151
|
The actin remodeling protein cofilin is crucial for thymic αβ but not γδ T-cell development. PLoS Biol 2018; 16:e2005380. [PMID: 29985916 PMCID: PMC6053251 DOI: 10.1371/journal.pbio.2005380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 07/19/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
Cofilin is an essential actin remodeling protein promoting depolymerization and severing of actin filaments. To address the relevance of cofilin for the development and function of T cells in vivo, we generated knock-in mice in which T-cell-specific nonfunctional (nf) cofilin was expressed instead of wild-type (WT) cofilin. Nf cofilin mice lacked peripheral αβ T cells and showed a severe thymus atrophy. This was caused by an early developmental arrest of thymocytes at the double negative (DN) stage. Importantly, even though DN thymocytes expressed the TCRβ chain intracellularly, they completely lacked TCRβ surface expression. In contrast, nf cofilin mice possessed normal numbers of γδ T cells. Their functionality was confirmed in the γδ T-cell-driven, imiquimod (IMQ)-induced, psoriasis-like murine model. Overall, this study not only highlights the importance of cofilin for early αβ T-cell development but also shows for the first time that an actin-binding protein is differentially involved in αβ versus γδ T-cell development.
Collapse
|
152
|
Zyxin promotes colon cancer tumorigenesis in a mitotic phosphorylation-dependent manner and through CDK8-mediated YAP activation. Proc Natl Acad Sci U S A 2018; 115:E6760-E6769. [PMID: 29967145 DOI: 10.1073/pnas.1800621115] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Zyxin is a member of the focal adhesion complex and plays a critical role in actin filament polymerization and cell motility. Several recent studies showed that Zyxin is a positive regulator of Yki/YAP (Yes-associated protein) signaling. However, little is known about the mechanisms by which Zyxin itself is regulated and how Zyxin affects Hippo-YAP activity. We first showed that Zyxin is phosphorylated by CDK1 during mitosis. Depletion of Zyxin resulted in significantly impaired colon cancer cell proliferation, migration, anchorage-independent growth, and tumor formation in xenograft animal models. Mitotic phosphorylation is required for Zyxin activity in promoting growth. Zyxin regulates YAP activity through the colon cancer oncogene CDK8. CDK8 knockout phenocopied Zyxin knockdown in colon cancer cells, while ectopic expression of CDK8 substantially restored the tumorigenic defects of Zyxin-depletion cells. Mechanistically, we showed that CDK8 directly phosphorylated YAP and promoted its activation. Fully activated YAP is required to support the growth in CDK8-knockout colon cancer cells in vitro and in vivo. Together, these observations suggest that Zyxin promotes colon cancer tumorigenesis in a mitotic-phosphorylation-dependent manner and through CDK8-mediated YAP activation.
Collapse
|
153
|
Zhu XL, Chen JJ, Han F, Pan C, Zhuang TT, Cai YF, Lu YP. Novel antidepressant effects of Paeonol alleviate neuronal injury with concomitant alterations in BDNF, Rac1 and RhoA levels in chronic unpredictable mild stress rats. Psychopharmacology (Berl) 2018; 235:2177-2191. [PMID: 29752492 DOI: 10.1007/s00213-018-4915-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/17/2018] [Indexed: 12/27/2022]
Abstract
RATIONALE Increasing evidence has suggested that major depressive disorder (MDD) is highly associated with brain-derived neurotrophic factor (BDNF) levels, dendrites atrophy, and loss of dendritic spines, especially in emotion-associated brain regions including the hippocampus. Paeonol is a kind of polyphenols natural product with a variety of therapeutic effects. Recent studies have reported its antidepressant effects. However, it is unclear what signaling pathways contribute to improve MDD. OBJECTIVE The present study investigated the effect of Paeonol on hippocampal neuronal morphology and its possible signaling pathways in chronic unpredictable mild stress (CUMS) rat model. METHODS Using CUMS rat model, the antidepressant-like effect of Paeonol was validated via depression-related behavioral tests. Neuronal morphology in hippocampal CA1 and DG was assessed using ImageJ's Sholl plugin and RESCONSTRUCT software. BDNF signaling pathway-related molecules was determined by Western blotting. RESULTS Paeonol attenuated CUMS-induced depression-like behaviors, which were accompanied by hippocampal neuronal morphological alterations. After Paeonol treatment for 4 weeks, the dendritic length and complexity and the density of dendritic spines markedly increased in the hippocampal CA1 and the dentate gyrus (DG). However, CUMS or Paeonol treatment does not selectively affect dendritic spine types. Simultaneously, administration of Paeonol deterred CUMS-induced cofilin1 activation that is essential for remolding of dendritic spines. The induction of CUMS downregulated BDNF levels and upregulated Rac1/RhoA levels; however, the tendency of these was inhibited by treatment with Paeonol. CONCLUSION Our data suggest that BDNF-Rac1/RhoA pathway may be involved in attenuation of CUMS-induced behavioral and neuronal damage by Paeonol that may represent a novel therapeutic agent for depression.
Collapse
Affiliation(s)
- Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, Wuhu, 241000, China.,Department of Anatomy, Wannan Medical College, Wuhu, 241002, China
| | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Fei Han
- College of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Chuan Pan
- College of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Ting-Ting Zhuang
- College of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Ya-Fei Cai
- College of Life Science, Anhui Normal University, Wuhu, 241000, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, Wuhu, 241000, China.
| |
Collapse
|
154
|
Palmieri D, Tessari A, Coppola V. Scorpins in the DNA Damage Response. Int J Mol Sci 2018; 19:ijms19061794. [PMID: 29914204 PMCID: PMC6032341 DOI: 10.3390/ijms19061794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
The DNA Damage Response (DDR) is a complex signaling network that comes into play when cells experience genotoxic stress. Upon DNA damage, cellular signaling pathways are rewired to slow down cell cycle progression and allow recovery. However, when the damage is beyond repair, cells activate complex and still not fully understood mechanisms, leading to a complete proliferative arrest or cell death. Several conventional and novel anti-neoplastic treatments rely on causing DNA damage or on the inhibition of the DDR in cancer cells. However, the identification of molecular determinants directing cancer cells toward recovery or death upon DNA damage is still far from complete, and it is object of intense investigation. SPRY-containing RAN binding Proteins (Scorpins) RANBP9 and RANBP10 are evolutionarily conserved and ubiquitously expressed proteins whose biological functions are still debated. RANBP9 has been previously implicated in cell proliferation, survival, apoptosis and migration. Recent studies also showed that RANBP9 is involved in the Ataxia Telangiectasia Mutated (ATM) signaling upon DNA damage. Accordingly, cells lacking RANBP9 show increased sensitivity to genotoxic treatment. Although there is no published evidence, extensive protein similarities suggest that RANBP10 might have partially overlapping functions with RANBP9. Like RANBP9, RANBP10 bears sites putative target of PIK-kinases and high throughput studies found RANBP10 to be phosphorylated following genotoxic stress. Therefore, this second Scorpin might be another overlooked player of the DDR alone or in combination with RANBP9. This review focuses on the relatively unknown role played by RANBP9 and RANBP10 in responding to genotoxic stress.
Collapse
Affiliation(s)
- Dario Palmieri
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Anna Tessari
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and James Comprehensive Cancer Center, Columbus, OH 43210, USA.
| |
Collapse
|
155
|
Hyperactivity of Rac1-GTPase pathway impairs neuritogenesis of cortical neurons by altering actin dynamics. Sci Rep 2018; 8:7254. [PMID: 29740022 PMCID: PMC5940682 DOI: 10.1038/s41598-018-25354-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/18/2018] [Indexed: 01/10/2023] Open
Abstract
The small-GTPase Rac1 is a key molecular regulator linking extracellular signals to actin cytoskeleton dynamics. Loss-of-function mutations in RAC1 and other genes of the Rac signaling pathway have been implicated in the pathogenesis of Intellectual Disability (ID). The Rac1 activity is negatively controlled by GAP proteins, however the effect of Rac1 hyperactivity on neuronal networking in vivo has been poorly studied. ArhGAP15 is a Rac-specific negative regulator, expressed in the main subtypes of pyramidal cortical neurons. In the absence of ArhGAP15, cortical pyramidal neurons show defective neuritogenesis, delayed axonal elongation, reduced dendritic branching, both in vitro and in vivo. These phenotypes are associated with altered actin dynamics at the growth cone due to increased activity of the PAK-LIMK pathway and hyperphosphorylation of ADF/cofilin. These results can be explained by shootin1 hypo-phosphorylation and uncoupling with the adhesion system. Functionally, ArhGAP15−/− mice exhibit decreased synaptic density, altered electroencephalographic rhythms and cognitive deficits. These data suggest that both hypo- and hyperactivation of the Rac pathway due to mutations in Rac1 regulators can result in conditions of ID, and that a tight regulation of Rac1 activity is required to attain the full complexity of the cortical networks.
Collapse
|
156
|
Schulze M, Hutterer M, Sabo A, Hoja S, Lorenz J, Rothhammer-Hampl T, Herold-Mende C, Floßbach L, Monoranu C, Riemenschneider MJ. Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions. BMC Cancer 2018; 18:524. [PMID: 29724193 PMCID: PMC5934884 DOI: 10.1186/s12885-018-4440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/26/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The phosphatase chronophin (CIN/PDXP) has been shown to be an important regulator of glioma cell migration and invasion. It has two known substrates: p-Ser3-cofilin, the phosphorylated form of the actin binding protein cofilin, and pyridoxal 5'-phosphate, the active form of vitamin B6. Phosphoregulation of cofilin, among other functions, plays an important role in cell migration, whereas active vitamin B6 is a cofactor for more than one hundred enzymatic reactions. The role of CIN has yet only been examined in glioblastoma cell line models derived under serum culture conditions. RESULTS We found that CIN is highly expressed in cells cultured under non-adherent, serum-free conditions that are thought to better mimic the in vivo situation. Furthermore, the substrates of CIN, p-Ser3-cofilin and active vitamin B6, were significantly reduced as compared to cell lines cultured in serum-containing medium. To further examine its molecular role we stably knocked down the CIN protein with two different shRNA hairpins in the glioblastoma cell lines NCH421k and NCH644. Both cell lines did not show any significant alterations in proliferation but expression of differentiation markers (such as GFAP or TUBB3) was increased in the knockdown cell lines. In addition, colony formation was significantly impaired in NCH644. Of note, in both cell lines CIN knockdown increased active vitamin B6 levels with vitamin B6 being known to be important for S-adenosylmethionine biosynthesis. Nevertheless, global histone and DNA methylation remained unaltered as was chemoresistance towards temozolomide. To further elucidate the role of phosphocofilin in glioblastoma cells we applied inhibitors for ROCK1/2 and LIMK1/2 to our model. LIMK- and ROCK-inhibitor treatment alone was not toxic for glioblastoma cells. However, it had profound, but antagonistic effects in NCH421k and NCH644 under chemotherapy. CONCLUSION In non-adherent glioblastoma cell lines cultured in serum-free medium, chronophin knockdown induces phenotypic changes, e.g. in colony formation and transcription, but these are highly dependent on the cellular background. The same is true for phenotypes observed after treatment with inhibitors for kinases regulating cofilin phosphorylation (ROCKs and LIMKs). Targeting the cofilin phosphorylation pathway might therefore not be a straightforward therapeutic option in glioblastoma.
Collapse
Affiliation(s)
- Markus Schulze
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Maria Hutterer
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Anja Sabo
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Sabine Hoja
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Julia Lorenz
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Tanja Rothhammer-Hampl
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Christel Herold-Mende
- Experimental Neurosurgery, Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Lucia Floßbach
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Camelia Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Markus J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany. .,Wilhelm Sander-NeuroOncology Unit, Regensburg University Hospital, Regensburg, Germany.
| |
Collapse
|
157
|
Ziesemer S, Eiffler I, Schönberg A, Müller C, Hochgräfe F, Beule AG, Hildebrandt JP. Staphylococcus aureusα-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells. Am J Respir Cell Mol Biol 2018; 58:482-491. [DOI: 10.1165/rcmb.2016-0207oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sabine Ziesemer
- Animal Physiology and Biochemistry, Zoological Institute, and
| | - Ina Eiffler
- Animal Physiology and Biochemistry, Zoological Institute, and
| | | | | | - Falko Hochgräfe
- Junior Research Group Pathoproteomics, Competence Center Functional Genomics, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Achim G. Beule
- Department of Otorhinolaryngology, Head and Neck Surgery, Greifswald University Hospital, Greifswald, Germany; and
- Department of Otorhinolaryngology, University Hospital, Münster, Germany
| | | |
Collapse
|
158
|
Identification of novel microRNA inhibiting actin cytoskeletal rearrangement thereby suppressing osteoblast differentiation. J Mol Med (Berl) 2018. [PMID: 29523914 DOI: 10.1007/s00109-018-1624-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the role of miR-1187 in regulation of osteoblast functions. Over-expression of miR-1187 inhibited osteoblast differentiation. Target prediction analysis tools and experimental validation by luciferase 3' UTR reporter assay identified BMPR-II and ArhGEF-9 as direct targets of miR-1187. ArhGEF-9 activates Cdc42 which has a major role in actin reorganization. BMP-2 also induces actin polymerization. Role of miR-1187 in actin reorganization was determined by western blotting, immunofluorescence, and in vivo gene silencing studies. Reduced protein levels of BMPR-II, activated Cdc42, and downstream signaling molecules were observed in miR-1187-transfected osteoblasts. miR-1187 over-expression resulted in decreased actin polymerization. Additionally, P-cofilin, which does not bind F-actin, was decreased in miR-1187-transfected cells. These results were corroborated by administration of BMPR-II exogenously in miR-1187-transfected osteoblasts. Silencing of miR-1187 in neonatal mice mitigated all the inhibitory effects of miR-1187 on actin cytoskeletal rearrangement. Importantly, in vivo treatment of miR-1187 inhibitor to ovariectomized BALB/c mice led to significant improvement in trabecular bone microarchitecture. Overall, miR-1187 functions as a negative regulator of osteogenesis by repressing BMPR-II and ArhGEF-9 expression thus suppressing non-Smad BMP2/Cdc42 signaling pathway and inhibiting actin reorganization. miR-1187 functions as a negative regulator of osteogenesis by repressing BMPR-II expression, which in turn, suppresses non-Smad BMP2/Cdc42 signaling pathway, thus inhibiting actin cytoskeletal rearrangement. Silencing of miR-1187 significantly improves trabecular bone microarchitecture. As miR-1187 exerts a negative regulatory role in osteoblasts function, hence, we propose that therapeutic approaches targeting miR-1187 could be useful in enhancing the bone formation and treatment of pathological conditions of bone loss.
Collapse
|
159
|
Duan X, Zhang Y, Chen KL, Zhang HL, Wu LL, Liu HL, Wang ZB, Sun SC. The small GTPase RhoA regulates the LIMK1/2-cofilin pathway to modulate cytoskeletal dynamics in oocyte meiosis. J Cell Physiol 2018; 233:6088-6097. [PMID: 29319181 DOI: 10.1002/jcp.26450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/05/2018] [Indexed: 01/30/2023]
Abstract
LIM kinases (LIMK1/2) are LIM domain-containing serine/threonine/tyrosine kinases that mediate multiple cellular processes in mitosis. In the present study, we explored the functional roles and potential signaling pathway of LIMK1/2 during mouse oocyte meiosis. Disruption of LIMK1/2 activity and expression significantly decreased oocyte polar body extrusion. Live-cell imaging revealed that spindle migration was disturbed after both LIMK1 and LIMK2 knock down, and this might be due to aberrant distribution of actin filaments in the oocyte cytoplasm and cortex. Meanwhile, our results demonstrated that the function of LIMK1 and LIMK2 in actin assembly was related to cofilin phosphorylation levels. In addition, disruption of LIMK1/2 activity significantly increased the percentage of oocytes with abnormal spindle morphologies, which was confirmed by the abnormal p-MAPK localization. We further, explored the upstream molecules of LIMK1/2, and we found that after depletion of ROCK, phosphorylation of LIMK1/2 and cofilin were significantly decreased. Moreover, RhoA inhibition caused the decreased expression of ROCK, p-LIMK1/2, and cofilin. In summary, our results indicated that the small GTPase RhoA regulated LIMK1/2-cofilin to modulate cytoskeletal dynamics during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Xing Duan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yu Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kun-Lin Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lan-Lan Wu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hong-Lin Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Bo Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
160
|
AD-Related N-Terminal Truncated Tau Is Sufficient to Recapitulate In Vivo the Early Perturbations of Human Neuropathology: Implications for Immunotherapy. Mol Neurobiol 2018; 55:8124-8153. [PMID: 29508283 DOI: 10.1007/s12035-018-0974-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023]
Abstract
The NH2tau 26-44 aa (i.e., NH2htau) is the minimal biologically active moiety of longer 20-22-kDa NH2-truncated form of human tau-a neurotoxic fragment mapping between 26 and 230 amino acids of full-length protein (htau40)-which is detectable in presynaptic terminals and peripheral CSF from patients suffering from AD and other non-AD neurodegenerative diseases. Nevertheless, whether its exogenous administration in healthy nontransgenic mice is able to elicit a neuropathological phenotype resembling human tauopathies has not been yet investigated. We explored the in vivo effects evoked by subchronic intracerebroventricular (i.c.v.) infusion of NH2htau or its reverse counterpart into two lines of young (2-month-old) wild-type mice (C57BL/6 and B6SJL). Six days after its accumulation into hippocampal parenchyma, significant impairment in memory/learning performance was detected in NH2htau-treated group in association with reduced synaptic connectivity and neuroinflammatory response. Compromised short-term plasticity in paired-pulse facilitation paradigm (PPF) was detected in the CA3/CA1 synapses from NH2htau-impaired animals along with downregulation in calcineurin (CaN)-stimulated pCREB/c-Fos pathway(s). Importantly, these behavioral, synaptotoxic, and neuropathological effects were independent from the genetic background, occurred prior to frank neuronal loss, and were specific because no alterations were detected in the control group infused with its reverse counterpart. Finally, a 2.0-kDa peptide which biochemically and immunologically resembles the injected NH2htau was endogenously detected in vivo, being present in hippocampal synaptosomal preparations from AD subjects. Given that the identification of the neurotoxic tau species is mandatory to develop a more effective tau-based immunological approach, our evidence can have important translational implications for cure of human tauopathies.
Collapse
|
161
|
Zhong Z, Grasso L, Sibilla C, Stevens TJ, Barry N, Bertolotti A. Prion-like protein aggregates exploit the RHO GTPase to cofilin-1 signaling pathway to enter cells. EMBO J 2018; 37:embj.201797822. [PMID: 29496740 DOI: 10.15252/embj.201797822] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 01/01/2023] Open
Abstract
Protein aggregation is a hallmark of diverse neurodegenerative diseases. Multiple lines of evidence have revealed that protein aggregates can penetrate inside cells and spread like prions. How such aggregates enter cells remains elusive. Through a focused siRNA screen targeting genes involved in membrane trafficking, we discovered that mutant SOD1 aggregates, like viruses, exploit cofilin-1 to remodel cortical actin and enter cells. Upstream of cofilin-1, signalling from the RHO GTPase and the ROCK1 and LIMK1 kinases controls cofilin-1 activity to remodel actin and modulate aggregate entry. In the spinal cord of symptomatic SOD1G93A transgenic mice, cofilin-1 phosphorylation is increased and actin dynamics altered. Importantly, the RHO to cofilin-1 signalling pathway also modulates entry of tau and α-synuclein aggregates. Our results identify a common host cell signalling pathway that diverse protein aggregates exploit to remodel actin and enter cells.
Collapse
Affiliation(s)
- Zhen Zhong
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Laura Grasso
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | | |
Collapse
|
162
|
Protein kinase D1: gatekeeper of the epithelial phenotype and key regulator of cancer metastasis? Br J Cancer 2018; 118:459-461. [PMID: 29465085 PMCID: PMC5830601 DOI: 10.1038/bjc.2018.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
163
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
164
|
The binding landscape of a partially-selective isopeptidase inhibitor with potent pro-death activity, based on the bis(arylidene)cyclohexanone scaffold. Cell Death Dis 2018; 9:184. [PMID: 29416018 PMCID: PMC5833369 DOI: 10.1038/s41419-017-0259-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/07/2017] [Accepted: 12/22/2017] [Indexed: 01/19/2023]
Abstract
Diaryldienone derivatives with accessible β-carbons show strong anti-neoplastic properties, related to their ability to make covalent adducts with free thiols by Michael addition, and low toxicity in vivo. Accumulation of poly-ubiquitylated proteins, activation of the unfolded protein response (UPR) and induction of cell death are universal hallmarks of their activities. These compounds have been characterized as inhibitors of isopeptidases, a family of cysteine-proteases, which de-conjugate ubiquitin and ubiquitin-like proteins from their targets. However, it is unclear whether they can also react with additional proteins. In this work, we utilized the biotin-conjugated diaryldienone-derivative named 2c, as a bait to purify novel cellular targets of these small molecules. Proteomic analyses have unveiled that, in addition to isopeptidases, these inhibitors can form stable covalent adducts with different intracellular proteins, thus potentially impacting on multiple functions of the cells, from cytoskeletal organization to metabolism. These widespread activities can explain the ability of diaryldienone derivatives to efficiently trigger different cell death pathways.
Collapse
|
165
|
Zhang Y, Fu R, Liu Y, Li J, Zhang H, Hu X, Chen Y, Liu X, Li Y, Li P, Liu E, Gao N. Dephosphorylation and mitochondrial translocation of cofilin sensitizes human leukemia cells to cerulenin-induced apoptosis via the ROCK1/Akt/JNK signaling pathway. Oncotarget 2018; 7:20655-68. [PMID: 26967395 PMCID: PMC4991482 DOI: 10.18632/oncotarget.7994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
In this study, we determined that cerulenin, a natural product inhibitor of fatty acid synthase, induces mitochondrial injury and apoptosis in human leukemia cells through the mitochondrial translocation of cofilin. Only dephosphorylated cofilin could translocate to mitochondria during cerulenin-induced apoptosis. Disruption of the ROCK1/Akt/JNK signaling pathway plays a critical role in the cerulenin-mediated dephosphorylation and mitochondrial translocation of cofilin and apoptosis. In vivo studies demonstrated that cerulenin-mediated inhibition of tumor growth in a mouse xenograft model of leukemia was associated with mitochondrial translocation of cofilin and apoptosis. These data are consistent with a hierarchical model in which induction of apoptosis by cerulenin primarily results from activation of ROCK1, inactivation of Akt, and activation of JNK. This leads to the dephosphorylation and mitochondrial translocation of cofilin and culminates with cytochrome c release, caspase activation, and apoptosis. Our study has revealed a novel role of cofilin in the regulation of mitochondrial injury and apoptosis and suggests that cerulenin is a potential drug for the treatment of leukemia.
Collapse
Affiliation(s)
- Yanhao Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Ruoqiu Fu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yanxia Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Jing Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Hongwei Zhang
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xiaoye Hu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yibiao Chen
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Xin Liu
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Yunong Li
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), Nanjing, China
| | - Ehu Liu
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), Nanjing, China
| | - Ning Gao
- College of Pharmacy, 3rd Military Medical University, Chongqing, China
| |
Collapse
|
166
|
Aggelou H, Chadla P, Nikou S, Karteri S, Maroulis I, Kalofonos HP, Papadaki H, Bravou V. LIMK/cofilin pathway and Slingshot are implicated in human colorectal cancer progression and chemoresistance. Virchows Arch 2018; 472:727-737. [PMID: 29352327 DOI: 10.1007/s00428-018-2298-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022]
Abstract
Cofilin phospho-regulation is important for actin filament turnover and is implicated in cancer. Phosphorylation of cofilin is mediated by LIM kinases (LIMKs) and dephosphorylation by Slingshot phosphatases (SSH). LIMKs and SSH promote cancer cell invasion and metastasis and represent novel anti-cancer targets. However, little is known regarding LIMK/cofilin and SSH in human colorectal cancer (CRC). In this study, we aimed to address their expression and significance in human CRC. We evaluated expression of non-phosphorylated (active) and phosphorylated cofilin, LIMK1, LIMK2, and SSH1 by immunohistochemistry in 143 human CRC samples in relation to clinicopathologic parameters, response of metastatic disease to chemotherapy, and epithelial-mesenchymal transition (EMT) markers β-catenin, E-cadherin, and ZEB. We show that active cofilin, LIMK1, LIMK2, and SSH1 are overexpressed in human CRC and are associated with tumor progression parameters. SSH1 is an independent predictor of lymph node metastasis by multivariate analysis. LIMK1 and SSH1 expression is also higher in non-responders to chemotherapy, and SSH1 is shown by multivariate analysis to independently predict response of metastatic disease to chemotherapy. Active cofilin, LIMK1, LIMK2, and SSH1 also correlated with the EMT markers examined. In addition, immunofluorescence analysis showed increased expression of active cofilin, LIMK1, LIMK2, and SSH1 in HT29 colon cancer cells resistant to 5-fluorouracil compared to parental HT29 cells. Our results suggest that F-actin regulators LIMK/cofilin pathway and SSH1 are associated with CRC progression and chemoresistance representing promising tumor biomarkers and therapeutic targets in CRC.
Collapse
Affiliation(s)
- Helen Aggelou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Panagiota Chadla
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Sofia Karteri
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ioannis Maroulis
- Department of Surgery, University of Patras Medical School, Patras, Greece
| | | | - Helen Papadaki
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26500, Patras, Greece.
| |
Collapse
|
167
|
Vogt J, Kirischuk S, Unichenko P, Schlüter L, Pelosi A, Endle H, Yang JW, Schmarowski N, Cheng J, Thalman C, Strauss U, Prokudin A, Bharati BS, Aoki J, Chun J, Lutz B, Luhmann HJ, Nitsch R. Synaptic Phospholipid Signaling Modulates Axon Outgrowth via Glutamate-dependent Ca2+-mediated Molecular Pathways. Cereb Cortex 2018; 27:131-145. [PMID: 27909001 PMCID: PMC5939201 DOI: 10.1093/cercor/bhw370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Indexed: 12/28/2022] Open
Abstract
Altered synaptic bioactive lipid signaling has been recently shown to augment neuronal excitation in the hippocampus of adult animals by activation of presynaptic LPA2-receptors leading to increased presynaptic glutamate release. Here, we show that this results in higher postsynaptic Ca2+ levels and in premature onset of spontaneous neuronal activity in the developing entorhinal cortex. Interestingly, increased synchronized neuronal activity led to reduced axon growth velocity of entorhinal neurons which project via the perforant path to the hippocampus. This was due to Ca2+-dependent molecular signaling to the axon affecting stabilization of the actin cytoskeleton. The spontaneous activity affected the entire entorhinal cortical network and thus led to reduced overall axon fiber numbers in the mature perforant path that is known to be important for specific memory functions. Our data show that precise regulation of early cortical activity by bioactive lipids is of critical importance for proper circuit formation.
Collapse
Affiliation(s)
- Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Petr Unichenko
- Institute of Physiology, University Medical Center, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Leslie Schlüter
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Assunta Pelosi
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Heiko Endle
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Jenq-Wei Yang
- Institute of Physiology, University Medical Center, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Nikolai Schmarowski
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Jin Cheng
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Carine Thalman
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Ulf Strauss
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin, 10119 Berlin, Germany
| | - Alexey Prokudin
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - B Suman Bharati
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Jerold Chun
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center, Johannes Gutenberg-University, 55128 Mainz, Germany
| | - Robert Nitsch
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131 Mainz, Germany
| |
Collapse
|
168
|
Peverelli E, Giardino E, Treppiedi D, Catalano R, Mangili F, Locatelli M, Lania AG, Arosio M, Spada A, Mantovani G. A novel pathway activated by somatostatin receptor type 2 (SST2): Inhibition of pituitary tumor cell migration and invasion through cytoskeleton protein recruitment. Int J Cancer 2017; 142:1842-1852. [PMID: 29226331 DOI: 10.1002/ijc.31205] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/15/2017] [Accepted: 12/05/2017] [Indexed: 12/14/2022]
Abstract
The pharmacological therapy of GH-secreting pituitary tumors is based on somatostatin (SS) analogs that reduce GH secretion and cell proliferation by binding mainly SS receptors type 2 (SST2). Antimigratory effects of SS have been demonstrated in different cell models, but no data on pituitary tumors are available. Aims of our study were to evaluate SST2 effects on migration and invasion of human and rat tumoral somatotrophs, and to elucidate the molecular mechanism involved focusing on the role of cofilin and filamin A (FLNA). Our data revealed that SST2 agonist BIM23120 significantly reduced GH3 cells migration (-22% ± 3.6%, p < 0.001) and invasion on collagen IV (-31.3% ± 12.2%, p < 0.01), both these effects being reproduced by octreotide and pasireotide. Similar results were obtained in primary cultured cells from human GH-secreting tumors. These inhibitory actions were accompanied by a marked increase in RhoA/ROCK-dependent cofilin phosphorylation (about 2.7-fold in GH3 and 2.1-fold in human primary cells). Accordingly, the anti-invasive effect of the SS analog was mimicked by the overexpression in GH3 cells of the S3D phosphomimetic cofilin mutant, and abolished by both phosphodeficient S3A cofilin and a specific ROCK inhibitor that prevented cofilin phosphorylation. Moreover, FLNA silencing and FLNA dominant-negative mutants FLNA19-20 and FLNA21-24 transfection demonstrated that FLNA plays a scaffold function for SST2-mediated cofilin phosphorylation. Accordingly, cofilin recruitment to agonist-activated SST2 was completely lost in FLNA silenced cells. In conclusion, we demonstrated that SST2 inhibits rat and human tumoral somatotrophs migration and invasion through a molecular mechanism that involves FLNA-dependent cofilin recruitment and phosphorylation.
Collapse
Affiliation(s)
- E Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - E Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - D Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - R Catalano
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - F Mangili
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - M Locatelli
- Neurosurgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - A G Lania
- Endocrinology Unit, IRCCS Humanitas Research Hospital, Humanitas University, Rozzano, Italy
| | - M Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - A Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - G Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
169
|
Hu W, Zhu L, Yang X, Lin J, Yang Q. The epidermal growth factor receptor regulates cofilin activity and promotes transmissible gastroenteritis virus entry into intestinal epithelial cells. Oncotarget 2017; 7:12206-21. [PMID: 26933809 PMCID: PMC4914279 DOI: 10.18632/oncotarget.7723] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Transmissible gastroenteritis virus (TGEV), a coronavirus, causes severe diarrhea and high mortality in newborn piglets. The porcine intestinal epithelium is the target of TGEV infection, but the mechanisms that TGEV disrupts the actin cytoskeleton and invades the host epithelium remain largely unknown. We not only found that TGEV infection stimulates F-actin to gather at the cell membrane but the disruption of F-actin inhibits TGEV entry as well. Cofilin is involved in F-actin reorganization and TGEV entry. The TGEV spike protein is capable of binding with EGFR, activating the downstream phosphoinositide-3 kinase (PI3K), then causing the phosphorylation of cofilin and F-actin polymerization via Rac1/Cdc42 GTPases. Inhibition of EGFR and PI3K decreases the entry of TGEV. EGFR is also the upstream activator of mitogen-activated protein kinase (MAPK) signaling pathways that is involved in F-actin reorganization. Additionally, lipid rafts act as signal platforms for the EGFR-associated signaling cascade and correlate with the adhesion of TGEV. In conlusion, these results provide valuable data of the mechanisms which are responsible for the TGEV pathogenesis and may lead to the development of new methods about controlling TGEV.
Collapse
Affiliation(s)
- Weiwei Hu
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Liqi Zhu
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xing Yang
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jian Lin
- Life Science College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Yang
- Veterinary College, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
170
|
Baarlink C, Plessner M, Sherrard A, Morita K, Misu S, Virant D, Kleinschnitz EM, Harniman R, Alibhai D, Baumeister S, Miyamoto K, Endesfelder U, Kaidi A, Grosse R. A transient pool of nuclear F-actin at mitotic exit controls chromatin organization. Nat Cell Biol 2017; 19:1389-1399. [PMID: 29131140 DOI: 10.1038/ncb3641] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/05/2017] [Indexed: 12/13/2022]
Abstract
Re-establishment of nuclear structure and chromatin organization after cell division is integral for genome regulation or development and is frequently altered during cancer progression. The mechanisms underlying chromatin expansion in daughter cells remain largely unclear. Here, we describe the transient formation of nuclear actin filaments (F-actin) during mitotic exit. These nuclear F-actin structures assemble in daughter cell nuclei and undergo dynamic reorganization to promote nuclear protrusions and volume expansion throughout early G1 of the cell cycle. Specific inhibition of this nuclear F-actin assembly impaired nuclear expansion and chromatin decondensation after mitosis and during early mouse embryonic development. Biochemical screening for mitotic nuclear F-actin interactors identified the actin-disassembling factor cofilin-1. Optogenetic regulation of cofilin-1 revealed its critical role for controlling timing, turnover and dynamics of F-actin assembly inside daughter cell nuclei. Our findings identify a cell-cycle-specific and spatiotemporally controlled form of nuclear F-actin that reorganizes the mammalian nucleus after mitosis.
Collapse
Affiliation(s)
- Christian Baarlink
- Institute of Pharmacology, BPC Marburg, University of Marburg, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany
| | - Matthias Plessner
- Institute of Pharmacology, BPC Marburg, University of Marburg, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany
| | - Alice Sherrard
- School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Kohtaro Morita
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Wakayama 649-6493, Japan
| | - Shinji Misu
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Wakayama 649-6493, Japan
| | - David Virant
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Eva-Maria Kleinschnitz
- Institute of Pharmacology, BPC Marburg, University of Marburg, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany
| | - Robert Harniman
- Electron Microscopy Unit, School of Chemistry, Biomedical Sciences, University of Bristol, Bristol BS8 1TS, UK
| | - Dominic Alibhai
- Wolfson Bioimaging Facility, University of Bristol, Bristol BS8 1TD, UK
| | - Stefan Baumeister
- Protein Analytics, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Kei Miyamoto
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Wakayama 649-6493, Japan
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Abderrahmane Kaidi
- School of Cellular and Molecular Medicine, Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Robert Grosse
- Institute of Pharmacology, BPC Marburg, University of Marburg, Karl-von-Frisch-Str. 1, 35043 Marburg, Germany
| |
Collapse
|
171
|
Transcription factor CUX1 is required for intestinal epithelial wound healing and targets the VAV2-RAC1 Signalling complex. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2347-2355. [DOI: 10.1016/j.bbamcr.2017.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023]
|
172
|
Santini E, Huynh TN, Longo F, Koo SY, Mojica E, D'Andrea L, Bagni C, Klann E. Reducing eIF4E-eIF4G interactions restores the balance between protein synthesis and actin dynamics in fragile X syndrome model mice. Sci Signal 2017; 10:10/504/eaan0665. [PMID: 29114037 DOI: 10.1126/scisignal.aan0665] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and autism spectrum disorder. FXS is caused by silencing of the FMR1 gene, which encodes fragile X mental retardation protein (FMRP), an mRNA-binding protein that represses the translation of its target mRNAs. One mechanism by which FMRP represses translation is through its association with cytoplasmic FMRP-interacting protein 1 (CYFIP1), which subsequently sequesters and inhibits eukaryotic initiation factor 4E (eIF4E). CYFIP1 shuttles between the FMRP-eIF4E complex and the Rac1-Wave regulatory complex, thereby connecting translational regulation to actin dynamics and dendritic spine morphology, which are dysregulated in FXS model mice that lack FMRP. Treating FXS mice with 4EGI-1, which blocks interactions between eIF4E and eIF4G, a critical interaction partner for translational initiation, reversed defects in hippocampus-dependent memory and spine morphology. We also found that 4EGI-1 normalized the phenotypes of enhanced metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD), enhanced Rac1-p21-activated kinase (PAK)-cofilin signaling, altered actin dynamics, and dysregulated CYFIP1/eIF4E and CYFIP1/Rac1 interactions in FXS mice. Our findings are consistent with the idea that an imbalance in protein synthesis and actin dynamics contributes to pathophysiology in FXS mice, and suggest that targeting eIF4E may be a strategy for treating FXS.
Collapse
Affiliation(s)
- Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA.,Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Thu N Huynh
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Francesco Longo
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - So Yeon Koo
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Edward Mojica
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Laura D'Andrea
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata," 00133 Rome, Italy.,Center for Human Genetics and Leuven Research Institute for Neuroscience and Disease, KU Leuven, 3000 Leuven, Belgium.,VIB Center for the Biology of Disease, 3000 Leuven, Belgium.,Department of Fundamental Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
173
|
Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 2017; 10:10/504/eaan0852. [PMID: 29114038 DOI: 10.1126/scisignal.aan0852] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene FMR1 on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition. We showed that aberrantly increased activity of the Rho GTPase Rac1 inhibited the actin-depolymerizing factor cofilin, a major determinant of dendritic spine structure, and caused disease-associated spine abnormalities in the somatosensory cortex of FXS model mice. Increased cofilin phosphorylation and actin polymerization coincided with abnormal dendritic spines and impaired synaptic maturation. Viral delivery of a constitutively active cofilin mutant (cofilinS3A) into the somatosensory cortex of Fmr1-deficient mice rescued the immature dendritic spine phenotype and increased spine density. Inhibition of the Rac1 effector PAK1 with a small-molecule inhibitor rescued cofilin signaling in FXS mice, indicating a causal relationship between PAK1 and cofilin signaling. PAK1 inhibition rescued synaptic signaling (specifically the synaptic ratio of NMDA/AMPA in layer V pyramidal neurons) and improved sensory processing in FXS mice. These findings suggest a causal relationship between increased Rac1-cofilin signaling, synaptic defects, and impaired sensory processing in FXS and uncover a previously unappreciated role for impaired Rac1-cofilin signaling in the aberrant spine morphology and spine density associated with FXS.
Collapse
Affiliation(s)
- Alexander Pyronneau
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qionger He
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Morgan Porch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
174
|
O’Sullivan F, Keenan J, Aherne S, O’Neill F, Clarke C, Henry M, Meleady P, Breen L, Barron N, Clynes M, Horgan K, Doolan P, Murphy R. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine. World J Gastroenterol 2017; 23:7369-7386. [PMID: 29151691 PMCID: PMC5685843 DOI: 10.3748/wjg.v23.i41.7369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/07/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. METHODS Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. RESULTS Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid and cholesterol metabolic processes, small molecule transport and a range of responses to external stimuli, while similar analysis of the DE protein list identified gene expression/transcription, epigenetic mechanisms, DNA replication, differentiation and translation ontology categories. The DE protein and gene lists were found to share 15 biological processes including for example epithelial cell differentiation [P value ≤ 1.81613E-08 (protein list); P ≤ 0.000434311 (gene list)] and actin filament bundle assembly [P value ≤ 0.001582797 (protein list); P ≤ 0.002733714 (gene list)]. Analysis was conducted on the three data streams acquired in parallel to identify targets undergoing potential miRNA translational repression identified 34 proteins, whose respective mRNAs were detected but no change in expression was observed. Of these 34 proteins, 27 proteins downregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 19 unique anti-correlated/upregulated microRNAs and 7 proteins upregulated in the Caco-2 cell line relative to the HT-29 cell line and predicted to be targeted by 15 unique anti-correlated/downregulated microRNAs. CONCLUSION This first study providing "tri-omics" analysis of the principal intestinal cell line models Caco-2 and HT-29 has identified 34 proteins potentially undergoing miRNA translational repression.
Collapse
Affiliation(s)
- Finbarr O’Sullivan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Sinead Aherne
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Fiona O’Neill
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Colin Clarke
- National Institute for Bioprocessing Research & Training, Blackrock, Dublin A94 X099, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | | | - Padraig Doolan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin D09 W6Y4, Ireland
| | | |
Collapse
|
175
|
Dombert B, Balk S, Lüningschrör P, Moradi M, Sivadasan R, Saal-Bauernschubert L, Jablonka S. BDNF/trkB Induction of Calcium Transients through Ca v2.2 Calcium Channels in Motoneurons Corresponds to F-actin Assembly and Growth Cone Formation on β2-Chain Laminin (221). Front Mol Neurosci 2017; 10:346. [PMID: 29163025 PMCID: PMC5670157 DOI: 10.3389/fnmol.2017.00346] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spontaneous Ca2+ transients and actin dynamics in primary motoneurons correspond to cellular differentiation such as axon elongation and growth cone formation. Brain-derived neurotrophic factor (BDNF) and its receptor trkB support both motoneuron survival and synaptic differentiation. However, in motoneurons effects of BDNF/trkB signaling on spontaneous Ca2+ influx and actin dynamics at axonal growth cones are not fully unraveled. In our study we addressed the question how neurotrophic factor signaling corresponds to cell autonomous excitability and growth cone formation. Primary motoneurons from mouse embryos were cultured on the synapse specific, β2-chain containing laminin isoform (221) regulating axon elongation through spontaneous Ca2+ transients that are in turn induced by enhanced clustering of N-type specific voltage-gated Ca2+ channels (Cav2.2) in axonal growth cones. TrkB-deficient (trkBTK-/-) mouse motoneurons which express no full-length trkB receptor and wildtype motoneurons cultured without BDNF exhibited reduced spontaneous Ca2+ transients that corresponded to altered axon elongation and defects in growth cone morphology which was accompanied by changes in the local actin cytoskeleton. Vice versa, the acute application of BDNF resulted in the induction of spontaneous Ca2+ transients and Cav2.2 clustering in motor growth cones, as well as the activation of trkB downstream signaling cascades which promoted the stabilization of β-actin via the LIM kinase pathway and phosphorylation of profilin at Tyr129. Finally, we identified a mutual regulation of neuronal excitability and actin dynamics in axonal growth cones of embryonic motoneurons cultured on laminin-221/211. Impaired excitability resulted in dysregulated axon extension and local actin cytoskeleton, whereas upon β-actin knockdown Cav2.2 clustering was affected. We conclude from our data that in embryonic motoneurons BDNF/trkB signaling contributes to axon elongation and growth cone formation through changes in the local actin cytoskeleton accompanied by increased Cav2.2 clustering and local calcium transients. These findings may help to explore cellular mechanisms which might be dysregulated during maturation of embryonic motoneurons leading to motoneuron disease.
Collapse
Affiliation(s)
- Benjamin Dombert
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Stefanie Balk
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Mehri Moradi
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Rajeeve Sivadasan
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| | | | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
176
|
Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem Biophys Res Commun 2017; 506:315-322. [PMID: 29056508 DOI: 10.1016/j.bbrc.2017.10.096] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 02/04/2023]
Abstract
Actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1), also known as WD-repeat protein 1 (WDR1), are conserved among eukaryotes and play critical roles in dynamic reorganization of the actin cytoskeleton. AIP1 preferentially promotes disassembly of ADF/cofilin-decorated actin filaments but exhibits minimal effects on bare actin filaments. Therefore, AIP1 has been often considered to be an ancillary co-factor of ADF/cofilin that merely boosts ADF/cofilin activity level. However, genetic and cell biological studies show that AIP1 deficiency often causes lethality or severe abnormalities in multiple tissues and organs including muscle, epithelia, and blood, suggesting that AIP1 is a major regulator of many biological processes that depend on actin dynamics. This review summarizes recent progress in studies on the biochemical mechanism of actin filament severing by AIP1 and in vivo functions of AIP1 in model organisms and human diseases.
Collapse
|
177
|
Mittal N, Minasyan A, Romaneschi N, Hakimian JK, Gonzalez-Fernandez G, Albert R, Desai N, Mendez IA, Schallert T, Ostlund SB, Walwyn W. Beta-arrestin 1 regulation of reward-motivated behaviors and glutamatergic function. PLoS One 2017; 12:e0185796. [PMID: 28973019 PMCID: PMC5626489 DOI: 10.1371/journal.pone.0185796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/19/2017] [Indexed: 01/10/2023] Open
Abstract
The two highly homologous non-visual arrestins, beta-arrestin 1 and 2, are ubiquitously expressed in the central nervous system, yet knowledge of their disparate roles is limited. While beta-arrestin 2 (βarr2) has been implicated in several aspects of reward-related learning and behavior, very little is known about the behavioral function of beta-arrestin 1 (βarr1). Using mice lacking βarr1, we focused on the role of this scaffolding and signal transduction protein in reward-motivated behaviors and in striatal glutamatergic function. We found that βarr1 KO mice were both slower in acquiring cocaine self-administration and in extinguishing this behavior. They also showed deficits in learning tasks supported by a natural food reward, suggesting a general alteration in reward processing. We then examined glutamatergic synaptic strength in WT and KO medium spiny neurons (MSNs) of the Nucleus Accumbens (NAc) shell in naïve animals, and from those that underwent cocaine self-administration. An increase in the AMPA/NMDA (A/N) ratio and a relative lack of GluN2B-enriched NMDARs was found in naïve KO vs WT MSNs. Applying Lim Domain Kinase (LIMK1), the kinase that phosphorylates and inactivates cofilin, to these cells, showed that both βarr1 and LIMK regulate the A/N ratio and GluN2B-NMDARs. Cocaine self-administration increased the A/N ratio and GluN2B-NMDARs in WT MSNs and, although the A/N ratio also increased in KO MSNs, this was accompanied by fewer GluN2B-NMDARs and an appearance of calcium-permeable AMPARs. Finally, to examine the consequences of reduced basal GluN2B-NMDARs in reward-processing seen in KO mice, we chronically infused ifenprodil, a GluN2B antagonist, into the NAc shell of WT mice. This intervention substantially reduced food-motivated behavior. Together these findings identify a previously unknown role of βarr1 in regulating specific reward-motivated behaviors and glutamatergic function.
Collapse
Affiliation(s)
- Nitish Mittal
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Ani Minasyan
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nicole Romaneschi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Joshua K. Hakimian
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Gabriel Gonzalez-Fernandez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Ralph Albert
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Nina Desai
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Ian A. Mendez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| | - Timothy Schallert
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States of America
| | - Sean B. Ostlund
- Department of Anesthesiology and Perioperative Care, School of Medicine, University of California, Irvine, UCI Center for Addiction Neuroscience, School of Biological Sciences, University of California Irvine, Irvine, United States of America
| | - Wendy Walwyn
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
178
|
Satoh M, Takano S, Sogawa K, Noda K, Yoshitomi H, Ishibashi M, Mogushi K, Takizawa H, Otsuka M, Shimizu H, Miyazaki M, Nomura F. Immune-complex level of cofilin-1 in sera is associated with cancer progression and poor prognosis in pancreatic cancer. Cancer Sci 2017; 108:795-803. [PMID: 28161904 PMCID: PMC5406537 DOI: 10.1111/cas.13181] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies. To improve its outcome, reliable biomarkers are urgently needed. In this study, we aimed to elucidate the key molecules involved in PDAC progression using proteomics approaches. First, we undertook 2‐D electrophoresis to identify the proteins overexpressed in PDAC tissues. Following the analysis of agarose gel spots, cofilin‐1 was identified and verified as a candidate protein commonly upregulated in PDAC tissues. In immunohistochemistry, cofilin‐1 was strongly expressed in the cytoplasm of PDAC cells. Samples were divided into two groups based on the level of cofilin‐1 expression. The high expression group showed significantly higher incidence of hematogenous dissemination in relapsed patients than the low expression group (P = 0.0083). In in vitro experiments, knockdown of cofilin‐1 significantly decreased chemotaxis in PDAC cell lines. After we confirmed that cofilin‐1 was secreted from PDAC cells, we established a detection system for the immune‐complex of cofilin‐1 in sera. Using this system, we measured the IC levels of cofilin‐1 in sera and observed that the IC levels of cofilin‐1 in PDAC patients were higher than those in healthy volunteers and patients with pancreatitis (PDAC vs. healthy volunteers, P < 0.0001; PDAC vs. patients with pancreatitis, P < 0.026). Notably, the IC levels of cofilin‐1 showed a stepwise increase during PDAC progression (P = 0.0034), and high IC levels of cofilin‐1 indicated poor prognosis of patients after surgery (P = 0.039). These results suggest that the IC of cofilin‐1 in sera is a potentially attractive serum biomarker for the prognosis of PDAC.
Collapse
Affiliation(s)
- Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyuki Sogawa
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan.,Department of Biochemistry, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Kenta Noda
- R&D Department, Nittobo Medical Co., Ltd., Koriyama, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masumi Ishibashi
- Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kaoru Mogushi
- Center for Genomic and Regenerative Medicine, Juntendo University, Tokyo, Japan
| | - Hirotaka Takizawa
- Kashiwado Clinic in Port-Square, Kashiwado Memorial Foundation, Chiba, Japan
| | - Masayuki Otsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba, Japan.,Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
179
|
Han F, Zhuang TT, Chen JJ, Zhu XL, Cai YF, Lu YP. Novel derivative of Paeonol, Paeononlsilatie sodium, alleviates behavioral damage and hippocampal dendritic injury in Alzheimer's disease concurrent with cofilin1/phosphorylated-cofilin1 and RAC1/CDC42 alterations in rats. PLoS One 2017; 12:e0185102. [PMID: 28934273 PMCID: PMC5608314 DOI: 10.1371/journal.pone.0185102] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/06/2017] [Indexed: 11/29/2022] Open
Abstract
Alzheimer’s disease (AD) is a typical hippocampal amnesia and the most common senile dementia. Many studies suggest that cognitive impairments are more closely correlated with synaptic loss than the burden of amyloid deposits in AD progression. To date, there is no effective treatment for this disease. Paeonol has been widely employed in traditional Chinese medicine. This compound improves learning behavior in an animal model; however, the mechanism remains unclear. In this study, Paeononlsilatie sodium (Pa), a derivative of Paeonol, attenuated D-galactose (D-gal) and AlCl3-induced behavioral damages in rats based on evaluations of the open field test (OFT), elevated plus maze test (EPMT), and Morris water maze test (MWMT). Pa increased the dendritic complexity and the density of dendritic spines. Correlation analysis indicated that morphological changes in neuronal dendrites are closely correlated with behavioral changes. Pa treatment reduced the production of Aβ, affected the phosphorylation and redistribution of cofilin1 and inhibited rod-like formation in hippocampal neurons. The induction of D-gal and AlCl3 promoted the expression of RAC1/CDC42 expression; however, the tendency of gene expression was inhibited by pretreatment with Pa. Taken together, our results suggest that Pa may represent a novel therapeutic agent for the improvement of cognitive and emotional behaviors and dendritic morphology in an AD animal model.
Collapse
Affiliation(s)
- Fei Han
- College of Life Science, Anhui Normal University, Wuhu, China
| | | | - Jing-Jing Chen
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Xiu-Ling Zhu
- College of Life Science, Anhui Normal University, Wuhu, China
- Department of Anatomy, Wannan Medical College, Wuhu, China
| | - Ya-Fei Cai
- College of Life Science, Anhui Normal University, Wuhu, China
| | - Ya-Ping Lu
- College of Life Science, Anhui Normal University, Wuhu, China
- * E-mail:
| |
Collapse
|
180
|
Smith CA, Miner AS, Barbee RW, Ratz PH. Metabolic Stress-Induced Activation of AMPK and Inhibition of Constitutive Phosphoproteins Controlling Smooth Muscle Contraction: Evidence for Smooth Muscle Fatigue? Front Physiol 2017; 8:681. [PMID: 28943852 PMCID: PMC5596101 DOI: 10.3389/fphys.2017.00681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 11/23/2022] Open
Abstract
Metabolic stress diminishes smooth muscle contractile strength by a poorly defined mechanism. To test the hypothesis that metabolic stress activates a compensatory cell signaling program to reversibly downregulate contraction, arterial rings and bladder muscle strips in vitro were deprived of O2 and glucose for 30 and 60 min (“starvation”) to induce metabolic stress, and the phosphorylation status of proteins involved in regulation of contraction and metabolic stress were assessed in tissues under basal and stimulated conditions. A 15–30 min recovery period (O2 and glucose repletion) tested whether changes induced by starvation were reversible. Starvation decreased basal phosphorylation of myosin regulatory light chain (MLC-pS19) and of the rho kinase (ROCK) downstream substrates cofilin (cofilin-pS3) and myosin phosphatase targeting subunit MYPT1 (MYPT1-pT696 and MYPT1-pT853), and abolished the ability of contractile stimuli to cause a strong, sustained contraction. Starvation increased basal phosphorylation of AMPK (AMPK-pT172) and 3 downstream AMPK substrates, acetyl-CoA carboxylase (ACC-pS79), rhoA (rhoA-pS188), and phospholamban (PLB-pS16). Increases in rhoA-pS188 and PLB-pS16 would be expected to inhibit contraction. Recovery restored basal AMPK-pT172 and MLC-pS19 to control levels, and restored contraction. In AMPKα2 deficient mice (AMPKα2-/-), the basal level of AMPK-pT172 was reduced by 50%, and MLC-pS19 was elevated by 50%, but AMPKα2-/- did not prevent starvation-induced contraction inhibition nor enhance recovery from starvation. These results indicate that constitutive AMPK activity participates in constitutive regulation of contractile proteins, and suggest that AMPK activation is necessary, but may not be sufficient, to cause smooth muscle contraction inhibition during metabolic stress.
Collapse
Affiliation(s)
- Corey A Smith
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth UniversityRichmond, VA, United States
| | - Amy S Miner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth UniversityRichmond, VA, United States
| | - Robert W Barbee
- Departments of Emergency Medicine and Physiology, Virginia Commonwealth UniversityRichmond, VA, United States
| | - Paul H Ratz
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth UniversityRichmond, VA, United States
| |
Collapse
|
181
|
Wilking-Busch MJ, Ndiaye MA, Liu X, Ahmad N. RNA interference-mediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis. J Proteomics 2017; 170:99-109. [PMID: 28882678 DOI: 10.1016/j.jprot.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/14/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Melanoma is the most notorious and fatal of all skin cancers and the existing treatment options have not been proven to effectively manage this neoplasm, especially the metastatic disease. Sirtuin (SIRT) proteins have been shown to be differentially expressed in melanoma. We have shown that SIRTs 1 and 2 were overexpressed in melanoma and inhibition of SIRT1 imparts anti-proliferative responses in human melanoma cells. To elucidate the impact of SIRT 1 and/or 2 in melanoma, we created stable knockdowns of SIRTs 1, 2, and their combination using shRNA mediated RNA interference in A375 human melanoma cells. We found that SIRT1 and SIRT1&2 combination knockdown caused a decreased cellular proliferation in melanoma cells. Further, the knockdown of SIRT 1 and/or 2 resulted in a decreased colony formation in melanoma cells. To explore the downstream targets of SIRTs 1 and/or 2, we employed a label-free quantitative nano-LC-MS/MS proteomics analysis using the stable lines. We found aberrant levels of proteins involved in many vital cellular processes, including cytoskeletal organization, ribosomal activity, oxidative stress response, and angiogenesis. These findings provide clear evidence of cellular systems undergoing alterations in response to sirtuin inhibition, and have unveiled several excellent candidates for future study. SIGNIFICANCE Melanoma is the deadliest form of skin cancer, due to its aggressive nature, metastatic potential, and a lack of sufficient treatment options for advanced disease. Therefore, detailed investigations into the molecular mechanisms of melanoma growth and progression are needed. In the search for candidate genes to serve as therapeutic targets, the sirtuins show promise as they have been found to be upregulated in melanoma and they regulate a large number of proteins involved in cellular processes known to affect tumor growth, such as DNA damage repair, cell cycle arrest, and apoptosis. In this study, we used a large-scale label-free comparative proteomics system to identify novel protein targets that are affected following knockdown of SIRT1 and/or 2 in A375 metastatic melanoma cell line. Our study offers important insight into the potential downstream targets of SIRTs 1 and/or 2. This may unravel new potential areas of exploration in melanoma research.
Collapse
Affiliation(s)
- Melissa J Wilking-Busch
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; William S. Middleton VA Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
182
|
Sasse SK, Kadiyala V, Danhorn T, Panettieri RA, Phang TL, Gerber AN. Glucocorticoid Receptor ChIP-Seq Identifies PLCD1 as a KLF15 Target that Represses Airway Smooth Muscle Hypertrophy. Am J Respir Cell Mol Biol 2017; 57:226-237. [PMID: 28375666 DOI: 10.1165/rcmb.2016-0357oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids exert important therapeutic effects on airway smooth muscle (ASM), yet few direct targets of glucocorticoid signaling in ASM have been definitively identified. Here, we show that the transcription factor, Krüppel-like factor 15 (KLF15), is directly induced by glucocorticoids in primary human ASM, and that KLF15 represses ASM hypertrophy. We integrated transcriptome data from KLF15 overexpression with genome-wide analysis of RNA polymerase (RNAP) II and glucocorticoid receptor (GR) occupancy to identify phospholipase C delta 1 as both a KLF15-regulated gene and a novel repressor of ASM hypertrophy. Our chromatin immunoprecipitation sequencing data also allowed us to establish numerous direct transcriptional targets of GR in ASM. Genes with inducible GR occupancy and putative antiinflammatory properties included IRS2, APPL2, RAMP1, and MFGE8. Surprisingly, we also observed GR occupancy in the absence of supplemental ligand, including robust GR binding peaks within the IL11 and LIF loci. Detection of antibody-GR complexes at these areas was abrogated by dexamethasone treatment in association with reduced RNA polymerase II occupancy, suggesting that noncanonical pathways contribute to cytokine repression by glucocorticoids in ASM. Through defining GR interactions with chromatin on a genome-wide basis in ASM, our data also provide an important resource for future studies of GR in this therapeutically relevant cell type.
Collapse
Affiliation(s)
| | | | - Thomas Danhorn
- 2 Center for Genes, Health, and the Environment, National Jewish Health, Denver, Colorado
| | - Reynold A Panettieri
- 3 Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey; and
| | - Tzu L Phang
- 4 Department of Medicine, University of Colorado, Denver, Colorado
| | - Anthony N Gerber
- 1 Department of Medicine and.,4 Department of Medicine, University of Colorado, Denver, Colorado
| |
Collapse
|
183
|
Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex. Sci Rep 2017; 7:8471. [PMID: 28814784 PMCID: PMC5559554 DOI: 10.1038/s41598-017-08849-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Exposure to a stressful environment early in life can cause psychiatric disorders by disrupting circuit formation. Actin plays central roles in regulating neuronal structure and protein trafficking. We have recently reported that neonatal isolation inactivated ADF/cofilin, the actin depolymerizing factor, resulted in a reduced actin dynamics at spines and an attenuation of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor delivery in the juvenile rat medial prefrontal cortex (mPFC), leading to altered social behaviours. Here, we investigated the impact of neonatal social isolation in the developing rat barrel cortex. Similar to the mPFC study, we detected an increase in stable actin fraction in spines and this resulted in a decreased synaptic AMPA receptor delivery. Thus, we conclude that early life social isolation affects multiple cortical areas with common molecular changes.
Collapse
|
184
|
Chen C, Maimaiti Y, Zhijun S, Zeming L, Yawen G, Pan Y, Tao H. Slingshot-1L, a cofilin phosphatase, induces primary breast cancer metastasis. Oncotarget 2017; 8:66195-66203. [PMID: 29029503 PMCID: PMC5630403 DOI: 10.18632/oncotarget.19855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/28/2017] [Indexed: 01/06/2023] Open
Abstract
Slingshot (SSH) is a member of the conserved family of cofilin phosphatases that plays a critical role in cell membrane protrusion and migration by transforming inactive phosphorylated cofilin to an active form. SSH-like protein 1 (SSH-1L) expression is detected in various types of tumors; insulin induces the phosphatases activity of SSH-1L in a phosphoinositide 3-kinase-dependent manner. However, little is known about the expression and role of SSH-1L in breast cancer. Here, we analyzed 295 human breast cancer tissue specimens for SSH-1L expression by immunohistochemistry. The correlation between SSH-1L level and patients' clinical characteristics was analyzed with Pearson's χ2 test. The function of SSH-1L was evaluated by gene knockdown and quantitative real-time polymerase chain reaction detection of cofilin expression in MDA-MB-231, MCF-7, and SK-BR-3 human breast cancer cell lines. SSH-1L expression was detected in 88.1% of tissue specimens by immunohistochemistry and was strongly associated with increased metastasis and mortality. Loss of SSH-1L expression decreased the nonphosphorylated, active form of cofilin in SK-BR-3 and MDA-MB-231 cell lines, which was associated with reduced cell motility. Accordingly, SSH-1L/cofilin signaling played a critical role in primary breast cancer metastasis and was a potential therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Chen Chen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Yusufu Maimaiti
- Department of General Surgery (Research Institute of Minimally Invasive), People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830000, P.R. China
| | - Shen Zhijun
- Clinical Laboratory, The Third People's Hospital of Hubei Province, Wuhan 430000, P.R. China
| | - Liu Zeming
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Guo Yawen
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Yu Pan
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| | - Huang Tao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P.R. China
| |
Collapse
|
185
|
Ebhardt HA, Degen S, Tadini V, Schilb A, Johns N, Greig CA, Fearon KCH, Aebersold R, Jacobi C. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study. J Cachexia Sarcopenia Muscle 2017; 8:567-582. [PMID: 28296247 PMCID: PMC5566647 DOI: 10.1002/jcsm.12188] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/03/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer cachexia (cancer-induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age-related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early. METHODS We used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH-MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy. RESULTS We quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age-related muscle loss (aka age-related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration. CONCLUSIONS The work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature.
Collapse
Affiliation(s)
- H Alexander Ebhardt
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Simone Degen
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Valentina Tadini
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Alain Schilb
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| | - Neil Johns
- Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - Carolyn A Greig
- School of Sport, Exercise, and Rehabilitation Sciences and MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Kenneth C H Fearon
- Clinical Sciences (Surgery), University of Edinburgh, Edinburgh, Scotland, UK
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland.,Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Carsten Jacobi
- Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
186
|
AMP-activated protein kinase/myocardin-related transcription factor-A signaling regulates fibroblast activation and renal fibrosis. Kidney Int 2017; 93:81-94. [PMID: 28739141 DOI: 10.1016/j.kint.2017.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 04/22/2017] [Accepted: 04/28/2017] [Indexed: 01/19/2023]
Abstract
Chronic kidney disease is a major cause of death, and renal fibrosis is a common pathway leading to the progression of this disease. Although activated fibroblasts are responsible for the production of the extracellular matrix and the development of renal fibrosis, the molecular mechanisms underlying fibroblast activation are not fully defined. Here we examined the functional role of AMP-activated protein kinase (AMPK) in the activation of fibroblasts and the development of renal fibrosis. AMPKα1 was induced in the kidney during the development of renal fibrosis. Mice with global or fibroblast-specific knockout of AMPKα1 exhibited fewer myofibroblasts, developed less fibrosis, and produced less extracellular matrix protein in the kidneys following unilateral ureteral obstruction or ischemia-reperfusion injury. Mechanistically, AMPKα1 directly phosphorylated cofilin leading to cytoskeleton remodeling and myocardin-related transcription factor-A nuclear translocation resulting in fibroblast activation and extracellular matrix protein production. Thus, AMPK may be a critical regulator of fibroblast activation through regulation of cytoskeleton dynamics and myocardin-related transcription factor-A nuclear translocation. Hence, AMPK signaling may represent a novel therapeutic target for fibrotic kidney disease.
Collapse
|
187
|
Schubert KM, Qiu J, Blodow S, Wiedenmann M, Lubomirov LT, Pfitzer G, Pohl U, Schneider H. The AMP-Related Kinase (AMPK) Induces Ca
2+
-Independent Dilation of Resistance Arteries by Interfering With Actin Filament Formation. Circ Res 2017; 121:149-161. [DOI: 10.1161/circresaha.116.309962] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 12/13/2022]
Abstract
Rationale:
Decreasing Ca
2+
sensitivity of vascular smooth muscle (VSM) allows for vasodilation without lowering of cytosolic Ca
2+
. This may be particularly important in states requiring maintained dilation, such as hypoxia. AMP-related kinase (AMPK) is an important cellular energy sensor in VSM. Regulation of Ca
2+
sensitivity usually is attributed to myosin light chain phosphatase activity, but findings in non-VSM identified changes in the actin cytoskeleton. The potential role of AMPK in this setting is widely unknown.
Objective:
To assess the influence of AMPK on the actin cytoskeleton in VSM of resistance arteries with regard to potential Ca
2+
desensitization of VSM contractile apparatus.
Methods and Results:
AMPK induced a slowly developing dilation at unchanged cytosolic Ca
2+
levels in potassium chloride–constricted intact arteries isolated from mouse mesenteric tissue. This dilation was not associated with changes in phosphorylation of myosin light chain or of myosin light chain phosphatase regulatory subunit. Using ultracentrifugation and confocal microscopy, we found that AMPK induced depolymerization of F-actin (filamentous actin). Imaging of arteries from LifeAct mice showed F-actin rarefaction in the midcellular portion of VSM. Immunoblotting revealed that this was associated with activation of the actin severing factor cofilin. Coimmunoprecipitation experiments indicated that AMPK leads to the liberation of cofilin from 14-3-3 protein.
Conclusions:
AMPK induces actin depolymerization, which reduces vascular tone and the response to vasoconstrictors. Our findings demonstrate a new role of AMPK in the control of actin cytoskeletal dynamics, potentially allowing for long-term dilation of microvessels without substantial changes in cytosolic Ca
2+
.
Collapse
Affiliation(s)
- Kai Michael Schubert
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Jiehua Qiu
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Stephanie Blodow
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Margarethe Wiedenmann
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Lubomir T. Lubomirov
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Gabriele Pfitzer
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Ulrich Pohl
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| | - Holger Schneider
- From the Walter Brendel Centre of Experimental Medicine, Biomedical Center of LMU, Ludwig Maximilian University of Munich, Germany (K.M.S., J.Q., S.B., M.W., U.P., H.S.); Munich Cluster for Systems Neurology (SyNergy), Germany (K.M.S., S.B., U.P., H.S.); Deutsches Zentrum für Herz- Kreislauf-Forschung (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany (K.M.S., S.B., U.P., H.S.); and Institute of Vegetative Physiology, University of Cologne, Germany (L.T
| |
Collapse
|
188
|
Sun W, Yan H, Qian C, Wang C, Zhao M, Liu Y, Zhong Y, Liu H, Xiao H. Cofilin-1 and phosphoglycerate kinase 1 as promising indicators for glioma radiosensibility and prognosis. Oncotarget 2017; 8:55073-55083. [PMID: 28903403 PMCID: PMC5589642 DOI: 10.18632/oncotarget.19025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/18/2017] [Indexed: 11/25/2022] Open
Abstract
Glioma is a primary malignancy in central nervous system. Radiotherapy has been used as one of the standard treatments for glioma for decades. Since radioresistance can reduce the curative efficacy of radiotherapy in glioma, investigating the cause of radioresistance and predicting the tumour radiosensibility appeared particularly important. We previously reported that CFL1 and PGK1 are over-expressed in radioresistant U251 glioma cells. In this study, the level of CFL1 and PGK1 of 113 glioma tissues were measured by ELISA method. The relevance of the expression of these two proteins to radiosensibility was analyzed by mean test and multivariate logistic regression. The survival analysis was carried out in 85 irradiated patients and 105 followed-up patients respectively. The relationship between protein expression and clinical parameters was explored in overall 113 patients, and the correlation between CFL1 and PGK1 were determined as well. Our results showed that the expression of CFL1 and PGK1 were significantly higher (P < 0.001) in radioresistant patients than others. The multivariate Logistic regression demonstrated that the expression of CFL1 (p < 0.001) and PGK1 (p < 0.001) were associated with radioresistance in glioma. The multivariate Cox regression in overall survival suggested that CFL1 level or PGK1 level could be the independent prognosis factor for poor prognosis in 113 glioma patients. In addition, CFL1 expression was positively correlated with PGK1 expression in glioma. The results suggested that as promising indicators, CFL1 and PGK1 could be used to evaluate glioma radiosensibility and prognosis. These two proteins could also be the potential therapeutic targets of glioma.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hua Yan
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Chunfa Qian
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Chenhan Wang
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Mengjie Zhao
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Yuchi Liu
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Yujie Zhong
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| | - Hong Xiao
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, China
| |
Collapse
|
189
|
Shaw AE, Bamburg JR. Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders. Pharmacol Ther 2017; 175:17-27. [PMID: 28232023 PMCID: PMC5466456 DOI: 10.1016/j.pharmthera.2017.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cofilin is a ubiquitous protein which cooperates with many other actin-binding proteins in regulating actin dynamics. Cofilin has essential functions in nervous system development including neuritogenesis, neurite elongation, growth cone pathfinding, dendritic spine formation, and the regulation of neurotransmission and spine function, components of synaptic plasticity essential for learning and memory. Cofilin's phosphoregulation is a downstream target of many transmembrane signaling processes, and its misregulation in neurons has been linked in rodent models to many different neurodegenerative and neurological disorders including Alzheimer disease (AD), aggression due to neonatal isolation, autism, manic/bipolar disorder, and sleep deprivation. Cognitive and behavioral deficits of these rodent models have been largely abrogated by modulation of cofilin activity using viral-mediated, genetic, and/or small molecule or peptide therapeutic approaches. Neuropathic pain in rats from sciatic nerve compression has also been reduced by modulating the cofilin pathway within neurons of the dorsal root ganglia. Neuroinflammation, which occurs following cerebral ischemia/reperfusion, but which also accompanies many other neurodegenerative syndromes, is markedly reduced by peptides targeting specific chemokine receptors, which also modulate cofilin activity. Thus, peptide therapeutics offer potential for cost-effective treatment of a wide variety of neurological disorders. Here we discuss some recent results from rodent models using therapeutic peptides with a surprising ability to cross the rodent blood brain barrier and alter cofilin activity in brain. We also offer suggestions as to how neuronal-specific cofilin regulation might be achieved.
Collapse
Affiliation(s)
- Alisa E Shaw
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States
| | - James R Bamburg
- Department of Biochemistry and Molecular Biology, Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1870, United States.
| |
Collapse
|
190
|
Varlet AA, Fuchs M, Luthold C, Lambert H, Landry J, Lavoie JN. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division. Cell Stress Chaperones 2017; 22:553-567. [PMID: 28275944 PMCID: PMC5465032 DOI: 10.1007/s12192-017-0780-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 11/28/2022] Open
Abstract
The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.
Collapse
Affiliation(s)
- Alice Anaïs Varlet
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Margit Fuchs
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Carole Luthold
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Herman Lambert
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
| | - Jacques Landry
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada
| | - Josée N Lavoie
- Centre de recherche sur le cancer de l'Université Laval, Québec, Canada.
- Oncology, Centre de recherche du CHU de Québec-Université Laval, Québec, G1R 3S3, Canada.
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie Université Laval, Québec, G1V OA6, Canada.
| |
Collapse
|
191
|
Maldonado-Contreras A, Birtley JR, Boll E, Zhao Y, Mumy KL, Toscano J, Ayehunie S, Reinecker HC, Stern LJ, McCormick BA. Shigella depends on SepA to destabilize the intestinal epithelial integrity via cofilin activation. Gut Microbes 2017; 8:544-560. [PMID: 28598765 PMCID: PMC5730386 DOI: 10.1080/19490976.2017.1339006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Shigella is unique among enteric pathogens, as it invades colonic epithelia through the basolateral pole. Therefore, it has evolved the ability to breach the intestinal epithelial barrier to deploy an arsenal of effector proteins, which permits bacterial invasion and leads to a severe inflammatory response. However, the mechanisms used by Shigella to regulate epithelial barrier permeability remain unknown. To address this question, we used both an intestinal polarized model and a human ex-vivo model to further characterize the early events of host-bacteria interactions. Our results showed that secreted Serine Protease A (SepA), which belongs to the serine protease autotransporter of Enterobacteriaceae family, is responsible for critically disrupting the intestinal epithelial barrier. Such disruption facilitates bacterial transit to the basolateral pole of the epithelium, ultimately fostering the hallmarks of the disease pathology. SepA was found to cause a decrease in active LIM Kinase 1 (LIMK1) levels, a negative inhibitor of actin-remodeling proteins, namely cofilin. Correspondingly, we observed increased activation of cofilin, a major actin-polymerization factor known to control opening of tight junctions at the epithelial barrier. Furthermore, we resolved the crystal structure of SepA to elucidate its role on actin-dynamics and barrier disruption. The serine protease activity of SepA was found to be required for the regulatory effects on LIMK1 and cofilin, resulting in the disruption of the epithelial barrier during infection. Altogether, we demonstrate that SepA is indispensable for barrier disruption, ultimately facilitating Shigella transit to the basolateral pole where it effectively invades the epithelium.
Collapse
Affiliation(s)
- Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA,CONTACT Beth A. McCormick ; Ana Maldonado-Contreras 55 Lake Ave N, Worcester, MA, 01655
| | - James R. Birtley
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Erik Boll
- Statens Serum Institut, Copenhagen, Denmark
| | - Yun Zhao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Karen L. Mumy
- Naval Medical Research Unit Dayton, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Juan Toscano
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA
| | | | - Hans-Christian Reinecker
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts, Medical School, Worcester, MA, USA
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts, Medical School, Worcester, MA, USA,CONTACT Beth A. McCormick ; Ana Maldonado-Contreras 55 Lake Ave N, Worcester, MA, 01655
| |
Collapse
|
192
|
Zafar S, Younas N, Sheikh N, Tahir W, Shafiq M, Schmitz M, Ferrer I, Andréoletti O, Zerr I. Cytoskeleton-Associated Risk Modifiers Involved in Early and Rapid Progression of Sporadic Creutzfeldt-Jakob Disease. Mol Neurobiol 2017; 55:4009-4029. [PMID: 28573459 DOI: 10.1007/s12035-017-0589-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
A high priority in the prion field is to identify pre-symptomatic events and associated profile of molecular changes. In this study, we demonstrate the pre-symptomatic dysregulation of cytoskeleton assembly and its associated cofilin-1 pathway in strain and brain region-specific manners in MM1 and VV2 subtype-specific Creutzfeldt-Jakob disease at clinical and pre-clinical stage. At physiological level, PrPC interaction with cofilin-1 and phosphorylated form of cofilin (p-cofilin(Ser3)) was investigated in primary cultures of mouse cortex neurons (PCNs) of PrPC wild-type and knockout mice (PrP-/-). Short-interfering RNA downregulation of active form of cofilin-1 resulted in the redistribution/downregulation of PrPC, increase of activated form of microglia, accumulation of dense form of F-actin, and upregulation of p-cofilin(Ser3). This upregulated p-cofilin(Ser3) showed redistribution of expression predominantly in the activated form of microglia in PCNs. At pathological level, cofilin-1 expression was significantly altered in cortex and cerebellum in both humans and mice at pre-clinical stage and at early symptomatic clinical stage of the disease. Further, to better understand the possible mechanism of dysregulation of cofilin-1, we also demonstrated alterations in upstream regulators; LIM kinase isoform 1 (LIMK1), slingshot phosphatase isoform 1 (SSH1), RhoA-associated kinase (Rock2), and amyloid precursor protein (APP) in sporadic Creutzfeldt-Jakob disease MM1 mice and in human MM1 and VV2 frontal cortex and cerebellum samples. In conclusion, our findings demonstrated for the first time a key pre-clinical response of cofilin-1 and the associated pathway in prion disease.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany.
| | - Neelam Younas
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Nadeem Sheikh
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Waqas Tahir
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Mohsin Shafiq
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| | - Isidre Ferrer
- Institute of Neuropathology, IDIBELL-University Hospital Bellvitge, University of Barcelona, Hospitalet de Llobregat, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Olivier Andréoletti
- Institut National de la Recherche Agronomique/Ecole Nationale Vétérinaire, Toulouse, France
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center, and DZNE, Georg-August University, University Medical Center Goettingen (UMG), Robert-Koch-Str. 40, 37075, Goettingen, Germany
| |
Collapse
|
193
|
Abstract
Cells in physiology integrate local soluble and mechanical signals to regulate genomic programs. Whereas the individual roles of these signals are well studied, the cellular responses to the combined chemical and physical signals are less explored. Here, we investigated the cross-talk between cellular geometry and TNFα signaling. We stabilized NIH 3T3 fibroblasts into rectangular anisotropic or circular isotropic geometries and stimulated them with TNFα and analyzed nuclear translocation of transcription regulators -NFκB (p65) and MKL and downstream gene-expression patterns. We found that TNFα induces geometry-dependent actin depolymerization, which enhances IκB degradation, p65 nuclear translocation, nuclear exit of MKL, and sequestration of p65 at the RNA-polymerase-II foci. Further, global transcription profile of cells under matrix-TNFα interplay reveals a geometry-dependent gene-expression pattern. At a functional level, we find cell geometry affects TNFα-induced cell proliferation. Our results provide compelling evidence that fibroblasts, depending on their geometries, elicit distinct cellular responses for the same cytokine.
Collapse
|
194
|
Lane-Donovan C, Herz J. ApoE, ApoE Receptors, and the Synapse in Alzheimer's Disease. Trends Endocrinol Metab 2017; 28:273-284. [PMID: 28057414 PMCID: PMC5366078 DOI: 10.1016/j.tem.2016.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/29/2016] [Accepted: 12/07/2016] [Indexed: 01/24/2023]
Abstract
As the population ages, neurodegenerative diseases such as Alzheimer's disease (AD) are becoming a significant burden on patients, their families, and health-care systems. Neurodegenerative processes may start up to 15 years before outward signs and symptoms of AD, as evidenced by data from AD patients and mouse models. A major genetic risk factor for late-onset AD is the ɛ4 isoform of apolipoprotein E (ApoE4), which is present in almost 20% of the population. In this review we discuss the contribution of ApoE receptor signaling to the function of each component of the tripartite synapse - the axon terminal, the postsynaptic dendritic spine, and the astrocyte - and examine how these systems fail in the context of ApoE4 and AD.
Collapse
Affiliation(s)
- Courtney Lane-Donovan
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Center for Neuroscience, Department of Neuroanatomy, Albert Ludwig University, Freiburg, Germany.
| |
Collapse
|
195
|
Lauterborn JC, Kramár EA, Rice JD, Babayan AH, Cox CD, Karsten CA, Gall CM, Lynch G. Cofilin Activation Is Temporally Associated with the Cessation of Growth in the Developing Hippocampus. Cereb Cortex 2017; 27:2640-2651. [PMID: 27073215 PMCID: PMC5964364 DOI: 10.1093/cercor/bhw088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic extension and synaptogenesis proceed at high rates in rat hippocampus during early postnatal life but markedly slow during the third week of development. The reasons for the latter, fundamental event are poorly understood. Here, we report that levels of phosphorylated (inactive) cofilin, an actin depolymerizing factor, decrease by 90% from postnatal days (pnds) 10 to 21. During the same period, levels of total and phosphorylated Arp2, which nucleates actin branches, increase. A search for elements that could explain the switch from inactive to active cofilin identified reductions in β1 integrin, TrkB, and LIM domain kinase 2b, upstream proteins that promote cofilin phosphorylation. Moreover, levels of slingshot 3, which dephosphorylates cofilin, increase during the period in which growth slows. Consistent with the cofilin results, in situ phalloidin labeling of F-actin demonstrated that spines and dendrites contained high levels of dynamic actin filaments during Week 2, but these fell dramatically by pnd 21. The results suggest that the change from inactive to constitutively active cofilin leads to a loss of dynamic actin filaments needed for process extension and thus the termination of spine formation and synaptogenesis. The relevance of these events to the emergence of memory-related synaptic plasticity is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Christine M. Gall
- Department of Anatomy and Neurobiology
- Department of Neurobiology and Behavior
| | - Gary Lynch
- Department of Anatomy and Neurobiology
- Department of Psychiatry and Human Behavior, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
196
|
Inada N. Plant actin depolymerizing factor: actin microfilament disassembly and more. JOURNAL OF PLANT RESEARCH 2017; 130:227-238. [PMID: 28044231 PMCID: PMC5897475 DOI: 10.1007/s10265-016-0899-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/14/2016] [Indexed: 05/19/2023]
Abstract
ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein among eukaryotes. The main function of ADF is the severing and depolymerizing filamentous actin (F-actin), thus regulating F-actin organization and dynamics and contributing to growth and development of the organisms. Mammalian genomes contain only a few ADF genes, whereas angiosperm plants have acquired an expanding number of ADFs, resulting in the differentiation of physiological functions. Recent studies have revealed functions of ADFs in plant growth and development, and various abiotic and biotic stress responses. In biotic stress responses, ADFs are involved in both susceptibility and resistance, depending on the pathogens. Furthermore, recent studies have highlighted a new role of ADF in the nucleus, possibly in the regulation of gene expression. In this review, I will summarize the current status of plant ADF research and discuss future research directions.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan.
| |
Collapse
|
197
|
Xu X, Liu X, Long J, Hu Z, Zheng Q, Zhang C, Li L, Wang Y, Jia Y, Qiu W, Zhou J, Yao W, Zeng Z. Interleukin-10 reorganizes the cytoskeleton of mature dendritic cells leading to their impaired biophysical properties and motilities. PLoS One 2017; 12:e0172523. [PMID: 28234961 PMCID: PMC5325303 DOI: 10.1371/journal.pone.0172523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
Interlukin-10 (IL-10) is an immunomodulatory cytokine which predominantly induces immune-tolerance. It has been also identified as a major cytokine in the tumor microenvironment that markedly mediates tumor immune escape. Previous studies on the roles of IL-10 in tumor immunosuppression mainly focus on its biochemical effects. But the effects of IL-10 on the biophysical characteristics of immune cells are ill-defined. Dendritic cells (DCs) are the most potent antigen-presenting cells and play a key role in the anti-tumor immune response. IL-10 can affect the immune regulatory functions of DCs in various ways. In this study, we aim to explore the effects of IL-10 on the biophysical functions of mature DCs (mDCs). mDCs were treated with different concentrations of IL-10 and their biophysical characteristics were identified. The results showed that the biophysical properties of mDCs, including electrophoresis mobility, osmotic fragility and deformability, as well as their motilities, were impaired by IL-10. Meanwhile, the cytoskeleton (F-actin) of mDCs was reorganized by IL-10. IL-10 caused the alternations in the expressions of fasin1 and profilin1 as well as the phosphorylation of cofilin1 in a concentration-dependent fashion. Moreover, Fourier transformed infrared resonance data showed that IL-10 made the status of gene transcription and metabolic turnover of mDCs more active. These results demonstrate a new aspect of IL-10's actions on the immune system and represent one of the mechanisms for immune escape of tumors. It may provide a valuable clue to optimize and improve the efficiency of DC-based immunotherapy against cancer.
Collapse
Affiliation(s)
- Xiaoli Xu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Xianmei Liu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Jinhua Long
- Department of Head and Neck, Affiliated Cancer Hospital, Guizhou Medical University, Guiyang, P.R.China
| | - Zuquan Hu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Qinni Zheng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Chunlin Zhang
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
| | - Long Li
- Department of Nephropathy & Rheumatism, Third Affiliated Hospital, Guizhou Medical University, Duyun, P.R.China
| | - Yun Wang
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Yi Jia
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Wei Qiu
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Jing Zhou
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| | - Weijuan Yao
- Hemorheology Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P.R.China
| | - Zhu Zeng
- Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, P.R. China
- Engineering Center of Medical Biotechnology Application, Guizhou Medical University, Guiyang, P.R. China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
198
|
Ohishi T, Yoshida H, Katori M, Migita T, Muramatsu Y, Miyake M, Ishikawa Y, Saiura A, Iemura SI, Natsume T, Seimiya H. Tankyrase-Binding Protein TNKS1BP1 Regulates Actin Cytoskeleton Rearrangement and Cancer Cell Invasion. Cancer Res 2017; 77:2328-2338. [PMID: 28202517 DOI: 10.1158/0008-5472.can-16-1846] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/16/2016] [Accepted: 01/29/2017] [Indexed: 11/16/2022]
Abstract
Tankyrase, a PARP that promotes telomere elongation and Wnt/β-catenin signaling, has various binding partners, suggesting that it has as-yet unidentified functions. Here, we report that the tankyrase-binding protein TNKS1BP1 regulates actin cytoskeleton and cancer cell invasion, which is closely associated with cancer progression. TNKS1BP1 colocalized with actin filaments and negatively regulated cell invasion. In TNKS1BP1-depleted cells, actin filament dynamics, focal adhesion, and lamellipodia ruffling were increased with activation of the ROCK/LIMK/cofilin pathway. TNKS1BP1 bound the actin-capping protein CapZA2. TNKS1BP1 depletion dissociated CapZA2 from the cytoskeleton, leading to cofilin phosphorylation and enhanced cell invasion. Tankyrase overexpression increased cofilin phosphorylation, dissociated CapZA2 from cytoskeleton, and enhanced cell invasion in a PARP activity-dependent manner. In clinical samples of pancreatic cancer, TNKS1BP1 expression was reduced in invasive regions. We propose that the tankyrase-TNKS1BP1 axis constitutes a posttranslational modulator of cell invasion whose aberration promotes cancer malignancy. Cancer Res; 77(9); 2328-38. ©2017 AACR.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.,Institute of Microbial Chemistry (BIKAKEN), Numazu, Numazu-shi, Shizuoka, Japan
| | - Haruka Yoshida
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Masamichi Katori
- Divison of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Toshiro Migita
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Yukiko Muramatsu
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Mao Miyake
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Yuichi Ishikawa
- Divison of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Akio Saiura
- Department of Gastroenterological Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan
| | - Shun-Ichiro Iemura
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Tohru Natsume
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Hiroyuki Seimiya
- Division of Molecular Biotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Koto-ku, Tokyo, Japan.
| |
Collapse
|
199
|
Wang JC, Lee JYJ, Christian S, Dang-Lawson M, Pritchard C, Freeman SA, Gold MR. The Rap1-cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse. J Cell Sci 2017; 130:1094-1109. [PMID: 28167682 DOI: 10.1242/jcs.191858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/31/2017] [Indexed: 12/19/2022] Open
Abstract
B cells that bind antigens displayed on antigen-presenting cells (APCs) form an immune synapse, a polarized cellular structure that optimizes the dual functions of the B cell receptor (BCR), signal transduction and antigen internalization. Immune synapse formation involves polarization of the microtubule-organizing center (MTOC) towards the APC. We now show that BCR-induced MTOC polarization requires the Rap1 GTPase (which has two isoforms, Rap1a and Rap1b), an evolutionarily conserved regulator of cell polarity, as well as cofilin-1, an actin-severing protein that is regulated by Rap1. MTOC reorientation towards the antigen contact site correlated strongly with cofilin-1-dependent actin reorganization and cell spreading. We also show that BCR-induced MTOC polarization requires the dynein motor protein as well as IQGAP1, a scaffolding protein that can link the actin and microtubule cytoskeletons. At the periphery of the immune synapse, IQGAP1 associates closely with F-actin structures and with the microtubule plus-end-binding protein CLIP-170 (also known as CLIP1). Moreover, the accumulation of IQGAP1 at the antigen contact site depends on F-actin reorganization that is controlled by Rap1 and cofilin-1. Thus the Rap1-cofilin-1 pathway coordinates actin and microtubule organization at the immune synapse.
Collapse
Affiliation(s)
- Jia C Wang
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Jeff Y-J Lee
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Sonja Christian
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - May Dang-Lawson
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Caitlin Pritchard
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Spencer A Freeman
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| | - Michael R Gold
- Department of Microbiology & Immunology and the Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
200
|
Fang W, Fa ZZ, Xie Q, Wang GZ, Yi J, Zhang C, Meng GX, Gu JL, Liao WQ. Complex Roles of Annexin A2 in Host Blood-Brain Barrier Invasion by Cryptococcus neoformans. CNS Neurosci Ther 2017; 23:291-300. [PMID: 28130864 DOI: 10.1111/cns.12673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/15/2016] [Accepted: 12/19/2016] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Fungal transversal across the brain microvascular endothelial cells (BMECs) is the essential step for the development of cryptococcal meningoencephalitis. Annexin A2 (AnxA2) is an important signaling protein involved in several intracellular processes such as membrane trafficking, endocytosis, and exocytosis. AIM To investigate the roles and mechanism of AnxA2 during cryptococcal transversal of BMECs. RESULTS Cryptococcus neoformans infection initiated upregulation of AnxA2 in mouse BMECs. Blockade with anti-AnxA2 antibody led to a reduction in fungal transcytosis activity but no change in its adhesion efficiency. Intriguingly, AnxA2 depletion caused a significant increase in fungal association activity but had no effect on their transcytosis. AnxA2 suppression resulted in marked reduction in its partner protein S100A10, and S100A10 suppression in BMECs significantly reduced the cryptococcal transcytosis efficiency. Furthermore, AnxA2 dephosphorylation at Tyr23 and dephosphorylation of downstream cofilin were required for cryptococcal transversal of BMECs, both of which might be primarily involved in the association of C. neoformans with host cells. CONCLUSIONS Our work indicated that AnxA2 played complex roles in traversal of C. neoformans across host BMECs, which might be dependent on downstream cofilin to inhibit fungal adhesion but rely on its partner S100A10 to promote cryptococcal transcytosis.
Collapse
Affiliation(s)
- Wei Fang
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Zhen-Zong Fa
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Qun Xie
- Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Gui-Zhen Wang
- ICU Department, Urumuqi Army General Hospital, Urumqi, Xinjiang, China
| | - Jiu Yi
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| | - Guang-Xun Meng
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ju-Lin Gu
- PLA Key Laboratory of Mycosis, Department of Dermatology and Venereology, Changzheng Hospital, Shanghai, China.,Department of Dermatology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Qing Liao
- Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai Institute of Medical Mycology, Second Military Medical University, Shanghai, China
| |
Collapse
|