151
|
The Phosphorylation and Distribution of Cortactin Downstream of Integrin α9β1 Affects Cancer Cell Behaviour. Sci Rep 2016; 6:28529. [PMID: 27339664 PMCID: PMC4919783 DOI: 10.1038/srep28529] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 06/06/2016] [Indexed: 11/25/2022] Open
Abstract
Integrins, a family of heterodimeric adhesion receptors are implicated in cell migration, development and cancer progression. They can adopt conformations that reflect their activation states and thereby impact adhesion strength and migration. Integrins in an intermediate activation state may be optimal for migration and we have shown previously that fully activated integrin α9β1 corresponds with less migratory behaviour in melanoma cells. Here, we aimed to identify components associated with the activation status of α9β1. Using cancer cell lines with naturally occuring high levels of this integrin, activation by α9β1-specific ligands led to upregulation of fibronectin matrix assembly and tyrosine phosphorylation of cortactin on tyrosine 470 (Y470). Specifically, cortactin phosphorylated on Y470, but not Y421, redistributed together with α9β1 to focal adhesions where active β1 integrin also localises, upon integrin activation. This was commensurate with reduced migration. The localisation and phosphorylation of cortactin Y470 was regulated by Yes kinase and PTEN phosphatase. Cortactin levels influenced fibronectin matrix assembly and active β1 integrin on the cell surface, being inversely correlated with migratory behaviour. This study underlines the complex interplay between cortactin and α9β1 integrin that regulates cell-extracellular matrix interactions.
Collapse
|
152
|
Cha B, Geng X, Mahamud MR, Fu J, Mukherjee A, Kim Y, Jho EH, Kim TH, Kahn ML, Xia L, Dixon JB, Chen H, Srinivasan RS. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves. Genes Dev 2016; 30:1454-69. [PMID: 27313318 PMCID: PMC4926867 DOI: 10.1101/gad.282400.116] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
Abstract
In this study, Cha et al. show that the Wnt/β-catenin signaling pathway is the link between fluid flow and lymphatic vascular morphogenesis. They provide a molecular and structural framework to study mammalian lymphatic vasculature by demonstrating that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling. Lymphatic vasculature regulates fluid homeostasis by returning interstitial fluid to blood circulation. Lymphatic endothelial cells (LECs) are the building blocks of the entire lymphatic vasculature. LECs originate as a homogeneous population of cells predominantly from the embryonic veins and undergo stepwise morphogenesis to become the lymphatic capillaries, collecting vessels or valves. The molecular mechanisms underlying the morphogenesis of the lymphatic vasculature remain to be fully understood. Here we show that canonical Wnt/β-catenin signaling is necessary for lymphatic vascular morphogenesis. Lymphatic vascular-specific ablation of β-catenin in mice prevents the formation of lymphatic and lymphovenous valves. Additionally, lymphatic vessel patterning is defective in these mice, with abnormal recruitment of mural cells. We found that oscillatory shear stress (OSS), which promotes lymphatic vessel maturation, triggers Wnt/β-catenin signaling in LECs. In turn, Wnt/β-catenin signaling controls the expression of several molecules, including the lymphedema-associated transcription factor FOXC2. Importantly, FOXC2 completely rescues the lymphatic vessel patterning defects in mice lacking β-catenin. Thus, our work reveals that mechanical stimulation is a critical regulator of lymphatic vascular development via activation of Wnt/β-catenin signaling and, in turn, FOXC2.
Collapse
Affiliation(s)
- Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Jianxin Fu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Anish Mukherjee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Yeunhee Kim
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Tae Hoon Kim
- Department of Biological Sciences, Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Mark L Kahn
- Department of Medicine, Division of Cardiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Biochemistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, Massachusetts 02115, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
153
|
Steed E, Faggianelli N, Roth S, Ramspacher C, Concordet JP, Vermot J. klf2a couples mechanotransduction and zebrafish valve morphogenesis through fibronectin synthesis. Nat Commun 2016; 7:11646. [PMID: 27221222 PMCID: PMC4894956 DOI: 10.1038/ncomms11646] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 04/15/2016] [Indexed: 12/23/2022] Open
Abstract
The heartbeat and blood flow signal to endocardial cell progenitors through mechanosensitive proteins that modulate the genetic program controlling heart valve morphogenesis. To date, the mechanism by which mechanical forces coordinate tissue morphogenesis is poorly understood. Here we use high-resolution imaging to uncover the coordinated cell behaviours leading to heart valve formation. We find that heart valves originate from progenitors located in the ventricle and atrium that generate the valve leaflets through a coordinated set of endocardial tissue movements. Gene profiling analyses and live imaging reveal that this reorganization is dependent on extracellular matrix proteins, in particular on the expression of fibronectin1b. We show that blood flow and klf2a, a major endocardial flow-responsive gene, control these cell behaviours and fibronectin1b synthesis. Our results uncover a unique multicellular layering process leading to leaflet formation and demonstrate that endocardial mechanotransduction and valve morphogenesis are coupled via cellular rearrangements mediated by fibronectin synthesis.
Collapse
Affiliation(s)
- Emily Steed
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Nathalie Faggianelli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Stéphane Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Caroline Ramspacher
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Jean-Paul Concordet
- Muséum National d'Histoire Naturelle, 75231 Paris Cedex 05, France
- CNRS UMR 7196, 75231 Paris Cedex 05, France
- INSERM U1154, 75231 Paris Cedex 05, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
154
|
Cordeiro OG, Chypre M, Brouard N, Rauber S, Alloush F, Romera-Hernandez M, Bénézech C, Li Z, Eckly A, Coles MC, Rot A, Yagita H, Léon C, Ludewig B, Cupedo T, Lanza F, Mueller CG. Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS One 2016; 11:e0151848. [PMID: 27010197 PMCID: PMC4806919 DOI: 10.1371/journal.pone.0151848] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/04/2016] [Indexed: 12/31/2022] Open
Abstract
Microenvironment and activation signals likely imprint heterogeneity in the lymphatic endothelial cell (LEC) population. Particularly LECs of secondary lymphoid organs are exposed to different cell types and immune stimuli. However, our understanding of the nature of LEC activation signals and their cell source within the secondary lymphoid organ in the steady state remains incomplete. Here we show that integrin alpha 2b (ITGA2b), known to be carried by platelets, megakaryocytes and hematopoietic progenitors, is expressed by a lymph node subset of LECs, residing in medullary, cortical and subcapsular sinuses. In the subcapsular sinus, the floor but not the ceiling layer expresses the integrin, being excluded from ACKR4+ LECs but overlapping with MAdCAM-1 expression. ITGA2b expression increases in response to immunization, raising the possibility that heterogeneous ITGA2b levels reflect variation in exposure to activation signals. We show that alterations of the level of receptor activator of NF-κB ligand (RANKL), by overexpression, neutralization or deletion from stromal marginal reticular cells, affected the proportion of ITGA2b+ LECs. Lymph node LECs but not peripheral LECs express RANK. In addition, we found that lymphotoxin-β receptor signaling likewise regulated the proportion of ITGA2b+ LECs. These findings demonstrate that stromal reticular cells activate LECs via RANKL and support the action of hematopoietic cell-derived lymphotoxin.
Collapse
Affiliation(s)
- Olga G. Cordeiro
- CNRS UPR 3572, University of Strasbourg, Laboratory of Immunopathology and Therapeutic Chemistry/ MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Mélanie Chypre
- CNRS UPR 3572, University of Strasbourg, Laboratory of Immunopathology and Therapeutic Chemistry/ MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- Prestwick Chemical, Blvd Gonthier d'Andernach, Parc d’innovation, 67400, Illkirch, France
| | - Nathalie Brouard
- INSERM, UMR_S949, Etablissement Français du Sang-Alsace, Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Simon Rauber
- CNRS UPR 3572, University of Strasbourg, Laboratory of Immunopathology and Therapeutic Chemistry/ MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Farouk Alloush
- CNRS UPR 3572, University of Strasbourg, Laboratory of Immunopathology and Therapeutic Chemistry/ MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | - Cécile Bénézech
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhi Li
- Center for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Anita Eckly
- INSERM, UMR_S949, Etablissement Français du Sang-Alsace, Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Mark C. Coles
- Center for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Antal Rot
- Center for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, 113–8421, Japan
| | - Catherine Léon
- INSERM, UMR_S949, Etablissement Français du Sang-Alsace, Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonspital St. Gallen, 9007, St. Gallen, Switzerland
| | - Tom Cupedo
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - François Lanza
- INSERM, UMR_S949, Etablissement Français du Sang-Alsace, Faculté de Médecine, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Christopher G. Mueller
- CNRS UPR 3572, University of Strasbourg, Laboratory of Immunopathology and Therapeutic Chemistry/ MEDALIS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
- * E-mail:
| |
Collapse
|
155
|
Martinez-Corral I, Stanczuk L, Frye M, Ulvmar MH, Diéguez-Hurtado R, Olmeda D, Makinen T, Ortega S. Vegfr3-CreER T2 mouse, a new genetic tool for targeting the lymphatic system. Angiogenesis 2016; 19:433-45. [DOI: 10.1007/s10456-016-9505-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/03/2016] [Indexed: 01/26/2023]
|
156
|
Altiok E, Ecoiffier T, Sessa R, Yuen D, Grimaldo S, Tran C, Li D, Rosner M, Lee N, Uede T, Chen L. Integrin Alpha-9 Mediates Lymphatic Valve Formation in Corneal Lymphangiogenesis. Invest Ophthalmol Vis Sci 2016; 56:6313-9. [PMID: 26431485 DOI: 10.1167/iovs.15-17509] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
PURPOSE We recently reported that corneal lymphatic vessels develop integrin alpha-9 (Itga-9)-positive valves during inflammatory lymphangiogenesis. The purpose of this study was to further investigate the role of Itga-9 in corneal lymphatic valve formation in vivo and lymphatic endothelial cell (LEC) functions in vitro. METHODS Standard murine suture placement model was used to study the effect of Itga-9 blockade on lymphatic valve formation in vivo using Itga-9 neutralizing antibody. Whole-mount corneas were harvested for immunofluorescent microscopic analysis. Additionally, human LEC culture system was used to examine the effect of Itga-9 gene knockdown on cell functions using small interfering RNAs (siRNAs). RESULTS Itga-9 blockade in vivo significantly reduced the number of lymphatic valves formed in the inflamed cornea. Moreover, Itga-9 gene knockdown in human LECs suppresses cell functions of proliferation, adhesion, migration, and tube formation. CONCLUSIONS Itga-9 is critically involved in corneal lymphatic valve formation. Further investigation of the Itga-9 pathway may provide novel strategies to treat lymphatic-related diseases occurring both inside and outside the eye.
Collapse
Affiliation(s)
- Eda Altiok
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Tatiana Ecoiffier
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Roberto Sessa
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Don Yuen
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Sammy Grimaldo
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Colin Tran
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - David Li
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Michael Rosner
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Narae Lee
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| | - Toshimitsu Uede
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Lu Chen
- Vision Science Graduate Program, University of California, Berkeley, California, United States 2Center for Eye Disease and Development, Program in Vision Science, and School of Optometry, University of California, Berkeley, California, United States
| |
Collapse
|
157
|
Bernier-Latmani J, Cisarovsky C, Demir CS, Bruand M, Jaquet M, Davanture S, Ragusa S, Siegert S, Dormond O, Benedito R, Radtke F, Luther SA, Petrova TV. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J Clin Invest 2015; 125:4572-86. [PMID: 26529256 DOI: 10.1172/jci82045] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
The small intestine is a dynamic and complex organ that is characterized by constant epithelium turnover and crosstalk among various cell types and the microbiota. Lymphatic capillaries of the small intestine, called lacteals, play key roles in dietary fat absorption and the gut immune response; however, little is known about the molecular regulation of lacteal function. Here, we performed a high-resolution analysis of the small intestinal stroma and determined that lacteals reside in a permanent regenerative, proliferative state that is distinct from embryonic lymphangiogenesis or quiescent lymphatic vessels observed in other tissues. We further demonstrated that this continuous regeneration process is mediated by Notch signaling and that the expression of the Notch ligand delta-like 4 (DLL4) in lacteals requires activation of VEGFR3 and VEGFR2. Moreover, genetic inactivation of Dll4 in lymphatic endothelial cells led to lacteal regression and impaired dietary fat uptake. We propose that such a slow lymphatic regeneration mode is necessary to match a unique need of intestinal lymphatic vessels for both continuous maintenance, due to the constant exposure to dietary fat and mechanical strain, and efficient uptake of fat and immune cells. Our work reveals how lymphatic vessel responses are shaped by tissue specialization and uncover a role for continuous DLL4 signaling in the function of adult lymphatic vasculature.
Collapse
|
158
|
Geng X, Cha B, Mahamud MR, Lim KC, Silasi-Mansat R, Uddin MKM, Miura N, Xia L, Simon AM, Engel JD, Chen H, Lupu F, Srinivasan RS. Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev Biol 2015; 409:218-233. [PMID: 26542011 DOI: 10.1016/j.ydbio.2015.10.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/19/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
Lymph is returned to the blood circulation exclusively via four lymphovenous valves (LVVs). Despite their vital importance, the architecture and development of LVVs is poorly understood. We analyzed the formation of LVVs at the molecular and ultrastructural levels during mouse embryogenesis and identified three critical steps. First, LVV-forming endothelial cells (LVV-ECs) differentiate from PROX1(+) progenitors and delaminate from the luminal side of the veins. Second, LVV-ECs aggregate, align perpendicular to the direction of lymph flow and establish lympho-venous connections. Finally, LVVs mature with the recruitment of mural cells. LVV morphogenesis is disrupted in four different mouse models of primary lymphedema and the severity of LVV defects correlate with that of lymphedema. In summary, we have provided the first and the most comprehensive analysis of LVV development. Furthermore, our work suggests that aberrant LVVs contribute to lymphedema.
Collapse
Affiliation(s)
- Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Md Riaj Mahamud
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert Silasi-Mansat
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Mohammad K M Uddin
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoyuki Miura
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hong Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
159
|
The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun 2015; 6:8479. [PMID: 26446569 PMCID: PMC4633719 DOI: 10.1038/ncomms9479] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022] Open
Abstract
Vascular lumen formation is a fundamental step during angiogenesis; yet, the molecular mechanisms underlying this process are poorly understood. Recent studies have shown that neural and vascular systems share common anatomical, functional and molecular similarities. Here we show that the organization of endothelial lumen is controlled at the post-transcriptional level by the alternative splicing (AS) regulator Nova2, which was previously considered to be neural cell-specific. Nova2 is expressed during angiogenesis and its depletion disrupts vascular lumen formation in vivo. Similarly, Nova2 depletion in cultured endothelial cells (ECs) impairs the apical distribution and the downstream signalling of the Par polarity complex, resulting in altered EC polarity, a process required for vascular lumen formation. These defects are linked to AS changes of Nova2 target exons affecting the Par complex and its regulators. Collectively, our results reveal that Nova2 functions as an AS regulator in angiogenesis and is a novel member of the ‘angioneurins' family. The alternative splicing factor Nova2 is best known for its pivotal function in the brain. Giampietro et al. reveal an important role for Nova2 in the regulation of alternative splicing of transcripts in the vascular endothelium that are crucial for the maintenance of endothelial cell polarity and vessel lumen formation in zebrafish.
Collapse
|
160
|
Sabine A, Bovay E, Demir CS, Kimura W, Jaquet M, Agalarov Y, Zangger N, Scallan JP, Graber W, Gulpinar E, Kwak BR, Mäkinen T, Martinez-Corral I, Ortega S, Delorenzi M, Kiefer F, Davis MJ, Djonov V, Miura N, Petrova TV. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature. J Clin Invest 2015; 125:3861-77. [PMID: 26389677 DOI: 10.1172/jci80454] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 08/13/2015] [Indexed: 12/16/2022] Open
Abstract
Biomechanical forces, such as fluid shear stress, govern multiple aspects of endothelial cell biology. In blood vessels, disturbed flow is associated with vascular diseases, such as atherosclerosis, and promotes endothelial cell proliferation and apoptosis. Here, we identified an important role for disturbed flow in lymphatic vessels, in which it cooperates with the transcription factor FOXC2 to ensure lifelong stability of the lymphatic vasculature. In cultured lymphatic endothelial cells, FOXC2 inactivation conferred abnormal shear stress sensing, promoting junction disassembly and entry into the cell cycle. Loss of FOXC2-dependent quiescence was mediated by the Hippo pathway transcriptional coactivator TAZ and, ultimately, led to cell death. In murine models, inducible deletion of Foxc2 within the lymphatic vasculature led to cell-cell junction defects, regression of valves, and focal vascular lumen collapse, which triggered generalized lymphatic vascular dysfunction and lethality. Together, our work describes a fundamental mechanism by which FOXC2 and oscillatory shear stress maintain lymphatic endothelial cell quiescence through intercellular junction and cytoskeleton stabilization and provides an essential link between biomechanical forces and endothelial cell identity that is necessary for postnatal vessel homeostasis. As FOXC2 is mutated in lymphedema-distichiasis syndrome, our data also underscore the role of impaired mechanotransduction in the pathology of this hereditary human disease.
Collapse
|
161
|
Kazenwadel J, Harvey NL. Morphogenesis of the lymphatic vasculature: A focus on new progenitors and cellular mechanisms important for constructing lymphatic vessels. Dev Dyn 2015; 245:209-19. [DOI: 10.1002/dvdy.24313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 12/29/2022] Open
Affiliation(s)
- Jan Kazenwadel
- Centre for Cancer Biology, University of South Australia and SA Pathology; Adelaide Australia
| | - Natasha L. Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology; Adelaide Australia
- School of Medicine, University of Adelaide; Adelaide Australia
| |
Collapse
|
162
|
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol 2015; 6:182. [PMID: 26388772 PMCID: PMC4557107 DOI: 10.3389/fphar.2015.00182] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
163
|
Sweet DT, Jiménez JM, Chang J, Hess PR, Mericko-Ishizuka P, Fu J, Xia L, Davies PF, Kahn ML. Lymph flow regulates collecting lymphatic vessel maturation in vivo. J Clin Invest 2015. [PMID: 26214523 DOI: 10.1172/jci79386] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluid shear forces have established roles in blood vascular development and function, but whether such forces similarly influence the low-flow lymphatic system is unknown. It has been difficult to test the contribution of fluid forces in vivo because mechanical or genetic perturbations that alter flow often have direct effects on vessel growth. Here, we investigated the functional role of flow in lymphatic vessel development using mice deficient for the platelet-specific receptor C-type lectin-like receptor 2 (CLEC2) as blood backfills the lymphatic network and blocks lymph flow in these animals. CLEC2-deficient animals exhibited normal growth of the primary mesenteric lymphatic plexus but failed to form valves in these vessels or remodel them into a structured, hierarchical network. Smooth muscle cell coverage (SMC coverage) of CLEC2-deficient lymphatic vessels was both premature and excessive, a phenotype identical to that observed with loss of the lymphatic endothelial transcription factor FOXC2. In vitro evaluation of lymphatic endothelial cells (LECs) revealed that low, reversing shear stress is sufficient to induce expression of genes required for lymphatic valve development and identified GATA2 as an upstream transcriptional regulator of FOXC2 and the lymphatic valve genetic program. These studies reveal that lymph flow initiates and regulates many of the key steps in collecting lymphatic vessel maturation and development.
Collapse
|
164
|
Kazenwadel J, Betterman KL, Chong CE, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL. GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 2015. [PMID: 26214525 DOI: 10.1172/jci78888] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterozygous germline mutations in the zinc finger transcription factor GATA2 have recently been shown to underlie a range of clinical phenotypes, including Emberger syndrome, a disorder characterized by lymphedema and predisposition to myelodysplastic syndrome/acute myeloid leukemia (MDS/AML). Despite well-defined roles in hematopoiesis, the functions of GATA2 in the lymphatic vasculature and the mechanisms by which GATA2 mutations result in lymphedema have not been characterized. Here, we have provided a molecular explanation for lymphedema predisposition in a subset of patients with germline GATA2 mutations. Specifically, we demonstrated that Emberger-associated GATA2 missense mutations result in complete loss of GATA2 function, with respect to the capacity to regulate the transcription of genes that are important for lymphatic vessel valve development. We identified a putative enhancer element upstream of the key lymphatic transcriptional regulator PROX1 that is bound by GATA2, and the transcription factors FOXC2 and NFATC1. Emberger GATA2 missense mutants had a profoundly reduced capacity to bind this element. Conditional Gata2 deletion in mice revealed that GATA2 is required for both development and maintenance of lymphovenous and lymphatic vessel valves. Together, our data unveil essential roles for GATA2 in the lymphatic vasculature and explain why a select catalogue of human GATA2 mutations results in lymphedema.
Collapse
|
165
|
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523:337-41. [PMID: 26030524 PMCID: PMC4506234 DOI: 10.1038/nature14432] [Citation(s) in RCA: 2995] [Impact Index Per Article: 299.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/20/2015] [Indexed: 12/15/2022]
Abstract
One of the characteristics of the central nervous system is the lack of a classical lymphatic drainage system. Although it is now accepted that the central nervous system undergoes constant immune surveillance that takes place within the meningeal compartment, the mechanisms governing the entrance and exit of immune cells from the central nervous system remain poorly understood. In searching for T-cell gateways into and out of the meninges, we discovered functional lymphatic vessels lining the dural sinuses. These structures express all of the molecular hallmarks of lymphatic endothelial cells, are able to carry both fluid and immune cells from the cerebrospinal fluid, and are connected to the deep cervical lymph nodes. The unique location of these vessels may have impeded their discovery to date, thereby contributing to the long-held concept of the absence of lymphatic vasculature in the central nervous system. The discovery of the central nervous system lymphatic system may call for a reassessment of basic assumptions in neuroimmunology and sheds new light on the aetiology of neuroinflammatory and neurodegenerative diseases associated with immune system dysfunction.
Collapse
Affiliation(s)
- Antoine Louveau
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Igor Smirnov
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Timothy J Keyes
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jacob D Eccles
- 1] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Medicine (Division of Allergy), School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Sherin J Rouhani
- 1] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - J David Peske
- 1] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Beirne B. Carter Center for Immunology Research, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Noel C Derecki
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - David Castle
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - James W Mandell
- Department of Pathology (Neuropathology), School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Kevin S Lee
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Department of Neurosurgery, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Tajie H Harris
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jonathan Kipnis
- 1] Center for Brain Immunology and Glia, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [2] Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA [3] Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
166
|
McClelland KS, Bell K, Larney C, Harley VR, Sinclair AH, Oshlack A, Koopman P, Bowles J. Purification and Transcriptomic Analysis of Mouse Fetal Leydig Cells Reveals Candidate Genes for Specification of Gonadal Steroidogenic Cells1. Biol Reprod 2015; 92:145. [DOI: 10.1095/biolreprod.115.128918] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/02/2015] [Indexed: 01/12/2023] Open
|
167
|
Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun 2015; 6:7274. [PMID: 26027726 DOI: 10.1038/ncomms8274] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
The lymphatic system maintains tissue fluid balance, and dysfunction of lymphatic vessels and valves causes human lymphedema syndromes. Yet, our knowledge of the molecular mechanisms underlying lymphatic vessel development is still limited. Here, we show that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of lymphatic vessel development. Endothelial-specific Cdk5 knockdown causes congenital lymphatic dysfunction and lymphedema due to defective lymphatic vessel patterning and valve formation. We identify the transcription factor Foxc2 as a key substrate of Cdk5 in the lymphatic vasculature, mechanistically linking Cdk5 to lymphatic development and valve morphogenesis. Collectively, our findings show that Cdk5-Foxc2 interaction represents a critical regulator of lymphatic vessel development and the transcriptional network underlying lymphatic vascular remodeling.
Collapse
|
168
|
EphB4 forward signalling regulates lymphatic valve development. Nat Commun 2015; 6:6625. [PMID: 25865237 PMCID: PMC4403310 DOI: 10.1038/ncomms7625] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
Bidirectional signalling is regarded as a notable hallmark of the Eph-ephrin signalling system: Eph-dependent forward signalling in Eph-expressing cells and ephrin-dependent reverse signalling in Ephrin-expressing cells. The notion of ephrin-dependent reverse signalling derives from genetic experiments utilizing mice carrying mutations in the intracellular region of ephrinBs. Here we show that EphB4-dependent forward signalling regulates lymphatic valve development, a process previously thought to be regulated by ephrinB2-dependent reverse signalling. We develop antibodies that selectively target EphB4 and ephrinB2. We find that mice bearing genetically altered cytoplasmic region of ephrinB2 have significantly altered EphB4-dependent forward signalling. Selective inhibition of EphB4 using a functional blocking antibody results in defective lymphatic valve development. Furthermore, a chemical genetic approach is used to unequivocally show that the kinase activity of EphB4 is essential for lymphatic valve development.
Collapse
|
169
|
Actin-tethered junctional complexes in angiogenesis and lymphangiogenesis in association with vascular endothelial growth factor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:314178. [PMID: 25883953 PMCID: PMC4389985 DOI: 10.1155/2015/314178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/23/2014] [Accepted: 10/31/2014] [Indexed: 12/21/2022]
Abstract
Vasculature is present in all tissues and therefore is indispensable for development, biology, and pathology of multicellular organisms. Endothelial cells guarantee proper function of the vessels and are the original component in angiogenesis. Morphogenesis of the vascular system utilizes processes like cell adhesion, motility, proliferation, and survival that are closely related to the dynamics of actin filaments and actin-tethered adhesion complexes. Here we review involvement of actin cytoskeleton-associated junctional molecules of endothelial cells in angiogenesis and lymphangiogenesis. Particularly, we focus on F-actin binding protein afadin, an adaptor protein involved in broad range of signaling mechanisms. Afadin mediates the pathways of vascular endothelial growth factor- (VEGF-) and sphingosine 1-phosphate-triggered angiogenesis and is essential for embryonic development of lymph vessels in mice. We propose that targeting actin-tethered junctional molecules, including afadin, may present a new approach to angiogenic therapy that in combination with today used medications like VEGF inhibitors will benefit against development of pathological angiogenesis.
Collapse
|
170
|
Siani A, Khaw RR, Manley OWG, Tirella A, Cellesi F, Donno R, Tirelli N. Fibronectin localization and fibrillization are affected by the presence of serum in culture media. Sci Rep 2015; 5:9278. [PMID: 25797118 PMCID: PMC4369722 DOI: 10.1038/srep09278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/05/2015] [Indexed: 01/18/2023] Open
Abstract
In vitro models of fibrotic phenomena are often based on the fibroblast-myofibroblast transition as the contraction-triggering cellular event. There are, however, multiple sources of concern regarding the appropriateness of such models; a first and widely investigated issue is the often inappropriate nature of the interactions between mesenchymal cells and surrounding/underlying matrix/substrate. A second set of problems concerns the composition of the fluid phase, which includes both dispersed/dissolved paracrine messengers and matrix elements. In this study, we have focused on the effects that serum may generate. We have observed that A) serum causes high variability in the expression of typical markers of myofibroblast differentiation (ED-A fibronectin and α-Smooth Muscle Actin) upon treatment with TGF-β1; this is probably due to intrinsic variability of cytokine concentrations in different batches of serum. B) the fibrillization of endogenous fibronectin is partially hampered and its localization changed from ventral (on the substrate) to dorsal (upper surface); the latter morphology appears to be largely overlooked in literature, even though it may have a significant role in terms of mechanotransductive signaling. This quite dramatic change possibly occurs as a result of competition with serum proteins, although our data seem to rule out a direct role of serum fibronectin.
Collapse
Affiliation(s)
- Alessandro Siani
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Rong R. Khaw
- School of Medicine, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Oliver W. G. Manley
- School of Medicine, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Annalisa Tirella
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
- School of Medicine, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Francesco Cellesi
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Roberto Donno
- School of Medicine, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Nicola Tirelli
- Manchester Pharmacy School, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
- School of Medicine, Institute of Inflammation and Repair, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
171
|
Yang Y, Enis D, Zheng H, Chia S, Yang J, Chen M, Dhillon V, Papayannapoulou T, Kahn ML. Cell Adhesion Mediated by VCAM-ITGα9 Interactions Enables Lymphatic Development. Arterioscler Thromb Vasc Biol 2015; 35:1179-89. [PMID: 25745057 DOI: 10.1161/atvbaha.114.304997] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/22/2015] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Adhesive ligand-receptor interactions play key roles in blood vessel angiogenesis but remain poorly characterized during lymphatic vessel growth. In this study, we use genetic approaches in both fish and mice to address the roles of cell surface integrin ligand vascular cell adhesion molecule (VCAM) and its 2 receptors, integrins α9 and α4, during lymphatic vascular development. APPROACH AND RESULTS Conditional deletion of the Vcam gene was used to test VCAM function in lymphatic growth in midgestation mice. Morpholino knockdown and cRNA rescue of the 2 zebrafish vcam alleles, as well as integrins α9 and 4, were used to test the role of these ligands and receptors during lymphatic growth in the developing fish. We show that VCAM is essential for lymphatic development in the zebrafish embryo and that integrin α9 (Itgα9) rather than Itgα4 is the required VCAM receptor in the developing fish. VCAM is expressed along lines of lymphatic migration in the mouse intestine, but its loss only retards lymphatic growth. CONCLUSIONS These studies reveal an unexpected role for cell-cell adhesion mediated by Itgα9-VCAM interactions during lymphatic development in the fish but not in the mouse. We propose that the relative importance of cellular adhesive ligands is magnified under conditions of rapid tissue growth when the cell number increases faster than cell matrix, such as in the early zebrafish embryo.
Collapse
Affiliation(s)
- Yiqing Yang
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - David Enis
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Hui Zheng
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Stephanie Chia
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Jisheng Yang
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Mei Chen
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Veerpal Dhillon
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Thalia Papayannapoulou
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.)
| | - Mark L Kahn
- From the Department of Medicine and Cardiovascular Institute (Y.Y., D.E., H.Z., S.C., J.Y., M.C., V.D., M.L.K.) and Department of Dermatology (D.E.), University of Pennsylvania, Philadelphia; and Department of Medicine, University of Washington, Seattle (T.P.).
| |
Collapse
|
172
|
Duval C, Zaniolo K, Leclerc S, Salesse C, Guérin SL. Characterization of the human α9 integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Exp Eye Res 2015; 135:146-63. [PMID: 25746835 DOI: 10.1016/j.exer.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
α9β1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9β1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Collapse
Affiliation(s)
- Céline Duval
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Karine Zaniolo
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Steeve Leclerc
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Christian Salesse
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
173
|
Schlesinger M, Bendas G. Contribution of very late antigen-4 (VLA-4) integrin to cancer progression and metastasis. Cancer Metastasis Rev 2015; 34:575-91. [DOI: 10.1007/s10555-014-9545-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
174
|
Qu X, Zhou B, Scott Baldwin H. Tie1 is required for lymphatic valve and collecting vessel development. Dev Biol 2015; 399:117-128. [PMID: 25576926 DOI: 10.1016/j.ydbio.2014.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 12/29/2022]
Abstract
Tie1 is a receptor tyrosine kinase with broad expression in embryonic endothelium. Reduction of Tie1 levels in mouse embryos with a hypomorphic Tie1 allele resulted in abnormal lymphatic patterning and architecture, decreased lymphatic draining efficiency, and ultimately, embryonic demise. Here we report that Tie1 is present uniformly throughout the lymphatics and from late embryonic/early postnatal stages, becomes more restricted to lymphatic valve regions. To investigate later events of lymphatic development, we employed Cre-loxP recombination utilizing a floxed Tie1 allele and an Nfatc1Cre line, to provide loxP excision predominantly in lymphatic endothelium and developing valves. Interestingly, unlike the early prenatal defects previously described by ubiquitous endothelial deletion, excision of Tie1 with Nfatc1Cre resulted in abnormal lymphatic defects in postnatal mice and was characterized by agenesis of lymphatic valves and a deficiency of collecting lymphatic vessels. Attenuation of Tie1 signaling in lymphatic endothelium prevented initiation of lymphatic valve specification by Prox1 high expression lymphatic endothelial cells that is associated with the onset of turbulent flow in the lymphatic circulation. Our findings reveal a fundamental role for Tie1 signaling during lymphatic vessel remodeling and valve morphogenesis and implicate it as a candidate gene involved in primary lymphedema.
Collapse
Affiliation(s)
- Xianghu Qu
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, NY 10461, USA
| | - H Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Development Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
175
|
Yoneda A. Fibronectin Matrix Assembly and Its Significant Role in Cancer Progression and Treatment. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1421.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Atsuko Yoneda
- Laboratory of Genome and Biosignals, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
176
|
Ou JJ, Wei X, Peng Y, Zha L, Zhou RB, Shi H, Zhou Q, Liang HJ. Neuropilin-2 mediates lymphangiogenesis of colorectal carcinoma via a VEGFC/VEGFR3 independent signaling. Cancer Lett 2014; 358:200-209. [PMID: 25543087 DOI: 10.1016/j.canlet.2014.12.046] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Lymphangiogenesis critically contributes to the lymphatic metastasis of colorectal carcinomas (CRCs), but the underlying mechanism of CRC lymphangiogenesis remains largely elusive. We have previously demonstrated that Semaphorin-3F (SEMA3F) is critically involved in CRC metastasis, and the receptor of SEMA3F, neuropilin-2 (NRP2), originally described as an axon guiding chemorepulsant implicated in nerve development, has been suggested in promoting lymphangiogenesis via acting as an obligate co-receptor of VEGFR3 cooperatively enhancing the activity of VEGF-C. Our present study revealed that in colorectal carcinomas, NRP2 expression levels of tumor-associated lymphatic endothelial cells (LECs) are significantly correlated with the density of tumor lymphatic vessels. In vitro, activation of NRP2 in LECs substantially facilitates their migration, sprouting, and tubulogenesis capacity via regulating the rearrangement of cytoskeleton polarity. In vivo model further showed that in the xenografts generated from SEMA3F knockdown CRC cells, NRP2 is substantially activated in tumor-associated LECs, resulting in a significantly increased tumor lymphangiogenesis. Further evidence demonstrated that CRC cell induces the activation of NRP2 in LECs to promote tumor lymphangiogenesis via integrinα9β1/FAK/Erk pathway independent VEGF-C/VEGFR3 signaling. Our study for the first time revealed the novel molecular mechanism of NRP2-mediated-lymphangiogenesis in CRCs, suggesting NRP2 as a potential therapeutic target in preventing lymphatic metastasis of CRCs.
Collapse
Affiliation(s)
- Juan-Juan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xing Wei
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yuan Peng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rong-Bin Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Qi Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of oncology, FuLing Central Hospital, Chongqing 408000, China.
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
177
|
Liu X, Pasula S, Song H, Tessneer KL, Dong Y, Hahn S, Yago T, Brophy ML, Chang B, Cai X, Wu H, McManus J, Ichise H, Georgescu C, Wren JD, Griffin C, Xia L, Srinivasan RS, Chen H. Temporal and spatial regulation of epsin abundance and VEGFR3 signaling are required for lymphatic valve formation and function. Sci Signal 2014; 7:ra97. [PMID: 25314967 DOI: 10.1126/scisignal.2005413] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lymphatic valves prevent the backflow of the lymph fluid and ensure proper lymphatic drainage throughout the body. Local accumulation of lymphatic fluid in tissues, a condition called lymphedema, is common in individuals with malformed lymphatic valves. The vascular endothelial growth factor receptor 3 (VEGFR3) is required for the development of lymphatic vascular system. The abundance of VEGFR3 in collecting lymphatic trunks is high before valve formation and, except at valve regions, decreases after valve formation. We found that in mesenteric lymphatics, the abundance of epsin 1 and 2, which are ubiquitin-binding adaptor proteins involved in endocytosis, was low at early stages of development. After lymphatic valve formation, the initiation of steady shear flow was associated with an increase in the abundance of epsin 1 and 2 in collecting lymphatic trunks, but not in valve regions. Epsin 1 and 2 bound to VEGFR3 and mediated the internalization and degradation of VEGFR3, resulting in termination of VEGFR3 signaling. Mice with lymphatic endothelial cell-specific deficiency of epsin 1 and 2 had dilated lymphatic capillaries, abnormally high VEGFR3 abundance in collecting lymphatics, immature lymphatic valves, and defective lymph drainage. Deletion of a single Vegfr3 allele or pharmacological suppression of VEGFR3 signaling restored normal lymphatic valve development and lymph drainage in epsin-deficient mice. Our findings establish a critical role for epsins in the temporal and spatial regulation of VEGFR3 abundance and signaling in collecting lymphatic trunks during lymphatic valve formation.
Collapse
Affiliation(s)
- Xiaolei Liu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - Satish Pasula
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hoogeun Song
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Kandice L Tessneer
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Yunzhou Dong
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Scott Hahn
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Tadayuki Yago
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Megan L Brophy
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - Baojun Chang
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Xiaofeng Cai
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hao Wu
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - John McManus
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hirotake Ichise
- Laboratory of Developmental Genetics, Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Jonathan D Wren
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA. Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma, OK 73126, USA
| | - Lijun Xia
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA
| | - Hong Chen
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma, OK 73104, USA. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Science Center, Oklahoma, OK 73104, USA.
| |
Collapse
|
178
|
Zheng W, Nurmi H, Appak S, Sabine A, Bovay E, Korhonen EA, Orsenigo F, Lohela M, D'Amico G, Holopainen T, Leow CC, Dejana E, Petrova TV, Augustin HG, Alitalo K. Angiopoietin 2 regulates the transformation and integrity of lymphatic endothelial cell junctions. Genes Dev 2014; 28:1592-603. [PMID: 25030698 PMCID: PMC4102766 DOI: 10.1101/gad.237677.114] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lymphatic endothelial cell junctions in lymphatic capillaries transform from a zipper-like to a button-like pattern during development. Here, Zheng et al. found that an Angiopoietin 2 (ANG2)-blocking antibody inhibits embryonic lymphangiogenesis, whereas endothelium-specific ANG2 overexpression induced lymphatic hyperplasia. ANG2 inhibition blocked VE-cadherin phosphorylation and suppressed the onset of lymphatic valve formation and subsequent valve maturation. These data identify ANG2 as the first essential regulator of the functionally important interendothelial cell–cell junctions that form during lymphatic development. Primitive lymphatic vessels are remodeled into functionally specialized initial and collecting lymphatics during development. Lymphatic endothelial cell (LEC) junctions in initial lymphatics transform from a zipper-like to a button-like pattern during collecting vessel development, but what regulates this process is largely unknown. Angiopoietin 2 (Ang2) deficiency leads to abnormal lymphatic vessels. Here we found that an ANG2-blocking antibody inhibited embryonic lymphangiogenesis, whereas endothelium-specific ANG2 overexpression induced lymphatic hyperplasia. ANG2 inhibition blocked VE-cadherin phosphorylation at tyrosine residue 685 and the concomitant formation of button-like junctions in initial lymphatics. The defective junctions were associated with impaired lymph uptake. In collecting lymphatics, adherens junctions were disrupted, and the vessels leaked upon ANG2 blockade or gene deletion. ANG2 inhibition also suppressed the onset of lymphatic valve formation and subsequent valve maturation. These data identify ANG2 as the first essential regulator of the functionally important interendothelial cell–cell junctions that form during lymphatic development.
Collapse
Affiliation(s)
- Wei Zheng
- Wihuri Research Institute, Translational Cancer Biology Program, University of Helsinki, Helsinki 00014, Finland
| | - Harri Nurmi
- Wihuri Research Institute, Translational Cancer Biology Program, University of Helsinki, Helsinki 00014, Finland
| | - Sila Appak
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg, Heidelberg 69120, Germany; Department of Vascular Biology and Tumor Angiogenesis, Heidelberg University, Mannheim 68167, Germany
| | - Amélie Sabine
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Epalinges CH-1066, Switzerland
| | - Esther Bovay
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Epalinges CH-1066, Switzerland
| | - Emilia A Korhonen
- Translational Cancer Biology Program, University of Helsinki, Helsinki 00014, Finland
| | - Fabrizio Orsenigo
- FIRC Institute of Molecular Oncology, Milan 20139, Italy; Department of Biotechnological and Biomolecular Sciences, University of Milan, Milan 20129, Italy
| | - Marja Lohela
- Biomedicum Imaging Unit, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
| | - Gabriela D'Amico
- Translational Cancer Biology Program, University of Helsinki, Helsinki 00014, Finland
| | - Tanja Holopainen
- Translational Cancer Biology Program, University of Helsinki, Helsinki 00014, Finland
| | | | - Elisabetta Dejana
- FIRC Institute of Molecular Oncology, Milan 20139, Italy; Department of Biotechnological and Biomolecular Sciences, University of Milan, Milan 20129, Italy
| | - Tatiana V Petrova
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Epalinges CH-1066, Switzerland; Swiss Institute for Cancer Research, École Polytechnique Fédérale de Lausanne, Lausanne CH-1066, Switzerland
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg, Heidelberg 69120, Germany; Department of Vascular Biology and Tumor Angiogenesis, Heidelberg University, Mannheim 68167, Germany
| | - Kari Alitalo
- Wihuri Research Institute, Translational Cancer Biology Program, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
179
|
Bazigou E, Wilson JT, Moore JE. Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc Res 2014; 96:38-45. [PMID: 25086182 DOI: 10.1016/j.mvr.2014.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023]
Abstract
Fluid homeostasis in vertebrates critically relies on the lymphatic system forming a hierarchical network of lymphatic capillaries and collecting lymphatics, for the efficient drainage and transport of extravasated fluid back to the cardiovascular system. Blind-ended lymphatic capillaries employ specialized junctions and anchoring filaments to encourage a unidirectional flow of the interstitial fluid into the initial lymphatic vessels, whereas collecting lymphatics are responsible for the active propulsion of the lymph to the venous circulation via the combined action of lymphatic muscle cells and intraluminal valves. Here we describe recent findings on molecular and physical factors regulating the development and maturation of these two types of valves and examine their role in tissue-fluid homeostasis.
Collapse
Affiliation(s)
- Eleni Bazigou
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - John T Wilson
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James E Moore
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
180
|
Tissue-engineered lymphatic graft for the treatment of lymphedema. J Surg Res 2014; 192:544-54. [PMID: 25248852 DOI: 10.1016/j.jss.2014.07.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/11/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lymphedema is a chronic debilitating condition and curative treatment is yet to be found. Tissue engineering approach, which combines cellular components, scaffold, and molecular signals hold great potential in the treatment of secondary lymphedema with the advent of lymphatic graft to reconstruct damaged collecting lymphatic vessel. This review highlights the ideal characteristics of lymphatic graft, the limitation and challenges faced, and the approaches in developing tissue-engineered lymphatic graft. METHODS Literature on tissue engineering of lymphatic system and lymphatic tissue biology was reviewed. RESULTS The prime challenge in the design and manufacturing of this graft is producing endothelialized conduit with intraluminal valves. Suitable scaffold material is needed to ensure stability and functionality of the construct. Endothelialization of the construct can be enhanced via biofunctionalization and nanotopography, which mimics extracellular matrix. Nanocomposite polymers with improved performance over existing biomaterials are likely to benefit the development of lymphatic graft. CONCLUSIONS With the in-depth understanding of tissue engineering, nanotechnology, and improved knowledge on the biology of lymphatic regeneration, the aspiration to develop successful lymphatic graft is well achievable.
Collapse
|
181
|
Park DY, Lee J, Park I, Choi D, Lee S, Song S, Hwang Y, Hong KY, Nakaoka Y, Makinen T, Kim P, Alitalo K, Hong YK, Koh GY. Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity. J Clin Invest 2014; 124:3960-74. [PMID: 25061877 DOI: 10.1172/jci75392] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/30/2014] [Indexed: 12/30/2022] Open
Abstract
Schlemm's canal (SC) is a specialized vascular structure in the eye that functions to drain aqueous humor from the intraocular chamber into systemic circulation. Dysfunction of SC has been proposed to underlie increased aqueous humor outflow (AHO) resistance, which leads to elevated ocular pressure, a factor for glaucoma development in humans. Here, using lymphatic and blood vasculature reporter mice, we determined that SC, which originates from blood vessels during the postnatal period, acquires lymphatic identity through upregulation of prospero homeobox protein 1 (PROX1), the master regulator of lymphatic development. SC expressed lymphatic valve markers FOXC2 and integrin α9 and exhibited continuous vascular endothelial-cadherin (VE-cadherin) junctions and basement membrane, similar to collecting lymphatics. SC notably lacked luminal valves and expression of the lymphatic endothelial cell markers podoplanin and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Using an ocular puncture model, we determined that reduced AHO altered the fate of SC both during development and under pathologic conditions; however, alteration of VEGF-C/VEGFR3 signaling did not modulate SC integrity and identity. Intriguingly, PROX1 expression levels linearly correlated with SC functionality. For example, PROX1 expression was reduced or undetectable under pathogenic conditions and in deteriorated SCs. Collectively, our data indicate that PROX1 is an accurate and reliable biosensor of SC integrity and identity.
Collapse
|
182
|
Vittet D. Lymphatic collecting vessel maturation and valve morphogenesis. Microvasc Res 2014; 96:31-7. [PMID: 25020266 DOI: 10.1016/j.mvr.2014.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 12/12/2022]
Abstract
The lymphatic vasculature plays an essential role in the maintenance of tissue interstitial fluid balance and in the immune response. After capture of fluids, proteins and antigens by lymphatic capillaries, lymphatic collecting vessels ensure lymph transport. An important component to avoid lymph backflow and to allow a unidirectional flow is the presence of intraluminal valves. Defects in the function of collecting vessels lead to lymphedema. Several important factors and signaling pathways involved in lymphatic collecting vessel maturation and valve morphogenesis have now been discovered. The present review summarizes the current knowledge about the key steps of lymphatic collecting vessel development and maturation and focuses on the regulatory mechanisms involved in lymphatic valve formation.
Collapse
Affiliation(s)
- Daniel Vittet
- Inserm, U1036, Grenoble, F-38000 France, CEA, DSV, iRTSV, Laboratoire Biologie du Cancer et de l'Infection, Grenoble, F-38000 France, Univ Grenoble Alpes, Grenoble, F-38000 France.
| |
Collapse
|
183
|
Wang Y, Simons M. Flow-regulated lymphatic vasculature development and signaling. Vasc Cell 2014; 6:14. [PMID: 25053993 PMCID: PMC4105398 DOI: 10.1186/2045-824x-6-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/29/2014] [Indexed: 12/29/2022] Open
Abstract
The role of blood flow in regulating signaling pathways and gene expression in the blood vasculature is well known. Recent studies have identified equally important roles of flow-mediated signaling in the lymphatic circulation including control of lymphatic vascular growth, remodeling, regeneration and maintenance of the lymphatic fate. In this review, we summarize these advances focusing on the role of fluid dynamics in control of lymphatic vasculature formation.
Collapse
Affiliation(s)
- Yingdi Wang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA
| | - Michael Simons
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, 300 George St, New Haven, CT 06520, USA ; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
184
|
Kim JD, Jin SW. A tale of two models: mouse and zebrafish as complementary models for lymphatic studies. Mol Cells 2014; 37:503-10. [PMID: 24854860 PMCID: PMC4132301 DOI: 10.14348/molcells.2014.0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022] Open
Abstract
Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
185
|
Chen H, Griffin C, Xia L, Srinivasan RS. Molecular and cellular mechanisms of lymphatic vascular maturation. Microvasc Res 2014; 96:16-22. [PMID: 24928499 DOI: 10.1016/j.mvr.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023]
Abstract
Lymphatic vasculature is necessary for maintaining fluid homeostasis in vertebrates. During embryogenesis lymphatic endothelial cells originate from the veins as a homogeneous population. These cells undergo a series of changes at the morphological and molecular levels to become mature lymphatic vasculature that consists of lymphatic capillaries, collecting lymphatic vessels and valves. In this article we summarize our current knowledge about these steps and highlight some black boxes that require further clarification.
Collapse
Affiliation(s)
- Hong Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
186
|
Murtomaki A, Uh MK, Kitajewski C, Zhao J, Nagasaki T, Shawber CJ, Kitajewski J. Notch signaling functions in lymphatic valve formation. Development 2014; 141:2446-51. [PMID: 24917500 PMCID: PMC4050693 DOI: 10.1242/dev.101188] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 04/24/2014] [Indexed: 01/08/2023]
Abstract
Collecting lymphatic ducts contain intraluminal valves that prevent backflow. In mice, lymphatic valve morphogenesis begins at embryonic day 15.5 (E15.5). In the mesentery, Prox1 expression is high in valve-forming lymphatic endothelial cells, whereas cells of the lymphatic ducts express lower levels of Prox1. Integrin α9, fibronectin EIIIA, Foxc2, calcineurin and the gap junction protein Cx37 are required for lymphatic valve formation. We show that Notch1 is expressed throughout the developing mesenteric lymphatic vessels at E16.5, and that, by E18.5, Notch1 expression becomes highly enriched in the lymphatic valve endothelial cells. Using a Notch reporter mouse, Notch activity was detected in lymphatic valves at E17.5 and E18.5. The role of Notch in lymphatic valve morphogenesis was studied using a conditional lymphatic endothelial cell driver either to delete Notch1 or to express a dominant-negative Mastermind-like (DNMAML) transgene. Deletion of Notch1 led to an expansion of Prox1(high) cells, a defect in Prox1(high) cell reorientation and a decrease in integrin α9 expression at sites of valve formation. Expression of DNMAML, which blocks all Notch signaling, resulted in a more severe phenotype characterized by a decrease in valves, failure of Prox1(high) cells to cluster, and rounding of the nuclei and decreased fibronectin-EIIIA expression in the Prox1(high) cells found at valve sites. In human dermal lymphatic endothelial cells, activation of Notch1 or Notch4 induced integrin α9, fibronectin EIIIA and Cx37 expression. We conclude that Notch signaling is required for proper lymphatic valve formation and regulates integrin α9 and fibronectin EIIIA expression during valve morphogenesis.
Collapse
Affiliation(s)
- Aino Murtomaki
- Department of OB/GYN, Columbia University Medical Center, New York, NY 10032, USA Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, POB 56, Helsinki FIN-00014, Finland
| | - Minji K Uh
- Department of OB/GYN, Columbia University Medical Center, New York, NY 10032, USA Department of Pharmacology, Columbia University Medical Center, New York, NY 10032, USA
| | - Chris Kitajewski
- Department of OB/GYN, Columbia University Medical Center, New York, NY 10032, USA
| | - Jin Zhao
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA
| | - Takayuki Nagasaki
- Department of Ophthalmology, Columbia University Medical Center, New York, NY 10032, USA
| | - Carrie J Shawber
- Department of OB/GYN, Columbia University Medical Center, New York, NY 10032, USA
| | - Jan Kitajewski
- Department of OB/GYN, Columbia University Medical Center, New York, NY 10032, USA Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
187
|
Shen B, Shang Z, Wang B, Zhang L, Zhou F, Li T, Chu M, Jiang H, Wang Y, Qiao T, Zhang J, Sun W, Kong X, He Y. Genetic Dissection of Tie Pathway in Mouse Lymphatic Maturation and Valve Development. Arterioscler Thromb Vasc Biol 2014; 34:1221-30. [DOI: 10.1161/atvbaha.113.302923] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective—
The genetic program underlying lymphatic development is still incompletely understood. This study aims to dissect the role of receptor tyrosine kinase with immunoglobulin-like and EGF (epidermal growth factor)-like domains 1 (Tie1) and Tie2 in lymphatic formation using genetically modified mouse models.
Approach and Results—
We generated conditional knockout mouse models targeting Tie1, Tie2, and angiopoietin-2 in this study.
Tie1
Δ
ICD
/Δ
ICD
mice, with its intracellular domain targeted, appeared normal at E10.5 but displayed subcutaneous edema by E13.5. Lymph sac formation occurred in
Tie1
Δ
ICD
/Δ
ICD
mice, but they had defects with the remodeling of primary lymphatic network to form collecting vessels and valvulogenesis. Consistently, induced deletion of Tie1-ICD postnatally using a ubiquitous Cre deleter led to abnormal lymphangiogenesis and valve formation in
Tie1-ICD
iUCKO/
−
mice. In comparison with the lymphatic phenotype of Tie1 mutants, we found that the diameter of lymphatic capillaries was significantly less in mice deficient of angiopoietin-2, besides the disruption of collecting lymphatic vessel formation as previously reported. There was also no lymphedema observed in
Ang2
−/−
mice during embryonic development, which differs from that of
Tie1
Δ
ICD
/Δ
ICD
mice. We further investigated whether Tie1 exerted its function via Tie2 during lymphatic development. To our surprise, genetic deletion of Tie2 (
Tie2
iUCKO/
−
) in neonate mice did not affect lymphatic vessel growth and maturation.
Conclusions—
In contrast to the important role of Tie2 in the regulation of blood vascular development, Tie1 is crucial in the process of lymphatic remodeling and maturation, which is independent of Tie2.
Collapse
Affiliation(s)
- Bin Shen
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Zhi Shang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Bo Wang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Luqing Zhang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Fei Zhou
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Taotao Li
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Man Chu
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Haijuan Jiang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Ying Wang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Tong Qiao
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Jun Zhang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Wei Sun
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Xiangqing Kong
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Yulong He
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| |
Collapse
|
188
|
Turner CJ, Badu-Nkansah K, Crowley D, van der Flier A, Hynes RO. Integrin-α5β1 is not required for mural cell functions during development of blood vessels but is required for lymphatic-blood vessel separation and lymphovenous valve formation. Dev Biol 2014; 392:381-92. [PMID: 24858485 DOI: 10.1016/j.ydbio.2014.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/22/2014] [Accepted: 05/08/2014] [Indexed: 11/25/2022]
Abstract
Integrin α5β1 is essential for vascular development but it remains unclear precisely where and how it functions. Here, we report that deletion of the gene encoding the integrin-α5 subunit (Itga5) using the Pdgfrb-Cre transgenic mouse line, leads to oedema, haemorrhage and increased levels of embryonic lethality. Unexpectedly, these defects were not caused by loss of α5 from Pdgfrb-Cre expressing mural cells (pericytes and vascular smooth muscle cells), which wrap around the endothelium and stabilise blood vessels, nor by defects in the heart or great vessels, but were due to abnormal development of the lymphatic vasculature. Reminiscent of the pathologies seen in the human lymphatic malformation, fetal cystic hygroma, α5 mutants display defects both in the separation of their blood and lymphatic vasculature and in the formation of the lymphovenous valves. As a consequence, α5-deficient mice develop dilated, blood-filled lymphatic vessels and lymphatic capillaries that are ectopically covered with smooth muscle cells. Analysis of the expression of Pdgfrb during lymphatic development suggests that these defects probably arise from loss of α5β1 integrin in subsets of specialised Prox1(+)Pdgfrb(+) venous endothelial cells that are essential for the separation of the jugular lymph sac from the cardinal vein and formation of the lymphovenous valve leaflets.
Collapse
Affiliation(s)
- Christopher J Turner
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kwabena Badu-Nkansah
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Denise Crowley
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard O Hynes
- Howard Hughes Medical Institute, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
189
|
Boulaftali Y, Hess PR, Kahn ML, Bergmeier W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ Res 2014; 114:1174-84. [PMID: 24677237 PMCID: PMC4000726 DOI: 10.1161/circresaha.114.301611] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/18/2014] [Indexed: 01/27/2023]
Abstract
Platelets are well-known for their critical role in hemostasis, that is, the prevention of blood loss at sites of mechanical vessel injury. Inappropriate platelet activation and adhesion, however, can lead to thrombotic complications, such as myocardial infarction and stroke. To fulfill its role in hemostasis, the platelet is equipped with various G protein-coupled receptors that mediate the response to soluble agonists such as thrombin, ADP, and thromboxane A2. In addition to G protein-coupled receptors, platelets express 3 glycoproteins that belong to the family of immunoreceptor tyrosine-based activation motif receptors: Fc receptor γ chain, which is noncovalently associated with the glycoprotein VI collagen receptor, C-type lectin 2, the receptor for podoplanin, and Fc receptor γII A, a low-affinity receptor for immune complexes. Although both genetic and chemical approaches have documented a critical role for platelet G protein-coupled receptors in hemostasis, the contribution of immunoreceptor tyrosine-based activation motif receptors to this process is less defined. Studies performed during the past decade, however, have identified new roles for platelet immunoreceptor tyrosine-based activation motif signaling in vascular integrity in utero and at sites of inflammation. The purpose of this review is to summarize recent findings on how platelet immunoreceptor tyrosine-based activation motif signaling controls vascular integrity, both in the presence and absence of mechanical injury.
Collapse
Affiliation(s)
- Yacine Boulaftali
- From the McAllister Heart Institute (Y.B., W.B.) and Department of Biochemistry and Biophysics (W.B.), University of North Carolina, Chapel Hill; and Department of Medicine and Division of Cardiology, University of Pennsylvania, Philadelphia (P.R.H., M.L.K.)
| | | | | | | |
Collapse
|
190
|
Truong T, Huang E, Yuen D, Chen L. Corneal lymphatic valve formation in relation to lymphangiogenesis. Invest Ophthalmol Vis Sci 2014; 55:1876-83. [PMID: 24595382 DOI: 10.1167/iovs.13-12251] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE We have recently provided evidence showing that luminal lymphatic valves are formed right after the onset of corneal inflammatory lymphangiogenesis (LG). The purpose of this study was to further characterize the long-term time course, spatial distribution, directional orientation, and functional implications of the valve formation in relation to corneal LG. METHODS Corneal LG was induced in normal adult BALB/c mice by a modified suture placement model with equal distribution in the nasal and temporal side. Whole-mount corneas were harvested every 2 weeks for up to 8 weeks post suturing for immunofluorescent microscopic assays. Quantitative analysis on both lymphatic vessels and valves was performed by using National Institutes of Health ImageJ software. Corneal lymphatic live imaging was performed to show functional drainage of the valves. RESULTS Lymphatic vessel invasion areas at 4, 6, and 8 weeks were significantly less than the peak at 2 weeks post corneal suturing. In contrast, the ratio of lymphatic valves to vessel invasion area was at its lowest at 2 weeks with a peak approximately at 6 weeks post suturing. Lymphatic valves were more localized in the nasal quadrant at all time points studied, and most of the well-formed valves were directionally oriented toward the limbus. The lymphatic valves function to guide lymphatic drainage outside the cornea. CONCLUSIONS This study presents new insights into corneal lymphatic valve formation and function in inflammatory LG. Further investigation on lymphatic valves may provide novel strategies to interfere with lymphatic maturation and function and to treat lymphatic-related disorders.
Collapse
Affiliation(s)
- Tan Truong
- Graduate Group in Vision Science, University of California, Berkeley, California
| | | | | | | |
Collapse
|
191
|
Abstract
Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors.
Collapse
|
192
|
Abstract
The two vascular systems of our body are the blood and lymphatic vasculature. Our understanding of the cellular and molecular processes controlling the development of the lymphatic vasculature has progressed significantly in the last decade. In mammals, this is a stepwise process that starts in the embryonic veins, where lymphatic EC (LEC) progenitors are initially specified. The differentiation and maturation of these progenitors continues as they bud from the veins to produce scattered primitive lymph sacs, from which most of the lymphatic vasculature is derived. Here, we summarize our current understanding of the key steps leading to the formation of a functional lymphatic vasculature.
Collapse
|
193
|
Hess PR, Rawnsley DR, Jakus Z, Yang Y, Sweet DT, Fu J, Herzog B, Lu M, Nieswandt B, Oliver G, Makinen T, Xia L, Kahn ML. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J Clin Invest 2014; 124:273-84. [PMID: 24292710 DOI: 10.1172/jci70422] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Mammals transport blood through a high-pressure, closed vascular network and lymph through a low-pressure, open vascular network. These vascular networks connect at the lymphovenous (LV) junction, where lymph drains into blood and an LV valve (LVV) prevents backflow of blood into lymphatic vessels. Here we describe an essential role for platelets in preventing blood from entering the lymphatic system at the LV junction. Loss of CLEC2, a receptor that activates platelets in response to lymphatic endothelial cells, resulted in backfilling of the lymphatic network with blood from the thoracic duct (TD) in both neonatal and mature mice. Fibrin-containing platelet thrombi were observed at the LVV and in the terminal TD in wild-type mice, but not Clec2-deficient mice. Analysis of mice lacking LVVs or lymphatic valves revealed that platelet-mediated thrombus formation limits LV backflow under conditions of impaired valve function. Examination of mice lacking integrin-mediated platelet aggregation indicated that platelet aggregation stabilizes thrombi that form in the lymphatic vascular environment to prevent retrograde blood flow. Collectively, these studies unveil a newly recognized form of hemostasis that functions with the LVV to safeguard the lymphatic vascular network throughout life.
Collapse
|
194
|
Kostourou V, Papalazarou V. Non-collagenous ECM proteins in blood vessel morphogenesis and cancer. Biochim Biophys Acta Gen Subj 2014; 1840:2403-13. [PMID: 24576673 DOI: 10.1016/j.bbagen.2014.02.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND The extracellular matrix (ECM) is constituted by diverse composite structures, which determine the specific to each organ, histological architecture and provides cells with biological information, mechanical support and a scaffold for adhesion and migration. The pleiotropic effects of the ECM stem from the dynamic changes in its molecular composition and the ability to remodel in order to effectively regulate biological outcomes. Besides collagens, fibronectin and laminin are two major fiber-forming constituents of various ECM structures. SCOPE OF REVIEW This review will focus on the properties and the biological functions of non-collagenous extracellular matrix especially on laminin and fibronectin that are currently emerging as important regulators of blood vessel formation and function in health and disease. MAJOR CONCLUSIONS The ECM is a fundamental component of the microenvironment of blood vessels, with activities extending beyond providing a vascular scaffold; extremely versatile it directly or indirectly modulates all essential cellular functions crucial for angiogenesis, including cell adhesion, migration, proliferation, differentiation and lumen formation. Specifically, fibronectin and laminins play decisive roles in blood vessel morphogenesis both during embryonic development and in pathological conditions, such as cancer. GENERAL SIGNIFICANCE Emerging evidence demonstrates the importance of ECM function during embryonic development, organ formation and tissue homeostasis. A wealth of data also illustrates the crucial role of the ECM in several human pathophysiological processes, including fibrosis, skeletal diseases, vascular pathologies and cancer. Notably, several ECM components have been identified as potential therapeutic targets for various diseases, including cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Vassiliki Kostourou
- Vascular Adhesion Lab, BSRC Alexander Fleming, 34 Fleming Str., Vari, 166 72 Athens, Greece
| | - Vassilis Papalazarou
- Vascular Adhesion Lab, BSRC Alexander Fleming, 34 Fleming Str., Vari, 166 72 Athens, Greece
| |
Collapse
|
195
|
Abstract
Sphingosine 1-phosphate (S1P) plays a role in lymphocyte egress from lymphoid organs. However, it remains unclear how S1P production and secretion are regulated. We show that under inflammatory conditions, α9 integrin, which is closely associated with activated β1 integrin, and its ligand, tenascin-C, colocalize on medullary and cortical sinuses of draining lymph nodes (dLNs), which is a gate for lymphocyte exit, and that inhibition of lymphocyte egress is evident by blockade of α9 integrin-mediated signaling at dLNs. Based on in vitro analysis using lymphatic endothelial cells obtained from mice embryos, we suggested the possibility that stimulation of lymphatic endothelial cells by tenascin-C enhances S1P secretion in an α9 integrin-dependent manner without affecting S1P synthesis and/or degradation. Blockade of α9 integrin-mediated signaling reduced lymphocyte egress from dLNs in several models, including experimental autoimmune encephalomyelitis, where it improved clinical scores and pathology. Therefore, manipulating α9 integrin function may offer a therapeutic strategy for treating various inflammatory disorders.
Collapse
|
196
|
Meens MJ, Sabine A, Petrova TV, Kwak BR. Connexins in lymphatic vessel physiology and disease. FEBS Lett 2014; 588:1271-7. [PMID: 24457200 DOI: 10.1016/j.febslet.2014.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Connexins are transmembrane proteins that form gap junction- and hemi-channels. Once inserted into the membrane, hemi-channels (connexons) allow for diffusion of ions and small molecules (<1 kDa) between the extracellular space and the cytosol. Gap junction channels allow diffusion of similar molecules between the cytoplasms of adjacent cells. The expression and function of connexins in blood vessels has been intensely studied in the last few decades. In contrast, only a few studies paid attention to lymphatic vessels; convincing in vivo data with respect to expression patterns of lymphatic connexins and their functional roles have only recently begun to emerge. Interestingly, mutations in connexin genes have been linked to diseases of lymphatic vasculature, most notably primary and secondary lymphedema. This review summarizes the available data regarding lymphatic connexins. More specifically it addresses (i) early studies aimed at presence of gap junction-like structures in lymphatic vessels, (ii) more recent studies focusing on lymphatic connexins using genetically engineered mice, and (iii) results of clinical studies that have reported lymphedema-linked mutations in connexin genes.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; Department of Internal Medicine - Cardiology, University of Geneva, CH-1211 Geneva, Switzerland
| | - Amélie Sabine
- Department of Oncology, University Hospital of Lausanne, 1066 Epalinges, Switzerland; Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University Hospital of Lausanne, 1066 Epalinges, Switzerland; Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland; École Polytechnique Fédérale de Lausanne (EPFL), Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; Department of Internal Medicine - Cardiology, University of Geneva, CH-1211 Geneva, Switzerland.
| |
Collapse
|
197
|
Sabine A, Petrova TV. Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:67-80. [PMID: 24276887 DOI: 10.1007/978-3-7091-1646-3_6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The directional flow of lymph is maintained by hundreds of intraluminal lymphatic valves. Lymphatic valves are crucial to prevent lymphedema, accumulation of fluid in the tissues, and to ensure immune surveillance; yet, the mechanisms of valve formation are only beginning to be elucidated. In this chapter, we will discuss the main steps of lymphatic valve morphogenesis, the important role of mechanotransduction in this process, and the genetic program regulated by the transcription factor Foxc2, which is indispensable for all steps of valve development. Failure to form mature collecting lymphatic vessels and valves causes the majority of postsurgical lymphedema, e.g., in breast cancer patients. Therefore, this knowledge will be useful for diagnostics and development of better treatments of secondary lymphedema.
Collapse
Affiliation(s)
- Amélie Sabine
- Department of Oncology, CHUV-UNIL, Ch. des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | |
Collapse
|
198
|
Lutter S, Makinen T. Regulation of Lymphatic Vasculature by Extracellular Matrix. DEVELOPMENTAL ASPECTS OF THE LYMPHATIC VASCULAR SYSTEM 2014; 214:55-65. [DOI: 10.1007/978-3-7091-1646-3_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
199
|
Tatin F. [Lymphatic valve morphogenesis]. Med Sci (Paris) 2013; 29:1074-6. [PMID: 24356131 DOI: 10.1051/medsci/20132912004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Florence Tatin
- Lymphatic development, Cancer Research-London Research Institute, 44 Lincoln Inn's Fields, WC2A 3LY London, Royaume-Uni
| |
Collapse
|
200
|
Zeltz C, Orgel J, Gullberg D. Molecular composition and function of integrin-based collagen glues-introducing COLINBRIs. Biochim Biophys Acta Gen Subj 2013; 1840:2533-48. [PMID: 24361615 DOI: 10.1016/j.bbagen.2013.12.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/13/2013] [Accepted: 12/14/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Despite detailed knowledge about the structure and signaling properties of individual collagen receptors, much remains to be learned about how these receptors participate in linking cells to fibrillar collagen matrices in tissues. In addition to collagen-binding integrins, a group of proteins with affinity both for fibrillar collagens and integrins link these two protein families together. We have introduced the name COLINBRI (COLlagen INtegrin BRIdging) for this set of molecules. Whereas collagens are the major building blocks in tissues and defects in these structural proteins have severe consequences for tissue integrity, the mild phenotypes of the integrin type of collagen receptors have raised questions about their importance in tissue biology and pathology. SCOPE OF REVIEW We will discuss the two types of cell linkages to fibrillar collagen (direct- versus indirect COLINBRI-mediated) and discuss how the parallel existence of direct and indirect linkages to collagens may ensure tissue integrity. MAJOR CONCLUSIONS The observed mild phenotypes of mice deficient in collagen-binding integrins and the relatively restricted availability of integrin-binding sequences in mature fibrillar collagen matrices support the existence of indirect collagen-binding mechanisms in parallel with direct collagen binding in vivo. GENERAL SIGNIFICANCE A continued focus on understanding the molecular details of cell adhesion mechanisms to collagens will be important and will benefit our understanding of diseases like tissue- and tumor fibrosis where collagen dynamics are disturbed. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Joseph Orgel
- Departments of Biology, Physics and Biomedical Engineering, Pritzker Institute of Biomedical Science and Engineering, Illinois Institute of Technology, 3440 S. Dearborn Ave, Chicago, IL 60616, USA
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|