits, their fabrication process, and factors associated with conduits as well as types of animal and nerve models for evaluating conduit function. Finally, nerve regeneration in a rat sciatic nerve injury model by nerve conduits has been considered, and the main aspects that may affect the preclinical outcome have been discussed.
Collapse
Affiliation(s)
- Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Bakhtiari
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
153
|
Dave K, Gomes VG. Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110078. [PMID: 31546353 DOI: 10.1016/j.msec.2019.110078] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/01/2023]
Abstract
Effective regenerative medicine relies on understanding the interplay between biomaterial implants and the adjoining cells. Scaffolds contribute by presenting sites for cellular adhesion, growth, proliferation, migration, and differentiation which lead to regeneration of tissues over desired periods of time. The fabrication and recruitment of scaffolds often fail to consider the interactions that occur at the interfaces, thereby risking rejection. This lack of knowledge on interfacial microenvironments and related exchanges often causes reduced cellular interactions, poor cell survival and intervention failure. Successful regenerative therapy requires scaffolds with bespoke biocompatibility, optimum pore structure, and cues for cell attachments. These factors determine the development of cellular affinity in scaffolds. For biomedical applications, a detailed understanding of scaffolds and their interfaces is required for better tuning of biomaterials to suit the microenvironments. In this review, we discuss the role of biointerfaces with a focus on surface chemistry, pore structure, scaffold hydro-affinity and their biointeractions. An understanding of the effect of scaffold interfacial properties is crucial for enhancing the progress of tissue engineering towards clinical applications.
Collapse
Affiliation(s)
- Khyati Dave
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia
| | - Vincent G Gomes
- The University of Sydney, School of Chemical and Biomolecular Engineering, Sydney, NSW 2006, Australia.
| |
Collapse
|
154
|
Differentiation and Anti-inflammatory Potentials of Eucomis autumnalis and Pterocarpus angolensis Extracts Scaffolds in Porcine Adipose–Derived Mesenchymal Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00119-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
155
|
Thompson JR, Worthington KS, Green BJ, Mullin NK, Jiao C, Kaalberg EE, Wiley LA, Han IC, Russell SR, Sohn EH, Guymon CA, Mullins RF, Stone EM, Tucker BA. Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomater 2019; 94:204-218. [PMID: 31055121 DOI: 10.1016/j.actbio.2019.04.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023]
Abstract
Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.
Collapse
Affiliation(s)
- Jessica R Thompson
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Kristan S Worthington
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA; Roy J. Carver Department of Biomedical Engineering, The University of Iowa, 5601 Seamans Center, Iowa City, IA 52242, USA
| | - Brian J Green
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Nathaniel K Mullin
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Chunhua Jiao
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Emily E Kaalberg
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Luke A Wiley
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Ian C Han
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Stephen R Russell
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Elliott H Sohn
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - C Allan Guymon
- Department of Chemical and Biochemical Engineering, The University of Iowa, 4133 Seamans Center, Iowa City, IA 52242, USA
| | - Robert F Mullins
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA
| | - Budd A Tucker
- Institute for Vision Research, Department of Ophthalmology and Visual Science, Carver College of Medicine, The University of Iowa, 4111 Medical Education and Research Facility, Iowa City, IA 52242, USA.
| |
Collapse
|
156
|
Spinnrock A, Cölfen H. Putting a New Spin on It: Gradient Centrifugation for Analytical and Preparative Applications. Chemistry 2019; 25:10026-10032. [PMID: 30980567 DOI: 10.1002/chem.201900974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/07/2022]
Abstract
Gradient centrifugation is an important technique in chemistry, biology, materials science and engineering. It has big potential beyond the well-known centrifugation for separation of molecules and particles. Various possibilities for special analysis and separation of particles, but also preparative applications like the production of gradient materials and controlled polymerizations exist. In all examples, a gradient of physical and/or chemical properties is generated by centrifugation and used for the further application. In this Concept article, selected examples of gradient centrifugation are presented, to show important developments in the field and discuss their applications, potential, and limitations. It concludes by analysing future trends of gradient centrifugation that are relevant for academic and industrial usage.
Collapse
Affiliation(s)
- Andreas Spinnrock
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, 78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, 78457, Konstanz, Germany
| |
Collapse
|
157
|
Xie Y, Sun W, Yan F, Liu H, Deng Z, Cai L. Icariin-loaded porous scaffolds for bone regeneration through the regulation of the coupling process of osteogenesis and osteoclastic activity. Int J Nanomedicine 2019; 14:6019-6033. [PMID: 31534334 PMCID: PMC6682326 DOI: 10.2147/ijn.s203859] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Icariin (IC) promotes osteogenic differentiation, and it may be a potential small molecule drug for local application in bone regeneration. Icariin-loaded hydroxyapatite/alginate (IC/HAA) porous composite scaffolds were designed in this study for the potential application of the sustainable release of icariin and subsequent bone regeneration. Methods An icariin-loaded hydroxyapatite/alginate porous composite scaffold was prepared and characterized by SEM and HPLC for morphology and release behavior, respectively. The mechanical properties, degradation in PBS and cytotoxicity on BMSCs were also evaluated by MTT assay, compression strength and calculation of weight remaining ratio, respectively. Rabbit BMSCs were cocultured with IC/HAA scaffolds, and ALP activity and Alizarin Red staining were performed to evaluate osteogenic differentiation induction. The mRNA and protein expression level of an osteogenic gene was detected by RT-PCR and Western blotting, respectively. In vivo animal models of critical bone defects in the radius of rabbit were used. Four and 12 weeks after the implantation of IC/HAA scaffolds in the bone defect, radiographic images of the radius were obtained and scored by using the Lane and Sandhu X-ray scoring system. Tissue samples were also evaluated using H&E and Masson staining, and an osteogenic gene and Wnt signaling pathway genes were detected. Results A hydroxyapatite/alginate (HAA) porous composite scaffold-loaded icariin was fabricated using a freeze-drying method. Our data indicated that the icariin was loaded in alginate scaffold without compromising the macro/microstructure or mechanical properties of the scaffold. Notably, the IC/HAA promoted the proliferation of rBMSCs without exerting cytotoxicity on rBMSCs. In vivo, rabbit radius bone defect experiments demonstrated that the IC/HAA scaffold exhibited better capacity for bone regeneration than HAA, and IC/HAA upregulated the relative expression levels of an osteogenic gene and the Wnt signaling pathway genes. Most notably, the IC/HAA scaffold also inhibited osteoclast activity in vivo. Conclusion Our data suggests a promising application for the use of HAA scaffolds to load icariin and promote bone regeneration in situ through mediation of the coupling processes of osteogenesis induction and osteoclast activity inhibition.
Collapse
Affiliation(s)
- Yuanlong Xie
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Wenchao Sun
- Department of Pain Management, Wuhan Fourth Hospital, Wuhan City, Hubei Province, People's Republic of China
| | - Feifei Yan
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Huowen Liu
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan City, Hubei Province, People's Republic of China
| |
Collapse
|
158
|
Tan GZ, Zhou Y. Electrospinning of biomimetic fibrous scaffolds for tissue engineering: a review. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1636248] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- George Z. Tan
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| | - Yingge Zhou
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
159
|
Sardelli L, Pacheco DP, Zorzetto L, Rinoldi C, Święszkowski W, Petrini P. Engineering biological gradients. J Appl Biomater Funct Mater 2019; 17:2280800019829023. [PMID: 30803308 DOI: 10.1177/2280800019829023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Biological gradients profoundly influence many cellular activities, such as adhesion, migration, and differentiation, which are the key to biological processes, such as inflammation, remodeling, and tissue regeneration. Thus, engineered structures containing bioinspired gradients can not only support a better understanding of these phenomena, but also guide and improve the current limits of regenerative medicine. In this review, we outline the challenges behind the engineering of devices containing chemical-physical and biomolecular gradients, classifying them according to gradient-making methods and the finalities of the systems. Different manufacturing processes can generate gradients in either in-vitro systems or scaffolds, which are suitable tools for the study of cellular behavior and for regenerative medicine; within these, rapid prototyping techniques may have a huge impact on the controlled production of gradients. The parallel need to develop characterization techniques is addressed, underlining advantages and weaknesses in the analysis of both chemical and physical gradients.
Collapse
Affiliation(s)
- L Sardelli
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - D P Pacheco
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - L Zorzetto
- 2 Department of Aerospace and Mechanical Engineering, University of Liège, Liège, Belgium
| | - C Rinoldi
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - W Święszkowski
- 3 Faculty of Materials Science and Engineering, Warsaw University of Technology, Poland
| | - P Petrini
- 1 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
160
|
Preparation and characterization of the collagen/cellulose nanocrystals/USPIO scaffolds loaded kartogenin for cartilage regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1362-1373. [DOI: 10.1016/j.msec.2019.02.071] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/16/2023]
|
161
|
Shi L, Hu Y, Ullah MW, Ullah I, Ou H, Zhang W, Xiong L, Zhang X. Cryogenic free-form extrusion bioprinting of decellularized small intestinal submucosa for potential applications in skin tissue engineering. Biofabrication 2019; 11:035023. [PMID: 30943455 DOI: 10.1088/1758-5090/ab15a9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel strategy of cryogenic 3D bioprinting assisted by free-from extrusion printing has been developed and applied to printing of a decellularized small intestinal submucosa (dSIS) slurry. The rheological properties, including kinetic viscosity, storage modulus (G'), and loss modulus (G″), were appropriate for free-from extrusion printing of dSIS slurry. Three different groups of scaffolds, including P500, P600, and P700, with filament distances of 500, 600, and 700 μm, respectively were fabricated at a 5 mm s-1 working velocity of the platform (V xy) and 25 kPa air pressure of the dispensing system (P) at -20 °C. The fabricated scaffolds were crosslinked via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) which resulted in a polyporous microstructure. The variations in the filament diameter and pore size were evaluated in the initial frozen state after printing, the lyophilized state, and after immersion in a PBS solution. The Young's modulus of the P500, P600, and P700 scaffolds was measured in wet and dry states for EDC-crosslinked scaffolds. The cell experiment results showed improved cell adhesion, viability, and proliferation both on the surface and within the scaffold, indicating the biocompatibility and suitability of the scaffold for 3D cell models. Further, gene and protein expression of normal skin fibroblasts on dSIS scaffolds demonstrated their ability to promote the production of some extracellular matrix proteins (i.e. collagen I, collagen III, and fibronectin) in vitro. Overall, this study presents a new potential strategy, by combining cryogenic 3D bioprinting with decellularized extracellular matrix materials, to manufacture ideal scaffolds for skin tissue engineering applications.
Collapse
Affiliation(s)
- Lei Shi
- State Key Laboratory of Materials Processing and Die/Mold Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Dehli F, Rebers L, Stubenrauch C, Southan A. Highly Ordered Gelatin Methacryloyl Hydrogel Foams with Tunable Pore Size. Biomacromolecules 2019; 20:2666-2674. [DOI: 10.1021/acs.biomac.9b00433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Friederike Dehli
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Lisa Rebers
- Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| | - Cosima Stubenrauch
- Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Alexander Southan
- Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie, Universität Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany
| |
Collapse
|
163
|
Siddiqui N, Asawa S, Birru B, Baadhe R, Rao S. PCL-Based Composite Scaffold Matrices for Tissue Engineering Applications. Mol Biotechnol 2019; 60:506-532. [PMID: 29761314 DOI: 10.1007/s12033-018-0084-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Biomaterial-based scaffolds are important cues in tissue engineering (TE) applications. Recent advances in TE have led to the development of suitable scaffold architecture for various tissue defects. In this narrative review on polycaprolactone (PCL), we have discussed in detail about the synthesis of PCL, various properties and most recent advances of using PCL and PCL blended with either natural or synthetic polymers and ceramic materials for TE applications. Further, various forms of PCL scaffolds such as porous, films and fibrous have been discussed along with the stem cells and their sources employed in various tissue repair strategies. Overall, the present review affords an insight into the properties and applications of PCL in various tissue engineering applications.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Simran Asawa
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Bhaskar Birru
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Ramaraju Baadhe
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India
| | - Sreenivasa Rao
- Stem Cell Research Laboratory, Department of Biotechnology, NIT Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
164
|
Erickson AE, Sun J, Lan Levengood SK, Swanson S, Chang FC, Tsao CT, Zhang M. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model. Biomed Microdevices 2019; 21:34. [PMID: 30906951 DOI: 10.1007/s10544-019-0373-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prolonged osteochondral tissue damage can result in osteoarthritis and decreased quality of life. Multiphasic scaffolds, where different layers model different microenvironments, are a promising treatment approach, yet stable joining between layers during fabrication remains challenging. Here, a bilayer scaffold for osteochondral tissue regeneration was fabricated using thermally-induced phase separation (TIPS). Two distinct polymer solutions were layered before TIPS, and the resulting porous, bilayer scaffold was characterized by seamless interfacial integration and a mechanical stiffness gradient reflecting the native osteochondral microenvironment. Chitosan is a critical component of both scaffold layers to facilitate cell attachment and the formation of polyelectrolyte complexes with other biologically relevant natural polymers. The articular cartilage region was optimized for hyaluronic acid content and stiffness, while the subchondral bone region was defined by higher stiffness and osteoconductive hydroxyapatite content. Following co-culture with chondrocyte-like (SW-1353 or mesenchymal stem cells) and osteoblast-like cells (MG63), cell proliferation and migration to the interface along with increased gene expression associated with relevant markers of osteogenesis and chondrogenesis indicates the potential of this bilayer scaffold for osteochondral tissue regeneration.
Collapse
Affiliation(s)
- Ariane E Erickson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jialu Sun
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Sheeny K Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Shawn Swanson
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Ching T Tsao
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
165
|
Feng P, He J, Peng S, Gao C, Zhao Z, Xiong S, Shuai C. Characterizations and interfacial reinforcement mechanisms of multicomponent biopolymer based scaffold. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:809-825. [PMID: 30948118 DOI: 10.1016/j.msec.2019.03.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/02/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022]
Abstract
It is difficult for a single component biopolymer to meet the requirements of scaffold at present. The development of multicomponent biopolymer based scaffold provides an effective method to solve the issue based on the advantages of each kind of the biomaterials. However, the compatibility between different components might be very poor due to the difficulties in forming strong interfacial bonding, and thereby significantly degrading the integrated mechanical properties of the scaffold. In recent years, interface phase introduction, surface modification and in situ growth have been the major strategies for enhancing interfacial bonding. This article presents a comprehensive overview on the research in the area of constructing multicomponent biopolymer based scaffold and reinforcing their interfacial properties, and more importantly, the interfacial bonding mechanisms are systematically summarized. Detailly, interface phase introduction can build a bridge between biopolymer and other components to form strong interface bonding with the two phases under the action of interface phase. Surface modification can graft organic molecules or polymers containing functional groups onto other components to crosslink with biopolymer. In situ growth can directly in situ synthesize other components with the action of nucleating agent serving as an adherent platform for the nucleation and growth of other components to biopolymer surface by chemical bonding. In addition, the mechanical properties (including strength and modulus) and biological properties (including bioactivity, cytocompatibility and biosensing in vitro, and tissue compatibility, bone regeneration capacity in vivo) of multicomponent biopolymer based scaffold after interfacial reinforcing are also reviewed and discussed. Finally, suggestions for further research are given with highlighting the need for specific investigations to assess the interface formation, structure, properties, and more in vivo studies of scaffold before applications.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jiyao He
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Zhenyu Zhao
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Shixian Xiong
- Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi University of Science and Technology, Ganzhou 341000, China; Shenzhen Institute of Information Technology, Shenzhen 518172, China.
| |
Collapse
|
166
|
Ansari S, Khorshidi S, Karkhaneh A. Engineering of gradient osteochondral tissue: From nature to lab. Acta Biomater 2019; 87:41-54. [PMID: 30721785 DOI: 10.1016/j.actbio.2019.01.071] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/22/2018] [Accepted: 01/31/2019] [Indexed: 12/11/2022]
Abstract
The osteochondral tissue is an interface between two distinct tissues: articular cartilage and bone. These two tissues are significantly diverse with regard to their chemical compositions, mechanical properties, structure, electrical properties, and the amount of nutrient and oxygen consumption. Thus, transition from the surface of the articular cartilage to the subchondral bone needs to face several smooth gradients. These gradients are imperative to study to generate a scaffold suitable for the reconstruction of the cartilaginous and osseous layers of a defected osteochondral tissue, simultaneously. The aim of this review is to peruse the alternation of biochemical, biomechanical, structural, electrical, and metabolic properties of the osteochondral tissue moving from the surface of the articular cartilage to the subchondral bone. Moreover, this review also discusses currently developed approaches and ideal techniques with a focus on gradients present in the interface of the cartilage and bone. STATEMENT OF SIGNIFICANCE: The submitted review paper entitled as "Engineering of the gradient osteochondral tissue: from nature to lab" is a complete review with regard to the osteochondral tissue and transition of different properties between the cartilage and bone tissues. Moreover, previous studies on the osteochondral tissue engineering have been reviewed in this paper. This complete information can be a valuable and useful source for current and future researchers and scientists. Considering the scope of the submitted paper, Acta Biomaterialia would be a suitable journal for publishing this article.
Collapse
|
167
|
Chae YJ, Jun DW, Lee JS, Saeed WK, Kang HT, Jang K, Lee JH. The Use of Foxa2-Overexpressing Adipose Tissue-Derived Stem Cells in a Scaffold System Attenuates Acute Liver Injury. Gut Liver 2019; 13:450-460. [PMID: 30602218 PMCID: PMC6622567 DOI: 10.5009/gnl18235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/15/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background/Aims For the clinical application of stem cell therapy, functional enhancement is needed to increase the survival rate and the engraftment rate. The purpose of this study was to investigate functional enhancement of the paracrine effect using stem cells and hepatocyte-like cells and to minimize stem cell homing by using a scaffold system in a liver disease model. Methods A microporator was used to overexpress Foxa2 in adipose tissue-derived stem cells (ADSCs), which were cultured in a poly(lactic-co-glycolic acid) (PLGA) scaffold. Later, the ADSCs were cultured in hepatic differentiation medium for 2 weeks by a 3-step method. For in vivo experiments, Foxa2-overexpressing ADSCs were loaded in the scaffold, cultured in hepatic differentiation medium and later were implanted in the dorsa of nude mice subjected to acute liver injury (thioacetamide intraperitoneal injection). Results Foxa2-overexpressing ADSCs showed greater increases in hepatocyte-specific gene markers (alpha fetoprotein [AFP], cytokeratin 18 [CK18], and albumin), cytoplasmic glycogen storage, and cytochrome P450 expression than cells that underwent the conventional differentiation method. In vivo experiments using the nude mouse model showed that 2 weeks after scaffold implantation, the mRNA expression of AFP, CK18, dipeptidyl peptidase 4 (CD26), and connexin 32 (CX32) was higher in the Foxa2-overexpressing ADSCs group than in the ADSCs group. The Foxa2-overexpressing ADSCs scaffold treatment group showed attenuated liver injury without stem cell homing in the thioacetamide-induced acute liver injury model. Conclusions Foxa2-overexpressing ADSCs applied in a scaffold system enhanced hepatocyte-like differentiation and attenuated acute liver damage in an acute liver injury model without homing effects.
Collapse
Affiliation(s)
- Yeon Ji Chae
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
| | - Dae Won Jun
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul,
Korea
| | - Jai Sun Lee
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
| | - Waqar Khalid Saeed
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul,
Korea
| | - Hyeon Tae Kang
- Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul,
Korea
| | - Kiseok Jang
- Department of Pathology, Hanyang University College of Medicine, Seoul,
Korea
| | - Jin Ho Lee
- Department of Advanced Materials, Hannam University, Daejeon,
Korea
| |
Collapse
|
168
|
Wally ZJ, Haque AM, Feteira A, Claeyssens F, Goodall R, Reilly GC. Selective laser melting processed Ti6Al4V lattices with graded porosities for dental applications. J Mech Behav Biomed Mater 2019; 90:20-29. [DOI: 10.1016/j.jmbbm.2018.08.047] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
|
169
|
Utomo DN, Mahyudin F, Wardhana TH, Purwati P, Brahmana F, Gusti AWR. Physicobiochemical Characteristics and Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in Biodegradable Porous Sponge Bovine Cartilage Scaffold. Int J Biomater 2019; 2019:8356872. [PMID: 30805001 PMCID: PMC6360592 DOI: 10.1155/2019/8356872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering had been believed to overcome the limitation of cartilage lesions treatment. Nowadays the studies focus on using mesenchymal stem cells in scaffold. A biodegradable porous sponge bovine cartilage scaffold is expected to have the physicobiochemical characterization to promote chondrogenic differentiation of hBM-MSCs. Scaffold from bovine cartilage was printed in 5 mm diameter sponge, categorized into nondecellularized (SBCS) and decellularized (DSBCS). Physical characteristics (pore diameter and interconnectivity) were done using a Scanning Electron Microscope (SEM). Biodegradability assessment used Phosphate Buffered Saline in 15, 30, 60 minutes, 6, 24, 48, 72 hours, and 1, 2 weeks. The swelling ratios were counted in 5, 10, 15, 30, 60, and 360 minutes. Biochemical characteristics were obtained by enzyme-linked immunosorbent assay for type II collagen, aggrecan, and Transforming Growth Factors-β (TGF-β). Data were statistically compared. hBM-MSCs were seeded on both scaffolds. Histological examination used hematoxylin-eosin taken at the 2nd and 4th weeks after seeding. There was no significant difference (p=0.473; p=0.142) on mean porosity 90.07 ± 4.64% vs. 88.93 ± 4.18% and pore diameter 111.83 ± 14.23 μm vs. 105.29 ± 11.14 μm assessment between SBCS and DSBCS groups. Scaffolds from both groups showed pore interconnectivity. DSBCS group had faster biodegradability. SBCS group sweals better. SBCS group contains type II collagen, aggrecan, and TGF-β with mean values 380.78 ± 18.63 ng/ml, 30.71 ± 4.50 ng/ml, and 130.12 ± 7.73 ng/ml, respectively, while DSBCS contained type II collagen, aggrecan, and TGF-β with mean values 64.83 ± 13.54 ng/ml, 8.41 ± 2.38 ng/ml, and 16.39 ± 4.49 ng/ml, respectively. The results were statistically different (p<0.001). Chondrocytes were found within scaffold on the 2nd and 4th weeks. Physicobiochemical characteristic of biodegradable sponge bovine cartilage scaffold promotes chondrogenic differentiation of hBM-MSCs.
Collapse
Affiliation(s)
- Dwikora Novembri Utomo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Teddy Heri Wardhana
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Purwati Purwati
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Febrian Brahmana
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | | |
Collapse
|
170
|
Zhang XY, Fang G, Leeflang S, Zadpoor AA, Zhou J. Topological design, permeability and mechanical behavior of additively manufactured functionally graded porous metallic biomaterials. Acta Biomater 2019; 84:437-452. [PMID: 30537537 DOI: 10.1016/j.actbio.2018.12.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 12/07/2018] [Indexed: 11/26/2022]
Abstract
Recent advances in additive manufacturing (AM) have enabled the fabrication of functionally graded porous biomaterials (FGPBs) for application as orthopedic implants and bone substitutes. Here, we present a step-wise topological design of FGPB based on diamond unit cells to mimic the structure of the femoral diaphysis. The FGPB was manufactured from Ti-6Al-4V powder using the selective laser melting (SLM) technique. The morphological parameters, permeability and mechanical properties of FGPB samples were measured and compared with those of the biomaterials with uniform porous structures based on the same type of the unit cell. The FGPB exhibited a low density (1.9 g/cm3), a moderate Young's modulus (10.44 GPa), a high yield stress (170.6 MPa), a high maximum stress (201 MPa) and favorable ductility, being superior to the biomaterials with uniform porous structures in comprehensive mechanical properties. In addition, digital image correlation (DIC) and finite element (FE) simulation were used to unravel the mechanisms governing the deformation and yielding behavior of these biomaterials particularly at the strut junctions. Both DIC and FE simulations confirmed that the deformation and yielding of the FGPB occurred largely in the load-bearing layers but not at the interfaces between layers. Defect-coupled FE models based on solid elements provided further insights into the mechanical responses of the FGPB to compressive loads at both macro- and micro-scales. With the defect-coupled representative volume element model for the FGPB, the Young's modulus and yield stress of the FGPBs were predicted with less than 2% deviations from the experimental data. The study clearly demonstrated the capabilities of combined experimental and computational methods to resolve the uncertainties of the mechanical behavior of FGPBs, which would open up the possibilities of applying various porosity variation strategies for the design of biomimetic AM porous biomaterials. STATEMENT OF SIGNIFICANCE: Functionally graded bone scaffolds significantly promote the recovery of segmental bone defect. In the present study, we present a step-wise topological design of functionally graded porous biomaterial (FGPB) to mimic the structure of the femoral diaphysis. The Ti-6Al-4V FGPB exhibited a superior combination of low density, moderate Young's modulus, high yield stress and maximum stress as well as favorable ductility. The biomechanical performance of FGPB was studied in both macro and micro perspectives. The defect-coupled model revealed the significant yielding in the load-bearing parts and the Young's modulus and yield stress of the FGPBs were predicted with less than 2% deviations from the experimental data. The superiority of combined experimental and computational methods has been confirmed.
Collapse
|
171
|
Yuan L, Li X, Ge L, Jia X, Lei J, Mu C, Li D. Emulsion Template Method for the Fabrication of Gelatin-Based Scaffold with a Controllable Pore Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:269-277. [PMID: 30525427 DOI: 10.1021/acsami.8b17555] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The porous microstructure of scaffolds is an essential consideration for tissue engineering, which plays an important role for cell adhesion, migration, and proliferation. It is crucial to choose optimum pore sizes of scaffolds for the treatment of various damaged tissues. Therefore, the proper porosity is the significant factor that should be considered when designing tissue scaffolds. Herein, we develop an improved emulsion template method to fabricate gelatin-based scaffolds with controllable pore structure. Gelatin droplets were first prepared by emulsification and then solidified by genipin to prepare gelatin microspheres. The microspheres were used as a template for the fabrication of porous scaffolds, which were gathered and tightened together by dialdehyde amylose. The results showed that emulsification can produce gelatin microspheres with narrow size distribution. The size of gelatin microspheres was easily controlled by adjusting the concentration of gelatin and the speed of mechanical agitation. The gelatin-based scaffolds presented macroporous and interconnected structure. It is interesting that the pore size of scaffolds was directly related to the size of gelatin microspheres, displaying the same trend of change in size. It indicated that the gelatin microspheres can be used as the proper template to fabricate gelatin-based scaffold with a desired pore structure. In addition, the gelatin-based scaffolds possessed good blood compatibility and cytocompatibility. Overall, the gelatin-based scaffolds exhibited great potential in tissue engineering.
Collapse
Affiliation(s)
- Lun Yuan
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Xinying Li
- College of Chemistry and Environment Protection Engineering , Southwest Minzu University , Chengdu 610041 , P. R. China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Xiaoqi Jia
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Jinfeng Lei
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Changdao Mu
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering , Sichuan University , Chengdu 610065 , P. R. China
| |
Collapse
|
172
|
Han C, Li X, Zhou T, Chen C, Zhang K, Yang S, Wang X, Tian H, Zhao C, Zhao J. A tranilast and BMP-2 based functional bilayer membrane is effective for the prevention of epidural fibrosis during spinal lamina reconstruction. J Mater Chem B 2019. [DOI: 10.1039/c8tb03071e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Failed Back Surgery Syndrome (FBSS) is a common complication of lumbar surgery.
Collapse
|
173
|
Huang L, Huang J, Shao H, Hu X, Cao C, Fan S, Song L, Zhang Y. Silk scaffolds with gradient pore structure and improved cell infiltration performance. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:179-189. [DOI: 10.1016/j.msec.2018.09.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/06/2018] [Accepted: 09/11/2018] [Indexed: 01/19/2023]
|
174
|
Dong X, Li H, E L, Cao J, Guo B. Bioceramic akermanite enhanced vascularization and osteogenic differentiation of human induced pluripotent stem cells in 3D scaffolds in vitro and vivo. RSC Adv 2019; 9:25462-25470. [PMID: 35530104 PMCID: PMC9070079 DOI: 10.1039/c9ra02026h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/19/2019] [Indexed: 01/10/2023] Open
Abstract
A growing number of studies suggest that the modulation of cell differentiation by biomaterials is critical for tissue engineering. In previous work, we demonstrated that human induced pluripotent stem cells (iPSCs) are remarkably promising seed cells for bone tissue engineering. In addition, we found that the ionic products of akermanite (Aker) are potential inducers of osteogenic differentiation of iPSCs. Furthermore, composite scaffolds containing polymer and bioceramics have more interesting properties compared to pure bioceramic scaffolds for bone tissue engineering. The characteristic of model biomaterials in bone tissue engineering is their ability to control the osteogenic differentiation of stem cells and simultaneously induce the angiogenesis of endothelia cells. Thus, this study aimed at investigating the effects of poly(lactic-co-glycolic acid)/Aker (PLGA-Aker) composite scaffolds on angiogenic and osteogenic differentiation of human iPSCs in order to optimize the scaffold compositions. The results from Alizarin Red S staining, qRT-PCR analysis of osteogenic genes (BMP2, RUNX2, ALP, COL1 and OCN) and angiogenic genes (VEGF and CD31) demonstrated that PLGA/Aker composite scaffolds containing 10% Aker exhibited the highest stimulatory effects on the osteogenic and angiogenic differentiation of human iPSCs among all scaffolds. After the scaffolds were implanted in nu/nu mice subcutaneous pockets and calvarial defects, H&E staining, BSP immunostaining, qRT-PCR analysis and micro-CT analysis (BMD, BV/TV) indicated that PLGA + 10% Aker scaffolds enhanced the vascularization and osteogenic differentiation of human iPSCs and stimulated the repair of bone defects. Taken together, our work indicated that combining scaffolds containing silicate bioceramic Aker and human iPSCs is a promising approach for the enhancement of bone regeneration. Bioceramics akermanite enhanced vascularization and osteogenic differentiation of human iPSCs in 3D scaffolds in vitro and vivo.![]()
Collapse
Affiliation(s)
- Xixi Dong
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| | - Haiyan Li
- Med-X Research Institute
- School of Biomedical Engineering
- Shanghai Jiao Tong University
- Shanghai 200030
- China
| | - Lingling E
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| | - Junkai Cao
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| | - Bin Guo
- Stomatology Department
- General Hospital of Chinese PLA
- Beijing 100853
- China
| |
Collapse
|
175
|
Rasheed T, Bilal M, Zhao Y, Raza A, Shah SZH, Iqbal HMN. Physiochemical characteristics and bone/cartilage tissue engineering potentialities of protein-based macromolecules - A review. Int J Biol Macromol 2019; 121:13-22. [PMID: 30291929 DOI: 10.1016/j.ijbiomac.2018.10.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/29/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
Protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin have emerged as potential candidate materials with unique structural and functional characteristics. Despite many advantages, the development of tissue-engineered constructs that can match the biological context of real tissue matrix remains a challenge in tissue engineering (TE). The tissue-engineered constructs should also support vascularization. Protein-based macromolecules, in pristine or combine form, provide a promising platform to engineer constructs with unique design and functionalities which are highly essential for an appropriate stimulation and differentiation of cells in a specific TE approach. However, much work remains to be undertaken with particular reference to in-depth interactions between constructed cues and target host tissues. Thus, modern advancements are emphasizing to understand critiques and functionalization of protein-based macromolecule that organize not only cellular activities but also tissue regenerations. In this review, numerous physicochemical, functional, and structural characteristics of protein-based macromolecules such as keratin, silk fibroin, collagen, gelatin, and fibrin are discussed. This review also presents the hope vs. hype phenomenon for tissue engineering. Later part of the review focuses on different requisite characteristics and their role in TE. The discussion presented here could prove highly useful for the construction of scaffolds with requisite features.
Collapse
Affiliation(s)
- Tahir Rasheed
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240 Shanghai, China
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
176
|
Gobinathan S, Zainol SS, Azizi SF, Iman NM, Muniandy R, Hasmad HN, Yusof MRB, Husain S, Abd Aziz H, Lokanathan Y. Decellularization and genipin crosslinking of amniotic membrane suitable for tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2051-2067. [PMID: 29983100 DOI: 10.1080/09205063.2018.1485814] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Amniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p < 0.05). Besides, the dAM retained the collagen content at similar level of nAM. Although the dAM had highest mechanical strength compared to the rest of the groups, the differences were statistically insignificant. Cell attachment on dAM and 0.5% clAM was higher compared to that on nAM and 1.0% clAM. In conclusion, clAM have better biostability and biocompatibility compared to the nAM and dAM. Together with other suitable characteristics of the clAM such as percentage of swelling, structural integrity and ECM content, clAM is suitable as scaffold for various tissue engineering applications.
Collapse
Affiliation(s)
- Sarumathi Gobinathan
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Siti Solehah Zainol
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Siti Fatmah Azizi
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Nabil Mohamad Iman
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Rajasegaran Muniandy
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Hanis Nazihah Hasmad
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | | | - Salina Husain
- c Department of Otorhinolaryngology-Head and Neck Surgery, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Haslinda Abd Aziz
- d Department of Obstetrics and Gynaecology, Faculty of Medicine Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Yogeswaran Lokanathan
- a Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre , Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
177
|
Sempertegui ND, Narkhede AA, Thomas V, Rao SS. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1978-1993. [DOI: 10.1080/09205063.2018.1498719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nicole D. Sempertegui
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Akshay A. Narkhede
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shreyas S. Rao
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
178
|
Cengiz IF, Oliveira JM, Reis RL. Micro-CT - a digital 3D microstructural voyage into scaffolds: a systematic review of the reported methods and results. Biomater Res 2018; 22:26. [PMID: 30275969 PMCID: PMC6158835 DOI: 10.1186/s40824-018-0136-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cell behavior is the key to tissue regeneration. Given the fact that most of the cells used in tissue engineering are anchorage-dependent, their behavior including adhesion, growth, migration, matrix synthesis, and differentiation is related to the design of the scaffolds. Thus, characterization of the scaffolds is highly required. Micro-computed tomography (micro-CT) provides a powerful platform to analyze, visualize, and explore any portion of interest in the scaffold in a 3D fashion without cutting or destroying it with the benefit of almost no sample preparation need. MAIN BODY This review highlights the relationship between the scaffold microstructure and cell behavior, and provides the basics of the micro-CT method. In this work, we also analyzed the original papers that were published in 2016 through a systematic search to address the need for specific improvements in the methods section of the papers including the amount of provided information from the obtained results. CONCLUSION Micro-CT offers a unique microstructural analysis of biomaterials, notwithstanding the associated challenges and limitations. Future studies that will include micro-CT characterization of scaffolds should report the important details of the method, and the derived quantitative and qualitative information can be maximized.
Collapse
Affiliation(s)
- Ibrahim Fatih Cengiz
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal
| |
Collapse
|
179
|
Lee J, Lee SH, Kim BS, Cho YS, Park Y. Development and Evaluation of Hyaluronic Acid-Based Hybrid Bio-Ink for Tissue Regeneration. Tissue Eng Regen Med 2018; 15:761-769. [PMID: 30603594 DOI: 10.1007/s13770-018-0144-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/17/2018] [Accepted: 07/10/2018] [Indexed: 01/21/2023] Open
Abstract
Background Bioprinting has recently appeared as a powerful tool for building complex tissue and organ structures. However, the application of bioprinting to regenerative medicine has limitations, due to the restricted choices of bio-ink for cytocompatible cell encapsulation and the integrity of the fabricated structures. Methods In this study, we developed hybrid bio-inks based on acrylated hyaluronic acid (HA) for immobilizing bio-active peptides and tyramine-conjugated hyaluronic acids for fast gelation. Results Conventional acrylated HA-based hydrogels have a gelation time of more than 30 min, whereas hybrid bio-ink has been rapidly gelated within 200 s. Fibroblast cells cultured in this hybrid bio-ink up to 7 days showed > 90% viability. As a guidance cue for stem cell differentiation, we immobilized four different bio-active peptides: BMP-7-derived peptides (BMP-7D) and osteopontin for osteogenesis, and substance-P (SP) and Ac-SDKP (SDKP) for angiogenesis. Mesenchymal stem cells cultured in these hybrid bio-inks showed the highest angiogenic and osteogenic activity cultured in bio-ink immobilized with a SP or BMP-7D peptide. This bio-ink was loaded in a three-dimensional (3D) bioprinting device showing reproducible printing features. Conclusion We have developed bio-inks that combine biochemical and mechanical cues. Biochemical cues were able to regulate differentiation of cells, and mechanical cues enabled printing structuring. This multi-functional bio-ink can be used for complex tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jaeyeon Lee
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Se-Hwan Lee
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Byung Soo Kim
- 3Department of Internal Medicine, Korea University Medical Center, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Young-Sam Cho
- 2Department of Mechanical Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538 Republic of Korea
| | - Yongdoo Park
- 1Department of Biomedical Engineering, College of Medicine, Korea University, 73 Inchon-ro, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
180
|
Xie Y, Lan XR, Bao RY, Lei Y, Cao ZQ, Yang MB, Yang W, Wang YB. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:602-609. [DOI: 10.1016/j.msec.2018.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 04/13/2018] [Accepted: 05/05/2018] [Indexed: 12/19/2022]
|
181
|
Laurent C, Liu X, De Isla N, Wang X, Rahouadj R. Defining a scaffold for ligament tissue engineering: What has been done, and what still needs to be done. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.jocit.2018.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
182
|
Lin CH, Su JJM, Lee SY, Lin YM. Stiffness modification of photopolymerizable gelatin-methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells. J Tissue Eng Regen Med 2018; 12:2099-2111. [PMID: 30058281 DOI: 10.1002/term.2745] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 06/09/2018] [Accepted: 07/13/2018] [Indexed: 01/19/2023]
Abstract
For stem cell differentiation, the microenvironment can play an important role, and hydrogels can provide a three-dimensional microenvironment to allow native cell growth in vitro. A challenge is that the stem cell's differentiation can be influenced by the matrix stiffness. We demonstrate a low-toxicity method to create different stiffness matrices, by using a photopolymerizable gelatin methacrylate (GelMA) hydrogel cross-linked by blue light (440 nm). The stiffness and porosity of GelMA hydrogel is easily modified by altering its concentration. We used human bone marrow mesenchymal stem cells (MSCs) as a cell source and cultured the GelMA-encapsulated cells with EGM-2 medium to induce endothelial differentiation. In our GelMA blue light hydrogel system, we found that MSCs can be differentiated into both endothelial-like and osteogenic-like cells. The mRNA expressions of endothelial cell markers CD31, von Willebrand factor, vascular endothelial growth factor receptor-2, and CD34 were significantly increased in softer GelMA hydrogels (7.5% and 10%) compared with stiffer matrices (15% GelMA). On the other hand, the enhancements of osteogenic markers mRNA expressions (Alkaline phosphatase (ALP), Runx2, osteocalcin, and osteopontin) were highest in 10% GelMA. We also found that 10% GelMA hydrogel offered optimal conditions for MSCs to form capillary-like structures. These results suggest that the mechanical properties of the GelMA hydrogel can influence both endothelial and osteogenic differentiation of MSCs and sequent capillary-like formation.
Collapse
Affiliation(s)
- Chih-Hsin Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Shyh-Yuan Lee
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yuan-Min Lin
- Department of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
183
|
Prasadh S, Suresh S, Wong R. Osteogenic Potential of Graphene in Bone Tissue Engineering Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1430. [PMID: 30110908 PMCID: PMC6120034 DOI: 10.3390/ma11081430] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/01/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022]
Abstract
Scaffolds are physical substrates for cell attachments, proliferation, and differentiation, ultimately leading to tissue regeneration. Current literature validates tissue engineering as an emerging tool for bone regeneration. Three-dimensionally printed natural and synthetic biomaterials have been traditionally used for tissue engineering. In recent times, graphene and its derivatives are potentially employed for constructing bone tissue engineering scaffolds because of their osteogenic and regenerative properties. Graphene is a synthetic atomic layer of graphite with SP2 bonded carbon atoms that are arranged in a honeycomb lattice structure. Graphene can be combined with natural and synthetic biomaterials to enhance the osteogenic potential and mechanical strength of tissue engineering scaffolds. The objective of this review is to focus on the most recent studies that attempted to explore the salient features of graphene and its derivatives. Perhaps, a thorough understanding of the material science can potentiate researchers to use this novel substitute to enhance the osteogenic and biological properties of scaffold materials that are routinely used for bone tissue engineering.
Collapse
Affiliation(s)
- Somasundaram Prasadh
- Faculty of Dentistry, National University of Singapore, 1 Lower Kent Ridge Road, Singapore 119083, Singapore.
| | - Santhosh Suresh
- Faculty of Dentistry, National University of Singapore, 1 Lower Kent Ridge Road, Singapore 119083, Singapore.
| | - Raymond Wong
- Faculty of Dentistry, National University of Singapore, 1 Lower Kent Ridge Road, Singapore 119083, Singapore.
| |
Collapse
|
184
|
Shepherd JH, Howard D, Waller AK, Foster HR, Mueller A, Moreau T, Evans AL, Arumugam M, Bouët Chalon G, Vriend E, Davidenko N, Ghevaert C, Best SM, Cameron RE. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: Enhancing production and purity. Biomaterials 2018; 182:135-144. [PMID: 30118981 DOI: 10.1016/j.biomaterials.2018.08.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
Platelet transfusions are a key treatment option for a range of life threatening conditions including cancer, chemotherapy and surgery. Efficient ex vivo systems to generate donor independent platelets in clinically relevant numbers could provide a useful substitute. Large quantities of megakaryocytes (MKs) can be produced from human pluripotent stem cells, but in 2D culture the ratio of platelets harvested from MK cells has been limited and restricts production rate. The development of biomaterial cell supports that replicate vital hematopoietic micro-environment cues are one strategy that may increase in vitro platelet production rates from iPS derived Megakaryocyte cells. In this paper, we present the results obtained generating, simulating and using a novel structurally-graded collagen scaffold within a flow bioreactor system seeded with programmed stem cells. Theoretical analysis of porosity using micro-computed tomography analysis and synthetic micro-particle filtration provided a predictive tool to tailor cell distribution throughout the material. When used with MK programmed stem cells the graded scaffolds influenced cell location while maintaining the ability to continuously release metabolically active CD41 + CD42 + functional platelets. This scaffold design and novel fabrication technique offers a significant advance in understanding the influence of scaffold architectures on cell seeding, retention and platelet production.
Collapse
Affiliation(s)
- Jennifer H Shepherd
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Daniel Howard
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amie K Waller
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Holly Rebecca Foster
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Annett Mueller
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Thomas Moreau
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Amanda L Evans
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Meera Arumugam
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Guénaëlle Bouët Chalon
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK
| | - Eleonora Vriend
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Natalia Davidenko
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Cedric Ghevaert
- Department of Haematology, University of Cambridge, National Health Blood Service Centre, Long Road, Cambridge CB2 0PT, UK.
| | - Serena M Best
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Ruth E Cameron
- Cambridge Centre for Medical Materials, Department of Materials Science and Metallurgy, 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| |
Collapse
|
185
|
Bonartsev AP, Zharkova II, Voinova VV, Kuznetsova ES, Zhuikov VA, Makhina TK, Myshkina VL, Potashnikova DM, Chesnokova DV, Khaydapova DD, Bonartseva GA, Shaitan KV. Poly(3-hydroxybutyrate)/poly(ethylene glycol) scaffolds with different microstructure: the effect on growth of mesenchymal stem cells. 3 Biotech 2018; 8:328. [PMID: 30073113 PMCID: PMC6051946 DOI: 10.1007/s13205-018-1350-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/11/2018] [Indexed: 12/13/2022] Open
Abstract
Development of biocompatible 3D scaffolds is one of the most important challenges in tissue engineering. In this study, we developed polymer scaffolds of different design and microstructure to study cell growth in them. To obtain scaffolds of various microstructure, e.g., size of pores, we used double- and one-stage leaching methods using porogens with selected size of crystals. A composite of poly(3-hydroxybutyrate) (PHB) with poly(ethylene glycol) (PEG) (PHB/PEG) was used as polymer biomaterial for scaffolds. The morphology of scaffolds was analyzed by scanning electron microscopy; the Young modulus of scaffolds was measured by rheometry. The ability to support growth of mesenchymal stem cells (MSCs) in scaffolds was studied using the XTT assay; the phenotype of MSC was preliminarily confirmed by flow cytometry and the activity of alkaline phosphatase and expression level of CD45 marker was studied to test possible MSC osteogenic differentiation. The obtained scaffolds had different microstructure: the scaffolds with uniform pore size of about 125 µm (normal pores) and 45 µm (small pores) and scaffolds with broadly distributed pores size from about 50-100 µm. It was shown that PHB/PEG scaffolds with uniform pores of normal size did not support MSCs growth probably due to their marked spontaneous osteogenic differentiation in these scaffolds, whereas PHB/PEG scaffolds with diverse pore size promoted stem cells growth that was not accompanied by pronounced differentiation. In scaffolds with small pores (about 45 µm), the growth of MSC was the lowest and cell growth suppression was only partially related to stem cells differentiation. Thus, apparently, the broadly distributed pore size of PHB/PEG scaffolds promoted MSC growth in them, whereas uniform size of scaffold pores stimulated MSC osteogenic differentiation.
Collapse
Affiliation(s)
- A. P. Bonartsev
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - I. I. Zharkova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - V. V. Voinova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - E. S. Kuznetsova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - V. A. Zhuikov
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - T. K. Makhina
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - V. L. Myshkina
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - D. M. Potashnikova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - D. V. Chesnokova
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - D. D. Khaydapova
- Faculty of Soil Science, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| | - G. A. Bonartseva
- A.N. Bach Institute of Biochemistry, The Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow, 119071 Russia
| | - K. V. Shaitan
- Faculty of Biology, M. V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, Moscow, 119234 Russia
| |
Collapse
|
186
|
Sugiyama F, Kleinschmidt AT, Kayser LV, Alkhadra MA, Wan JMH, Chiang ASC, Rodriquez D, Root SE, Savagatrup S, Lipomi DJ. Stretchable and Degradable Semiconducting Block Copolymers. Macromolecules 2018; 51:5944-5949. [PMID: 30930487 DOI: 10.1021/acs.macromol.8b00846] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper describes the synthesis and characterization of a class of highly stretchable and degradable semiconducting polymers. These materials are multi-block copolymers (BCPs) in which the semiconducting blocks are based on the diketopyrrolopyrrole (DPP) unit flanked by furan rings and the insulating blocks are poly(ε-caprolactone) (PCL). The combination of stiff conjugated segments with flexible aliphatic polyesters produces materials that can be stretched >100%. Remarkably, BCPs containing up to 90 wt% of insulating PCL have the same field-effect mobility as the pure semiconductor. Spectroscopic (ultraviolet-visible absorption) and morphological (atomic force microscopic) evidence suggests that the semiconducting blocks form aggregated and percolated structures with increasing content of the insulating PCL. Both PDPP and PCL segments in the BCPs degrade under simulated physiological conditions. Such materials could find use in wearable, implantable, and disposable electronic devices.
Collapse
Affiliation(s)
- Fumitaka Sugiyama
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448.,JSR Corporation, 1-9-2, Higashi-Shimbashi, Minato-ku, Tokyo 105-8640, Japan
| | - Andrew T Kleinschmidt
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Laure V Kayser
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Mohammad A Alkhadra
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Jeremy M-H Wan
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Andrew S-C Chiang
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Daniel Rodriquez
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Samuel E Root
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Suchol Savagatrup
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| | - Darren J Lipomi
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, Mail Code 0448, La Jolla, CA 92093-0448
| |
Collapse
|
187
|
Prasadh S, Wong RCW. Unraveling the mechanical strength of biomaterials used as a bone scaffold in oral and maxillofacial defects. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/s1348-8643(18)30005-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
188
|
Liquid foam templating - A route to tailor-made polymer foams. Adv Colloid Interface Sci 2018; 256:276-290. [PMID: 29728156 DOI: 10.1016/j.cis.2018.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 12/11/2022]
Abstract
Solid foams with pore sizes between a few micrometres and a few millimetres are heavily exploited in a wide range of established and emerging applications. While the optimisation of foam applications requires a fine control over their structural properties (pore size distribution, pore opening, foam density, …), the great complexity of most foaming processes still defies a sound scientific understanding and therefore explicit control and prediction of these parameters. We therefore need to improve our understanding of existing processes and also develop new fabrication routes which we understand and which we can exploit to tailor-make new porous materials. One of these new routes is liquid templating in general and liquid foam templating in particular, to which this review article is dedicated. While all solid foams are generated from an initially liquid(-like) state, the particular notion of liquid foam templating implies the specific condition that the liquid foam has time to find its "equilibrium structure" before it is solidified. In other words, the characteristic time scales of the liquid foam's stability and its solidification are well separated, allowing to build on the vast know-how on liquid foams established over the last 20 years. The dispersed phase of the liquid foam determines the final pore size and pore size distribution, while the continuous phase contains the precursors of the desired porous scaffold. We review here the three key challenges which need to be addressed by this approach: (1) the control of the structure of the liquid template, (2) the matching of the time scales between the stability of the liquid template and solidification, and (3) the preservation of the structure of the template throughout the process. Focusing on the field of polymer foams, this review gives an overview of recent research on the properties of liquid foam templates and summarises a key set of studies in the emerging field of liquid foam templating. It finishes with an outlook on future developments. Occasional references to non-polymeric foams are given if the analogy provides specific insight into a physical phenomenon.
Collapse
|
189
|
Urbanek O, Kołbuk D, Wróbel M. Articular cartilage: New directions and barriers of scaffolds development – review. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1452224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Olga Urbanek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Mikołaj Wróbel
- Ortopedika – Centre for Specialized Surgery, Warsaw, Poland
| |
Collapse
|
190
|
Sultan S, Mathew AP. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. NANOSCALE 2018; 10:4421-4431. [PMID: 29451572 DOI: 10.1039/c7nr08966j] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
3-Dimensional (3D) printing provides a unique methodology for the customization of biomedical scaffolds with respect to size, shape, pore structure and pore orientation useful for tissue repair and regeneration. 3D printing was used to fabricate fully bio-based porous scaffolds of a double crosslinked interpenetrating polymer network (IPN) from a hydrogel ink of sodium alginate and gelatin (SA/G) reinforced with cellulose nanocrystals (CNCs). CNCs provided favorable rheological properties required for 3D printing. The 3D printed scaffolds were crosslinked sequentially via covalent and ionic reactions resulting in dimensionally stable hydrogel scaffolds with pore sizes of 80-2125 μm and nanoscaled pore wall roughness (visible from scanning electron microscopy) favorable for cell interaction. The 2D wide angle X-ray scattering studies showed that the nanocrystals orient preferably in the printing direction; the degree of orientation varied between 61-76%. The 3D printing pathways were optimised successfully to achieve 3-dimensional scaffolds (Z axis up to 20 mm) with uniform as well as gradient pore structures. This study demonstrates the potential of 3D printing in developing bio-based scaffolds with controlled pore sizes, gradient pore structures and alignment of nanocrystals for optimal tissue regeneration.
Collapse
Affiliation(s)
- Sahar Sultan
- Division of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | | |
Collapse
|
191
|
Kang YG, Wei J, Shin JW, Wu YR, Su J, Park YS, Shin JW. Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Int J Nanomedicine 2018; 13:1107-1117. [PMID: 29520139 PMCID: PMC5833793 DOI: 10.2147/ijn.s157921] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Successful bone tissue engineering using scaffolds is primarily dependent on the properties of the scaffold, including biocompatibility, highly interconnected porosity, and mechanical integrity. METHODS In this study, we propose new composite scaffolds consisting of mesoporous magnesium silicate (m_MS), polycaprolactone (PCL), and wheat protein (WP) manufactured by a rapid prototyping technique to provide a micro/macro porous structure. Experimental groups were set based on the component ratio: (1) WP0% (m_MS:PCL:WP =30:70:0 weight per weight; w/w); (2) WP15% (m_MS:PCL:WP =30:55:15 w/w); (3) WP30% (m_MS:PCL:WP =30:40:30 w/w). RESULTS Evaluation of the properties of fabricated scaffolds indicated that increasing the amount of WP improved the surface hydrophilicity and biodegradability of m_MS/PCL/WP composites, while reducing the mechanical strength. Moreover, experiments were performed to confirm the biocompatibility and osteogenic differentiation of human mesenchymal stem cells (MSCs) according to the component ratio of the scaffold. The results confirmed that the content of WP affects proliferation and osteogenic differentiation of MSCs. Based on the last day of the experiment, ie, the 14th day, the proliferation based on the amount of DNA was the best in the WP30% group, but all of the markers measured by PCR were the most expressed in the WP15% group. CONCLUSION These results suggest that the m_MS/PCL/WP composite is a promising candidate for use as a scaffold in cell-based bone regeneration.
Collapse
Affiliation(s)
- Yun Gyeong Kang
- School of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Ji Won Shin
- School of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Yan Ru Wu
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
| | - Jiacan Su
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Young Shik Park
- School of Biological Science, Inje University, Gimhae, Republic of Korea
| | - Jung-Woog Shin
- School of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
- Department of Health Science and Technology, Inje University, Gimhae, Republic of Korea
- Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
192
|
Ophthalmic gels: Past, present and future. Adv Drug Deliv Rev 2018; 126:113-126. [PMID: 29288733 DOI: 10.1016/j.addr.2017.12.017] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/06/2017] [Accepted: 12/22/2017] [Indexed: 11/21/2022]
Abstract
Aqueous gels formulated using hydrophilic polymers (hydrogels) along with those based on stimuli responsive polymers (in situ gelling or gel forming systems) continue to attract increasing interest for various eye health-related applications. They allow the incorporation of a variety of ophthalmic pharmaceuticals to achieve therapeutic levels of drugs and bioactives at target ocular sites. The integration of sophisticated drug delivery technologies such as nanotechnology-based ones with intelligent and environment responsive systems can extend current treatment duration to provide more clinically relevant time courses (weeks and months instead of hours and days) which will inevitably reduce dose frequency, increase patient compliance and improve clinical outcomes. Novel applications and design of contact lenses and intracanalicular delivery devices along with the move towards integrating gels into various drug delivery devices like intraocular pumps, injections and implants has the potential to reduce comorbidities caused by glaucoma, corneal keratopathy, cataract, diabetic retinopathies and age-related macular degeneration. This review describes ophthalmic gelling systems with emphasis on mechanism of gel formation and application in ophthalmology. It provides a critical appraisal of the techniques and methods used in the characterization of ophthalmic preformed gels and in situ gelling systems along with a thorough insight into the safety and biocompatibility of these systems. Newly developed ophthalmic gels, hydrogels, preformed gels and in situ gelling systems including the latest in the area of stimuli responsive gels, molecularly imprinted gels, nanogels, 3D printed hydrogels; 3D printed devices comprising ophthalmic gels are covered. Finally, new applications of gels in the production of artificial corneas, corneal wound healing and hydrogel contact lenses are described.
Collapse
|
193
|
Xu Y, Wei B, Zhou J, Yao Q, Wang L, Na J. [Dopamine modified and cartilage derived morphogenetic protein 1 laden polycaprolactone-hydroxyapatite composite scaffolds fabricated by three-dimensional printing improve chondrogenic differentiation of human bone marrow mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:215-222. [PMID: 29806415 PMCID: PMC8414101 DOI: 10.7507/1002-1892.201708017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/20/2018] [Indexed: 11/03/2022]
Abstract
Objective To prepare dopamine modified and cartilage derived morphogenetic protein 1 (CDMP1) laden polycaprolactone-hydroxyapatite (PCL-HA) composite scaffolds by three-dimensional (3D) printing and evaluate the effect of 3D scaffolds on in vitro chondrogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). Methods A dimensional porous PCL-HA scaffold was fabricated by 3D printing. Dopamine was used to modify the surface of PCL-HA and then CDMP-1 was loaded into scaffolds. The surface microstructure was observed by scanning electron microscope (SEM) and porosity and water static contact angle were also detected. The cytological experiment in vitro were randomly divided into 3 groups: group A (PCL-HA scaffolds), group B (dopamine modified PCL-HA scaffolds), and group C (dopamine modified and CDMP-1 laden PCL-HA scaffolds). The hBMSCs were seeded into three scaffolds, in chondrogenic culture conditions, the cell adhesive rate, the cell proliferation (MTT assay), and cell activity (Live-Dead staining) were analyzed; and the gene expressions of collagen type Ⅱ and Aggrecan were detected by real-time fluorescent quantitative PCR. Results The scaffolds in 3 groups were all showed a cross-linked and pore interconnected with pore size of 400-500 μm, porosity of 56%, and fiber orientation of 0°/90°. For dopamine modification, the scaffolds in groups B and C were dark brown while in group A was white. Similarly, water static contact angle was from 76° of group A to 0° of groups B and C. After cultured for 24 hours, the cell adhesion rate of groups A, B, and C was 34.3%±3.5%, 48.3%±1.5%, and 57.4%±2.5% respectively, showing significant differences between groups ( P<0.05). Live/Dead staining showed good cell activity of cells in 3 groups. MTT test showed that hBMSCs proliferated well in 3 groups and the absorbance ( A) value was increased with time. The A value in group C was significantly higher than that in groups B and A, and in group B than in group A after cultured for 4, 7, 14, and 21 days, all showing significant differences ( P<0.05). The mRNA relative expression of collagen type Ⅱ and Aggrecan increased gradually with time in 3 groups. The mRNA relative expression of collagen type Ⅱafter cultured for 7, 14, and 21 days, and the mRNA relative expression of Aggrecan after cultured for 14 and 21 days in group C were significantly higher than those in groups A and B, and in group B than in group A, all showing significant differences ( P<0.05). Conclusion Co-culture of dopamine modified and CDMP1 laden PCL-HA scaffolds and hBMSCs in vitro can promote hBMSCs' adhesion, proliferation, and chondrogenic differentiation.
Collapse
Affiliation(s)
- Yan Xu
- Department of Orthopedics, Nanjing Hospital Affiliated to Nanjing Medical University (Nanjing First Hospital), Nanjing Jiangsu, 210006, P.R.China
| | - Bo Wei
- Department of Orthopedics, Nanjing Hospital Affiliated to Nanjing Medical University (Nanjing First Hospital), Nanjing Jiangsu, 210006, P.R.China
| | - Jin Zhou
- Department of Orthopedics, Nanjing Hospital Affiliated to Nanjing Medical University (Nanjing First Hospital), Nanjing Jiangsu, 210006, P.R.China
| | - Qingqiang Yao
- Department of Orthopedics, Nanjing Hospital Affiliated to Nanjing Medical University (Nanjing First Hospital), Nanjing Jiangsu, 210006, P.R.China
| | - Liming Wang
- Department of Orthopedics, Nanjing Hospital Affiliated to Nanjing Medical University (Nanjing First Hospital), Nanjing Jiangsu, 210006, P.R.China
| | - Jian Na
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou Jiangsu, 221009,
| |
Collapse
|
194
|
Park SA, Lee HJ, Kim KS, Lee SJ, Lee JT, Kim SY, Chang NH, Park SY. In Vivo Evaluation of 3D-Printed Polycaprolactone Scaffold Implantation Combined with β-TCP Powder for Alveolar Bone Augmentation in a Beagle Defect Model. MATERIALS 2018; 11:ma11020238. [PMID: 29401707 PMCID: PMC5848935 DOI: 10.3390/ma11020238] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/20/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Insufficient bone volume is one of the major challenges encountered by dentists after dental implant placement. This study aimed to evaluate the efficacy of a customized three-dimensional polycaprolactone (3D PCL) scaffold implant fabricated with a 3D bio-printing system to facilitate rapid alveolar bone regeneration. Saddle-type bone defects were surgically created on the healed site after extracting premolars from the mandibles of four beagle dogs. The defects were radiologically examined using computed tomography for designing a customized 3D PCL scaffold block to fit the defect site. After fabricating 3D PCL scaffolds using rapid prototyping, the scaffolds were implanted into the alveolar bone defects along with β-tricalcium phosphate powder. In vivo analysis showed that the PCL blocks maintained the physical space and bone conductivity around the defects. In addition, no inflammatory infiltrates were observed around the scaffolds. However, new bone formation occurred adjacent to the scaffolds, rather than directly in contact with them. More new bone was observed around PCL blocks with 400/1200 lattices than around blocks with 400/400 lattices, but the difference was not significant. These results indicated the potential of 3D-printed porous PCL scaffolds to promote alveolar bone regeneration for defect healing in dentistry.
Collapse
Affiliation(s)
- Su A Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si 13620, Korea.
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si 13620, Korea.
| | - Sang Jin Lee
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, Daejeon 34103, Korea.
| | - Jung-Tae Lee
- Department of Periodontology, Dankook University, Yongin-si 16890, Korea.
| | - Sung-Yeol Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si 13620, Korea.
| | - Na-Hee Chang
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si 13620, Korea.
| | - Shin-Young Park
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam-si 13620, Korea.
| |
Collapse
|
195
|
Chen Z, Yan C, Yan S, Liu Q, Hou M, Xu Y, Guo R. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging. Am J Cancer Res 2018; 8:1146-1158. [PMID: 29464005 PMCID: PMC5817116 DOI: 10.7150/thno.22514] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/25/2017] [Indexed: 12/26/2022] Open
Abstract
Numerous biodegradable hydrogels for cartilage regeneration have been widely used in the field of tissue engineering. However, to non-invasively monitor hydrogel degradation and efficiently evaluate cartilage restoration in situ is still challenging. Methods: A ultrasmall superparamagnetic iron oxide (USPIO)-labeled cellulose nanocrystal (CNC)/silk fibroin (SF)-blended hydrogel system was developed to monitor hydrogel degradation during cartilage regeneration. The physicochemical characterization and biocompatibility of the hydrogel were evaluated in vitro. The in vivo hydrogel degradation and cartilage regeneration of different implants were assessed using multiparametric magnetic resonance imaging (MRI) and further confirmed by histological analysis in a rabbit cartilage defect model for 3 months. Results: USPIO-labeled hydrogels showed sufficient MR contrast enhancement and retained stability without loss of the relaxation rate. Neither the mechanical properties of the hydrogels nor the proliferation of bone-marrow mesenchymal stem cells (BMSCs) were affected by USPIO labeling in vitro. CNC/SF hydrogels with BMSCs degraded more quickly than the acellular hydrogels as reflected by the MR relaxation rate trends in vivo. The morphology of neocartilage was noninvasively visualized by the three-dimensional water-selective cartilage MRI scan sequence, and the cartilage repair was further demonstrated by macroscopic and histological observations. Conclusion: This USPIO-labeled CNC/SF hydrogel system provides a new perspective on image-guided tissue engineering for cartilage regeneration.
Collapse
|
196
|
Chen H, Wang H, Li B, Feng B, He X, Fu W, Yuan H, Xu Z. Enhanced chondrogenic differentiation of human mesenchymal stems cells on citric acid-modified chitosan hydrogel for tracheal cartilage regeneration applications. RSC Adv 2018; 8:16910-16917. [PMID: 35540552 PMCID: PMC9080310 DOI: 10.1039/c8ra00808f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Congenital tracheal stenosis in infants and children is a worldwide clinical problem. Tissue engineering is a promising method for correcting long segmental tracheal defects. Nonetheless, the lack of desirable scaffolds always limits the development and applications of tissue engineering in clinical practice. In this study, a citric-acid-functionalized chitosan (CC) hydrogel was fabricated by a freeze–thaw method. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed that citric acid was successfully attached to the chitosan hydrogel. Scanning electron microscopy (SEM) images and compression tests showed that the CC hydrogel had an interconnected porous structure and better wet mechanical properties. Using morphological and proliferation analyses, cell biocompatibility of the CC hydrogel was shown by culturing human mesenchymal stem cells (hMSCs) on it. Specific expression of cartilage-related markers was analyzed by real-time polymerase chain reaction and western blotting. The expression of chondrocytic markers was strongly upregulated in the culture on the CC hydrogel. Hematoxylin and eosin staining revealed that the cells had the characteristic shape of chondrocytes and clustered into the CC hydrogel. Both Alcian blue staining and a sulfated glycosaminoglycan (sGAG) assay indicated that the CC hydrogel promoted the expression of glycosaminoglycans (GAGs). In a nutshell, these results suggested that the CC hydrogel enhanced chondrogenic differentiation of hMSCs. Thus, the newly developed CC hydrogel may be a promising tissue-engineered scaffold for tracheal cartilage regeneration. A novel citric acid functionalized chitosan hydrogel for tracheal cartilage regeneration applications.![]()
Collapse
Affiliation(s)
- Hao Chen
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
| | - Hao Wang
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
| | - Biyun Li
- School of Life Sciences
- Nantong University
- Nantong
- China
| | - Bei Feng
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Xiaomin He
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Wei Fu
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| | - Huihua Yuan
- School of Life Sciences
- Nantong University
- Nantong
- China
| | - Zhiwei Xu
- Department of Pediatric Cardiothoracic Surgery
- Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine
- Shanghai 200127
- China
- Institute of Pediatric Translational Medicine
| |
Collapse
|
197
|
Vera L, Matej B, Karolina V, Tereza K, Zbyněk T, Miroslav D, Veronika B, Andrej L, Vera S, Barbora V, Andrea S, Petr S, Milena K, Evzen A, Eva F, Franco R, Michala R. Osteoinductive 3D scaffolds prepared by blend centrifugal spinning for long-term delivery of osteogenic supplements. RSC Adv 2018; 8:21889-21904. [PMID: 35541719 PMCID: PMC9081096 DOI: 10.1039/c8ra02735h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/06/2018] [Indexed: 11/21/2022] Open
Abstract
Bone regeneration is a long-term process requiring proper scaffolding and drug delivery systems. The current study delivers a three-dimensional (3D) scaffold prepared by blend centrifugal spinning loaded with the osteogenic supplements (OS) β-glycerol phosphate, ascorbate-2-phosphate and dexamethasone. The OS were successfully encapsulated into a fibrous scaffold and showed sustained release for 30 days. Furthermore, biological testing showed the osteoinductive properties of the scaffolds on a model of human mesenchymal stem cells and stimulatory effect on a model of osteoblasts. The osteoinductive properties were further proved in vivo in critical size defects of rabbits. The amount of bone trabecules was bigger compared to control fibers without OS. The results indicate that due to its long-term drug releasing properties, single step fabrication process and 3D structure, the system shows ideal properties for use as a cell-free bone implant in tissue-engineering. Bone regeneration is a long-term process requiring proper scaffolding and drug delivery systems.![]()
Collapse
|
198
|
Silk Fibroin-Based Scaffold for Bone Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:371-387. [PMID: 30357699 DOI: 10.1007/978-981-13-0947-2_20] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Regeneration of diseased or damaged skeletal tissues is one of the challenge that needs to be solved. Although there have been many bone tissue engineering developed, scaffold-based tissue engineering complement the conventional treatment for large bone by completing biological and functional environment. Among many materials, silk fibroin (SF) is one of the favorable material for applications in bone tissue engineering scaffolding. SF is a fibrous protein mainly extracted from Bombyx mori. and spiders. SF has been used as a biomaterial for bone graft by its unique mechanical properties, controllable biodegradation rate and high biocompatibility. Moreover, SF can be processed using conventional and advanced biofabrication methods to form various scaffold types such as sponges, mats, hydrogels and films. This review discusses about recent application and advancement of SF as a biomaterial.
Collapse
|
199
|
Li H, Hu C, Yu H, Chen C. Chitosan composite scaffolds for articular cartilage defect repair: a review. RSC Adv 2018; 8:3736-3749. [PMID: 35542907 PMCID: PMC9077838 DOI: 10.1039/c7ra11593h] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/26/2017] [Indexed: 01/31/2023] Open
Abstract
Articular cartilage (AC) defects lack the ability to self-repair due to their avascular nature and the declined mitotic ability of mature chondrocytes. To date, cartilage tissue engineering using implanted scaffolds containing cells or growth factors is the most promising defect repair method. Scaffolds for cartilage tissue engineering have been comprehensively researched. As a promising scaffold biomaterial for AC defect repair, the properties of chitosan are summarized in this review. Strategies to composite chitosan with other materials, such as polymers (including collagen, gelatin, alginate, silk fibroin, poly-caprolactone, and poly-lactic acid) and bioceramics (including calcium phosphate, calcium polyphosphate, and hydroxyapatite) are presented. Methods to manufacture three-dimensional porous structures to support cell attachment and nutriment exchange have also been included. Properties of chitosan/polymer and chitosan/bioceramic composite scaffolds for articular cartilage defect repair are reviewed.![]()
Collapse
Affiliation(s)
- Huijun Li
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University)
- Ministry of Education
| | - Cheng Hu
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
| | - Huijun Yu
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University)
- Ministry of Education
| | - Chuanzhong Chen
- Shenzhen Research Institute of Shandong University
- Shenzhen 518057
- P. R. China
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials (Ministry of Education)
- School of Materials Science and Engineering
| |
Collapse
|
200
|
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017; 5:17059. [PMID: 29285402 PMCID: PMC5738879 DOI: 10.1038/boneres.2017.59] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|