151
|
Huang P, Cai M, McKennan C, Wang J. BLEND: Probabilistic Cellular Deconvolution with Automated Reference Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606458. [PMID: 39149243 PMCID: PMC11326155 DOI: 10.1101/2024.08.02.606458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Cellular deconvolution aims to estimate cell type fractions from bulk transcriptomic and other omics data. Most existing deconvolution methods fail to account for the heterogeneity in cell type-specific (CTS) expression across bulk samples, ignore discrepancies between CTS expression in bulk and cell type reference data, and provide no guidance on cell type reference selection or integration. To address these issues, we introduce BLEND, a hierarchical Bayesian method that leverages multiple reference datasets. BLEND learns the most suitable references for each bulk sample by exploring the convex hulls of references and employs a "bag-of-words" representation for bulk count data for deconvolution. To speed up the computation, we provide an efficient EM algorithm for parameter estimation. Notably, BLEND requires no data transformation, normalization, cell type marker gene selection, or reference quality evaluation. Benchmarking studies on both simulated and real human brain data highlight BLEND's superior performance in various scenarios. The analysis of Alzheimer's disease data illustrates BLEND's application in real data and reference resource integration.
Collapse
Affiliation(s)
- Penghui Huang
- Department of Biostatistics, University of Pittsburgh, De Soto St, Pittsburgh, 15261, PA, USA
| | - Manqi Cai
- Department of Biostatistics, University of Pittsburgh, De Soto St, Pittsburgh, 15261, PA, USA
| | - Chris McKennan
- Department of Statistics, University of Pittsburgh, S Bouquet St, Pittsburgh, 15213, PA, USA
| | - Jiebiao Wang
- Department of Biostatistics, University of Pittsburgh, De Soto St, Pittsburgh, 15261, PA, USA
| |
Collapse
|
152
|
Alldred MJ, Pidikiti H, Ibrahim KW, Lee SH, Heguy A, Hoffman GE, Roussos P, Wisniewski T, Wegiel J, Stutzmann GE, Mufson EJ, Ginsberg SD. Analysis of microisolated frontal cortex excitatory layer III and V pyramidal neurons reveals a neurodegenerative phenotype in individuals with Down syndrome. Acta Neuropathol 2024; 148:16. [PMID: 39105932 PMCID: PMC11578391 DOI: 10.1007/s00401-024-02768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 08/07/2024]
Abstract
We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.
Collapse
Affiliation(s)
- Melissa J Alldred
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Kyrillos W Ibrahim
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Sang Han Lee
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Adriana Heguy
- Genome Technology Center, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Wisniewski
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Jerzy Wegiel
- Department of Developmental Neurobiology, Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Grace E Stutzmann
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University/The Chicago Medical School, North Chicago, IL, USA
| | - Elliott J Mufson
- Department of Translational Neuroscience and Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
153
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 PMCID: PMC11787906 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Courtney K. Walker
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine; St. Louis, MO, 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology; Queen Square, London, WC1N 3BG, UK
| | - Celeste M. Karch
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Randall J. Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology; St. Louis, MO, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Steven J. Mennerick
- Department of Psychiatry, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Marc I. Diamond
- Center for Alzheimer’s and Neurodegenerative Diseases, Peter O’Donnell Jr. Brain Institute, UT Southwestern Medical Center; Dallas, TX, 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine; Indianapolis, IN, 46202, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School; Charlestown, Massachusetts, 02129, USA
| | - David M. Holtzman
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine; St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine; St. Louis, MO 63110, USA
| | - Andrew S. Yoo
- Department of Developmental Biology, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine; St. Louis, MO, 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine; St. Louis, MO 63110, USA
| |
Collapse
|
154
|
Woulfe J, Munoz D. Roncoroni Re-Visited: The Neuronal Intranuclear Rodlet Comes of Age. J Comp Neurol 2024; 532:e25662. [PMID: 39136357 DOI: 10.1002/cne.25662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 01/31/2025]
Abstract
Despite myriad technological advances in neuroscience, the nervous system harbors morphological phenomena that continue to defy explanation. First described by the classical microscopists, including Santiago Ramon y Cajal, at the end of the 19th century, the neuronal intranuclear rodlet (INR) has mystified neurohistologists and microscopists for centuries. In this review article, we will provide an overview of the discovery of the INR as well as the subsequent attempts to elucidate its nature and functional significance. We outline our own studies of this structure over the past three decades, focusing on its elusive nature, its interactions with other nuclear organelles, and on disease-related quantitative changes in Alzheimer's disease. We then describe our somewhat serendipitous discovery that these structures are filamentous aggregates of the nucleotide-synthesizing metabolic enzyme inosine monophosphate dehydrogenase. The filamentation of metabolic enzymes to form mesoscale cellular structures called "rods and rings" or "cytoophidia" (Greek for "cellular snakes") is a recently described phenomenon that remains to be systematically investigated in the nervous system. Thus, this review provides an intriguing historical juxtaposition in neuroscience, inculcating the neuronal INR, once a mere morphological curiosity, into one of the most rapidly evolving fields in contemporary cell biology.
Collapse
Affiliation(s)
- John Woulfe
- Department of Pathology and Laboratory Medicine, The Ottawa Hospital and The University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - David Munoz
- St. Michael's Hospital, Unity Health Toronto and Laboratory Medicine & Pathobiology, University of Toronto, Ottawa, Ontario, Canada
| |
Collapse
|
155
|
Mathys H, Boix CA, Akay LA, Xia Z, Davila-Velderrain J, Ng AP, Jiang X, Abdelhady G, Galani K, Mantero J, Band N, James BT, Babu S, Galiana-Melendez F, Louderback K, Prokopenko D, Tanzi RE, Bennett DA, Tsai LH, Kellis M. Single-cell multiregion dissection of Alzheimer's disease. Nature 2024; 632:858-868. [PMID: 39048816 PMCID: PMC11338834 DOI: 10.1038/s41586-024-07606-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 05/24/2024] [Indexed: 07/27/2024]
Abstract
Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Hansruedi Mathys
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Carles A Boix
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Leyla Anne Akay
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ziting Xia
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Harvard-MIT Health Sciences and Technology Program, MIT, Cambridge, MA, USA
| | | | - Ayesha P Ng
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Xueqiao Jiang
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Ghada Abdelhady
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyriaki Galani
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julio Mantero
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Neil Band
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Benjamin T James
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sudhagar Babu
- University of Pittsburgh Brain Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Fabiola Galiana-Melendez
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Kate Louderback
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Dmitry Prokopenko
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Li-Huei Tsai
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
156
|
Ghatak S, Diedrich JK, Talantova M, Bhadra N, Scott H, Sharma M, Albertolle M, Schork NJ, Yates JR, Lipton SA. Single-Cell Patch-Clamp/Proteomics of Human Alzheimer's Disease iPSC-Derived Excitatory Neurons Versus Isogenic Wild-Type Controls Suggests Novel Causation and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400545. [PMID: 38773714 PMCID: PMC11304297 DOI: 10.1002/advs.202400545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Standard single-cell (sc) proteomics of disease states inferred from multicellular organs or organoids cannot currently be related to single-cell physiology. Here, a scPatch-Clamp/Proteomics platform is developed on single neurons generated from hiPSCs bearing an Alzheimer's disease (AD) genetic mutation and compares them to isogenic wild-type controls. This approach provides both current and voltage electrophysiological data plus detailed proteomics information on single-cells. With this new method, the authors are able to observe hyperelectrical activity in the AD hiPSC-neurons, similar to that observed in the human AD brain, and correlate it to ≈1400 proteins detected at the single neuron level. Using linear regression and mediation analyses to explore the relationship between the abundance of individual proteins and the neuron's mutational and electrophysiological status, this approach yields new information on therapeutic targets in excitatory neurons not attainable by traditional methods. This combined patch-proteomics technique creates a new proteogenetic-therapeutic strategy to correlate genotypic alterations to physiology with protein expression in single-cells.
Collapse
Affiliation(s)
- Swagata Ghatak
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
School of Biological SciencesNational Institute of Science Education and Research (NISER)‐Bhubaneswar, an OCC of Homi Bhabha National InstituteJataniOdisha752050India
| | - Jolene K. Diedrich
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Maria Talantova
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Nivedita Bhadra
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - Henry Scott
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Meetal Sharma
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Matthew Albertolle
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Present address:
Drug Metabolism and Pharmacokinetics DepartmentTakeda Development Center AmericasSan DiegoCA92121USA
| | - Nicholas J. Schork
- Quantitative Medicine and Systems BiologyThe Translational Genomics Research InstitutePhoenixAZ85004USA
| | - John R. Yates
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
| | - Stuart A. Lipton
- Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California, San DiegoLa JollaCA92093USA
| |
Collapse
|
157
|
Lee H, Pearse RV, Lish AM, Pan C, Augur ZM, Terzioglu G, Gaur P, Liao M, Fujita M, Tio ES, Duong DM, Felsky D, Seyfried NT, Menon V, Bennett DA, De Jager PL, Young-Pearse TL. Contributions of genetic variation in astrocytes to cell and molecular mechanisms of risk and resilience to late onset Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605928. [PMID: 39211227 PMCID: PMC11361137 DOI: 10.1101/2024.07.31.605928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Reactive astrocytes are associated with Alzheimer's disease (AD), and several AD genetic risk variants are associated with genes highly expressed in astrocytes. However, the contribution of genetic risk within astrocytes to cellular processes relevant to the pathogenesis of AD remains ill-defined. Here we present a resource for studying AD genetic risk in astrocytes using a large collection of induced pluripotent stem cell (iPSC) lines from deeply phenotyped individuals with a range of neuropathological and cognitive outcomes. IPSC lines from forty-four individuals were differentiated into astrocytes followed by unbiased molecular profiling using RNA sequencing and tandem mass tag-mass spectrometry. We demonstrate the utility of this resource in examining gene- and pathway-level associations with clinical and neuropathological traits, as well as in analyzing genetic risk and resilience factors through parallel analyses of iPSC-astrocytes and brain tissue from the same individuals. Our analyses reveal that genes and pathways altered in iPSC-derived astrocytes from AD individuals are concordantly dysregulated in AD brain tissue. This includes increased prefoldin proteins, extracellular matrix factors, COPI-mediated trafficking components and reduced proteins involved in cellular respiration and fatty acid oxidation. Additionally, iPSC-derived astrocytes from individuals resilient to high AD neuropathology show elevated basal levels of interferon response proteins and increased secretion of interferon gamma. Correspondingly, higher polygenic risk scores for AD are associated with lower levels of interferon response proteins. This study establishes an experimental system that integrates genetic information with a heterogeneous set of iPSCs to identify genetic contributions to molecular pathways affecting AD risk and resilience.
Collapse
|
158
|
Wang Q, Antone J, Alsop E, Reiman R, Funk C, Bendl J, Dudley JT, Liang WS, Karr TL, Roussos P, Bennett DA, De Jager PL, Serrano GE, Beach TG, Van Keuren-Jensen K, Mastroeni D, Reiman EM, Readhead BP. Single cell transcriptomes and multiscale networks from persons with and without Alzheimer's disease. Nat Commun 2024; 15:5815. [PMID: 38987616 PMCID: PMC11237088 DOI: 10.1038/s41467-024-49790-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
The emergence of single nucleus RNA sequencing (snRNA-seq) offers to revolutionize the study of Alzheimer's disease (AD). Integration with complementary multiomics data such as genetics, proteomics and clinical data provides powerful opportunities to link cell subpopulations and molecular networks with a broader disease-relevant context. We report snRNA-seq profiles from superior frontal gyrus samples from 101 well characterized subjects from the Banner Brain and Body Donation Program in combination with whole genome sequences. We report findings that link common AD risk variants with CR1 expression in oligodendrocytes as well as alterations in hematological parameters. We observed an AD-associated CD83(+) microglial subtype with unique molecular networks and which is associated with immunoglobulin IgG4 production in the transverse colon. Our major observations were replicated in two additional, independent snRNA-seq data sets. These findings illustrate the power of multi-tissue molecular profiling to contextualize snRNA-seq brain transcriptomics and reveal disease biology.
Collapse
Affiliation(s)
- Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Jerry Antone
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Eric Alsop
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Rebecca Reiman
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jaroslav Bendl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Joel T Dudley
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Winnie S Liang
- Division of Neurogenomics, The Translational Genomics Research Institute, Phoenix, AZ, 85004, USA
| | - Timothy L Karr
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Philip L De Jager
- Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, 85006, USA
| | - Benjamin P Readhead
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
159
|
Shao M, Botvinov J, Banerjee D, Girirajan S, Lüscher B. Transcriptome signatures of the medial prefrontal cortex underlying GABAergic control of resilience to chronic stress exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602959. [PMID: 39026878 PMCID: PMC11257543 DOI: 10.1101/2024.07.10.602959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Analyses of postmortem human brains and preclinical studies of rodents have identified somatostatin (SST)-positive interneurons as key elements that regulate the vulnerability to stress-related psychiatric disorders. Conversely, genetically induced disinhibition of SST neurons or brain region-specific chemogenetic activation of SST neurons in mice results in stress resilience. Here, we used RNA sequencing of mice with disinhibited SST neurons to characterize the transcriptome changes underlying GABAergic control of stress resilience. We found that stress resilience of male but not female mice with disinhibited SST neurons is characterized by resilience to chronic stress-induced transcriptome changes in the medial prefrontal cortex. Interestingly, the transcriptome of non-stressed stress-resilient male mice resembled the transcriptome of chronic stress-exposed stress-vulnerable mice. However, the behavior and the serum corticosterone levels of non-stressed stress-resilient mice showed no signs of physiological stress. Most strikingly, chronic stress exposure of stress-resilient mice was associated with an almost complete reversal of their chronic stress-like transcriptome signature, along with pathway changes indicating stress-induced enhancement of mRNA translation. Behaviorally, the mice with disinhibited SST neurons were not only resilient to chronic stress-induced anhedonia - they also showed an inversed anxiolytic-like response to chronic stress exposure that mirrored the chronic stress-induced reversal of the chronic stress-like transcriptome signature. We conclude that GABAergic dendritic inhibition by SST neurons exerts bidirectional control over behavioral vulnerability and resilience to chronic stress exposure that is mirrored in bidirectional changes in expression of putative stress resilience genes, through a sex-specific brain substrate.
Collapse
Affiliation(s)
- Meiyu Shao
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Julia Botvinov
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Deepro Banerjee
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Bernhard Lüscher
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
160
|
Marghi Y, Gala R, Baftizadeh F, Sümbül U. Joint inference of discrete cell types and continuous type-specific variability in single-cell datasets with MMIDAS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560574. [PMID: 37873271 PMCID: PMC10592946 DOI: 10.1101/2023.10.02.560574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Reproducible definition and identification of cell types is essential to enable investigations into their biological function, and understanding their relevance in the context of development, disease and evolution. Current approaches model variability in data as continuous latent factors, followed by clustering as a separate step, or immediately apply clustering on the data. We show that such approaches can suffer from qualitative mistakes in identifying cell types robustly, particularly when the number of such cell types is in the hundreds or even thousands. Here, we propose an unsupervised method, MMIDAS, which combines a generalized mixture model with a multi-armed deep neural network, to jointly infer the discrete type and continuous type-specific variability. Using four recent datasets of brain cells spanning different technologies, species, and conditions, we demonstrate that MMIDAS can identify reproducible cell types and infer cell type-dependent continuous variability in both uni-modal and multi-modal datasets.
Collapse
Affiliation(s)
| | - Rohan Gala
- Allen Institute, 615 Westlake Ave N, Seattle, WA, USA
| | | | - Uygar Sümbül
- Allen Institute, 615 Westlake Ave N, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
161
|
Schreiber CS, Wiesweg I, Stanelle-Bertram S, Beck S, Kouassi NM, Schaumburg B, Gabriel G, Richter F, Käufer C. Sex-specific biphasic alpha-synuclein response and alterations of interneurons in a COVID-19 hamster model. EBioMedicine 2024; 105:105191. [PMID: 38865747 PMCID: PMC11293593 DOI: 10.1016/j.ebiom.2024.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/25/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) frequently leads to neurological complications after recovery from acute infection, with higher prevalence in women. However, mechanisms by which SARS-CoV-2 disrupts brain function remain unclear and treatment strategies are lacking. We previously demonstrated neuroinflammation in the olfactory bulb of intranasally infected hamsters, followed by alpha-synuclein and tau accumulation in cortex, thus mirroring pathogenesis of neurodegenerative diseases such as Parkinson's or Alzheimer's disease. METHODS To uncover the sex-specific spatiotemporal profiles of neuroinflammation and neuronal dysfunction following intranasal SARS-CoV-2 infection, we quantified microglia cell density, alpha-synuclein immunoreactivity and inhibitory interneurons in cortical regions, limbic system and basal ganglia at acute and late post-recovery time points. FINDINGS Unexpectedly, microglia cell density and alpha-synuclein immunoreactivity decreased at 6 days post-infection, then rebounded to overt accumulation at 21 days post-infection. This biphasic response was most pronounced in amygdala and striatum, regions affected early in Parkinson's disease. Several brain regions showed altered densities of parvalbumin and calretinin interneurons which are involved in cognition and motor control. Of note, females appeared more affected. INTERPRETATION Our results demonstrate that SARS-CoV-2 profoundly disrupts brain homeostasis without neuroinvasion, via neuroinflammatory and protein regulation mechanisms that persist beyond viral clearance. The regional patterns and sex differences are in line with neurological deficits observed after SARS-CoV-2 infection. FUNDING Federal Ministry of Health, Germany (BMG; ZMV I 1-2520COR501 to G.G.), Federal Ministry of Education and Research, Germany (BMBF; 03COV06B to G.G.), Ministry of Science and Culture of Lower Saxony in Germany (14-76403-184, to G.G. and F.R.).
Collapse
Affiliation(s)
- Cara Sophie Schreiber
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany
| | - Ivo Wiesweg
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Sebastian Beck
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Nancy Mounogou Kouassi
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Berfin Schaumburg
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany
| | - Gülsah Gabriel
- Department for Viral Zoonoses-One Health, Leibniz Institute of Virology, Hamburg, Germany; Institute of Virology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy; University of Veterinary Medicine Hannover, Hannover, Germany; Center for Systems Neuroscience Hannover (ZSN), Germany.
| |
Collapse
|
162
|
Chen R, Nie P, Wang J, Wang GZ. Deciphering brain cellular and behavioral mechanisms: Insights from single-cell and spatial RNA sequencing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1865. [PMID: 38972934 DOI: 10.1002/wrna.1865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 07/09/2024]
Abstract
The brain is a complex computing system composed of a multitude of interacting neurons. The computational outputs of this system determine the behavior and perception of every individual. Each brain cell expresses thousands of genes that dictate the cell's function and physiological properties. Therefore, deciphering the molecular expression of each cell is of great significance for understanding its characteristics and role in brain function. Additionally, the positional information of each cell can provide crucial insights into their involvement in local brain circuits. In this review, we briefly overview the principles of single-cell RNA sequencing and spatial transcriptomics, the potential issues and challenges in their data processing, and their applications in brain research. We further outline several promising directions in neuroscience that could be integrated with single-cell RNA sequencing, including neurodevelopment, the identification of novel brain microstructures, cognition and behavior, neuronal cell positioning, molecules and cells related to advanced brain functions, sleep-wake cycles/circadian rhythms, and computational modeling of brain function. We believe that the deep integration of these directions with single-cell and spatial RNA sequencing can contribute significantly to understanding the roles of individual cells or cell types in these specific functions, thereby making important contributions to addressing critical questions in those fields. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA in Disease and Development > RNA in Development RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pengxing Nie
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
163
|
Baghel MS, Burns GD, Tsapatsis M, Mallika AP, Cruz ALF, Cao T, Chen XK, Rosa IDL, Marx SR, Ye Y, Sun S, Li T, Wong PC. Depletion of TDP-43 exacerbates tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-mediated endoproteolysis of tau in a mouse model of Multiple Etiology Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600814. [PMID: 38979270 PMCID: PMC11230425 DOI: 10.1101/2024.06.26.600814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
TDP-43 proteinopathy, initially disclosed in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), coexists with tauopathy in a variety of neurodegenerative disorders, termed multiple etiology dementias (MEDs), including Alzheimer's Disease (AD). While such co-pathology of TDP-43 is strongly associated with worsened neurodegeneration and steeper cognitive decline, the pathogenic mechanism underlying the exacerbated neuron loss remains elusive. The loss of TDP-43 splicing repression that occurs in presymptomatic ALS-FTD individuals suggests that such early loss could facilitate the pathological conversion of tau to accelerate neuron loss. Here, we report that the loss of TDP-43 repression of cryptic exons in forebrain neurons (CaMKII-CreER;Tardbp f/f mice) is necessary to exacerbate tauopathy-dependent brain atrophy by sensitizing vulnerable neurons to caspase 3-dependent cleavage of endogenous tau to promote tauopathy. Corroborating this finding within the human context, we demonstrate that loss of TDP-43 function in iPSC-derived cortical neurons promotes early cryptic exon inclusion and subsequent caspase 3-mediated endoproteolysis of tau. Using a genetic approach to seed tauopathy in CaMKII-CreER;Tardbp f/f mice by expressing a four-repeat microtubule binding domain of human tau, we show that the amount of tau seed positively correlates with levels of caspase 3-cleaved tau. Importantly, we found that the vulnerability of hippocampal neurons to TDP-43 depletion is dependent on the amount of caspase 3-cleaved tau: from most vulnerable neurons in the CA2/3, followed by those in the dentate gyrus, to the least in CA1. Taken together, our findings strongly support the view that TDP-43 loss-of-function exacerbates tauopathy-dependent brain atrophy by increasing the sensitivity of vulnerable neurons to caspase 3-mediated endoproteolysis of tau, resulting in a greater degree of neurodegeneration in human disorders with co-pathologies of tau and TDP-43. Our work thus discloses novel mechanistic insights and therapeutic targets for human tauopathies harboring co-pathology of TDP-43 and provides a new MED model for testing therapeutic strategies.
Collapse
Affiliation(s)
- Meghraj S Baghel
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Grace D Burns
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Margarita Tsapatsis
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Aswathy Peethambaran Mallika
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Anna Lourdes F Cruz
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tianyu Cao
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Xiaoke K Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Isabel De La Rosa
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shaelyn R Marx
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Yingzhi Ye
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| | - Philip C Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 558, Baltimore, MD 21205, USA
| |
Collapse
|
164
|
von Maydell D, Wright S, Bonner JM, Staab C, Spitaleri A, Liu L, Pao PC, Yu CJ, Scannail AN, Li M, Boix CA, Mathys H, Leclerc G, Menchaca GS, Welch G, Graziosi A, Leary N, Samaan G, Kellis M, Tsai LH. Single-cell atlas of ABCA7 loss-of-function reveals impaired neuronal respiration via choline-dependent lipid imbalances. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.05.556135. [PMID: 38979214 PMCID: PMC11230156 DOI: 10.1101/2023.09.05.556135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid β -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.
Collapse
|
165
|
Choi JJ, Svaren J, Wang D. Single-cell multi-omics analysis reveals cooperative transcription factors for gene regulation in oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599799. [PMID: 38948852 PMCID: PMC11213031 DOI: 10.1101/2024.06.19.599799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oligodendrocytes are the myelinating cells within the central nervous system. Many oligodendrocyte genes have been associated with brain disorders. However, how transcription factors (TFs) cooperate for gene regulation in oligodendrocytes remains largely uncharacterized. To address this, we integrated scRNA-seq and scATAC-seq data to identify the cooperative TFs that co-regulate the target gene (TG) expression in oligodendrocytes. First, we identified co- binding TF pairs whose binding sites overlapped in oligodendrocyte-specific regulatory regions. Second, we trained a deep learning model to predict the expression level of each TG using the expression levels of co-binding TFs. Third, using the trained models, we computed the TF importance and TF-TF interaction scores for predicting TG expression by the Shapley interaction scores. We found that the co-binding TF pairs involving known important TF pairs for oligodendrocyte differentiation, such as SOX10-TCF12, SOX10-MYRF, and SOX10-OLIG2, exhibited significantly higher Shapley scores than others (t-test, p-value < 1e-4). Furthermore, we identified 153 oligodendrocyte-associated eQTLs that reside in oligodendrocyte-specific enhancers or promoters where their eGenes (TGs) are regulated by cooperative TFs, suggesting potential novel regulatory roles from genetic variants. We also experimentally validated some identified TF pairs such as SOX10-OLIG2 and SOX10-NKX2.2 by co-enrichment analysis, using ChIP-seq data from rat peripheral nerve.
Collapse
|
166
|
İş Ö, Wang X, Reddy JS, Min Y, Yilmaz E, Bhattarai P, Patel T, Bergman J, Quicksall Z, Heckman MG, Tutor-New FQ, Can Demirdogen B, White L, Koga S, Krause V, Inoue Y, Kanekiyo T, Cosacak MI, Nelson N, Lee AJ, Vardarajan B, Mayeux R, Kouri N, Deniz K, Carnwath T, Oatman SR, Lewis-Tuffin LJ, Nguyen T, Carrasquillo MM, Graff-Radford J, Petersen RC, Jr Jack CR, Kantarci K, Murray ME, Nho K, Saykin AJ, Dickson DW, Kizil C, Allen M, Ertekin-Taner N. Gliovascular transcriptional perturbations in Alzheimer's disease reveal molecular mechanisms of blood brain barrier dysfunction. Nat Commun 2024; 15:4758. [PMID: 38902234 PMCID: PMC11190273 DOI: 10.1038/s41467-024-48926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
To uncover molecular changes underlying blood-brain-barrier dysfunction in Alzheimer's disease, we performed single nucleus RNA sequencing in 24 Alzheimer's disease and control brains and focused on vascular and astrocyte clusters as main cell types of blood-brain-barrier gliovascular-unit. The majority of the vascular transcriptional changes were in pericytes. Of the vascular molecular targets predicted to interact with astrocytic ligands, SMAD3, upregulated in Alzheimer's disease pericytes, has the highest number of ligands including VEGFA, downregulated in Alzheimer's disease astrocytes. We validated these findings with external datasets comprising 4,730 pericyte and 150,664 astrocyte nuclei. Blood SMAD3 levels are associated with Alzheimer's disease-related neuroimaging outcomes. We determined inverse relationships between pericytic SMAD3 and astrocytic VEGFA in human iPSC and zebrafish models. Here, we detect vast transcriptome changes in Alzheimer's disease at the gliovascular-unit, prioritize perturbed pericytic SMAD3-astrocytic VEGFA interactions, and validate these in cross-species models to provide a molecular mechanism of blood-brain-barrier disintegrity in Alzheimer's disease.
Collapse
Affiliation(s)
- Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Joseph S Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Yuhao Min
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Elanur Yilmaz
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Prabesh Bhattarai
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Tulsi Patel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Michael G Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | | | - Birsen Can Demirdogen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Biomedical Engineering, TOBB University of Economics and Technology, Ankara, Turkey
| | - Launia White
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Vincent Krause
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Mehmet Ilyas Cosacak
- German Center for Neurodegenerative Diseases (DZNE) within Helmholtz Association, Dresden, Germany
| | - Nastasia Nelson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Annie J Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Badri Vardarajan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Kaancan Deniz
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Troy Carnwath
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Laura J Lewis-Tuffin
- Mayo Clinic Florida Cytometry and Cell Imaging Laboratory, Mayo Clinic, Jacksonville, FL, USA
| | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, USA
| | | | - Kejal Kantarci
- Mayo Clinic Alzheimer's Disease Research Center, Rochester, MN, USA
| | | | - Kwangsik Nho
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Caghan Kizil
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
167
|
Carraro C, Montgomery JV, Klimmt J, Paquet D, Schultze JL, Beyer MD. Tackling neurodegeneration in vitro with omics: a path towards new targets and drugs. Front Mol Neurosci 2024; 17:1414886. [PMID: 38952421 PMCID: PMC11215216 DOI: 10.3389/fnmol.2024.1414886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous and multifactorial, this process is further complicated by the fact that current experimental models only partially recapitulate the major phenotypes observed in humans. In such a scenario, multi-omic approaches have the potential to accelerate the identification of new or repurposed drugs against a multitude of the underlying mechanisms driving NDDs. One major advantage for the implementation of multi-omic approaches in the drug discovery process is that these overarching tools are able to disentangle disease states and model perturbations through the comprehensive characterization of distinct molecular layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. Because of recent advances increasing their affordability and scalability, the use of omics technologies to drive drug discovery is nascent, but rapidly expanding in the neuroscience field. Combined with increasingly advanced in vitro models, which particularly benefited from the introduction of human iPSCs, multi-omics are shaping a new paradigm in drug discovery for NDDs, from disease characterization to therapeutics prediction and experimental screening. In this review, we discuss examples, main advantages and open challenges in the use of multi-omic approaches for the in vitro discovery of targets and therapies against NDDs.
Collapse
Affiliation(s)
- Caterina Carraro
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jessica V. Montgomery
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| | - Julien Klimmt
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
| | - Marc D. Beyer
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
- PRECISE, Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases and the University of Bonn and West German Genome Center, Bonn, Germany
- Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE), Bonn, Germany
| |
Collapse
|
168
|
Gutta G, Mehta J, Kingston R, Xie J, Brenner E, Ma F, Herrup K. DNA Damage and Senescence in the Aging and Alzheimer's Disease Cortex Are Not Uniformly Distributed. Biomedicines 2024; 12:1327. [PMID: 38927534 PMCID: PMC11201767 DOI: 10.3390/biomedicines12061327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative illness with a typical age of onset exceeding 65 years of age. The age dependency of the condition led us to track the appearance of DNA damage in the frontal cortex of individuals who died with a diagnosis of AD. The focus on DNA damage was motivated by evidence that increasing levels of irreparable DNA damage are a major driver of the aging process. The connection between aging and the loss of genomic integrity is compelling because DNA damage has also been identified as a possible cause of cellular senescence. The number of senescent cells has been reported to increase with age, and their senescence-associated secreted products are likely contributing factors to age-related illnesses. We tracked DNA damage with 53BP1 and cellular senescence with p16 immunostaining of human post-mortem brain samples. We found that DNA damage was significantly increased in the BA9 region of the AD cortex compared with the same region in unaffected controls (UCs). In the AD but not UC cases, the density of cells with DNA damage increased with distance from the pia mater up to approximately layer V and then decreased in deeper areas. This pattern of DNA damage was overlaid with the pattern of cellular senescence, which also increased with cortical depth. On a cell-by-cell basis, we found that the intensities of the two markers were tightly linked in the AD but not the UC brain. To test whether DNA damage was a causal factor in the emergence of the senescence program, we used etoposide treatment to damage the DNA of cultured mouse primary neurons. While DNA damage increased after treatment, after 24 h, no change in the expression of senescence-associated markers was observed. Our work suggests that DNA damage and cellular senescence are both increased in the AD brain and increasingly coupled. We propose that in vivo, the relationship between the two age-related processes is more complex than previously thought.
Collapse
Affiliation(s)
- Gnanesh Gutta
- School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (G.G.)
| | - Jay Mehta
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Rody Kingston
- School of Medicine, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.K.); (K.H.)
| | - Jiaan Xie
- School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (G.G.)
| | - Eliana Brenner
- School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA; (G.G.)
| | - Fulin Ma
- School of Medicine, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.K.); (K.H.)
| | - Karl Herrup
- School of Medicine, Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15260, USA; (R.K.); (K.H.)
| |
Collapse
|
169
|
Wang C, Acosta D, McNutt M, Bian J, Ma A, Fu H, Ma Q. A single-cell and spatial RNA-seq database for Alzheimer's disease (ssREAD). Nat Commun 2024; 15:4710. [PMID: 38844475 PMCID: PMC11156951 DOI: 10.1038/s41467-024-49133-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Alzheimer's Disease (AD) pathology has been increasingly explored through single-cell and single-nucleus RNA-sequencing (scRNA-seq & snRNA-seq) and spatial transcriptomics (ST). However, the surge in data demands a comprehensive, user-friendly repository. Addressing this, we introduce a single-cell and spatial RNA-seq database for Alzheimer's disease (ssREAD). It offers a broader spectrum of AD-related datasets, an optimized analytical pipeline, and improved usability. The database encompasses 1,053 samples (277 integrated datasets) from 67 AD-related scRNA-seq & snRNA-seq studies, totaling 7,332,202 cells. Additionally, it archives 381 ST datasets from 18 human and mouse brain studies. Each dataset is annotated with details such as species, gender, brain region, disease/control status, age, and AD Braak stages. ssREAD also provides an analysis suite for cell clustering, identification of differentially expressed and spatially variable genes, cell-type-specific marker genes and regulons, and spot deconvolution for integrative analysis. ssREAD is freely available at https://bmblx.bmi.osumc.edu/ssread/ .
Collapse
Affiliation(s)
- Cankun Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Diana Acosta
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Megan McNutt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, FL, 32606, USA
| | - Anjun Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Hongjun Fu
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH, 43210, USA.
| | - Qin Ma
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
170
|
Almeida MC, Eger SJ, He C, Audouard M, Nikitina A, Glasauer SMK, Han D, Mejía-Cupajita B, Acosta-Uribe J, Villalba-Moreno ND, Littau JL, Elcheikhali M, Rivera EK, Carrettiero DC, Villegas-Lanau CA, Sepulveda-Falla D, Lopera F, Kosik KS. Single-nucleus RNA sequencing demonstrates an autosomal dominant Alzheimer's disease profile and possible mechanisms of disease protection. Neuron 2024; 112:1778-1794.e7. [PMID: 38417436 PMCID: PMC11156559 DOI: 10.1016/j.neuron.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024]
Abstract
Highly penetrant autosomal dominant Alzheimer's disease (ADAD) comprises a distinct disease entity as compared to the far more prevalent form of AD in which common variants collectively contribute to risk. The downstream pathways that distinguish these AD forms in specific cell types have not been deeply explored. We compared single-nucleus transcriptomes among a set of 27 cases divided among PSEN1-E280A ADAD carriers, sporadic AD, and controls. Autophagy genes and chaperones clearly defined the PSEN1-E280A cases compared to sporadic AD. Spatial transcriptomics validated the activation of chaperone-mediated autophagy genes in PSEN1-E280A. The PSEN1-E280A case in which much of the brain was spared neurofibrillary pathology and harbored a homozygous APOE3-Christchurch variant revealed possible explanations for protection from AD pathology including overexpression of LRP1 in astrocytes, increased expression of FKBP1B, and decreased PSEN1 expression in neurons. The unique cellular responses in ADAD and sporadic AD require consideration when designing clinical trials.
Collapse
Affiliation(s)
- Maria Camila Almeida
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | - Sarah J Eger
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Caroline He
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Morgane Audouard
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Arina Nikitina
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stella M K Glasauer
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Dasol Han
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Barbara Mejía-Cupajita
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia
| | - Nelson David Villalba-Moreno
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Megan Elcheikhali
- Department of Statistics and Applied Probability, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Daniel Carneiro Carrettiero
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Center for Natural and Humans Sciences, Federal University of ABC, Sao Bernardo do Campo, SP 09608020, Brazil
| | | | - Diego Sepulveda-Falla
- Molecular Neuropathology of Alzheimer's Disease, Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia.
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
171
|
Sampson MM, Morgan RK, Sloan SA, Bakulski KM. Single-cell investigation of lead toxicity from neurodevelopment to neurodegeneration: Current review and future opportunities. CURRENT OPINION IN TOXICOLOGY 2024; 38:100464. [PMID: 39086983 PMCID: PMC11290315 DOI: 10.1016/j.cotox.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Human exposure to the metal lead (Pb) is prevalent and associated with adverse neurodevelopmental and neurodegenerative outcomes. Pb disrupts normal brain function by inducing oxidative stress and neuroinflammation, altering cellular metabolism, and displacing essential metals. Prior studies on the molecular impacts of Pb have examined bulk tissues, which collapse information across all cell types, or in targeted cells, which are limited to cell autonomous effects. These approaches are unable to represent the complete biological implications of Pb exposure because the brain is a cooperative network of highly heterogeneous cells, with cellular diversity and proportions shifting throughout development, by brain region, and with disease. New technologies are necessary to investigate whether Pb and other environmental exposures alter cell composition in the brain and whether they cause molecular changes in a cell-type-specific manner. Cutting-edge, single-cell approaches now enable research resolving cell-type-specific effects from bulk tissues. This article reviews existing Pb neurotoxicology studies with genome-wide molecular signatures and provides a path forward for the field to implement single-cell approaches with practical recommendations.
Collapse
Affiliation(s)
- Maureen M Sampson
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Sloan
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
172
|
Lazarov O, Disouky A, Sanborn M, Mostafa M, Sabitha K, Schantz A, Kim N, Pawlowski S, Honer W, Bennett D, Zhou Y, Keene C, Maienschein-Cline M, Rehman J. A roadmap to human hippocampal neurogenesis in adulthood, aging and AD. RESEARCH SQUARE 2024:rs.3.rs-4469965. [PMID: 38854131 PMCID: PMC11160907 DOI: 10.21203/rs.3.rs-4469965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In the rodent, hippocampal neurogenesis plays critical roles in learning and memory1,2, is tightly regulated by inhibitory neurons3-7 and contributes to memory dysfunction in Alzheimer's disease (AD) mouse models8-10. In contrast, the mechanisms regulating neurogenesis in the adult human hippocampus, the dynamic shifts in the transcriptomic and epigenomic profiles in aging and AD and putative niche interactions within the cellular environment, remain largely unknown. Using single nuclei multi-omics of postmortem human hippocampi we map the molecular mechanisms of hippocampal neurogenesis across aging, cognitive decline, and AD neuropathology. Transcriptomic and epigenetic profiling of neural stem cells (NSCs), neuroblasts and immature neurons suggests that the earliest shift in the characteristics of neurogenesis takes place in NSCs in aging. Cognitive impairment was associated with changes in neuroblast profile. In AD, there was a widespread cessation of the transcription machinery in immature neurons, with robust downregulation of genes regulating ribosomal and mitochondrial function. Further, there was substantial loss of parvalbumin+ inhibitory neurons in the hippocampus in aging. The number of the rest of inhibitory neurons were reduced as a function of age and diagnosis. Notably, a similar system-level effect was observed between immature and inhibitory neurons in the transition from aging to AD, manifested by common molecular pathways that were ultimately lost in AD. The numbers of neuroblasts, immature and GABAergic neurons inversely correlated with extent of neuropathology. Using CellChat and NeuronChat, we inferred the ligands and receptors by which neurogenic cells communicate with their cellular environment. Loss of synaptic adhesion molecules and neurotransmitters, either sent or received by neurogenic cells, was observed in AD. Together, this study delineates the molecular mechanisms and dynamics of human neurogenesis, functional association with inhibitory neurons and a mechanism of hippocampal hyperexcitability in AD.
Collapse
Affiliation(s)
| | | | | | | | - K Sabitha
- The University of Illinois at Chicago
| | | | | | | | | | | | - Yi Zhou
- Institute of Neuroscience, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
173
|
Tang C, Sun Q, Zeng X, Yang X, Liu F, Zhao J, Shen Y, Liu B, Wen J, Li Y. Cell-type specific inference from bulk RNA-sequencing data by integrating single cell reference profiles via EPIC-unmix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.595514. [PMID: 38826297 PMCID: PMC11142188 DOI: 10.1101/2024.05.23.595514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cell type specific (CTS) analysis is essential to reveal biological insights obscured in bulk tissue data. However, single-cell (sc) or single-nuclei (sn) resolution data are still cost-prohibitive for large-scale samples. Thus, computational methods to perform deconvolution from bulk tissue data are highly valuable. We here present EPIC-unmix, a novel two-step empirical Bayesian method integrating reference sc/sn RNA-seq data and bulk RNA-seq data from target samples to enhance the accuracy of CTS inference. We demonstrate through comprehensive simulations across three tissues that EPIC-unmix achieved 4.6% - 109.8% higher accuracy compared to alternative methods. By applying EPIC-unmix to human bulk brain RNA-seq data from the ROSMAP and MSBB cohorts, we identified multiple genes differentially expressed between Alzheimer's disease (AD) cases versus controls in a CTS manner, including 57.4% novel genes not identified using similar sample size sc/snRNA-seq data, indicating the power of our in-silico approach. Among the 6-69% overlapping, 83%-100% are in consistent direction with those from sc/snRNA-seq data, supporting the reliability of our findings. EPIC-unmix inferred CTS expression profiles similarly empowers CTS eQTL analysis. Among the novel eQTLs, we highlight a microglia eQTL for AD risk gene AP3B2, obscured in bulk and missed by sc/snRNA-seq based eQTL analysis. The variant resides in a microglia-specific cCRE, forming chromatin loop with AP3B2 promoter region in microglia. Taken together, we believe EPIC-unmix will be a valuable tool to enable more powerful CTS analysis.
Collapse
Affiliation(s)
- Chenwei Tang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xinyue Zeng
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaoyu Yang
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Fei Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA; Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Bixiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
174
|
Kozlova A, Zhang S, Sudwarts A, Zhang H, Smirnou S, Sun X, Stephenson K, Zhao X, Jamison B, Ponnusamy M, He X, Pang ZP, Sanders AR, Bellen HJ, Thinakaran G, Duan J. Alzheimer's disease risk allele of PICALM causes detrimental lipid droplets in microglia. RESEARCH SQUARE 2024:rs.3.rs-4407146. [PMID: 38826437 PMCID: PMC11142308 DOI: 10.21203/rs.3.rs-4407146/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Despite genome-wide association studies of late-onset Alzheimer's disease (LOAD) having identified many genetic risk loci1-6, the underlying disease mechanisms remain largely unknown. Determining causal disease variants and their LOAD-relevant cellular phenotypes has been a challenge. Leveraging our approach for identifying functional GWAS risk variants showing allele-specific open chromatin (ASoC)7, we systematically identified putative causal LOAD risk variants in human induced pluripotent stem cells (iPSC)-derived neurons, astrocytes, and microglia (MG) and linked PICALM risk allele to a previously unappreciated MG-specific role of PICALM in lipid droplet (LD) accumulation. ASoC mapping uncovered functional risk variants for 26 LOAD risk loci, mostly MG-specific. At the MG-specific PICALM locus, the LOAD risk allele of rs10792832 reduced transcription factor (PU.1) binding and PICALM expression, impairing the uptake of amyloid beta (Aβ) and myelin debris. Interestingly, MG with PICALM risk allele showed transcriptional enrichment of pathways for cholesterol synthesis and LD formation. Genetic and pharmacological perturbations of MG further established a causal link between the reduced PICALM expression, LD accumulation, and phagocytosis deficits. Our work elucidates the selective LOAD vulnerability in microglia for the PICALM locus through detrimental LD accumulation, providing a neurobiological basis that can be exploited for developing novel clinical interventions.
Collapse
Affiliation(s)
- Alena Kozlova
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Ari Sudwarts
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Stanislau Smirnou
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xiaotong Sun
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Kimberly Stephenson
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Xiaojie Zhao
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Brendan Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Moorthi Ponnusamy
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xin He
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Zhiping P. Pang
- Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Alan R. Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gopal Thinakaran
- Byrd Alzheimer’s Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
175
|
Kim Y, Jeong M, Koh IG, Kim C, Lee H, Kim JH, Yurko R, Kim IB, Park J, Werling DM, Sanders SJ, An JY. CWAS-Plus: estimating category-wide association of rare noncoding variation from whole-genome sequencing data with cell-type-specific functional data. Brief Bioinform 2024; 25:bbae323. [PMID: 38966948 PMCID: PMC11224609 DOI: 10.1093/bib/bbae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024] Open
Abstract
Variants in cis-regulatory elements link the noncoding genome to human pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS), enhances noncoding variant analysis by integrating both whole-genome sequencing (WGS) and user-provided functional data. With simplified parameter settings and an efficient multiple testing correction method, CWAS-Plus conducts the CWAS workflow 50 times faster than CWAS, making it more accessible and user-friendly for researchers. Here, we used a single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type-specific enhancers and promoters. Examining autism spectrum disorder WGS data (n = 7280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease WGS data (n = 1087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale WGS data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Minwoo Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Chanhee Kim
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| | - Ronald Yurko
- Department of Statistics and Data Science, Carnegie Mellon University, 5000 Forbes Avenue, Squirrel Hill North, Pittsburgh, PA 15213, United States
| | - Il Bin Kim
- Department of Psychiatry, CHA Gangnam Medical Center, CHA University School of Medicine, 566 Nonhyon-ro, Gangnam-gu, Seoul 06135, Republic of Korea
| | - Jeongbin Park
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, 50612, Republic of Korea
| | - Donna M Werling
- Laboratory of Genetics, University of Wisconsin-Madison, 425-g Henry Mall, Madison, WI 53706, Unite States
| | - Stephan J Sanders
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine, University of Oxford, Old Road Campus, Roosevelt Dr, Headington, Oxford OX3 7TY, United Kingdom
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, 1651 4th Street, San Francisco, CA 94158, United States
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, 145 Anam-ro, Seongbuk-ku, Seoul 02841, Republic of Korea
| |
Collapse
|
176
|
Nguyen H, Nguyen H, Tran D, Draghici S, Nguyen T. Fourteen years of cellular deconvolution: methodology, applications, technical evaluation and outstanding challenges. Nucleic Acids Res 2024; 52:4761-4783. [PMID: 38619038 PMCID: PMC11109966 DOI: 10.1093/nar/gkae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-Seq) is a recent technology that allows for the measurement of the expression of all genes in each individual cell contained in a sample. Information at the single-cell level has been shown to be extremely useful in many areas. However, performing single-cell experiments is expensive. Although cellular deconvolution cannot provide the same comprehensive information as single-cell experiments, it can extract cell-type information from bulk RNA data, and therefore it allows researchers to conduct studies at cell-type resolution from existing bulk datasets. For these reasons, a great effort has been made to develop such methods for cellular deconvolution. The large number of methods available, the requirement of coding skills, inadequate documentation, and lack of performance assessment all make it extremely difficult for life scientists to choose a suitable method for their experiment. This paper aims to fill this gap by providing a comprehensive review of 53 deconvolution methods regarding their methodology, applications, performance, and outstanding challenges. More importantly, the article presents a benchmarking of all these 53 methods using 283 cell types from 30 tissues of 63 individuals. We also provide an R package named DeconBenchmark that allows readers to execute and benchmark the reviewed methods (https://github.com/tinnlab/DeconBenchmark).
Collapse
Affiliation(s)
- Hung Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | - Ha Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| | - Duc Tran
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sorin Draghici
- Department of Computer Science, Wayne State University, Detroit, MI, USA
- Advaita Bioinformatics, Ann Arbor, MI, USA
| | - Tin Nguyen
- Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
177
|
Wang S, Li B, Cai Z, Hugo C, Li J, Sun Y, Qian L, Remaley AT, Tcw J, Chui HC, Bennett DA, Arvanitakis Z, Kerman B, Yassine H. Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD. RESEARCH SQUARE 2024:rs.3.rs-4373201. [PMID: 38798644 PMCID: PMC11118681 DOI: 10.21203/rs.3.rs-4373201/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Cellular senescence is a hallmark of aging and has been implicated in Alzheimer's disease (AD) pathogenesis. Cholesterol accumulation drives cellular senescence; however, the underlying mechanisms are unclear. ATP-binding cassette transporter A1 (ABCA1) plays an important role in cholesterol homeostasis. ABCA1 expression and its trafficking is afiltered in APOE4 and AD cellular and mouse models. However, whether ABCA1 trafficking is involved in cellular senescence in APOE4 and AD remains unknown. Methods We examined the association between cellular senescence and ABCA1 expression in human postmortem brain samples using transcriptomic, histological, and biochemical analyses. An unbiased proteomic screening was performed to identify targets that mediate cellular ABCA1 trafficking. APOE4-TR mice, immortalized, primary and induced pluripotent stem cell (iPSC) models were used to examine the cholesterol-ABCA1-senescence pathways. Results Bulk and single nuclei transcriptomic profiling of the human dorsolateral prefrontal cortex from the Religious Order Study/Memory Aging Project (ROSMAP) revealed upregulation of cellular senescence transcriptome signatures in AD, which was strongly correlated with ABCA1 expression. Immunofluorescence and immunoblotting analyses confirmed increased ABCA1 expression in AD brain tissues, which was associated with lipofuscin-stained lipids and mTOR phosphorylation. Using discovery proteomics, caveolin-1, a sensor of cellular cholesterol accumulation, was identified to promote ABCA1 endolysosomal trafficking. Greater caveolin-1 expression was found in both APOE4-TR mouse models and AD human brains. Cholesterol induced mTORC1 activation was regulated by ABCA1 expression or its lysosomal trapping. Reducing cholesterol by cyclodextrin in APOE4-TR mice reduced ABCA1 lysosome trapping and increased ABCA1 recycling to efflux cholesterol to HDL particles, reducing mTORC1 activation and senescence-associated neuroinflammation. In human iPSC-derived astrocytes, the reduction of cholesterol by cyclodextrin attenuated inflammatory responses. Conclusions Cholesterol accumulation in APOE4 and AD induced caveolin-1 expression, which traps ABCA1 in lysosomes to activate mTORC1 pathways and induce cellular senescence. This study provided novel insights into how cholesterol accumulation in APOE4 and AD accelerates senescence.
Collapse
Affiliation(s)
| | | | | | | | - Jie Li
- University of Southern California
| | - Yi Sun
- University of Southern California
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Gouveia Roque C, Phatnani H, Hengst U. The broken Alzheimer's disease genome. CELL GENOMICS 2024; 4:100555. [PMID: 38697121 PMCID: PMC11099344 DOI: 10.1016/j.xgen.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/25/2024] [Accepted: 04/07/2024] [Indexed: 05/04/2024]
Abstract
The complex pathobiology of late-onset Alzheimer's disease (AD) poses significant challenges to therapeutic and preventative interventions. Despite these difficulties, genomics and related disciplines are allowing fundamental mechanistic insights to emerge with clarity, particularly with the introduction of high-resolution sequencing technologies. After all, the disrupted processes at the interface between DNA and gene expression, which we call the broken AD genome, offer detailed quantitative evidence unrestrained by preconceived notions about the disease. In addition to highlighting biological pathways beyond the classical pathology hallmarks, these advances have revitalized drug discovery efforts and are driving improvements in clinical tools. We review genetic, epigenomic, and gene expression findings related to AD pathogenesis and explore how their integration enables a better understanding of the multicellular imbalances contributing to this heterogeneous condition. The frontiers opening on the back of these research milestones promise a future of AD care that is both more personalized and predictive.
Collapse
Affiliation(s)
- Cláudio Gouveia Roque
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA; Department of Neurology, Center for Translational and Computational Neuroimmunology, Columbia University, New York, NY 10032, USA
| | - Ulrich Hengst
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
179
|
Ramirez Flores RO, Schäfer PSL, Küchenhoff L, Saez-Rodriguez J. Complementing Cell Taxonomies with a Multicellular Analysis of Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38319138 DOI: 10.1152/physiol.00001.2024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024] Open
Abstract
The application of single-cell molecular profiling coupled with spatial technologies has enabled charting of cellular heterogeneity in reference tissues and in disease. This new wave of molecular data has highlighted the expected diversity of single-cell dynamics upon shared external queues and spatial organizations. However, little is known about the relationship between single-cell heterogeneity and the emergence and maintenance of robust multicellular processes in developed tissues and its role in (patho)physiology. Here, we present emerging computational modeling strategies that use increasingly available large-scale cross-condition single-cell and spatial datasets to study multicellular organization in tissues and complement cell taxonomies. This perspective should enable us to better understand how cells within tissues collectively process information and adapt synchronized responses in disease contexts and to bridge the gap between structural changes and functions in tissues.
Collapse
Affiliation(s)
- Ricardo Omar Ramirez Flores
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Sven Lars Schäfer
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Leonie Küchenhoff
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Heidelberg University and Institute for Computational Biomedicine, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
180
|
Kampmann M. Molecular and cellular mechanisms of selective vulnerability in neurodegenerative diseases. Nat Rev Neurosci 2024; 25:351-371. [PMID: 38575768 DOI: 10.1038/s41583-024-00806-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
The selective vulnerability of specific neuronal subtypes is a hallmark of neurodegenerative diseases. In this Review, I summarize our current understanding of the brain regions and cell types that are selectively vulnerable in different neurodegenerative diseases and describe the proposed underlying cell-autonomous and non-cell-autonomous mechanisms. I highlight how recent methodological innovations - including single-cell transcriptomics, CRISPR-based screens and human cell-based models of disease - are enabling new breakthroughs in our understanding of selective vulnerability. An understanding of the molecular mechanisms that determine selective vulnerability and resilience would shed light on the key processes that drive neurodegeneration and point to potential therapeutic strategies to protect vulnerable cell populations.
Collapse
Affiliation(s)
- Martin Kampmann
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
181
|
Gaur P, Bryois J, Calini D, Foo L, Hoozemans JJM, Malhotra D, Menon V. Single-nucleus and spatial transcriptomic profiling of human temporal cortex and white matter reveals novel associations with AD pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590816. [PMID: 38712204 PMCID: PMC11071354 DOI: 10.1101/2024.04.23.590816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with complex pathological manifestations and is the leading cause of cognitive decline and dementia in elderly individuals. A major goal in AD research is to identify new therapeutic pathways by studying the molecular and cellular changes in the disease, either downstream or upstream of the pathological hallmarks. In this study, we present a comprehensive investigation of cellular heterogeneity from the temporal cortex region of 40 individuals, comprising healthy donors and individuals with differing tau and amyloid burden. Using single-nucleus transcriptome analysis of 430,271 nuclei from both gray and white matter of these individuals, we identified cell type-specific subclusters in both neuronal and glial cell types with varying degrees of association with AD pathology. In particular, these associations are present in layer specific glutamatergic (excitatory) neuronal types, along with GABAergic (inhibitory) neurons and glial subtypes. These associations were observed in early as well as late pathological progression. We extended this analysis by performing multiplexed in situ hybridization using the CARTANA platform, capturing 155 genes in 13 individuals with varying levels of tau pathology. By modeling the spatial distribution of these genes and their associations with the pathology, we not only replicated key findings from our snRNA data analysis, but also identified a set of cell type-specific genes that show selective enrichment or depletion near pathological inclusions. Together, our findings allow us to prioritize specific cell types and pathways for targeted interventions at various stages of pathological progression in AD.
Collapse
Affiliation(s)
- Pallavi Gaur
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, NY, USA
| | - Julien Bryois
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, CH-4070, Basel, Switzerland
| | - Daniela Calini
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, CH-4070, Basel, Switzerland
| | - Lynette Foo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, CH-4070, Basel, Switzerland
| | - Jeroen J M Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Dheeraj Malhotra
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, CH-4070, Basel, Switzerland
- MS Research Unit, Biogen, Cambridge, MA, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, NY, USA
| |
Collapse
|
182
|
de Vries LE, Jongejan A, Monteiro Fortes J, Balesar R, Rozemuller AJM, Moerland PD, Huitinga I, Swaab DF, Verhaagen J. Gene-expression profiling of individuals resilient to Alzheimer's disease reveals higher expression of genes related to metallothionein and mitochondrial processes and no changes in the unfolded protein response. Acta Neuropathol Commun 2024; 12:68. [PMID: 38664739 PMCID: PMC11046840 DOI: 10.1186/s40478-024-01760-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/10/2024] [Indexed: 04/28/2024] Open
Abstract
Some individuals show a discrepancy between cognition and the amount of neuropathological changes characteristic for Alzheimer's disease (AD). This phenomenon has been referred to as 'resilience'. The molecular and cellular underpinnings of resilience remain poorly understood. To obtain an unbiased understanding of the molecular changes underlying resilience, we investigated global changes in gene expression in the superior frontal gyrus of a cohort of cognitively and pathologically well-defined AD patients, resilient individuals and age-matched controls (n = 11-12 per group). 897 genes were significantly altered between AD and control, 1121 between resilient and control and 6 between resilient and AD. Gene set enrichment analysis (GSEA) revealed that the expression of metallothionein (MT) and of genes related to mitochondrial processes was higher in the resilient donors. Weighted gene co-expression network analysis (WGCNA) identified gene modules related to the unfolded protein response, mitochondrial processes and synaptic signaling to be differentially associated with resilience or dementia. As changes in MT, mitochondria, heat shock proteins and the unfolded protein response (UPR) were the most pronounced changes in the GSEA and/or WGCNA, immunohistochemistry was used to further validate these processes. MT was significantly increased in astrocytes in resilient individuals. A higher proportion of the mitochondrial gene MT-CO1 was detected outside the cell body versus inside the cell body in the resilient compared to the control group and there were higher levels of heat shock protein 70 (HSP70) and X-box-binding protein 1 spliced (XBP1s), two proteins related to heat shock proteins and the UPR, in the AD donors. Finally, we show evidence for putative sex-specific alterations in resilience, including gene expression differences related to autophagy in females compared to males. Taken together, these results show possible mechanisms involving MTs, mitochondrial processes and the UPR by which individuals might maintain cognition despite the presence of AD pathology.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | - Aldo Jongejan
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Jennifer Monteiro Fortes
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Rawien Balesar
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, Amsterdam UMC - Location VUmc, Amsterdam, The Netherlands
| | - Perry D Moerland
- Amsterdam UMC Location University of Amsterdam, Epidemiology and Data Science, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity, Inflammatory Diseases, Amsterdam, The Netherlands
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
183
|
Li M, Flack N, Larsen PA. Multifaceted impact of specialized neuropeptide-intensive neurons on the selective vulnerability in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.13.566905. [PMID: 38014130 PMCID: PMC10680689 DOI: 10.1101/2023.11.13.566905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Widespread disruption of neuropeptide (NP) networks in Alzheimer's disease (AD) and disproportionate absence of neurons expressing high NP-producing, coined as HNP neurons, have been reported for the entorhinal cortex (EC) of AD brains. Hypothesizing that functional features of HNP neurons are involved in the early pathogenesis of AD, we aim to understand the molecular mechanisms underlying these observations. METHODS Multiscale and spatiotemporal transcriptomic analysis was used to investigate AD-afflicted and healthy brains. Our focus encompassed NP expression dynamics in AD, AD-associated NPs (ADNPs) trajectories with aging, and the neuroanatomical distribution of HNP neuron. RESULTS Findings include that 1) HNP neurons exhibited heightened metabolic needs and an upregulation of gene expressions linked to protein misfolding; 2) dysfunctions of ADNP production occurred in aging and mild cognitive decline; 3) HNP neurons co-expressing ADNPs were preferentially distributed in brain regions susceptible to AD. DISCUSSION We identified potential mechanisms that contribute to the selective vulnerability of HNP neurons to AD. Our results indicate that the functions of HNP neurons predispose them to oxidative stress and protein misfolding, potentially serving as inception sites for misfolded proteins in AD.
Collapse
Affiliation(s)
- Manci Li
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul MN 55108
| | - Nichole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul MN 55108
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108
- Minnesota Center for Prion Research and Outreach, College of Veterinary Medicine, University of Minnesota, St. Paul MN 55108
| |
Collapse
|
184
|
Kim Y, Jeong M, Koh IG, Kim C, Lee H, Kim JH, Yurko R, Kim IB, Park J, Werling DM, Sanders SJ, An JY. CWAS-Plus: Estimating category-wide association of rare noncoding variation from whole-genome sequencing data with cell-type-specific functional data. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.15.24305828. [PMID: 38699372 PMCID: PMC11065022 DOI: 10.1101/2024.04.15.24305828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Variants in cis-regulatory elements link the noncoding genome to human brain pathology; however, detailed analytic tools for understanding the association between cell-level brain pathology and noncoding variants are lacking. CWAS-Plus, adapted from a Python package for category-wide association testing (CWAS) employs both whole-genome sequencing and user-provided functional data to enhance noncoding variant analysis, with a faster and more efficient execution of the CWAS workflow. Here, we used single-nuclei assay for transposase-accessible chromatin with sequencing to facilitate CWAS-guided noncoding variant analysis at cell-type specific enhancers and promoters. Examining autism spectrum disorder whole-genome sequencing data (n = 7,280), CWAS-Plus identified noncoding de novo variant associations in transcription factor binding sites within conserved loci. Independently, in Alzheimer's disease whole-genome sequencing data (n = 1,087), CWAS-Plus detected rare noncoding variant associations in microglia-specific regulatory elements. These findings highlight CWAS-Plus's utility in genomic disorders and scalability for processing large-scale whole-genome sequencing data and in multiple-testing corrections. CWAS-Plus and its user manual are available at https://github.com/joonan-lab/cwas/ and https://cwas-plus.readthedocs.io/en/latest/, respectively.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Minwoo Jeong
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - In Gyeong Koh
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Chanhee Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeji Lee
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Hyun Kim
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Ronald Yurko
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Il Bin Kim
- Department of Psychiatry, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, 06135, Republic of Korea
| | - Jeongbin Park
- School of Biomedical Convergence Engineering, Pusan National University, Busan, 50612, Republic of Korea
| | - Donna M. Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Stephan J. Sanders
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics, University of Oxford, Oxford, OX3 7TY, UK
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94158, USA
| | - Joon-Yong An
- Department of Integrated Biomedical and Life Science, Korea University, Seoul, 02841, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, 02841, Republic of Korea
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
185
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
186
|
Morgan GR, Carlyle BC. Interrogation of the human cortical peptidome uncovers cell-type specific signatures of cognitive resilience against Alzheimer's disease. Sci Rep 2024; 14:7161. [PMID: 38531951 DOI: 10.1038/s41598-024-57104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterised by age-related cognitive decline. Brain accumulation of amyloid-β plaques and tau tangles is required for a neuropathological AD diagnosis, yet up to one-third of AD-pathology positive community-dwelling elderly adults experience no symptoms of cognitive decline during life. Conversely, some exhibit chronic cognitive impairment in absence of measurable neuropathology, prompting interest into cognitive resilience-retained cognition despite significant neuropathology-and cognitive frailty-impaired cognition despite low neuropathology. Synapse loss is widespread within the AD-dementia, but not AD-resilient, brain. Recent evidence points towards critical roles for synaptic proteins, such as neurosecretory VGF, in cognitive resilience. However, VGF and related proteins often signal as peptide derivatives. Here, nontryptic peptidomic mass spectrometry was performed on 102 post-mortem cortical samples from individuals across cognitive and neuropathological spectra. Neuropeptide signalling proteoforms derived from VGF, somatostatin (SST) and protachykinin-1 (TAC1) showed higher abundance in AD-resilient than AD-dementia brain, whereas signalling proteoforms of cholecystokinin (CCK) and chromogranin (CHG) A/B and multiple cytoskeletal molecules were enriched in frail vs control brain. Integrating our data with publicly available single nuclear RNA sequencing (snRNA-seq) showed enrichment of cognition-related genes in defined cell-types with established links to cognitive resilience, including SST interneurons and excitatory intratelencephalic cells.
Collapse
Affiliation(s)
- G R Morgan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK
| | - B C Carlyle
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
187
|
Edwards GA, Wood CA, He Y, Nguyen Q, Kim PJ, Gomez-Gutierrez R, Park KW, Xu Y, Zurhellen C, Al-Ramahi I, Jankowsky JL. TMEM106B coding variant is protective and deletion detrimental in a mouse model of tauopathy. Acta Neuropathol 2024; 147:61. [PMID: 38526616 DOI: 10.1007/s00401-024-02701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/07/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
TMEM106B is a risk modifier of multiple neurological conditions, where a single coding variant and multiple non-coding SNPs influence the balance between susceptibility and resilience. Two key questions that emerge from past work are whether the lone T185S coding variant contributes to protection, and if the presence of TMEM106B is helpful or harmful in the context of disease. Here, we address both questions while expanding the scope of TMEM106B study from TDP-43 to models of tauopathy. We generated knockout mice with constitutive deletion of TMEM106B, alongside knock-in mice encoding the T186S knock-in mutation (equivalent to the human T185S variant), and crossed both with a P301S transgenic tau model to study how these manipulations impacted disease phenotypes. We found that TMEM106B deletion accelerated cognitive decline, hind limb paralysis, tau pathology, and neurodegeneration. TMEM106B deletion also increased transcriptional correlation with human AD and the functional pathways enriched in KO:tau mice aligned with those of AD. In contrast, the coding variant protected against tau-associated cognitive decline, synaptic impairment, neurodegeneration, and paralysis without affecting tau pathology. Our findings reveal that TMEM106B is a critical safeguard against tau aggregation, and that loss of this protein has a profound effect on sequelae of tauopathy. Our study further demonstrates that the coding variant is functionally relevant and contributes to neuroprotection downstream of tau pathology to preserve cognitive function.
Collapse
Affiliation(s)
- George A Edwards
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Caleb A Wood
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yang He
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Quynh Nguyen
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Peter J Kim
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Ruben Gomez-Gutierrez
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Kyung-Won Park
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA
| | - Yong Xu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
- Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Cody Zurhellen
- NeuroScience Associates, 10915 Lake Ridge Drive, Knoxville, TN, 37934, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Joanna L Jankowsky
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Mail Stop BCM295, Houston, TX, 77030, USA.
- Department of Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
188
|
Neuron migration to brain regions key to memory and navigation continues into childhood. Nature 2024:10.1038/d41586-024-00054-3. [PMID: 38509300 DOI: 10.1038/d41586-024-00054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
|
189
|
Park YJ, Lu TC, Jackson T, Goodman LD, Ran L, Chen J, Liang CY, Harrison E, Ko C, Hsu AL, Yamamoto S, Qi Y, Bellen HJ, Li H. Whole organism snRNA-seq reveals systemic peripheral changes in Alzheimer's Disease fly models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584317. [PMID: 38559164 PMCID: PMC10979927 DOI: 10.1101/2024.03.10.584317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Peripheral tissues become disrupted in Alzheimer's Disease (AD). However, a comprehensive understanding of how the expression of AD-associated toxic proteins, Aβ42 and Tau, in neurons impacts the periphery is lacking. Using Drosophila, a prime model organism for studying aging and neurodegeneration, we generated the Alzheimer's Disease Fly Cell Atlas (AD-FCA): whole-organism single-nucleus transcriptomes of 219 cell types from adult flies neuronally expressing human Aβ42 or Tau. In-depth analyses and functional data reveal impacts on peripheral sensory neurons by Aβ42 and on various non-neuronal peripheral tissues by Tau, including the gut, fat body, and reproductive system. This novel AD atlas provides valuable insights into potential biomarkers and the intricate interplay between the nervous system and peripheral tissues in response to AD-associated proteins.
Collapse
Affiliation(s)
- Ye-Jin Park
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tyler Jackson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lindsey Ran
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaye Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chung-Yi Liang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Erin Harrison
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Ko
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ao-Lin Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI 28109, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
190
|
Screven LA, Pantazis CB, Andersh KM, Hong S, Vitale D, Lara E, Ku RY, Heutink P, Meyer J, Faber K, Nho K, Saykin AJ, Foroud TM, Nalls MA, Blauwendraat C, Singleton A, Narayan PS. Harnessing diversity to study Alzheimer's disease: A new iPSC resource from the NIH CARD and ADNI. Neuron 2024; 112:694-697. [PMID: 38387456 PMCID: PMC11290345 DOI: 10.1016/j.neuron.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
The iDA Project (iPSCs to Study Diversity in Alzheimer's and Alzheimer's Disease-related Dementias) is generating 200 induced pluripotent stem cell lines from Alzheimer's Disease Neuroimaging Initiative participants. These lines are sex balanced, include common APOE genotypes, span disease stages, and are ancestrally diverse. Cell lines and characterization data will be shared openly.
Collapse
Affiliation(s)
- Laurel A Screven
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Caroline B Pantazis
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Katherine M Andersh
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Samantha Hong
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Dan Vitale
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; DataTecnica LLC, Washington, DC, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Erika Lara
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ray Yueh Ku
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Jason Meyer
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kelley Faber
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kwangsik Nho
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tatiana M Foroud
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; DataTecnica LLC, Washington, DC, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Priyanka S Narayan
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
191
|
Sun MK, Alkon DL. Alzheimer's therapeutic development: shifting neurodegeneration to neuroregeneration. Trends Pharmacol Sci 2024; 45:197-209. [PMID: 38360510 PMCID: PMC10939773 DOI: 10.1016/j.tips.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Alzheimer's disease (AD), similar to AD-related dementias, is characterized by impaired/lost neuronal structures and functions due to a long progression of neurodegeneration. Derailed endogenous signal pathways and disease processes have critical roles in neurodegeneration and are pharmacological targets in inducing neuroregeneration. Pharmacologically switching/shifting the brain status from neurodegeneration to neuroregeneration is emerging as a new therapeutic concept, one that is not only achievable, but also essential for effective therapy for AD. The results of the pharmacological-induced shift from neurodegeneration to neuroregeneration are twofold: arresting cognitive deterioration (and directing the brain toward cognitive recovery) in established AD, and preventing neurodegeneration through building up cognitive resilience in patients with preclinical or probable AD. In this review, we discuss these new developments in AD pharmacology and relevant clinical trials.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Synaptogenix, Inc., 1185 Avenue of the Americas, 3rd Floor, New York, NY 10036, USA.
| | - Daniel L Alkon
- Synaptogenix, Inc., 1185 Avenue of the Americas, 3rd Floor, New York, NY 10036, USA
| |
Collapse
|
192
|
Kotah JM, Kater MSJ, Brosens N, Lesuis SL, Tandari R, Blok TM, Marchetto L, Yusaf E, Koopmans FTW, Smit AB, Lucassen PJ, Krugers HJ, Verheijen MHG, Korosi A. Early-life stress and amyloidosis in mice share pathogenic pathways involving synaptic mitochondria and lipid metabolism. Alzheimers Dement 2024; 20:1637-1655. [PMID: 38055782 PMCID: PMC10984508 DOI: 10.1002/alz.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
INTRODUCTION Early-life stress (ES) increases the risk for Alzheimer's disease (AD). We and others have shown that ES aggravates amyloid-beta (Aβ) pathology and promotes cognitive dysfunction in APP/PS1 mice, but underlying mechanisms remain unclear. METHODS We studied how ES affects the hippocampal synaptic proteome in wild-type (WT) and APP/PS1 mice at early and late pathological stages, and validated hits using electron microscopy and immunofluorescence. RESULTS The hippocampal synaptosomes of both ES-exposed WT and early-stage APP/PS1 mice showed a relative decrease in actin dynamics-related proteins and a relative increase in mitochondrial proteins. ES had minimal effects on older WT mice, while strongly affecting the synaptic proteome of advanced stage APP/PS1 mice, particularly the expression of astrocytic and mitochondrial proteins. DISCUSSION Our data show that ES and amyloidosis share pathogenic pathways involving synaptic mitochondrial dysfunction and lipid metabolism, which may underlie the observed impact of ES on the trajectory of AD.
Collapse
Affiliation(s)
- Janssen M. Kotah
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mandy S. J. Kater
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Niek Brosens
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Roberta Tandari
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Thomas M. Blok
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Luca Marchetto
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ella Yusaf
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Frank T. W. Koopmans
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - August B. Smit
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Paul J. Lucassen
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Harm J. Krugers
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular NeurobiologyCenter for Neurogenomics and Cognitive ResearchAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Aniko Korosi
- Brain Plasticity GroupSwammerdam Institute for Life Sciences – Center for NeuroscienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
193
|
Chandrashekar H, Simandi Z, Choi H, Ryu HS, Waldman AJ, Nikish A, Muppidi SS, Gong W, Paquet D, Phillips-Cremins JE. A multi-looping chromatin signature predicts dysregulated gene expression in neurons with familial Alzheimer's disease mutations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582395. [PMID: 38463966 PMCID: PMC10925341 DOI: 10.1101/2024.02.27.582395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Mammalian genomes fold into tens of thousands of long-range loops, but their functional role and physiologic relevance remain poorly understood. Here, using human post-mitotic neurons with rare familial Alzheimer's disease (FAD) mutations, we identify hundreds of reproducibly dysregulated genes and thousands of miswired loops prior to amyloid accumulation and tau phosphorylation. Single loops do not predict expression changes; however, the severity and direction of change in mRNA levels and single-cell burst frequency strongly correlate with the number of FAD-gained or -lost promoter-enhancer loops. Classic architectural proteins CTCF and cohesin do not change occupancy in FAD-mutant neurons. Instead, we unexpectedly find TAATTA motifs amenable to binding by DLX homeodomain transcription factors and changing noncoding RNAPolII signal at FAD-dynamic promoter-enhancer loops. DLX1/5/6 mRNA levels are strongly upregulated in FAD-mutant neurons coincident with a shift in excitatory-to-inhibitory gene expression and miswiring of multi-loops connecting enhancers to neural subtype genes. DLX1 overexpression is sufficient for loop miswiring in wildtype neurons, including lost and gained loops at enhancers with tandem TAATTA arrays and singular TAATTA motifs, respectively. Our data uncover a genome structure-function relationship between multi-loop miswiring and dysregulated excitatory and inhibitory transcriptional programs during lineage commitment of human neurons homozygously-engineered with rare FAD mutations.
Collapse
Affiliation(s)
- Harshini Chandrashekar
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Heesun Choi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Han-Seul Ryu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Abraham J Waldman
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Alexandria Nikish
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Srikar S Muppidi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Wanfeng Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| | - Dominik Paquet
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
194
|
Nascimento MA, Biagiotti S, Herranz-Pérez V, Santiago S, Bueno R, Ye CJ, Abel TJ, Zhang Z, Rubio-Moll JS, Kriegstein AR, Yang Z, Garcia-Verdugo JM, Huang EJ, Alvarez-Buylla A, Sorrells SF. Protracted neuronal recruitment in the temporal lobes of young children. Nature 2024; 626:1056-1065. [PMID: 38122823 PMCID: PMC10901738 DOI: 10.1038/s41586-023-06981-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.
Collapse
Affiliation(s)
- Marcos Assis Nascimento
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| | - Sean Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot, Spain
| | - Samara Santiago
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neuroscience Graduate Training Program, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition at the University of Pittsburgh, Pittsburgh, PA, USA
| | - Raymund Bueno
- Institute of Human Genetics, University of California, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Chun J Ye
- Institute of Human Genetics, University of California, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Institute of Computational Health Sciences, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juan S Rubio-Moll
- Servicio de Obstetricia, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Institute Cavanilles, University of Valencia, CIBERNED, Valencia, Spain
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Arturo Alvarez-Buylla
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neuroscience Graduate Training Program, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition at the University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
195
|
Blumenfeld J, Yip O, Kim MJ, Huang Y. Cell type-specific roles of APOE4 in Alzheimer disease. Nat Rev Neurosci 2024; 25:91-110. [PMID: 38191720 PMCID: PMC11073858 DOI: 10.1038/s41583-023-00776-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
The ɛ4 allele of the apolipoprotein E gene (APOE), which translates to the APOE4 isoform, is the strongest genetic risk factor for late-onset Alzheimer disease (AD). Within the CNS, APOE is produced by a variety of cell types under different conditions, posing a challenge for studying its roles in AD pathogenesis. However, through powerful advances in research tools and the use of novel cell culture and animal models, researchers have recently begun to study the roles of APOE4 in AD in a cell type-specific manner and at a deeper and more mechanistic level than ever before. In particular, cutting-edge omics studies have enabled APOE4 to be studied at the single-cell level and have allowed the identification of critical APOE4 effects in AD-vulnerable cellular subtypes. Through these studies, it has become evident that APOE4 produced in various types of CNS cell - including astrocytes, neurons, microglia, oligodendrocytes and vascular cells - has diverse roles in AD pathogenesis. Here, we review these scientific advances and propose a cell type-specific APOE4 cascade model of AD. In this model, neuronal APOE4 emerges as a crucial pathological initiator and driver of AD pathogenesis, instigating glial responses and, ultimately, neurodegeneration. In addition, we provide perspectives on future directions for APOE4 research and related therapeutic developments in the context of AD.
Collapse
Affiliation(s)
- Jessica Blumenfeld
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Oscar Yip
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Min Joo Kim
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone Center for Translational Advancement, Gladstone Institutes, San Francisco, CA, USA.
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
196
|
Zhou J, Weinberger DR, Han S. Deep learning predicts DNA methylation regulatory variants in specific brain cell types and enhances fine mapping for brain disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576319. [PMID: 38293210 PMCID: PMC10827166 DOI: 10.1101/2024.01.18.576319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
DNA methylation (DNAm) is essential for brain development and function and potentially mediates the effects of genetic risk variants underlying brain disorders. We present INTERACT, a transformer-based deep learning model to predict regulatory variants impacting DNAm levels in specific brain cell types, leveraging existing single-nucleus DNAm data from the human brain. We show that INTERACT accurately predicts cell type-specific DNAm profiles, achieving an average area under the Receiver Operating Characteristic curve of 0.98 across cell types. Furthermore, INTERACT predicts cell type-specific DNAm regulatory variants, which reflect cellular context and enrich the heritability of brain-related traits in relevant cell types. Importantly, we demonstrate that incorporating predicted variant effects and DNAm levels of CpG sites enhances the fine mapping for three brain disorders-schizophrenia, depression, and Alzheimer's disease-and facilitates mapping causal genes to particular cell types. Our study highlights the power of deep learning in identifying cell type-specific regulatory variants, which will enhance our understanding of the genetics of complex traits.
Collapse
Affiliation(s)
- Jiyun Zhou
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21287, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shizhong Han
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
197
|
Tayran H, Yilmaz E, Bhattarai P, Min Y, Wang X, Ma Y, Nelson N, Kassara N, Cosacak MI, Dogru RM, Reyes-Dumeyer D, Reddy JS, Qiao M, Flaherty D, Teich AF, Gunasekaran TI, Yang Z, Tosto G, Vardarajan BN, İş Ö, Ertekin-Taner N, Mayeux R, Kizil C. ABCA7-dependent Neuropeptide-Y signalling is a resilience mechanism required for synaptic integrity in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573893. [PMID: 38260408 PMCID: PMC10802315 DOI: 10.1101/2024.01.02.573893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aβ42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience. Abstract Figure
Collapse
|
198
|
Das S. Omics Approaches in Alzheimer's Disease Research. J Alzheimers Dis 2024; 99:S183-S185. [PMID: 38640162 DOI: 10.3233/jad-240272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Affiliation(s)
- Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
199
|
Reive BS, Lau V, Sánchez-Lafuente CL, Henri-Bhargava A, Kalynchuk LE, Tremblay MÈ, Caruncho HJ. The Inflammation-Induced Dysregulation of Reelin Homeostasis Hypothesis of Alzheimer's Disease. J Alzheimers Dis 2024; 100:1099-1119. [PMID: 38995785 PMCID: PMC11380287 DOI: 10.3233/jad-240088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Alzheimer's disease (AD) accounts for most dementia cases, but we lack a complete understanding of the mechanisms responsible for the core pathology associated with the disease (e.g., amyloid plaque and neurofibrillary tangles). Inflammation has been identified as a key contributor of AD pathology, with recent evidence pointing towards Reelin dysregulation as being associated with inflammation. Here we describe Reelin signaling and outline existing research involving Reelin signaling in AD and inflammation. Research is described pertaining to the inflammatory and immunological functions of Reelin before we propose a mechanism through which inflammation renders Reelin susceptible to dysregulation resulting in the induction and exacerbation of AD pathology. Based on this hypothesis, it is predicted that disorders of both inflammation (including peripheral inflammation and neuroinflammation) and Reelin dysregulation (including disorders associated with upregulated Reelin expression and disorders of Reelin downregulation) have elevated risk of developing AD. We conclude with a description of AD risk in various disorders involving Reelin dysregulation and inflammation.
Collapse
Affiliation(s)
- Brady S Reive
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Victor Lau
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexandre Henri-Bhargava
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Vancouver Island Health Authority, Victoria, BC, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Mental Health Research Cluster, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
200
|
Han Y, Huang C, Pan Y, Gu X. Single Cell Sequencing Technology and Its Application in Alzheimer's Disease. J Alzheimers Dis 2024; 97:1033-1050. [PMID: 38217599 DOI: 10.3233/jad-230861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Alzheimer's disease (AD) involves degeneration of cells in the brain. Due to insidious onset and slow progression, AD is often not diagnosed until it gets progressed to a more severe stage. The diagnosis and treatment of AD has been a challenge. In recent years, high-throughput sequencing technologies have exhibited advantages in exploring the pathogenesis of diseases. However, the types of cells of the central nervous system are complex and traditional bulk sequencing cannot reflect their heterogeneity. Single-cell sequencing technology enables study at the individual cell level and has an irreplaceable advantage in the study of complex diseases. In recent years, this field has expanded rapidly and several types of single-cell sequencing technologies have emerged, including transcriptomics, epigenomics, genomics and proteomics. This review article provides an overview of these single-cell sequencing technologies and their application in AD.
Collapse
Affiliation(s)
- Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Congying Huang
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuhui Pan
- Center for Disease Control and Prevention of Harbin, Harbin, China
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|