151
|
Vitiello A, La Porta R, D'Aiuto V, Ferrara F. Pharmacological approach for the reduction of inflammatory and prothrombotic hyperactive state in COVID-19 positive patients by acting on complement cascade. Hum Immunol 2021; 82:264-269. [PMID: 33632561 PMCID: PMC7816598 DOI: 10.1016/j.humimm.2021.01.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
The novel Coronavirus SARS-CoV-2 is the viral pathogen responsible for the ongoing global pandemic, COVID-19 (Coronavirus disease 2019). To date, the data recorded indicate 1.62 Mln deaths and 72.8 Mln people infected (WHO situation report Dec 2020). On December 27, the first anti-COVID-19 vaccinations started in Europe. There are no direct antivirals against SARS-CoV-2. Understanding the pathophysiological and inflammatory/immunological processes of SARS-CoV-2 infection is essential to identify new drug therapies. In the most severe COVID-19 cases, an unregulated immunological/inflammatory system results in organ injury that can be fatal to the host in some cases. Pharmacologic approaches to normalize the unregulated inflammatory/immunologic response is an important therapeutic solution. Evidence associates a non-regulation of the “complement system” as one of the causes of generalized inflammation causing multi-organ dysfunction. Serum levels of a complement cascade mediator, factor “C5a”, have been found in high concentrations in the blood of COVID-19 patients with severe disease. In this article we discuss the correlation between complement system and COVID-19 infection and pharmacological solutions directed to regulate.
Collapse
Affiliation(s)
- A Vitiello
- Clinical Pharmacologist, Pharmaceutical Department, Usl Umbria 1, A.Migliorati Street, 06132 Perugia, Italy
| | - R La Porta
- Clinical Pathologist, Pathologist Department, Asur Marche, A.Comandino Street, 61029 Urbino, Italy.
| | - V D'Aiuto
- Clinical Pathologist, Pathologist Department, Asur Marche, A.Comandino Street, 61029 Urbino, Italy
| | - F Ferrara
- Hospital Pharmacist Manager, Pharmaceutical Department, Usl Umbria 1, A.Migliorati Street, 06132 Perugia, Italy.
| |
Collapse
|
152
|
Agostinis C, Balduit A, Mangogna A, Zito G, Romano F, Ricci G, Kishore U, Bulla R. Immunological Basis of the Endometriosis: The Complement System as a Potential Therapeutic Target. Front Immunol 2021; 11:599117. [PMID: 33505394 PMCID: PMC7829336 DOI: 10.3389/fimmu.2020.599117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Endometriosis (EM) is a chronic disease characterized by the presence and proliferation of functional endometrial glands and stroma outside the uterine cavity. Ovaries and pelvic peritoneum are the most common locations for endometrial ectopic tissue, followed by deep infiltrating EM sites. The cyclic and recurrent bleeding, the progressive fibrosis and the peritoneal adhesions of ectopic endometrial glands, may cause different symptoms depending on the origin involved. EM is a frequent clinical condition affecting around 10% of women of mainly reproductive age, as well as in post-menopausal women and adolescents, especially with uterine anomalies. The risk of developing EM depends on a complex interaction between genetic, immunological, hormonal, and environmental factors. It is largely considered to arise due to a dysfunction of immunological surveillance. In fact, women with EM exhibit altered functions of peritoneal macrophages, lymphocytes and natural killer cells, as well as levels of inflammatory mediators and growth factors in the peritoneal fluid. In EM patients, peritoneal macrophages are preponderant and highly active compared to healthy women. Peritoneal macrophages are able to regulate the events that determine the production of cytokines, prostaglandins, growth factors and complement components. Several studies have shown alteration in the regulation of the complement activation, leading to chronic inflammation characteristic of EM. Aberrant regulation/activation of the complement system has been observed in the peritoneal cavity of women affected by EM. Thus, complement inhibition may represent a new approach for the treatment of EM, given that a number of complement inhibitors are under pre-clinical and clinical development. Such an intervention may provide a broader therapeutic control of complement-mediated inflammatory damage in EM patients. This review will focus on our current understanding of the role of complement activation in EM and possible modalities available for complement-based therapy.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Andrea Balduit
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Gabriella Zito
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) "Burlo Garofolo", Trieste, Italy.,Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
153
|
Perico L, Benigni A, Casiraghi F, Ng LFP, Renia L, Remuzzi G. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nat Rev Nephrol 2021; 17:46-64. [PMID: 33077917 PMCID: PMC7570423 DOI: 10.1038/s41581-020-00357-4] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
In December 2019, a novel coronavirus was isolated from the respiratory epithelium of patients with unexplained pneumonia in Wuhan, China. This pathogen, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a pathogenic condition that has been termed coronavirus disease 2019 (COVID-19) and has reached pandemic proportions. As of 17 September 2020, more than 30 million confirmed SARS-CoV-2 infections have been reported in 204 different countries, claiming more than 1 million lives worldwide. Accumulating evidence suggests that SARS-CoV-2 infection can lead to a variety of clinical conditions, ranging from asymptomatic to life-threatening cases. In the early stages of the disease, most patients experience mild clinical symptoms, including a high fever and dry cough. However, 20% of patients rapidly progress to severe illness characterized by atypical interstitial bilateral pneumonia, acute respiratory distress syndrome and multiorgan dysfunction. Almost 10% of these critically ill patients subsequently die. Insights into the pathogenic mechanisms underlying SARS-CoV-2 infection and COVID-19 progression are emerging and highlight the critical role of the immunological hyper-response - characterized by widespread endothelial damage, complement-induced blood clotting and systemic microangiopathy - in disease exacerbation. These insights may aid the identification of new or existing therapeutic interventions to limit the progression of early disease and treat severe cases.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Lisa F P Ng
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Laurent Renia
- Infectious Diseases Horizontal Technology Centre (ID HTC), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy.
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
154
|
Tavasolian F, Hatam GR, Mosawi SH, Saadi MI, Abdollahi E, Jamialahmadi T, Sathyapalan T, Sahebkar A. The Immune Response and Effectiveness of COVID-19 Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1321:115-126. [PMID: 33656718 DOI: 10.1007/978-3-030-59261-5_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly pathogenic with relatively high mortality and morbidity. In addition to pneumonia, acute respiratory distress syndrome, and microembolic disorder, a high proportion of patients with SARS-CoV-2 develop lymphopenia and cytokine storm disorder. This review explores the underlying mechanisms behind the pathogenesis of SARS-CoV-2, especially the immune mechanisms, which could be potentially used as therapeutic targets for the management of COVID-19.
Collapse
Affiliation(s)
- Fataneh Tavasolian
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholam Reza Hatam
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mahdiyar Iravani Saadi
- Hematology Research Center, Department of Hematology, Medical Oncology and Stem Cell Transplantation, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Abdollahi
- Department of Medical Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Halal Research Center of IRI, FDA, Tehran, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland.
| |
Collapse
|
155
|
Hembram P. An outline of SARS-CoV-2 pathogenesis and the complement cascade of immune system. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:123. [PMID: 34257504 PMCID: PMC8267761 DOI: 10.1186/s42269-021-00582-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Coronavirus disease 19 is a viral infection caused by a novel coronavirus, SARS-CoV-2. It was first notified in Wuhan, China, is now spread into numerous part of the world. Thus, the world needs urgent support and encouragement to develop a vaccine or antiviral treatments to combat the atrocious outbreak. MAIN BODY OF THE ABSTRACT The origin of this virus is yet unknown; however, rapid transmission from human-to-human "Anthroponosis" has widely confirmed. The world is witnessing a continuous hike in SARS-CoV-2 infection. In light of the outbreak of coronavirus disease 19, we have aimed to highlight the basic and vital information about the novel coronavirus. We provide an overview of SARS-CoV-2 transmission, timeline and its pathophysiological properties which would be an aid for the development of therapeutic molecules and antiviral drugs. Immune system plays a crucial role in virus infection in order to control but may have dark side when becomes uncontrollable. The host and SARS-CoV-2 interaction describe how the virus exploits host machinery and how overactive host immune response can cause disease severity also addressed in this review. SHORT CONCLUSION Safe and effective vaccines may be the game-changing tools, but in the near future wearing mask, washing hands at regular intervals, avoiding crowed, maintaining physical distancing and hygienic surrounding, must be good practices to reduce and break the transmission chain. Still, research is ongoing not only on how vaccines protect against disease, but also against infection and transmission.
Collapse
Affiliation(s)
- Padmalochan Hembram
- Department of Botany, Berhampur University, Bhanja Bihar, Berhampur, 760007 India
| |
Collapse
|
156
|
Yasmin H, Saha S, Butt MT, Modi RK, George AJT, Kishore U. SARS-CoV-2: Pathogenic Mechanisms and Host Immune Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1313:99-134. [PMID: 34661893 DOI: 10.1007/978-3-030-67452-6_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped, positive-sense RNA coronavirus responsible for the COVID-19 pandemic. Since December 2019, coronavirus disease 2019 (COVID-19) has affected more than 127 million people, 2.7 million deaths globally (as per WHO dashboard, dated 31 March, 2020), the virus is capable of transmitting from human to human via inhalation of infected respiratory droplets or aerosols or contact with infected fomites. Clinically, patients with COVID-19 present with severe respiratory distress syndrome, which is very similar to the presentation of other respiratory viral infections. A huge variation in the host response exists, with the resulting symptoms varying from mild to moderate. Comorbidities such as cardiovascular disease, hypertension, diabetes, coagulation dysfunction, stroke, malignant tumor and multiple organ dysfunction syndrome, as well as age and sex, are associated with severe COVID-19 cases. So far, no targeted therapies have been developed to treat this disease and existing drugs are being investigated for repurposing. This chapter discusses the epidemiology, clinical features of COVID-19, pathogenesis and the innate and adaptive immune response mounted by the host to the SARS-CoV-2 infection. A deeper understanding of the host-pathogen interaction is fundamental to the development of a vaccine.
Collapse
Affiliation(s)
- Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Sudipta Saha
- Amity Institute of Physiology and Allied Sciences, Amity University Campus, Noida, Uttar Pradesh, India
| | - Mariam Tariq Butt
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Rishab Kumar Modi
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Andrew J T George
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| |
Collapse
|
157
|
Izda V, Jeffries MA, Sawalha AH. COVID-19: A review of therapeutic strategies and vaccine candidates. Clin Immunol 2021; 222:108634. [PMID: 33217545 PMCID: PMC7670907 DOI: 10.1016/j.clim.2020.108634] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/09/2023]
Abstract
The world is engulfed by one of the most widespread and significant public health crises in decades as COVID-19 has become among the leading causes of death internationally. The novel SARS-CoV-2 coronavirus which causes COVID-19 has unified the scientific community in search of therapeutic and preventative solutions. The top priorities at the moment are twofold: first, to repurpose already-approved pharmacologic agents or develop novel therapies to reduce the morbidity and mortality associated with the ever-spreading virus. Secondly, the scientific and larger pharmaceutical community have been tasked with the development, testing, and production of a safe and effective vaccine as a longer-term solution to prevent further spread and recurrence throughout the populace. The purpose of this article is to review the most up-to-date published data regarding both the leading pharmacological therapies undergoing clinical trials and vaccine candidates in development to stem the threat of COVID-19.
Collapse
Affiliation(s)
- Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, United States of America
| | - Matlock A Jeffries
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK, United States of America; University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK, United States of America.
| | - Amr H Sawalha
- University of Pittsburgh, Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, Pittsburgh, PA, United States of America
| |
Collapse
|
158
|
Decuzzi P, Peer D, Di Mascolo D, Palange AL, Manghnani PN, Moghimi SM, Farhangrazi ZS, Howard KA, Rosenblum D, Liang T, Chen Z, Wang Z, Zhu JJ, Gu Z, Korin N, Letourneur D, Chauvierre C, van der Meel R, Kiessling F, Lammers T. Roadmap on nanomedicine. NANOTECHNOLOGY 2021; 32:012001. [PMID: 33043901 PMCID: PMC7612035 DOI: 10.1088/1361-6528/abaadb] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since the launch of the Alliance for Nanotechnology in Cancer by the National Cancer Institute in late 2004, several similar initiatives have been promoted all over the globe with the intention of advancing the diagnosis, treatment and prevention of cancer in the wake of nanoscience and nanotechnology. All this has encouraged scientists with diverse backgrounds to team up with one another, learn from each other, and generate new knowledge at the interface between engineering, physics, chemistry and biomedical sciences. Importantly, this new knowledge has been wisely channeled towards the development of novel diagnostic, imaging and therapeutic nanosystems, many of which are currently at different stages of clinical development. This roadmap collects eight brief articles elaborating on the interaction of nanomedicines with human biology; the biomedical and clinical applications of nanomedicines; and the importance of patient stratification in the development of future nanomedicines. The first article reports on the role of geometry and mechanical properties in nanomedicine rational design; the second articulates on the interaction of nanomedicines with cells of the immune system; and the third deals with exploiting endogenous molecules, such as albumin, to carry therapeutic agents. The second group of articles highlights the successful application of nanomedicines in the treatment of cancer with the optimal delivery of nucleic acids, diabetes with the sustained and controlled release of insulin, stroke by using thrombolytic particles, and atherosclerosis with the development of targeted nanoparticles. Finally, the last contribution comments on how nanomedicine and theranostics could play a pivotal role in the development of personalized medicines. As this roadmap cannot cover the massive extent of development of nanomedicine over the past 15 years, only a few major achievements are highlighted as the field progressively matures from the initial hype to the consolidation phase.
Collapse
Affiliation(s)
- Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Corresponding authors: and
| | - Dan Peer
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering
- Center for Nanoscience and Nanotechnology
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
- Corresponding authors: and
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Purnima Naresh Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - S. Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering
- Center for Nanoscience and Nanotechnology
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tingxizi Liang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaowei Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Netanel Korin
- Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Didier Letourneur
- Université de Paris, Université Paris 13, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Cédric Chauvierre
- Université de Paris, Université Paris 13, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Roy van der Meel
- Laboratory of Chemical Biology, Dept. of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Dept. of Targeted Therapeutics, University of Twente, Enschede, The Netherlands
- Dept. of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
159
|
Raghunandan S, Josephson CD, Verkerke H, Linam WM, Ingram TC, Zerra PE, Arthur CM, Stowell SR, Briones M, Chonat S. Complement Inhibition in Severe COVID-19 Acute Respiratory Distress Syndrome. Front Pediatr 2020; 8:616731. [PMID: 33447586 PMCID: PMC7802050 DOI: 10.3389/fped.2020.616731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022] Open
Abstract
Most children with COVID-19 have asymptomatic or mild illness. Those who become critically ill suffer from acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI). The rapid deterioration of lung function has been linked to microangiopathic and immune-mediated processes seen in the lungs of adult patients with COVID-19. The role of complement-mediated acute lung injury is supported by animal models of SARS-CoV, evaluation of lung tissue in those who died from COVID-19 and response of COVID-19 ARDS to complement inhibition. We present a summary of a child with COVID-19 disease treated with convalescent plasma and eculizumab and provide a detailed evaluation of the inflammatory pathways.
Collapse
Affiliation(s)
- Sharmila Raghunandan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, United States
| | - Cassandra D. Josephson
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, United States
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Hans Verkerke
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - W. Matthew Linam
- Division of Pediatric Infectious Diseases, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Treva C. Ingram
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Division of Pediatric Intensive Care Unit, Children's Healthcare of Atlanta, Atlanta, GA, United States
| | - Patricia E. Zerra
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, United States
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Connie M. Arthur
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean R. Stowell
- Center for Transfusion and Cellular Therapy, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Joint Program in Transfusion Medicine, Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Michael Briones
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, United States
| | - Satheesh Chonat
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
- Aflac Cancer and Blood Disorders Center, Atlanta, GA, United States
| |
Collapse
|
160
|
Barkoff CM, Mousa SA. Pharmacotherapy in COVID 19: Potential Impact of Targeting the Complement System. Biomedicines 2020; 9:11. [PMID: 33374356 PMCID: PMC7823480 DOI: 10.3390/biomedicines9010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), a respiratory illness caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has claimed over one million lives worldwide since December 2019. The complement system, while a first-line immune defense against invading pathogens, has off-target effects that lead to increases in inflammation, tissue damage, and thrombosis; these are common, life-threatening complications seen in patients with COVID-19. This review explores the potential impact of complement activation in COVID-19 and possible treatments targeting the complement system.
Collapse
Affiliation(s)
| | - Shaker A. Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA;
| |
Collapse
|
161
|
Kurtovic L, Beeson JG. Complement Factors in COVID-19 Therapeutics and Vaccines. Trends Immunol 2020; 42:94-103. [PMID: 33402318 PMCID: PMC7733687 DOI: 10.1016/j.it.2020.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Complement is integral to a healthy functioning immune system and orchestrates various innate and adaptive responses against viruses and other pathogens. Despite its importance, the potential beneficial role of complement in immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been overshadowed by reports of extensive complement activation in severe coronavirus disease 2019 (COVID-19) patients. Here, we hypothesize that complement may also have a protective role and could function to enhance virus neutralization by antibodies, promote virus phagocytosis by immune cells, and lysis of virus. These functions might be exploited in the development of effective therapeutics and vaccines against SARS-CoV-2. Complement has been implicated in playing some role in severe COVID-19 pathogenesis. However, the evidence to support this is largely inferred from case–control studies. The potential protective role of complement has been largely ignored, which might contribute to innate and adaptive immunity against SARS-CoV-2 infection. Immunity to many pathogens relies on complement to enhance antibody-mediated neutralization and mediate phagocytosis and lysis. These mechanisms might also contribute to immunity against SARS-CoV-2 infection, and complement might be potentially exploited in antibody-based therapeutics and vaccines. Careful selection of vaccine adjuvants and epitopes included in vaccine constructs can influence whether vaccine-induced antibodies activate complement. Mutations in monoclonal antibodies can be used to promote hexamer formation between antibodies, which can significantly improve complement binding and activation.
Collapse
Affiliation(s)
- Liriye Kurtovic
- Burnet Institute, Melbourne, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, Australia; Department of Immunology and Pathology, Monash University, Melbourne, Australia; Central Clinical School and Department of Microbiology, Monash University, Melbourne, Australia; Department of Medicine, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
162
|
Amigues I, Pearlman AH, Patel A, Reid P, Robinson PC, Sinha R, Kim AH, Youngstein T, Jayatilleke A, Konigon M. Coronavirus disease 2019: investigational therapies in the prevention and treatment of hyperinflammation. Expert Rev Clin Immunol 2020; 16:1185-1204. [PMID: 33146561 PMCID: PMC7879704 DOI: 10.1080/1744666x.2021.1847084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Introduction: The mortality of coronavirus disease 2019 (COVID-19) is frequently driven by an injurious immune response characterized by the development of acute respiratory distress syndrome (ARDS), endotheliitis, coagulopathy, and multi-organ failure. This spectrum of hyperinflammation in COVID-19 is commonly referred to as cytokine storm syndrome (CSS). Areas covered: Medline and Google Scholar were searched up until 15th of August 2020 for relevant literature. Evidence supports a role of dysregulated immune responses in the immunopathogenesis of severe COVID-19. CSS associated with SARS-CoV-2 shows similarities to the exuberant cytokine production in some patients with viral infection (e.g.SARS-CoV-1) and may be confused with other syndromes of hyperinflammation like the cytokine release syndrome (CRS) in CAR-T cell therapy. Interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha have emerged as predictors of COVID-19 severity and in-hospital mortality. Expert opinion: Despite similarities, COVID-19-CSS appears to be distinct from HLH, MAS, and CRS, and the application of HLH diagnostic scores and criteria to COVID-19 is not supported by emerging data. While immunosuppressive therapy with glucocorticoids has shown a mortality benefit, cytokine inhibitors may hold promise as 'rescue therapies' in severe COVID-19. Given the arguably limited benefit in advanced disease, strategies to prevent the development of COVID-19-CSS are needed.
Collapse
Affiliation(s)
- Isabelle Amigues
- Division of Rheumatology, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Alexander H Pearlman
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aarat Patel
- Bon Secours Rheumatology Center and Division of Pediatric Rheumatology, Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Pankti Reid
- Division of Rheumatology, Department of Internal Medicine, Committee on Clinical Pharmacology and Pharmacogenomics, University of Chicago Medical Center, Chicago, IL, USA
| | - Philip C. Robinson
- School of Clinical Medicine, University of Queensland Faculty of Medicine, Queensland, Australia
| | - Rashmi Sinha
- Department of Medicine, Systemic Juvenile Idiopathic Arthritis Foundation, Cincinnati, OH, USA
| | - Alfred Hj Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
- Andrew M. And Jane M. Bursky Center of Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, USA
| | - Taryn Youngstein
- Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Arundathi Jayatilleke
- Division of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Maximilian Konigon
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
163
|
Perea Polak A, Romero Madrid B, García Ocaña PP, Lomeña Alvarez G, Martínez Pilar L, Gómez-Moyano E. Complement-mediated thrombogenic vasculopathy in COVID-19. Int J Dermatol 2020; 60:229-232. [PMID: 33259066 PMCID: PMC7753700 DOI: 10.1111/ijd.15267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/02/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
|
164
|
Bhosale SJ, Kulkarni AP. Crystal Gazing: Myth or Reality for Critical Care for COVID-19 Patients? Indian J Crit Care Med 2020; 24:1161-1162. [PMID: 33446964 PMCID: PMC7775936 DOI: 10.5005/jp-journals-10071-23694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efforts are continuing worldwide to understand the epidemiology, pathogenesis, and treatments for coronavirus disease-2019 (COVID-19). However, at the moment treatment remains supportive with oxygen therapy, steroids, repurposed antivirals, and prevention of multiple organ dysfunction by using immunomodulators. COVID-19 remains challenging since the disease spectrum varies from asymptomatic infection to severe acute respiratory distress syndrome (ARDS) with high fatality rates. It is thus necessary to predict clinical outcomes and risk-stratify patients for ensuring early intensive care unit (ICU) admissions. An important aspect is building surge capacity, managing and optimizing therapeutic and operational resources. So far, data have been scarce, particularly from India, to identify predictors of poor outcomes and mortality early in the course of the disease. Risk models need to be developed in larger patient cohorts and the models need to be simple and easy to employ at the onset of the disease process to predict the risk of severe disease, need for mechanical ventilation, ICU length of stay (LOS), and mortality. How to cite this article: Bhosale SJ, Kulkarni AP. Crystal Gazing: Myth or Reality for Critical Care for COVID-19 Patients? Indian J Crit Care Med 2020;24(12):1161-1162.
Collapse
Affiliation(s)
- Shilpushp J Bhosale
- Department of Anesthesia, Critical Care and Pain, Division of Critical Care Medicine, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Atul P Kulkarni
- Department of Anesthesia, Critical Care and Pain, Division of Critical Care Medicine, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
165
|
Vlaar APJ, de Bruin S, Busch M, Timmermans SAMEG, van Zeggeren IE, Koning R, Ter Horst L, Bulle EB, van Baarle FEHP, van de Poll MCG, Kemper EM, van der Horst ICC, Schultz MJ, Horn J, Paulus F, Bos LD, Wiersinga WJ, Witzenrath M, Rueckinger S, Pilz K, Brouwer MC, Guo RF, Heunks L, van Paassen P, Riedemann NC, van de Beek D. Anti-C5a antibody IFX-1 (vilobelimab) treatment versus best supportive care for patients with severe COVID-19 (PANAMO): an exploratory, open-label, phase 2 randomised controlled trial. THE LANCET. RHEUMATOLOGY 2020; 2:e764-e773. [PMID: 33015643 PMCID: PMC7521913 DOI: 10.1016/s2665-9913(20)30341-6] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Severe COVID-19 is characterised by inflammation and coagulation in the presence of complement system activation. We aimed to explore the potential benefit and safety of selectively blocking the anaphylatoxin and complement protein C5a with the monoclonal antibody IFX-1 (vilobelimab), in patients with severe COVID-19. METHODS We did an exploratory, open-label, randomised phase 2 trial (part of the adaptive phase 2/3 PANAMO trial) of intravenous IFX-1 in adults with severe COVID-19 at three academic hospitals in the Netherlands. Eligibility criteria were age 18 years or older; severe pneumonia with pulmonary infiltrates consistent with pneumonia, a clinical history of severe shortness of breath within the past 14 days, or a need for non-invasive or invasive ventilation; severe disease defined as a ratio of partial pressure of arterial oxygen to fractional concentration of oxygen in inspired air (PaO2/FiO2) between 100 mm Hg and 250 mm Hg in the supine position; and severe acute respiratory syndrome coronavirus 2 infection confirmed by RT-PCR. Patients were randomly assigned 1:1 to receive IFX-1 (up to seven doses of 800 mg intravenously) plus best supportive care (IFX-1 group) or best supportive care only (control group). The primary outcome was the percentage change in PaO2/FiO2 in the supine position between baseline and day 5. Mortality at 28 days and treatment-emergent and serious adverse events were key secondary outcomes. The primary analysis was done in the intention-to-treat population and safety analyses were done in all patients according to treatment received. This trial is registered at ClinicalTrials.gov (NCT04333420). FINDINGS Between March 31 and April 24, 2020, 30 patients were enrolled and randomly assigned to the IFX-1 group (n=15) or the control group (n=15). During the study it became clear that several patients could not be assessed regularly in the supine position because of severe hypoxaemia. It was therefore decided to focus on all PaO2/FiO2 assessments (irrespective of position). At day 5 after randomisation, the mean PaO2/FiO2 (irrespective of position) was 158 mm Hg (SD 63; range 84-265) in the IFX-1 group and 189 mm Hg (89; 71-329) in the control group. Analyses of the least squares mean relative change in PaO2/FiO2 at day 5 showed no differences between treatment groups (17% change in the IFX-1 group vs 41% in the control group; difference -24% [95% CI -58 to 9], p=0·15. Kaplan-Meier estimates of mortality by 28 days were 13% (95% CI 0-31) for the IFX-1 group and 27% (4-49) for the control group (adjusted hazard ratio for death 0·65 [95% CI 0·10-4·14]). The frequency of serious adverse events were similar between groups (nine [60%] in the IFX-1 group vs seven [47%] in the control group) and no deaths were considered related to treatment assignment. However, a smaller proportion of patients had pulmonary embolisms classed as serious in the IFX-1 group (two [13%]) than in the control group (six [40%]). Infections classed as serious were reported in three (20%) patients in the IFX-1 group versus five (33%) patients in the control group. INTERPRETATION In this small exploratory phase 2 part of the PANAMO trial, C5a inhibition with IFX-1 appears to be safe in patients with severe COVID-19. The secondary outcome results in favour of IFX-1 are preliminary because the study was not powered on these endpoints, but they support the investigation of C5a inhibition with IFX-1 in a phase 3 trial using 28-day mortality as the primary endpoint. FUNDING InflaRx.
Collapse
Affiliation(s)
- Alexander P J Vlaar
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Sanne de Bruin
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Matthias Busch
- Department of Immunology, Maastricht UMC, Maastricht, Netherlands
| | | | - Ingeborg E van Zeggeren
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Rutger Koning
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Liora Ter Horst
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Esther B Bulle
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Frank E H P van Baarle
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - E Marleen Kemper
- Clinical Pharmacy, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Marcus J Schultz
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Janneke Horn
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Frederique Paulus
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Lieuwe D Bos
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - W Joost Wiersinga
- Department of Infectious Diseases, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | - Matthijs C Brouwer
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | | | - Leo Heunks
- Department of Intensive Care, Free University, Amsterdam UMC, Amsterdam, Netherlands
| | | | | | - Diederik van de Beek
- Department of Neurology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
166
|
Liu T, Balzano-Nogueira L, Lleo A, Conesa A. Transcriptional Differences for COVID-19 Disease Map Genes between Males and Females Indicate a Different Basal Immunophenotype Relevant to the Disease. Genes (Basel) 2020; 11:genes11121447. [PMID: 33271804 PMCID: PMC7761414 DOI: 10.3390/genes11121447] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide COVID-19 epidemiology data indicate differences in disease incidence amongst sex and gender demographic groups. Specifically, male patients are at a higher death risk than female patients, and the older population is significantly more affected than young individuals. Whether this difference is a consequence of a pre-existing differential response to the virus, has not been studied in detail. We created DeCovid, an R shiny app that combines gene expression (GE) data of different human tissue from the Genotype-Tissue Expression (GTEx) project along with the COVID-19 Disease Map and COVID-19 related pathways gene collections to explore basal GE differences across healthy demographic groups. We used this app to study differential gene expression of COVID-19 associated genes in different age and sex groups. We identified that healthy women show higher expression-levels of interferon genes. Conversely, healthy men exhibit higher levels of proinflammatory cytokines. Additionally, young people present a stronger complement system and maintain a high level of matrix metalloproteases than older adults. Our data suggest the existence of different basal immunophenotypes amongst different demographic groups, which are relevant to COVID-19 progression and may contribute to explaining sex and age biases in disease severity. The DeCovid app is an effective and easy to use tool for exploring the GE levels relevant to COVID-19 across demographic groups and tissues.
Collapse
Affiliation(s)
- Tianyuan Liu
- Microbiology and Cell Science, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL 32611, USA; (T.L.); (L.B.-N.)
| | - Leandro Balzano-Nogueira
- Microbiology and Cell Science, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL 32611, USA; (T.L.); (L.B.-N.)
| | - Ana Lleo
- Internal Medicine and Hepatology, Humanitas Clinical and Research Center-IRCCS, Department of Biomedical Sciences, Humanitas University, MI 20089 Rozzano, Italy;
| | - Ana Conesa
- Microbiology and Cell Science, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL 32611, USA; (T.L.); (L.B.-N.)
- Genetics Institute, University of Florida, Gainesville, FL 32608, USA
- Correspondence: ; Tel.: +1-352-273-8127
| |
Collapse
|
167
|
Del Turco S, Vianello A, Ragusa R, Caselli C, Basta G. COVID-19 and cardiovascular consequences: Is the endothelial dysfunction the hardest challenge? Thromb Res 2020; 196:143-151. [PMID: 32871306 PMCID: PMC7451195 DOI: 10.1016/j.thromres.2020.08.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022]
Abstract
A Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) has become a pandemic disease named Coronavirus Disease-19 (COVID-19) of epochal dimension. The clinical spectrum of COVID-19 is wide, ranging from asymptomatic forms to severe pneumonia, sepsis and multiple organ dysfunction syndromes resulting in poor outcomes. Among the various consequences of severe COVID-19, cardiovascular (CV) collapse appears the most serious and potentially lethal. On the other hand, pre-existent CV comorbidities are also associated with higher mortality. The most reliable hypothetical pathogenetic mechanism for CV complications and cardiac injury in severe COVID-19 patients appears to be a sustained endothelial dysfunction, caused by the interplay of inflammation and coagulation. In this review, we survey papers addressing issues related to severe COVID-19, characterized by enhanced lung microvascular loss, hypercytokinemia, hypoxemia and thrombosis. We discuss about how the virus-induced downregulation of the angiotensin converting enzyme-2 (ACE2) receptor, used to enter the host cell, could affect the renin-angiotensin system, attempting to clarify the doubts about the use of ACE inhibitors and Angiotensin-II receptor blockers in COVID-19 patients. Finally, we point out how the delicate and physiological homeostatic function of the endothelium, which turns into a disastrous battlefield of the complex interaction between "cytokine and coagulative storms", can be irreparably compromised and result in systemic inflammatory complications.
Collapse
Affiliation(s)
- Serena Del Turco
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy.
| | - Annamaria Vianello
- Department of Information Engineering, Telemedicine Section, University of Pisa, Italy
| | - Rosetta Ragusa
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Chiara Caselli
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Giuseppina Basta
- Institute of Clinical Physiology, CNR, San Cataldo Research Area, Via Moruzzi, 1, 56124 Pisa, Italy.
| |
Collapse
|
168
|
Ghebrehiwet B, Peerschke EI. Complement and coagulation: key triggers of COVID-19-induced multiorgan pathology. J Clin Invest 2020; 130:5674-5676. [PMID: 32925166 DOI: 10.1172/jci142780] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In a stunningly short period of time, the unexpected coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has turned the unprepared world topsy-turvy. Although the rapidity with which the virus struck was indeed overwhelming, scientists throughout the world have been up to the task of deciphering the mechanisms by which SARS-CoV-2 induces the multisystem and multiorgan inflammatory responses that, collectively, contribute to the high mortality rate in affected individuals. In this issue of the JCI, Skendros and Mitsios et al. is one such team who report that the complement system plays a substantial role in creating the hyperinflammation and thrombotic microangiopathy that appear to contribute to the severity of COVID-19. In support of the hypothesis that the complement system along with neutrophils and platelets contributes to COVID-19, the authors present empirical evidence showing that treatment with the complement inhibitor compstatin Cp40 inhibited the expression of tissue factor in neutrophils. These results confirm that the complement axis plays a critical role and suggest that targeted therapy using complement inhibitors is a potential therapeutic option to treat COVID-19-induced inflammation.
Collapse
Affiliation(s)
| | - Ellinor I Peerschke
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
169
|
Tiwari R, Mishra AR, Mikaeloff F, Gupta S, Mirazimi A, Byrareddy SN, Neogi U, Nayak D. In silico and in vitro studies reveal complement system drives coagulation cascade in SARS-CoV-2 pathogenesis. Comput Struct Biotechnol J 2020; 18:3734-3744. [PMID: 33200027 PMCID: PMC7657020 DOI: 10.1016/j.csbj.2020.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
The emergence and continued spread of SARS-CoV-2 have resulted in a public health emergency across the globe. The lack of knowledge on the precise mechanism of viral pathogenesis is impeding medical intervention. In this study, we have taken both in silico and in vitro experimental approaches to unravel the mechanism of viral pathogenesis associated with complement and coagulation pathways. Based on the structural similarities of viral and host proteins, we initially generated a protein-protein interactome profile. Further computational analysis combined with Gene Ontology (GO) analysis and KEGG pathway analysis predicted key annotated pathways associated with viral pathogenesis. These include MAPK signaling, complement, and coagulation cascades, endocytosis, PD-L1 expression, PD-1 checkpoint pathway in cancer and C-type lectin receptor signaling pathways. Degree centrality analysis pinned down to MAPK1, MAPK3, AKT1, and SRC are crucial drivers of signaling pathways and often overlap with the associated pathways. Most strikingly, the complement and coagulation cascade and platelet activation pathways are interconnected, presumably directing thrombotic activity observed in severe or critical cases of COVID-19. This is complemented by in vitro studies of Huh7 cell infection and analysis of the transcriptome and proteomic profile of gene candidates during viral infection. The most known candidates associated with complement and coagulation cascade signaling by KEGG pathway analysis showed significant up-regulated fold change during viral infection. Collectively both in silico and in vitro studies suggest complement and coagulation cascade signaling are a mechanism for intravascular coagulation, thrombotic changes, and associated complications in severe COVID-19 patients.
Collapse
Affiliation(s)
- Ritudhwaj Tiwari
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| | - Anurag R. Mishra
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| | - Flora Mikaeloff
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Soham Gupta
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ali Mirazimi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Public Health Agency of Sweden, Solna, Sweden
- National Veterinary Institute, Uppsala, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Microbiology and Immunology and the Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Debasis Nayak
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, MP, India
| |
Collapse
|
170
|
Yu H, Li C, Wang X, Duan J, Yang N, Xie L, Yuan Y, Li S, Bi C, Yang B, Li Y. Techniques and Strategies for Potential Protein Target Discovery and Active Pharmaceutical Molecule Screening in a Pandemic. J Proteome Res 2020; 19:4242-4258. [PMID: 32957788 PMCID: PMC7640955 DOI: 10.1021/acs.jproteome.0c00372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Indexed: 12/12/2022]
Abstract
Viruses remain a major challenge in the fierce fight against diseases. There have been many pandemics caused by various viruses throughout the world over the years. Recently, the global outbreak of COVID-19 has had a catastrophic impact on human health and the world economy. Antiviral drug treatment has become another essential means to overcome pandemics in addition to vaccine development. How to quickly find effective drugs that can control the development of a pandemic is a hot issue that still needs to be resolved in medical research today. To accelerate the development of drugs, it is necessary to target the key target proteins in the development of the pandemic, screen active molecules, and develop reliable methods for the identification and characterization of target proteins based on the active ingredients of drugs. This article discusses key target proteins and their biological mechanisms in the progression of COVID-19 and other major epidemics. We propose a model based on these foundations, which includes identifying potential core targets, screening potential active molecules of core targets, and verifying active molecules. This article summarizes the related innovative technologies and methods. We hope to provide a reference for the screening of drugs related to pandemics and the development of new drugs.
Collapse
Affiliation(s)
| | | | | | - Jingyi Duan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Na Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Lijuan Xie
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yu Yuan
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Shanze Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Chenghao Bi
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Bin Yang
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| | - Yubo Li
- Tianjin University of Traditional
Chinese Medicine, No. 10, Poyang Lake Road, West Zone, Tuanbo New City, Jinghai District, Tianjin, 301617, China
| |
Collapse
|
171
|
Skendros P, Mitsios A, Chrysanthopoulou A, Mastellos DC, Metallidis S, Rafailidis P, Ntinopoulou M, Sertaridou E, Tsironidou V, Tsigalou C, Tektonidou M, Konstantinidis T, Papagoras C, Mitroulis I, Germanidis G, Lambris JD, Ritis K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020; 130:6151-6157. [PMID: 32759504 PMCID: PMC7598040 DOI: 10.1172/jci141374] [Citation(s) in RCA: 567] [Impact Index Per Article: 113.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Emerging data indicate that complement and neutrophils contribute to the maladaptive immune response that fuels hyperinflammation and thrombotic microangiopathy, thereby increasing coronavirus 2019 (COVID-19) mortality. Here, we investigated how complement interacts with the platelet/neutrophil extracellular traps (NETs)/thrombin axis, using COVID-19 specimens, cell-based inhibition studies, and NET/human aortic endothelial cell (HAEC) cocultures. Increased plasma levels of NETs, tissue factor (TF) activity, and sC5b-9 were detected in patients. Neutrophils of patients yielded high TF expression and released NETs carrying active TF. Treatment of control neutrophils with COVID-19 platelet-rich plasma generated TF-bearing NETs that induced thrombotic activity of HAECs. Thrombin or NETosis inhibition or C5aR1 blockade attenuated platelet-mediated NET-driven thrombogenicity. COVID-19 serum induced complement activation in vitro, consistent with high complement activity in clinical samples. Complement C3 inhibition with compstatin Cp40 disrupted TF expression in neutrophils. In conclusion, we provide a mechanistic basis for a pivotal role of complement and NETs in COVID-19 immunothrombosis. This study supports strategies against severe acute respiratory syndrome coronavirus 2 that exploit complement or NETosis inhibition.
Collapse
Affiliation(s)
- Panagiotis Skendros
- First Department of Internal Medicine, University Hospital of Alexandroupolis, and
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandros Mitsios
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Akrivi Chrysanthopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Simeon Metallidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Petros Rafailidis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Ntinopoulou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eleni Sertaridou
- Intensive Care Unit, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Victoria Tsironidou
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Christina Tsigalou
- Laboratory of Microbiology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Tektonidou
- First Department of Propaedeutic Internal Medicine, National and Kapodistrian University of Athens, Greece
| | - Theocharis Konstantinidis
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Charalampos Papagoras
- First Department of Internal Medicine, University Hospital of Alexandroupolis, and
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, and
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John D. Lambris
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Konstantinos Ritis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, and
- Laboratory of Molecular Hematology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
172
|
Varghese PM, Tsolaki AG, Yasmin H, Shastri A, Ferluga J, Vatish M, Madan T, Kishore U. Host-pathogen interaction in COVID-19: Pathogenesis, potential therapeutics and vaccination strategies. Immunobiology 2020; 225:152008. [PMID: 33130519 PMCID: PMC7434692 DOI: 10.1016/j.imbio.2020.152008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
The current coronavirus pandemic, COVID-19, is the third outbreak of disease caused by the coronavirus family, after Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. It is an acute infectious disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This severe disease is characterised by acute respiratory distress syndrome, septic shock, metabolic acidosis, coagulation dysfunction, and multiple organ dysfunction syndromes. Currently, no drugs or vaccines exist against the disease and the only course of treatment is symptom management involving mechanical ventilation, immune suppressants, and repurposed drugs. The severe form of the disease has a relatively high mortality rate. The last six months have seen an explosion of information related to the host receptors, virus transmission, virus structure-function relationships, pathophysiology, co-morbidities, immune response, treatment and the most promising vaccines. This review takes a critically comprehensive look at various aspects of the host-pathogen interaction in COVID-19. We examine the genomic aspects of SARS-CoV-2, modulation of innate and adaptive immunity, complement-triggered microangiopathy, and host transmission modalities. We also examine its pathophysiological impact during pregnancy, in addition to emphasizing various gaps in our knowledge. The lessons learnt from various clinical trials involving repurposed drugs have been summarised. We also highlight the rationale and likely success of the most promising vaccine candidates.
Collapse
Affiliation(s)
- Praveen Mathews Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Anthony G Tsolaki
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Hadida Yasmin
- Immunology and Cell Biology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
| | - Abhishek Shastri
- Central and North West London NHS Foundation Trust, London, United Kingdom
| | - Janez Ferluga
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom
| | - Manu Vatish
- Department of Obstetrics and Gynaecology, Women's Centre, John Radcliffe Oxford University Hospital, Oxford, OX3 9DU, United Kingdom
| | - Taruna Madan
- Department of Innate Immunity, ICMR - National Institute for Research in Reproductive Health, J.M. Street, Parel, Mumbai, Maharashtra, India
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, London, United Kingdom.
| |
Collapse
|
173
|
Rambaldi A, Gritti G, Micò MC, Frigeni M, Borleri G, Salvi A, Landi F, Pavoni C, Sonzogni A, Gianatti A, Binda F, Fagiuoli S, Di Marco F, Lorini L, Remuzzi G, Whitaker S, Demopulos G. Endothelial injury and thrombotic microangiopathy in COVID-19: Treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology 2020; 225:152001. [PMID: 32943233 PMCID: PMC7415163 DOI: 10.1016/j.imbio.2020.152001] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
In COVID-19, acute respiratory distress syndrome (ARDS) and thrombotic events are frequent, life-threatening complications. Autopsies commonly show arterial thrombosis and severe endothelial damage. Endothelial damage, which can play an early and central pathogenic role in ARDS and thrombosis, activates the lectin pathway of complement. Mannan-binding lectin-associated serine protease-2 (MASP-2), the lectin pathway's effector enzyme, binds the nucleocapsid protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2), resulting in complement activation and lung injury. Narsoplimab, a fully human immunoglobulin gamma 4 (IgG4) monoclonal antibody against MASP-2, inhibits lectin pathway activation and has anticoagulant effects. In this study, the first time a lectin-pathway inhibitor was used to treat COVID-19, six COVID-19 patients with ARDS requiring continuous positive airway pressure (CPAP) or intubation received narsoplimab under compassionate use. At baseline and during treatment, circulating endothelial cell (CEC) counts and serum levels of interleukin-6 (IL-6), interleukin-8 (IL-8), C-reactive protein (CRP) and lactate dehydrogenase (LDH) were assessed. Narsoplimab treatment was associated with rapid and sustained reduction of CEC and concurrent reduction of serum IL-6, IL-8, CRP and LDH. Narsoplimab was well tolerated; no adverse drug reactions were reported. Two control groups were used for retrospective comparison, both showing significantly higher mortality than the narsoplimab-treated group. All narsoplimab-treated patients recovered and survived. Narsoplimab may be an effective treatment for COVID-19 by reducing COVID-19-related endothelial cell damage and the resultant inflammation and thrombotic risk.
Collapse
Affiliation(s)
- Alessandro Rambaldi
- Department of Oncology-Hematology University of Milan, Milan, Italy; Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
| | - Giuseppe Gritti
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Caterina Micò
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Marco Frigeni
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Gianmaria Borleri
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Anna Salvi
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Francesco Landi
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Unit of Hematology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Aurelio Sonzogni
- Unit of Pathology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Gianatti
- Unit of Pathology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Francesca Binda
- Unit of Infectious Diseases, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Stefano Fagiuoli
- Unit of Gastroenterology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Fabiano Di Marco
- Unit of Pneumology, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Department of Health Sciences, University of Milan, Milan, Italy
| | - Luca Lorini
- Unit of Intensive Care, Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | | |
Collapse
|
174
|
Ram Kumar Pandian S, Arunachalam S, Deepak V, Kunjiappan S, Sundar K. Targeting complement cascade: an alternative strategy for COVID-19. 3 Biotech 2020; 10:479. [PMID: 33088671 PMCID: PMC7571295 DOI: 10.1007/s13205-020-02464-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/03/2020] [Indexed: 12/27/2022] Open
Abstract
The complement system is a stakeholder of the innate and adaptive immune system and has evolved as a crucial player of defense with multifaceted biological effects. Activation of three complement pathways leads to consecutive enzyme reactions resulting in complement components (C3 and C5), activation of mast cells and neutrophils by anaphylatoxins (C3a and C5a), the formation of membrane attack complex (MAC) and end up with opsonization. However, the dysregulation of complement cascade leads to unsolicited cytokine storm, inflammation, deterioration of alveolar lining cells, culminating in acquired respiratory destructive syndrome (ARDS). Similar pathogenesis is observed with the middle east respiratory syndrome (MERS), severe acquired respiratory syndrome (SARS), and SARS-CoV-2. Activation of the lectin pathway via mannose-binding lectin associated serine protease 2 (MASP2) is witnessed under discrete viral infections including COVID-19. Consequently, the spontaneous activation and deposits of complement components were traced in animal models and autopsy of COVID-19 patients. Pre-clinical and clinical studies evidence that the inhibition of complement components results in reduced complement deposits on target and non-target tissues, and aid in recovery from the pathological conditions of ARDS. Complement inhibitors (monoclonal antibody, protein, peptide, small molecules, etc.) exhibit great promise in blocking the activity of complement components and its downstream effects under various pathological conditions including SARS-CoV. Therefore, we hypothesize that targeting the potential complement inhibitors and complement cascade to counteract lung inflammation would be a better strategy to treat COVID-19.
Collapse
Affiliation(s)
- Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Venkataraman Deepak
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
- Department of Human Sciences, University of Derby, London, United Kingdom
| | - Selvaraj Kunjiappan
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| | - Krishnan Sundar
- Department of Biotechnology, School of Bio and Chemical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu 626126 India
| |
Collapse
|
175
|
Mastellos DC, Pires da Silva BGP, Fonseca BAL, Fonseca NP, Auxiliadora-Martins M, Mastaglio S, Ruggeri A, Sironi M, Radermacher P, Chrysanthopoulou A, Skendros P, Ritis K, Manfra I, Iacobelli S, Huber-Lang M, Nilsson B, Yancopoulou D, Connolly ES, Garlanda C, Ciceri F, Risitano AM, Calado RT, Lambris JD. Complement C3 vs C5 inhibition in severe COVID-19: Early clinical findings reveal differential biological efficacy. Clin Immunol 2020; 220:108598. [PMID: 32961333 PMCID: PMC7501834 DOI: 10.1016/j.clim.2020.108598] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Aghia Paraskevi, Athens, Greece
| | - Bruno G P Pires da Silva
- Department of Medical Imaging, Hematology and Clinical Oncology, University of São Paulo, Ribeirão Preto, School of Medicine, Brazil
| | - Benedito A L Fonseca
- Department of Internal Medicine, University of São Paulo, Ribeirão Preto School of Medicine, Brazil
| | - Natasha P Fonseca
- Department of Medical Imaging, Hematology and Clinical Oncology, University of São Paulo, Ribeirão Preto, School of Medicine, Brazil
| | - Maria Auxiliadora-Martins
- Intensive Care Unit, University Hospital, University of São Paulo, Ribeirão Preto School of Medicine, Brazil
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Annalisa Ruggeri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marina Sironi
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy
| | - Peter Radermacher
- Sektion Anästhesiologische Pathophysiologie und Verfahrensentwicklung, University Hospital of Ulm, Ulm, Germany
| | - Akrivi Chrysanthopoulou
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Panagiotis Skendros
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Konstantinos Ritis
- First Department of Internal Medicine and Laboratory of Molecular Hematology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ilenia Manfra
- AORN San Giuseppe Moscati, Hematology and Hematopoietic Stem Cell Transplantation Unit, Avellino, Italy
| | - Simona Iacobelli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Bo Nilsson
- Division of Clinical Immunology, Uppsala University Hospital, Uppsala, Sweden
| | | | - E Sander Connolly
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy; Humanitas University, Pieve Emanuele, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; University Vita Salute San Raffaele, Milan, Italy
| | - Antonio M Risitano
- AORN San Giuseppe Moscati, Hematology and Hematopoietic Stem Cell Transplantation Unit, Avellino, Italy; Federico II University of Naples, Naples, Italy
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology and Clinical Oncology, University of São Paulo, Ribeirão Preto, School of Medicine, Brazil
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
176
|
Zelek WM, Cole J, Ponsford MJ, Harrison RA, Schroeder BE, Webb N, Jolles S, Fegan C, Morgan M, Wise MP, Morgan BP. Complement Inhibition with the C5 Blocker LFG316 in Severe COVID-19. Am J Respir Crit Care Med 2020; 202:1304-1308. [PMID: 32897730 PMCID: PMC7605181 DOI: 10.1164/rccm.202007-2778le] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
| | - Jade Cole
- University Hospital of Wales, Cardiff, United Kingdomand
| | - Mark J. Ponsford
- Cardiff University, Cardiff, United Kingdom
- University Hospital of Wales, Cardiff, United Kingdomand
| | | | | | - Nicholas Webb
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Stephen Jolles
- University Hospital of Wales, Cardiff, United Kingdomand
| | | | - Matt Morgan
- Cardiff University, Cardiff, United Kingdom
- University Hospital of Wales, Cardiff, United Kingdomand
| | - Matt P. Wise
- Cardiff University, Cardiff, United Kingdom
- University Hospital of Wales, Cardiff, United Kingdomand
| | | |
Collapse
|
177
|
Nasonov E, Samsonov M. The role of Interleukin 6 inhibitors in therapy of severe COVID-19. Biomed Pharmacother 2020; 131:110698. [PMID: 32920514 PMCID: PMC7455113 DOI: 10.1016/j.biopha.2020.110698] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cytokine storm syndrome (CSS) is a severe complication of inflammatory immune diseases or treatment of malignancies; it may also appear during the progression of COVID-19. CSS is caused by dysregulation of the synthesis of cytokines, including pro-inflammatory, regulatory, and anti-inflammatory cytokines and chemokines, leading to pathologic activation of innate and adaptive (Th1 and Th17 mediated) immunity. Interleukin-6 (IL-6) plays an important role in the pathogenesis of CSS. The significant role of IL-6 in pathogenesis of COVID-19 was confirmed in a range of studies, which showed that the plasma concentration of IL-6 was increased in patients with severe COVID-19. Currently, IL-6 inhibitor therapeutics are not yet approved for the treatment of COVID-19; however, these medicines, including tocilizumab (TCZ) are used off-label for the treatment of patients with severe COVID-19, including life-threatening conditions. The role of IL-6 in the pathogenesis of CSS during COVID-19 is important however, a number of related issues are not yet clear. These issues include the indications for treatment with IL-6 inhibitors, as well as the estimation of risk associated with the disease, outcomes, treatment options, and adverse drug reactions. The development of personalized immunomodulatory therapy, with respect to the role of cytokines in pathogenesis, requires the studies that aimed to find other relevant therapeutic targets for the treatment of CSS in patients with COVID-19. These therapeutic targets include inhibition of IL-1, IL-6, TNFα, GM-CSF, IFNγ, IL-17, IL-18, and also activation of the complement system. The challenge of CSS in patients with COVID-19 is identifying the correct scientific targets and developing clinical trials aimed to evaluate the pathogenesis and treat immune-mediated inflammatory diseases (IMIDs). Hopefully, the significant efforts of scientists and physicians across the globe will improve the prognosis in COVID-19 patients and provide useful information on IMIDs required to support the struggle for treating potential viral outbreaks, and treatment of well-known IMIDs.
Collapse
Affiliation(s)
- E Nasonov
- V.A. Nasonova Research Institute of Rheumatology, Moscow, Russia; I.M. Sechenov First Moscow State Medical University, MOH, Moscow, Russia; Kashirskoye roadway, 34А, 1115522, Moscow, Russia; Trubetskaya str, 8, bdg. 2, 2119991, Moscow, Russia.
| | - M Samsonov
- RPharm JSC, Leninsky prospect 111, 11942, Moscow, Russia.
| |
Collapse
|
178
|
Conway EM, Pryzdial ELG. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost 2020; 18:2812-2822. [PMID: 32762081 PMCID: PMC7436532 DOI: 10.1111/jth.15050] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, the world was introduced to a new betacoronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for its propensity to cause rapidly progressive lung damage, resulting in high death rates. As fast as the virus spread, it became evident that the novel coronavirus causes a multisystem disease (COVID-19) that may involve multiple organs and has a high risk of thrombosis associated with striking elevations in pro-inflammatory cytokines, D-dimer, and fibrinogen, but without disseminated intravascular coagulation. Postmortem studies have confirmed the high incidence of venous thromboembolism, but also notably revealed diffuse microvascular thrombi with endothelial swelling, consistent with a thrombotic microangiopathy, and inter-alveolar endothelial deposits of complement activation fragments. The clinicopathologic presentation of COVID-19 thus parallels that of other thrombotic diseases, such as atypical hemolytic uremic syndrome (aHUS), that are caused by dysregulation of the complement system. This raises the specter that many of the thrombotic complications arising from SARS-CoV-2 infections may be triggered and/or exacerbated by excess complement activation. This is of major potential clinical relevance, as currently available anti-complement therapies that are highly effective in protecting against thrombosis in aHUS, could be efficacious in COVID-19. In this review, we provide mounting evidence for complement participating in the pathophysiology underlying the thrombotic diathesis associated with pathogenic coronaviruses, including SARS-CoV-2. Based on current knowledge of complement, coagulation and the virus, we suggest lines of study to identify novel therapeutic targets and the rationale for clinical trials with currently available anti-complement agents for COVID-19.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Centre for Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
179
|
Kamel MH, Yin W, Zavaro C, Francis JM, Chitalia VC. Hyperthrombotic Milieu in COVID-19 Patients. Cells 2020; 9:E2392. [PMID: 33142844 PMCID: PMC7694011 DOI: 10.3390/cells9112392] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023] Open
Abstract
COVID-19 infection has protean systemic manifestations. Experience from previous coronavirus outbreaks, including the current SARS-CoV-2, has shown an augmented risk of thrombosis of both macrovasculature and microvasculature. The former involves both arterial and venous beds manifesting as stroke, acute coronary syndrome and venous thromboembolic events. The microvascular thrombosis is an underappreciated complication of SARS-CoV-2 infection with profound implications on the development of multisystem organ failure. The telltale signs of perpetual on-going coagulation and fibrinolytic cascades underscore the presence of diffuse endothelial damage in the patients with COVID-19. These parameters serve as strong predictors of mortality. While summarizing the alterations of various components of thrombosis in patients with COVID-19, this review points to the emerging evidence that implicates the prominent role of the extrinsic coagulation cascade in COVID-19-related coagulopathy. These mechanisms are triggered by widespread endothelial cell damage (endotheliopathy), the dominant driver of macro- and micro-vascular thrombosis in these patients. We also summarize other mediators of thrombosis, clinically relevant nuances such as the occurrence of thromboembolic events despite thromboprophylaxis (breakthrough thrombosis), current understanding of systemic anticoagulation therapy and its risk-benefit ratio. We conclude by emphasizing a need to probe COVID-19-specific mechanisms of thrombosis to develop better risk markers and safer therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Hassan Kamel
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (W.Y.); (C.Z.); (J.M.F.)
| | - Wenqing Yin
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (W.Y.); (C.Z.); (J.M.F.)
| | - Chris Zavaro
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (W.Y.); (C.Z.); (J.M.F.)
| | - Jean M. Francis
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (W.Y.); (C.Z.); (J.M.F.)
| | - Vipul C. Chitalia
- Renal Section, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; (M.H.K.); (W.Y.); (C.Z.); (J.M.F.)
- Veterans Affairs Boston Healthcare System, Boston, MA 02132, USA
- Institute of Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
180
|
Kim AHJ, Wu X, Atkinson JP. The beneficial and pathogenic roles of complement in COVID-19. Cleve Clin J Med 2020:ccjm.87a.ccc065. [PMID: 33115882 PMCID: PMC8079550 DOI: 10.3949/ccjm.87a.ccc065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We briefly summarize the complement system and its functions in immunity and disease. We present data supporting the requirement of complement to resolve COVID-19, and discuss how complement overactivation later in severe disease could drive multiorgan damage characteristic of fatal COVID-19.
Collapse
Affiliation(s)
- Alfred H J Kim
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Xiaobo Wu
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
181
|
Gavriilaki M, Kimiskidis VK, Gavriilaki E. Precision Medicine in Neurology: The Inspirational Paradigm of Complement Therapeutics. Pharmaceuticals (Basel) 2020; 13:E341. [PMID: 33114553 PMCID: PMC7693884 DOI: 10.3390/ph13110341] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Precision medicine has emerged as a central element of healthcare science. Complement, a component of innate immunity known for centuries, has been implicated in the pathophysiology of numerous incurable neurological diseases, emerging as a potential therapeutic target and predictive biomarker. In parallel, the innovative application of the first complement inhibitor in clinical practice as an approved treatment of myasthenia gravis (MG) and neuromyelitis optica spectrum disorders (NMOSD) related with specific antibodies raised hope for the implementation of personalized therapies in detrimental neurological diseases. A thorough literature search was conducted through May 2020 at MEDLINE, EMBASE, Cochrane Library and ClinicalTrials.gov databases based on medical terms (MeSH)" complement system proteins" and "neurologic disease". Complement's role in pathophysiology, monitoring of disease activity and therapy has been investigated in MG, multiple sclerosis, NMOSD, spinal muscular atrophy, amyotrophic lateral sclerosis, Parkinson, Alzheimer, Huntington disease, Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, stroke, and epilepsy. Given the complexity of complement diagnostics and therapeutics, this state-of-the-art review aims to provide a brief description of the complement system for the neurologist, an overview of novel complement inhibitors and updates of complement studies in a wide range of neurological disorders.
Collapse
Affiliation(s)
- Maria Gavriilaki
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Vasilios K. Kimiskidis
- Postgraduate Course, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Clinical Neurophysiology, AHEPA Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Eleni Gavriilaki
- Hematology Department-BMT Unit, G. Papanicolaou Hospital, 57010 Thessaloniki, Greece;
| |
Collapse
|
182
|
Świerzko AS, Cedzyński M. The Influence of the Lectin Pathway of Complement Activation on Infections of the Respiratory System. Front Immunol 2020; 11:585243. [PMID: 33193407 PMCID: PMC7609860 DOI: 10.3389/fimmu.2020.585243] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Lung diseases are among the leading causes of morbidity and mortality. Complement activation may prevent a variety of respiratory infections, but on the other hand, could exacerbate tissue damage or contribute to adverse side effects. In this review, the associations of factors specific for complement activation via the lectin pathway (LP) with infections of the respiratory system, from birth to adulthood, are discussed. The most extensive data concern mannose-binding lectin (MBL) which together with other collectins (collectin-10, collectin-11) and the ficolins (ficolin-1, ficolin-2, ficolin-3) belong to pattern-recognition molecules (PRM) specific for the LP. Those PRM form complexes with MBL-associated serine proteases (MASP-1, MASP-2, MASP-3) and related non-enzymatic factors (MAp19, MAp44). Beside diseases affecting humanity for centuries like tuberculosis or neonatal pneumonia, some recently published data concerning COVID-19 are summarized.
Collapse
Affiliation(s)
- Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
183
|
Tiwari V. De novo design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2. Biol Open 2020; 9:bio.054056. [PMID: 32878881 PMCID: PMC7595696 DOI: 10.1242/bio.054056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
SARS-like coronavirus (SARS-CoV2) has emerged as a global threat to humankind and is rapidly spreading. The infectivity, pathogenesis and infection of this virus are dependent on the interaction of SARS-CoV2 spike protein with human angiotensin converting enzyme 2 (hACE2). Spike protein contains a receptor-binding domain (RBD) that recognizes hACE-2. In the present study, we are reporting a de novo designed novel hybrid antiviral ‘VTAR-01’ molecule that binds at the interface of RBD-hACE2 interaction. A series of antiviral molecules were tested for binding at the interface of RBD-hACE2 interaction. In silico screening, molecular mechanics and molecular dynamics simulation (MDS) analysis suggest ribavirin, ascorbate, lopinavir and hydroxychloroquine have strong interaction at the RBD-hACE2 interface. These four molecules were used for de novo fragment-based antiviral design. De novo designing, docking and MDS analysis identified a ‘VTAR’ hybrid molecule that has better interaction with this interface than all of the antivirals used to design it. We have further used retrosynthetic analysis and combinatorial synthesis to design 100 variants of VTAR molecules. Retrosynthetic analysis and combinatorial synthesis, along with docking and MDS, identified that VTAR-01 interacts with the interface of the RBD-ACE2 complex. MDS analysis confirmed its interaction with the RBD-ACE2 interface by involving Glu35 and Lys353 of ACE2, as well as Gln493 and Ser494 of RBD. Interaction of spike protein with ACE2 is essential for pathogenesis and infection of this virus; hence, this in silico designed hybrid antiviral molecule (VTAR-01) that binds at the interface of RBD-hACE2 may be further developed to control the infection of SARS-CoV2. Summary: SARS-CoV2 has caused an outbreak globally and is responsible for high mortality and morbidity. Interaction of the receptor-binding domain of spike protein of this virus with human angiotensin converting enzyme (ACE2) is vital for the infection. Hence, a de novo designed hybrid antiviral molecule (VTAR-01) targeting RBD-ACE2 interaction may play a very significant role in controlling the COVID-19 disease.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| |
Collapse
|
184
|
The Controversy of Renin-Angiotensin-System Blocker Facilitation Versus Countering COVID-19 Infection. J Cardiovasc Pharmacol 2020; 76:397-406. [PMID: 32769760 DOI: 10.1097/fjc.0000000000000894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ongoing COVID-19 pandemic has produced serious turmoil world-wide. Lung injury causing acute respiratory distress syndrome seems to be a most dreaded complication occurring in ∼30%. Older patients with cardiovascular comorbidities and acute respiratory distress syndrome have an increased mortality. Although the precise mechanisms involved in the development of lung injury have not been fully elucidated, the role of the extended renin-angiotensin system seems to be pivotal. In this context, angiotensin-converting enzyme 2 (ACE2), an angiotensin-converting enzyme homologue, has been recognized as a facilitator of viral entry into the host, albeit its involvement in other counter-regulatory effects, such as converting angiotensin (Ang) II into Ang 1-7 with its known protective actions. Thus, concern was raised that the use of renin-angiotensin system inhibitors by increasing ACE2 expression may enhance patient susceptibility to the COVID-19 virus. However, current data have appeased such concerns because there has been no clinical evidence of a harmful effect of these agents as based on observational studies. However, properly designed future studies will be needed to further confirm or refute current evidence. Furthermore, other pathways may also play important roles in COVID-19 transmission and pathogenesis; spike (S) protein proteases facilitate viral transmission by cleaving S protein that promotes viral entry into the host; neprilysin (NEP), a neutral endopeptidase known to cleave natriuretic peptides, degrades Ang I into Ang 1-7; NEP can also catabolize bradykinin and thus mitigate bradykinin's role in inflammation, whereas, in the same context, specific bradykinin inhibitors may also negate bradykinin's harmful effects. Based on these intricate mechanisms, various preventive and therapeutic strategies may be devised, such as upregulating ACE2 and/or using recombinant ACE2, and exploiting the NEP, bradykinin and serine protease pathways, in addition to anti-inflammatory and antiviral therapies. These issues are herein reviewed, available studies are tabulated and pathogenetic mechanisms are pictorially illustrated.
Collapse
|
185
|
Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkins S. Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacol Transl Sci 2020; 3:813-834. [PMID: 33062950 PMCID: PMC7447080 DOI: 10.1021/acsptsci.0c00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure-activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein-ACE2 interaction, helicase/NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.
Collapse
Affiliation(s)
- Qiongqiong Angela Zhou
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | | | - Yingzhu Li
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Yi Deng
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Roger Granet
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Linda Garner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Cynthia Liu
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Dmitrii Polshakov
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Chris Gessner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Steven Watkins
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| |
Collapse
|
186
|
Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, Tonby K, Barratt-Due A, Sokolova M, Schjalm C, Chaban V, Kolderup A, Tran T, Tollefsrud Gjølberg T, Skeie LG, Hesstvedt L, Ormåsen V, Fevang B, Austad C, Müller KE, Fladeby C, Holberg-Petersen M, Halvorsen B, Müller F, Aukrust P, Dudman S, Ueland T, Andersen JT, Lund-Johansen F, Heggelund L, Dyrhol-Riise AM, Mollnes TE. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proc Natl Acad Sci U S A 2020; 117:25018-25025. [PMID: 32943538 PMCID: PMC7547220 DOI: 10.1073/pnas.2010540117] [Citation(s) in RCA: 276] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory failure in the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is hypothesized to be driven by an overreacting innate immune response, where the complement system is a key player. In this prospective cohort study of 39 hospitalized coronavirus disease COVID-19 patients, we describe systemic complement activation and its association with development of respiratory failure. Clinical data and biological samples were obtained at admission, days 3 to 5, and days 7 to 10. Respiratory failure was defined as PO2/FiO2 ratio of ≤40 kPa. Complement activation products covering the classical/lectin (C4d), alternative (C3bBbP) and common pathway (C3bc, C5a, and sC5b-9), the lectin pathway recognition molecule MBL, and antibody serology were analyzed by enzyme-immunoassays; viral load by PCR. Controls comprised healthy blood donors. Consistently increased systemic complement activation was observed in the majority of COVID-19 patients during hospital stay. At admission, sC5b-9 and C4d were significantly higher in patients with than without respiratory failure (P = 0.008 and P = 0.034). Logistic regression showed increasing odds of respiratory failure with sC5b-9 (odds ratio 31.9, 95% CI 1.4 to 746, P = 0.03) and need for oxygen therapy with C4d (11.7, 1.1 to 130, P = 0.045). Admission sC5b-9 and C4d correlated significantly to ferritin (r = 0.64, P < 0.001; r = 0.69, P < 0.001). C4d, sC5b-9, and C5a correlated with antiviral antibodies, but not with viral load. Systemic complement activation is associated with respiratory failure in COVID-19 patients and provides a rationale for investigating complement inhibitors in future clinical trials.
Collapse
Affiliation(s)
- Jan C Holter
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Soeren E Pischke
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway;
- Division of Emergencies and Critical Care, Oslo University Hospital, 0424 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Eline de Boer
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Andreas Lind
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Synne Jenum
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Aleksander R Holten
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Acute Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tonby
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Andreas Barratt-Due
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Division of Emergencies and Critical Care, Oslo University Hospital, 0424 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Marina Sokolova
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Camilla Schjalm
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Viktoriia Chaban
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anette Kolderup
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Pharmacology, University of Oslo, 0315 Oslo, Norway
| | - Trung Tran
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- Department of Pharmacology, University of Oslo, 0315 Oslo, Norway
- Department of Ophthalmology, Oslo University Hospital, 0424 Oslo, Norway
| | - Linda G Skeie
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Liv Hesstvedt
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Vidar Ormåsen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Børre Fevang
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Cathrine Austad
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
| | - Karl Erik Müller
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Cathrine Fladeby
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
| | | | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Fredrik Müller
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Susanne Dudman
- Department of Microbiology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Thor Ueland
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
| | - Jan Terje Andersen
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
| | - Fridtjof Lund-Johansen
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- ImmunoLingo Convergence Centre, University of Oslo, 0315 Oslo, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Vestre Viken Hospital Trust, 3004 Drammen, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5007 Bergen, Norway
| | - Anne M Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, 0424 Oslo, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway
- Faculty of Health Sciences, K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9037 Tromsø, Norway
- Research Laboratory, Nordland Hospital Bodø, 8092 Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
187
|
Fang S, Wang H, Lu L, Jia Y, Xia Z. Decreased complement C3 levels are associated with poor prognosis in patients with COVID-19: A retrospective cohort study. Int Immunopharmacol 2020; 89:107070. [PMID: 33039965 PMCID: PMC7534659 DOI: 10.1016/j.intimp.2020.107070] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 01/08/2023]
Abstract
The IgA and IgE levels increased significantly, while C3 level decreased in non-survivors. Decreased complement C3 level was correlated with increased odds of death. Low level of C3 may be an alert to the attending that patients may be of additional management. Inhibition of the complement pathway might be an effective therapeutic to COVID-19 patients.
Objectives To describe the humoral immune feature of patients with coronavirus disease 2019 (COVID-19). Methods The levels of total immunoglobulins (IgG, IgM, IgA, and IgE), complement (C3, C4) results were retrospectively analyzed in COVID-19 patients. Univariable and multivariable logistic regression were performed to explore the risk factors associated with the in-hospital death. Result A total of 236 patients were enrolled in this study, of which 169 were transferred to another institution or discharged (survival group) and 67 died in hospital (non-survival group). Compared with survivors, the levels of IgA and IgE in non-survivors increased significantly, and level of complement C3 decreased. Non-survivors also showed higher incidence of chest tightness, breath shortness and dyspnoea; higher levels of inflammatory indicators, leukocytes and neutrophils; and low levels of lymphocyte subsets. Multivariable regression showed increasing odds of in-hospital death associated with older age (HR: 1.099; 95%CI: 1.057–1.143; p < 0.0001), d-dimer greater (HR: 1.294; 95%CI: 1.138–1.473; p < 0.0001) and decreased complement C3 level (HR: 0.073; 95%CI: 0.007–0.722; p = 0.025) on admission. Finally, in survival COVID-19 patients whose humoral immunity was re-examined, C3 levels tended to increase, while in non-survivors it decreased. Conclusion Low level of complement C3 may be an alert to the admitted COVID-19 patients with additional management. Inhibition of the complement pathway might be an effective therapeutic to COVID-19 patients.
Collapse
Affiliation(s)
- Shilin Fang
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
188
|
Ortiz A. Complement and protection from tissue injury in COVID-19. Clin Kidney J 2020; 13:734-738. [PMID: 33123353 PMCID: PMC7577760 DOI: 10.1093/ckj/sfaa196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
As the second wave of coronavirus disease 2019 (COVID-19) is well under way around the world, the optimal therapeutic approach that addresses virus replication and hyperinflammation leading to tissue injury remains elusive. This issue of Clinical Kidney Journal provides further evidence of complement activation involvement in COVID-19. Taking advantage of the unique repeat access to chronic haemodialysis patients, the differential time course of C3 and C5 activation in relation to inflammation and severity of disease have been characterized. This further points to complement as a therapeutic target. Indeed, clinical trials targeting diverse components of complement are ongoing. However, a unique case of COVID-19 in a patient with pre-existent atypical haemolytic syndrome on chronic eculizumab therapy suggests that even early eculizumab may fail to prevent disease progression to a severe stage. Finally, preclinical studies in endotoxaemia, another hyperinflammation syndrome characterized by lung and kidney injury, suggest that cilastatin, an inexpensive drug already in clinical use, may provide tissue protection against hyperinflammation in COVID-19.
Collapse
Affiliation(s)
- Alberto Ortiz
- IIS-Fundación Jiménez Diaz, Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal, Instituto Carlos III-FEDER, Madrid, Spain
| |
Collapse
|
189
|
King RAN, Climacosa FMM, Santos BMM, Caoili SEC. A Human Erythrocyte-based Haemolysis Assay for the Evaluation of Human Complement Activity. Altern Lab Anim 2020; 48:127-135. [PMID: 33006498 DOI: 10.1177/0261192920953170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The complement system consists of at least 50 proteins that serve as one of the first lines of defence against foreign, or damaged, cells and invading microorganisms. Its dysregulation underlies the pathophysiology of many different diseases, which makes functional assays of complement activity crucial; they are, however, underutilised. Standard haemolysis assays for the analysis of complement function employ sensitised non-human erythrocytes (e.g. from the sheep, guinea-pig or rabbit), the use of which raises animal welfare concerns. To provide an alternative to the use of such animal-derived products for complement function assays, we developed a method that employs modified human erythrocytes to evaluate the activity of complement pathways. Human erythrocytes were subjected to various chemical and/or proteolytic treatments involving 2,4,6-trinitrobenzene sulphonate (TNBS) and pancreatin. Haemolysis assays demonstrated that sequential treatment with TNBS and pancreatin resulted in significantly greater complement-mediated haemolysis, as compared to TNBS or pancreatin treatment alone. Evidence that lysis of the modified erythrocytes was complement-mediated was provided by the chelation and subsequent restoration of calcium in the plasma. Thus, such modified human erythrocytes could be used as an alternative to animal-derived erythrocytes in haemolysis assays, in order to evaluate complement activity in human plasma during, for example, the screening of patients for complement deficiencies and other abnormalities in a clinical setting.
Collapse
Affiliation(s)
- Ruby Anne N King
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
| | - Fresthel Monica M Climacosa
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
- Department of Medical Microbiology, College of Public Health, 54733University of the Philippines Manila, Philippines
| | - Bobbie Marie M Santos
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
- Department of Ophthalmology and Visual Sciences, 172611Philippine General Hospital, Manila, Philippines
| | - Salvador Eugenio C Caoili
- Biomedical Innovations Research for Translational Health Science (BIRTHS) Laboratory, Department of Biochemistry and Molecular Biology, 54733College of Medicine, University of the Philippines Manila, Philippines
| |
Collapse
|
190
|
Satyam A, Tsokos GC. Curb complement to cure COVID-19. Clin Immunol 2020; 221:108603. [PMID: 33022386 PMCID: PMC7832239 DOI: 10.1016/j.clim.2020.108603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Abhigyan Satyam
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
191
|
Merrill JT, Erkan D, Winakur J, James JA. Emerging evidence of a COVID-19 thrombotic syndrome has treatment implications. Nat Rev Rheumatol 2020; 16:581-589. [PMID: 32733003 PMCID: PMC7391481 DOI: 10.1038/s41584-020-0474-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Reports of widespread thromboses and disseminated intravascular coagulation (DIC) in patients with coronavirus disease 19 (COVID-19) have been rapidly increasing in number. Key features of this disorder include a lack of bleeding risk, only mildly low platelet counts, elevated plasma fibrinogen levels, and detection of both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and complement components in regions of thrombotic microangiopathy (TMA). This disorder is not typical DIC. Rather, it might be more similar to complement-mediated TMA syndromes, which are well known to rheumatologists who care for patients with severe systemic lupus erythematosus or catastrophic antiphospholipid syndrome. This perspective has critical implications for treatment. Anticoagulation and antiviral agents are standard treatments for DIC but are gravely insufficient for any of the TMA disorders that involve disorders of complement. Mediators of TMA syndromes overlap with those released in cytokine storm, suggesting close connections between ineffective immune responses to SARS-CoV-2, severe pneumonia and life-threatening microangiopathy.
Collapse
Affiliation(s)
- Joan T Merrill
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Doruk Erkan
- Barbara Volcker Center for Women and Rheumatic Diseases, Hospital for Special Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Jerald Winakur
- Division of Geriatric Medicine, Department of Internal Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Judith A James
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| |
Collapse
|
192
|
Laurence J, Mulvey JJ, Seshadri M, Racanelli A, Harp J, Schenck EJ, Zappetti D, Horn EM, Magro CM. Anti-complement C5 therapy with eculizumab in three cases of critical COVID-19. Clin Immunol 2020; 219:108555. [PMID: 32771488 PMCID: PMC7410014 DOI: 10.1016/j.clim.2020.108555] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023]
Abstract
Respiratory failure and acute kidney injury (AKI) are associated with high mortality in SARS-CoV-2-associated Coronavirus disease 2019 (COVID-19). These manifestations are linked to a hypercoaguable, pro-inflammatory state with persistent, systemic complement activation. Three critical COVID-19 patients recalcitrant to multiple interventions had skin biopsies documenting deposition of the terminal complement component C5b-9, the lectin complement pathway enzyme MASP2, and C4d in microvascular endothelium. Administration of anti-C5 monoclonal antibody eculizumab led to a marked decline in D-dimers and neutrophil counts in all three cases, and normalization of liver functions and creatinine in two. One patient with severe heart failure and AKI had a complete remission. The other two individuals had partial remissions, one with resolution of his AKI but ultimately succumbing to respiratory failure, and another with a significant decline in FiO2 requirements, but persistent renal failure. In conclusion, anti-complement therapy may be beneficial in at least some patients with critical COVID-19.
Collapse
Affiliation(s)
- Jeffrey Laurence
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - J Justin Mulvey
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Madhav Seshadri
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Alexandra Racanelli
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joanna Harp
- Department of Dermatology, Weill Cornell Medicine, New York, NY, USA
| | - Edward J Schenck
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Dana Zappetti
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Evelyn M Horn
- Department of Medicine, Division of Cardiology, Weill Cornell Medicine, New York, NY, USA
| | - Cynthia M Magro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
193
|
Ramlall V, Thangaraj PM, Meydan C, Foox J, Butler D, Kim J, May B, De Freitas JK, Glicksberg BS, Mason CE, Tatonetti NP, Shapira SD. Immune complement and coagulation dysfunction in adverse outcomes of SARS-CoV-2 infection. Nat Med 2020; 26:1609-1615. [PMID: 32747830 PMCID: PMC7809634 DOI: 10.1038/s41591-020-1021-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 11/08/2022]
Abstract
Understanding the pathophysiology of SARS-CoV-2 infection is critical for therapeutic and public health strategies. Viral-host interactions can guide discovery of disease regulators, and protein structure function analysis points to several immune pathways, including complement and coagulation, as targets of coronaviruses. To determine whether conditions associated with dysregulated complement or coagulation systems impact disease, we performed a retrospective observational study and found that history of macular degeneration (a proxy for complement-activation disorders) and history of coagulation disorders (thrombocytopenia, thrombosis and hemorrhage) are risk factors for SARS-CoV-2-associated morbidity and mortality-effects that are independent of age, sex or history of smoking. Transcriptional profiling of nasopharyngeal swabs demonstrated that in addition to type-I interferon and interleukin-6-dependent inflammatory responses, infection results in robust engagement of the complement and coagulation pathways. Finally, in a candidate-driven genetic association study of severe SARS-CoV-2 disease, we identified putative complement and coagulation-associated loci including missense, eQTL and sQTL variants of critical complement and coagulation regulators. In addition to providing evidence that complement function modulates SARS-CoV-2 infection outcome, the data point to putative transcriptional genetic markers of susceptibility. The results highlight the value of using a multimodal analytical approach to reveal determinants and predictors of immunity, susceptibility and clinical outcome associated with infection.
Collapse
Affiliation(s)
- Vijendra Ramlall
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY, USA
| | - Phyllis M Thangaraj
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Cem Meydan
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jonathan Foox
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Butler
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jacob Kim
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ben May
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jessica K De Freitas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher E Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nicholas P Tatonetti
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.
- Department of Systems Biology, Columbia University, New York, NY, USA.
| | - Sagi D Shapira
- Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
194
|
Dalakas MC, Alexopoulos H, Spaeth PJ. Complement in neurological disorders and emerging complement-targeted therapeutics. Nat Rev Neurol 2020; 16:601-617. [PMID: 33005040 PMCID: PMC7528717 DOI: 10.1038/s41582-020-0400-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 12/30/2022]
Abstract
The complement system consists of a network of plasma and membrane proteins that modulate tissue homeostasis and contribute to immune surveillance by interacting with the innate and adaptive immune systems. Dysregulation, impairment or inadvertent activation of complement components contribute to the pathogenesis of some autoimmune neurological disorders and could even contribute to neurodegenerative diseases. In this Review, we summarize current knowledge about the main functions of the complement pathways and the involvement of complement in neurological disorders. We describe the complex network of complement proteins that target muscle, the neuromuscular junction, peripheral nerves, the spinal cord or the brain and discuss the autoimmune mechanisms of complement-mediated myopathies, myasthenia, peripheral neuropathies, neuromyelitis and other CNS disorders. We also consider the emerging role of complement in some neurodegenerative diseases, such as Alzheimer disease, amyotrophic lateral sclerosis and even schizophrenia. Finally, we provide an overview of the latest complement-targeted immunotherapies including monoclonal antibodies, fusion proteins and peptidomimetics that have been approved, that are undergoing phase I–III clinical trials or that show promise for the treatment of neurological conditions that respond poorly to existing immunotherapies. In this Review, Dalakas et al. discuss the complement system, the role it plays in autoimmune neurological disease and neurodegenerative disease, and provide an overview of the latest therapeutics that target complement and that can be used for or have potential in neurological disorders. Complement has an important physiological role in host immune defences and tissue remodelling. The physiological role of complement extends to the regulation of synaptic development. Complement has a key pathophysiological role in autoimmune neurological diseases and mediates the actions of pathogenic autoantibodies, such as acetylcholine receptor antibodies and aquaporin 4 antibodies. For some autoimmune neurological diseases, such as myasthenia gravis and neuromyelitis optica spectrum disorders, approved complement-targeted treatments are now available. Complement also seems to be of pathogenic relevance in neurodegenerative diseases such as Alzheimer disease, in which innate immune-driven inflammation is receiving increasing attention. The field of complement-targeted therapeutics is rapidly expanding, with several FDA-approved agents and others currently in phase II and phase III clinical trials.
Collapse
Affiliation(s)
- Marinos C Dalakas
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA. .,Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Harry Alexopoulos
- Neuroimmunology Unit, Department of Pathophysiology, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
195
|
Prendecki M, Clarke C, Medjeral-Thomas N, McAdoo SP, Sandhu E, Peters JE, Thomas DC, Willicombe M, Botto M, Pickering MC. Temporal changes in complement activation in haemodialysis patients with COVID-19 as a predictor of disease progression. Clin Kidney J 2020; 13:889-896. [PMID: 33123364 PMCID: PMC7577776 DOI: 10.1093/ckj/sfaa192] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/27/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Complement activation may play a pathogenic role in patients with severe coronavirus disease 2019 (COVID-19) by contributing to tissue inflammation and microvascular thrombosis. METHODS Serial samples were collected from patients receiving maintenance haemodialysis (HD). Thirty-nine patients had confirmed COVID-19 and 10 patients had no evidence of COVID-19. Plasma C5a and C3a levels were measured using enzyme-linked immunosorbent assay. RESULTS We identified elevated levels of plasma C3a and C5a in HD patients with severe COVID-19 compared with controls. Serial sampling identified that C5a levels were elevated prior to clinical deterioration in patients who developed severe disease. C3a more closely mirrored both clinical and biochemical disease severity. CONCLUSIONS Our findings suggest that activation of complement plays a role in the pathogenesis of COVID-19, leading to endothelial injury and lung damage. C5a may be an earlier biomarker of disease severity than conventional parameters such as C-reactive protein and this warrants further investigation in dedicated biomarker studies. Our data support the testing of complement inhibition as a therapeutic strategy for patients with severe COVID-19.
Collapse
Affiliation(s)
- Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Candice Clarke
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | | | - Stephen P McAdoo
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - Eleanor Sandhu
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | - James E Peters
- Centre for Inflammatory Disease, Imperial College London, London, UK
- Health Data Research UK, London, UK
| | - David C Thomas
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | | | - Marina Botto
- Centre for Inflammatory Disease, Imperial College London, London, UK
| | | |
Collapse
|
196
|
Campbell CM. The opening salvo of anti-complement therapy against COVID-19. LANCET RHEUMATOLOGY 2020; 2:e729-e730. [PMID: 33015642 PMCID: PMC7521911 DOI: 10.1016/s2665-9913(20)30353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Courtney M Campbell
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
197
|
Lo MW, Kemper C, Woodruff TM. COVID-19: Complement, Coagulation, and Collateral Damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1488-1495. [PMID: 32699160 PMCID: PMC7484432 DOI: 10.4049/jimmunol.2000644] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease of 2019 (COVID-19) is a highly contagious respiratory infection that is caused by the severe acute respiratory syndrome coronavirus 2. Although most people are immunocompetent to the virus, a small group fail to mount an effective antiviral response and develop chronic infections that trigger hyperinflammation. This results in major complications, including acute respiratory distress syndrome, disseminated intravascular coagulation, and multiorgan failure, which all carry poor prognoses. Emerging evidence suggests that the complement system plays a key role in this inflammatory reaction. Indeed, patients with severe COVID-19 show prominent complement activation in their lung, skin, and sera, and those individuals who were treated with complement inhibitors all recovered with no adverse reactions. These and other studies hint at complement's therapeutic potential in these sequalae, and thus, to support drug development, in this review, we provide a summary of COVID-19 and review complement's role in COVID-19 acute respiratory distress syndrome and coagulopathy.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland 4072, Australia; and
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland 4072, Australia; and
| |
Collapse
|
198
|
Araten DJ, Belmont HM, Schaefer-Cutillo J, Iyengar A, Mattoo A, Reddy R. Mild Clinical Course of COVID-19 in 3 Patients Receiving Therapeutic Monoclonal Antibodies Targeting C5 Complement for Hematologic Disorders. AMERICAN JOURNAL OF CASE REPORTS 2020; 21:e927418. [PMID: 32917848 PMCID: PMC7508305 DOI: 10.12659/ajcr.927418] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Case series Patients: Female, 39-year-old • Female, 54-year-old • Female, 60-year-old Final Diagnosis: COVID-19 Symptoms: Fever Medication: — Clinical Procedure: — Specialty: Hematology • Nephrology • Rheumatology
Collapse
Affiliation(s)
- David J Araten
- Division of Hematology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York City, NY, USA.,Laura and Isaac Perlmutter Cancer Center, New York City, NY, USA
| | - H Michael Belmont
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York City, NY, USA
| | - Julia Schaefer-Cutillo
- Department of Medicine, Northern Westchester Hospital, Northwell Health, Mt Kisco, NY, USA
| | - Arjun Iyengar
- Division of Hematology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York City, NY, USA.,Department of Medicine, NYC Health and Hospitals/Bellevue, New York City, NY, USA
| | - Aprajita Mattoo
- Division of Nephrology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York City, NY, USA
| | - Ramachandra Reddy
- Division of Hematology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York City, NY, USA.,Department of Medicine, NYC Health and Hospitals/Bellevue, New York City, NY, USA
| |
Collapse
|
199
|
Van de Walle I, Silence K, Budding K, Van de Ven L, Dijkxhoorn K, de Zeeuw E, Yildiz C, Gabriels S, Percier JM, Wildemann J, Meeldijk J, Simons PJ, Boon L, Cox L, Holgate R, Urbanus R, Otten HG, Leusen JHW, Blanchetot C, de Haard H, Hack CE, Boross P. ARGX-117, a therapeutic complement inhibiting antibody targeting C2. J Allergy Clin Immunol 2020; 147:1420-1429.e7. [PMID: 32926878 PMCID: PMC7485568 DOI: 10.1016/j.jaci.2020.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Background Activation of the classical and lectin pathway of complement may contribute to tissue damage and organ dysfunction of antibody-mediated diseases and ischemia-reperfusion conditions. Complement factors are being considered as targets for therapeutic intervention. Objective We sought to characterize ARGX-117, a humanized inhibitory monoclonal antibody against complement C2. Methods The mode-of-action and binding characteristics of ARGX-117 were investigated in detail. Furthermore, its efficacy was analyzed in in vitro complement cytotoxicity assays. Finally, a pharmacokinetic/pharmacodynamic study was conducted in cynomolgus monkeys. Results Through binding to the Sushi-2 domain of C2, ARGX-117 prevents the formation of the C3 proconvertase and inhibits classical and lectin pathway activation upstream of C3 activation. As ARGX-117 does not inhibit the alternative pathway, it is expected not to affect the antimicrobial activity of this complement pathway. ARGX-117 prevents complement-mediated cytotoxicity in in vitro models for autoimmune hemolytic anemia and antibody-mediated rejection of organ transplants. ARGX-117 exhibits pH- and calcium-dependent target binding and is Fc-engineered to increase affinity at acidic pH to the neonatal Fc receptor, and to reduce effector functions. In cynomolgus monkeys, ARGX-117 dose-dependently reduces free C2 levels and classical pathway activity. A 2-dose regimen of 80 and 20 mg/kg separated by a week, resulted in profound reduction of classical pathway activity lasting for at least 7 weeks. Conclusions ARGX-117 is a promising new complement inhibitor that is uniquely positioned to target both the classical and lectin pathways while leaving the alternative pathway intact.
Collapse
Affiliation(s)
| | | | - Kevin Budding
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Kim Dijkxhoorn
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elisabeth de Zeeuw
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cafer Yildiz
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Johanna Wildemann
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Linda Cox
- Bioceros BV, Utrecht, The Netherlands
| | | | - Rolf Urbanus
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Henny G Otten
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - C Erik Hack
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Prothix BV, Leiden, The Netherlands
| | - Peter Boross
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands; Prothix BV, Leiden, The Netherlands.
| |
Collapse
|
200
|
Campbell CM, Guha A, Haque T, Neilan TG, Addison D. Repurposing Immunomodulatory Therapies against Coronavirus Disease 2019 (COVID-19) in the Era of Cardiac Vigilance: A Systematic Review. J Clin Med 2020; 9:E2935. [PMID: 32932930 PMCID: PMC7565788 DOI: 10.3390/jcm9092935] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/08/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has resulted in efforts to identify therapies to ameliorate adverse clinical outcomes. The recognition of the key role for increased inflammation in COVID-19 has led to a proliferation of clinical trials targeting inflammation. The purpose of this review is to characterize the current state of immunotherapy trials in COVID-19, and focuses on associated cardiotoxicities, given the importance of pharmacovigilance. The search terms related to COVID-19 were queried in ClinicalTrials.gov. A total of 1621 trials were identified and screened for interventional trials directed at inflammation. Trials (n = 226) were fully assessed for the use of a repurposed drug, identifying a total of 141 therapeutic trials using a repurposed drug to target inflammation in COVID-19 infection. Building on the results of the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial demonstrating the benefit of low dose dexamethasone in COVID-19, repurposed drugs targeting inflammation are promising. Repurposed drugs directed at inflammation in COVID-19 primarily have been drawn from cancer therapies and immunomodulatory therapies, specifically targeted anti-inflammatory, anti-complement, and anti-rejection agents. The proposed mechanisms for many cytokine-directed and anti-rejection drugs are focused on evidence of efficacy in cytokine release syndromes in humans or animal models. Anti-complement-based therapies have the potential to decrease both inflammation and microvascular thrombosis. Cancer therapies are hypothesized to decrease vascular permeability and inflammation. Few publications to date describe using these drugs in COVID-19. Early COVID-19 intervention trials have re-emphasized the subtle, but important cardiotoxic sequelae of potential therapies on outcomes. The volume of trials targeting the COVID-19 hyper-inflammatory phase continues to grow rapidly with the evaluation of repurposed drugs and late-stage investigational agents. Leveraging known clinical safety profiles and pharmacodynamics allows swift investigation in clinical trials for a novel indication. Physicians should remain vigilant for cardiotoxicity, often not fully appreciated in small trials or in short time frames.
Collapse
Affiliation(s)
- Courtney M. Campbell
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Avirup Guha
- Harrington Heart and Vascular Institute, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Tamanna Haque
- Division of Hematology/Oncology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
| | - Tomas G. Neilan
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, Massachusetts General Hospital, Boston, MA 02144, USA;
| | - Daniel Addison
- Cardio-Oncology Program, Division of Cardiology, Department of Internal Medicine, The Ohio State University Medical Center, Columbus, OH 43210, USA;
- Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|