151
|
Cantú AV, Altshuler-Keylin S, Laird DJ. Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling. J Cell Biol 2016; 214:215-29. [PMID: 27402951 PMCID: PMC4949447 DOI: 10.1083/jcb.201511061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/15/2016] [Indexed: 01/02/2023] Open
Abstract
Inheritance depends on the expansion of a small number of primordial germ cells (PGCs) in the early embryo. Proliferation of mammalian PGCs is concurrent with their movement through changing microenvironments; however, mechanisms coordinating these conflicting processes remain unclear. Here, we find that PGC proliferation varies by location rather than embryonic age. Ror2 and Wnt5a mutants with mislocalized PGCs corroborate the microenvironmental regulation of the cell cycle, except in the hindgut, where Wnt5a is highly expressed. Molecular and genetic evidence suggests that Wnt5a acts via Ror2 to suppress β-catenin-dependent Wnt signaling in PGCs and limit their proliferation in specific locations, which we validate by overactivating β-catenin in PGCs. Our results suggest that the balance between expansion and movement of migratory PGCs is fine-tuned in different niches by the opposing β-catenin-dependent and Ror2-mediated pathways through Wnt5a This could serve as a selective mechanism to favor early and efficient migrators with clonal dominance in the ensuing germ cell pool while penalizing stragglers.
Collapse
Affiliation(s)
- Andrea V Cantú
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94043
| | - Svetlana Altshuler-Keylin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94043
| | - Diana J Laird
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94043
| |
Collapse
|
152
|
Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models. Cell Death Dis 2016; 7:e2281. [PMID: 27362799 PMCID: PMC5108341 DOI: 10.1038/cddis.2016.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Wingless-related MMTV integration site (WNT) proteins and several other components of the WNT signalling pathway are expressed in the murine testes. However, mice mutant for WNT signalling effector β-catenin using different Cre drivers have phenotypes that are inconsistent with each other. The complexity and overlapping expression of WNT signalling cascades have prevented researchers from dissecting their function in spermatogenesis. Depletion of the Gpr177 gene (the mouse orthologue of Drosophila Wntless), which is required for the secretion of various WNTs, makes it possible to genetically dissect the overall effect of WNTs in testis development. In this study, the Gpr177 gene was conditionally depleted in germ cells (Gpr177flox/flox, Mvh-Cre; Gpr177flox/flox, Stra8-Cre) and Sertoli cells (Gpr177flox/flox, Amh-Cre). No obvious defects in fertility and spermatogenesis were observed in these three Gpr177 conditional knockout (cKO) mice at 8 weeks. However, late-onset testicular atrophy and fertility decline in two germ cell-specific Gpr177 deletion mice were noted at 8 months. In contrast, we did not observe any abnormalities of spermatogenesis and fertility, even in 8-month-old Gpr177flox/flox, Amh-Cre mice. Elevation of reactive oxygen species (ROS) was detected in Gpr177 cKO germ cells and Sertoli cells and exhibited an age-dependent manner. However, significant increase in the activity of Caspase 3 was only observed in germ cells from 8-month-old germ cell-specific Gpr177 knockout mice. In conclusion, GPR177 in Sertoli cells had no apparent influence on spermatogenesis, whereas loss of GPR177 in germ cells disrupted spermatogenesis in an age-dependent manner via elevating ROS levels and triggering germ cell apoptosis.
Collapse
|
153
|
Wear HM, McPike MJ, Watanabe KH. From primordial germ cells to primordial follicles: a review and visual representation of early ovarian development in mice. J Ovarian Res 2016; 9:36. [PMID: 27329176 PMCID: PMC4915180 DOI: 10.1186/s13048-016-0246-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/13/2016] [Indexed: 01/08/2023] Open
Abstract
Background Normal development of reproductive organs is crucial for successful reproduction. In mice the early ovarian developmental process occurs during the embryonic and postnatal period and is regulated through a series of molecular signaling events. Early ovarian development in mice is a seventeen-day process that begins with the rise of six primordial germ cells on embryonic day five (E5) and ends with the formation of primordial follicles on postnatal day two (P2). Results We reviewed the current literature and created a visual representation of early ovarian development that depicts the important molecular events and associated phenotypic outcomes based on primary data. The visual representation shows the timeline of key signaling interactions and regulation of protein expression in different cells involved in ovarian development. The major developmental events were divided into five phases: 1) origin of germ cells and maintenance of pluripotency; 2) primordial germ cell migration; 3) sex differentiation; 4) formation of germ cell nests; and 5) germ cell nest breakdown and primordial follicle formation. Conclusions This review and visual representation provide a summary of the current scientific understanding of the key regulation and signaling during ovarian development and highlights areas needing further study. The visual representation can be used as an educational resource to link molecular events with phenotypic outcomes; serves as a tool to generate new hypotheses and predictions of adverse reproductive outcomes due to perturbations at the molecular and cellular levels; and provides a comprehendible foundation for computational model development and hypothesis testing.
Collapse
Affiliation(s)
- Hannah M Wear
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code HRC3, Portland, OR, 97239, USA
| | - Matthew J McPike
- Institute of Environmental Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code HRC3, Portland, OR, 97239, USA
| | - Karen H Watanabe
- School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd. Mail code GH230, Portland, OR, 97239, USA.
| |
Collapse
|
154
|
Zhao ZA, Yu Y, Ma HX, Wang XX, Lu X, Zhai Y, Zhang X, Wang H, Li L. The roles of ERAS during cell lineage specification of mouse early embryonic development. Open Biol 2016; 5:rsob.150092. [PMID: 26269429 PMCID: PMC4554925 DOI: 10.1098/rsob.150092] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Eras encodes a Ras-like GTPase protein that was originally identified as an embryonic stem cell-specific Ras. ERAS has been known to be required for the growth of embryonic stem cells and stimulates somatic cell reprogramming, suggesting its roles on mouse early embryonic development. We now report a dynamic expression pattern of Eras during mouse peri-implantation development: its expression increases at the blastocyst stage, and specifically decreases in E7.5 mesoderm. In accordance with its expression pattern, the increased expression of Eras promotes cell proliferation through controlling AKT activation and the commitment from ground to primed state through ERK activation in mouse embryonic stem cells; and the reduced expression of Eras facilitates primitive streak and mesoderm formation through AKT inhibition during gastrulation. The expression of Eras is finely regulated to match its roles in mouse early embryonic development during which Eras expression is negatively regulated by the β-catenin pathway. Thus, beyond its well-known role on cell proliferation, ERAS may also play important roles in cell lineage specification during mouse early embryonic development.
Collapse
Affiliation(s)
- Zhen-Ao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215000, People's Republic of China
| | - Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Huai-Xiao Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Xiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China Institute of Zoology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yanhua Zhai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
155
|
Abstract
During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
156
|
Hatakeyama H, Goto YI. Concise Review: Heteroplasmic Mitochondrial DNA Mutations and Mitochondrial Diseases: Toward iPSC-Based Disease Modeling, Drug Discovery, and Regenerative Therapeutics. Stem Cells 2016; 34:801-8. [DOI: 10.1002/stem.2292] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 01/19/2023]
Affiliation(s)
- Hideyuki Hatakeyama
- Department of Mental Retardation and Birth Defect Research; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Tokyo Japan
- AMED-CREST, Japan Agency for Medical Research and Development; Tokyo Japan
| | - Yu-ichi Goto
- Department of Mental Retardation and Birth Defect Research; National Institute of Neuroscience, National Center of Neurology and Psychiatry; Tokyo Japan
- Medical Genome Center, National Center of Neurology and Psychiatry; Tokyo Japan
- AMED-CREST, Japan Agency for Medical Research and Development; Tokyo Japan
| |
Collapse
|
157
|
Jung D, Kee K. Insights into female germ cell biology: from in vivo development to in vitro derivations. Asian J Androl 2016; 17:415-20. [PMID: 25652637 PMCID: PMC4430939 DOI: 10.4103/1008-682x.148077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.
Collapse
Affiliation(s)
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
158
|
Orlova VV, Chuva de Sousa Lopes S, Valdimarsdottir G. BMP-SMAD signaling: From pluripotent stem cells to cardiovascular commitment. Cytokine Growth Factor Rev 2016; 27:55-63. [DOI: 10.1016/j.cytogfr.2015.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/13/2015] [Indexed: 02/07/2023]
|
159
|
Nakamura T, Extavour CG. The transcriptional repressor Blimp-1 acts downstream of BMP signaling to generate primordial germ cells in the cricket Gryllus bimaculatus. Development 2016; 143:255-63. [DOI: 10.1242/dev.127563] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Segregation of the germ line from the soma is an essential event for transmission of genetic information across generations in all sexually reproducing animals. Although some well-studied systems such as Drosophila and Xenopus use maternally inherited germ determinants to specify germ cells, most animals, including mice, appear to utilize zygotic inductive cell signals to specify germ cells during later embryogenesis. Such inductive germ cell specification is thought to be an ancestral trait of Bilateria, but major questions remain as to the nature of an ancestral mechanism to induce germ cells, and how that mechanism evolved. We previously reported that BMP signaling-based germ cell induction is conserved in both the mouse Mus musculus and the cricket Gryllus bimaculatus, which is an emerging model organism for functional studies of induction-based germ cell formation. In order to gain further insight into the functional evolution of germ cell specification, here we examined the Gryllus ortholog of the transcription factor Blimp-1 (also known as Prdm1), which is a widely conserved bilaterian gene known to play a crucial role in the specification of germ cells in mice. Our functional analyses of the Gryllus Blimp-1 ortholog revealed that it is essential for Gryllus primordial germ cell development, and is regulated by upstream input from the BMP signaling pathway. This functional conservation of the epistatic relationship between BMP signaling and Blimp-1 in inductive germ cell specification between mouse and cricket supports the hypothesis that this molecular mechanism regulated primordial germ cell specification in a last common bilaterian ancestor.
Collapse
Affiliation(s)
- Taro Nakamura
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cassandra G. Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
160
|
Murakami K, Günesdogan U, Zylicz JJ, Tang WWC, Sengupta R, Kobayashi T, Kim S, Butler R, Dietmann S, Surani MA. NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers. Nature 2016; 529:403-407. [PMID: 26751055 DOI: 10.1038/nature16480] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Abstract
Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.
Collapse
Affiliation(s)
- Kazuhiro Murakami
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK.,Laboratory for Pluripotent Cell Studies, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Laboratory for Molecular and Cellular Biology, Faculty of Advanced Life Science, Hokkaido University, Kita21 Nishi11, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Jan J Zylicz
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Walfred W C Tang
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Roopsha Sengupta
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Toshihiro Kobayashi
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Shinseog Kim
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Sabine Dietmann
- Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.,Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
161
|
Abstract
The evolution of multicellular animals has been attributed to many kinds of selective advantage; here I suggest that the evolution of somatic cells to feed and protect the germline was central to the appearance of animals. This would have been driven by selection for extreme anisogamy--the evolution of sperm and egg. Evidence is adduced from the germline stem cells of simple animals (defining germline as any cell that normally produces the next generation via the sexual process) and from the control circuitry ubiquitous in animal germlines. With the soma and its elaboration came animal development, as we understand it.
Collapse
Affiliation(s)
- Hugh R Woodland
- School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
162
|
De Felici M. The Formation and Migration of Primordial Germ Cells in Mouse and Man. Results Probl Cell Differ 2016; 58:23-46. [DOI: 10.1007/978-3-319-31973-5_2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
163
|
Wang JQ, Cao WG. Key Signaling Events for Committing Mouse Pluripotent Stem Cells to the Germline Fate. Biol Reprod 2015; 94:24. [PMID: 26674564 DOI: 10.1095/biolreprod.115.135095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 01/01/2023] Open
Abstract
The process of germline development carries genetic information and preparatory totipotency across generations. The last decade has witnessed remarkable successes in the generation of germline cells from mouse pluripotent stem cells, especially induced germline cells with the capacity for producing viable offspring, suggesting clinical applications of induced germline cells in humans. However, to date, the culture systems for germline induction with accurate sex-specific meiosis and epigenetic reprogramming have not been well-established. In this study, we primarily focus on the mouse model to discuss key signaling events for germline induction. We review mechanisms of competent regulators on primordial germ cell induction and discuss current achievements and difficulties in inducing sex-specific germline development. Furthermore, we review the developmental identities of mouse embryonic stem cells and epiblast stem cells under certain defined culture conditions as it relates to the differentiation process of becoming germline cells.
Collapse
Affiliation(s)
- Jian-Qi Wang
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen-Guang Cao
- Transgenic and Stem Cell Core, Institute of Animal Sciences and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
164
|
Kurimoto K, Saitou M. Mechanism and Reconstitution In Vitro of Germ Cell Development in Mammals. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 80:147-154. [PMID: 26642855 DOI: 10.1101/sqb.2015.80.027425] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The germ cell lineage creates new individuals, perpetuating/diversifying the genetic and epigenetic information across generations. Based on the knowledge obtained through investigations into the mechanisms of germ cell specification and development in mice, we have succeeded in precisely reconstituting the specification and subsequent development of germ cells in culture in both males and females: Embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs), which robustly contribute to spermatogenesis and oogenesis and to fertile offspring. This in vitro mouse PGC specification/development system has led to the elucidation of signaling, transcriptional, and epigenetic regulation during germ cell development in a detailed fashion. More recently, based on this system, we and others have demonstrated the induction of human PGCLCs from human ESCs/iPSCs, creating an opportunity for understanding the mechanism of human germ cell development in vitro.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan Center for iPS Cell Research and Application, Kyoto University, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
165
|
Esfandiari F, Mashinchian O, Ashtiani MK, Ghanian MH, Hayashi K, Saei AA, Mahmoudi M, Baharvand H. Possibilities in Germ Cell Research: An Engineering Insight. Trends Biotechnol 2015; 33:735-746. [DOI: 10.1016/j.tibtech.2015.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023]
|
166
|
Yamashiro C, Hirota T, Kurimoto K, Nakamura T, Yabuta Y, Nagaoka SI, Ohta H, Yamamoto T, Saitou M. Persistent Requirement and Alteration of the Key Targets of PRDM1 During Primordial Germ Cell Development in Mice. Biol Reprod 2015; 94:7. [PMID: 26586842 DOI: 10.1095/biolreprod.115.133256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/10/2015] [Indexed: 12/24/2022] Open
Abstract
Primordial germ cells (PGCs) are the foundation of totipotency and vital for reproduction and heredity. PGCs in mice arise from the epiblast around Embryonic Day (E) 7.0, migrate through the hindgut endoderm, and colonize and proliferate in the embryonic gonads until around E13.5 prior to their differentiation either into prospermatogonia or oogonia. PRDM1, a transcriptional repressor, plays an essential role in PGC specification that includes robustly repressing a somatic mesodermal program. Using an inducible conditional knockout system, we show here that PRDM1 is critically required throughout PGC development. When Prdm1 was deleted in migrating PGCs at E9.5 or E10.5, or in male gonadal PGCs at E11.5, PGCs were eliminated by apoptosis from around E10.5, E11.5, or E13.5, respectively. When Prdm1 was deleted in female gonadal PGCs at E11.5, PGCs progressed into the first meiotic prophase in an apparently normal fashion, but the oogonia exhibited an aberrant pachytene phenotype, undergoing abrupt apoptosis from around E16.5. The escape of a fraction of PGCs (∼10%) from the Prdm1 deletion was sufficient to recover fairly normal germ cell pools, both in male and female adults. The key targets of PRDM1 in migrating and/or gonadal PGCs, including genes for development, apoptosis, and prospermatogonial differentiation, showed only a modest overlap with those upon PGC specification, and were enriched with histone H3 lysine 27 trimethylation (H3K27me3). Our findings provide critical insight into the mechanism for maintaining the transcriptional integrity of PGCs.
Collapse
Affiliation(s)
- Chika Yamashiro
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Takayuki Hirota
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - So I Nagaoka
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan JST, Agency for Medical Research and Development (AMED) - Core Research for Evolutional Science and Technology (CREST), Saitama, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan Japan Science and Technology Agency (JST), Exploratory Research for Advanced Technology (ERATO), Kyoto, Japan Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
167
|
Young JC, Wakitani S, Loveland KL. TGF-β superfamily signaling in testis formation and early male germline development. Semin Cell Dev Biol 2015; 45:94-103. [PMID: 26500180 DOI: 10.1016/j.semcdb.2015.10.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors. In the nascent foetal testis, several ligands including Nodal, TGF-βs, Activins and BMPs, serve as key masculinizing switches by regulating male germline pluripotency, somatic and germline proliferation, and testicular vascularization and architecture. In postnatal life, local production of these factors determine adult testis size by regulating Sertoli cell multiplication and differentiation, in addition to specifying germline differentiation and multiplication. Because TGF-β superfamily signaling is integral to testis formation, it affects processes that underlie testicular pathologies, including testicular cancer, and its potential to contribute to subfertility is beginning to be understood.
Collapse
Affiliation(s)
- Julia C Young
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Shoichi Wakitani
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Laboratory of Veterinary Biochemistry and Molecular Biology, University of Miyazaki, Japan
| | - Kate L Loveland
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
168
|
Ge W, Chen C, De Felici M, Shen W. In vitro differentiation of germ cells from stem cells: a comparison between primordial germ cells and in vitro derived primordial germ cell-like cells. Cell Death Dis 2015; 6:e1906. [PMID: 26469955 PMCID: PMC4632295 DOI: 10.1038/cddis.2015.265] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 01/15/2023]
Abstract
Stem cells are unique cell types capable to proliferate, some of them indefinitely, while maintaining the ability to differentiate into a few or any cell lineages. In 2003, a group headed by Hans R. Schöler reported that oocyte-like cells could be produced from mouse embryonic stem (ES) cells in vitro. After more than 10 years, where have these researches reached? Which are the major successes achieved and the problems still remaining to be solved? Although during the last years, many reviews have been published about these topics, in the present work, we will focus on an aspect that has been little considered so far, namely a strict comparison between the in vitro and in vivo developmental capabilities of the primordial germ cells (PGCs) isolated from the embryo and the PGC-like cells (PGC-LCs) produced in vitro from different types of stem cells in the mouse, the species in which most investigation has been carried out. Actually, the formation and differentiation of PGCs are crucial for both male and female gametogenesis, and the faithful production of PGCs in vitro represents the basis for obtaining functional germ cells.
Collapse
Affiliation(s)
- W Ge
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - C Chen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - M De Felici
- Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata', Rome 00133, Italy
| | - W Shen
- Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
169
|
Abstract
Germ cells are the special cells in the body that undergo meiosis to generate gametes and subsequently entire new organisms after fertilization, a process that continues generation after generation. Recent studies have expanded our understanding of the factors and mechanisms that specify germ cell fate, including the partitioning of maternally supplied 'germ plasm', inheritance of epigenetic memory and expression of transcription factors crucial for primordial germ cell (PGC) development. Even after PGCs are specified, germline fate is labile and thus requires protective mechanisms, such as global transcriptional repression, chromatin state alteration and translation of only germline-appropriate transcripts. Findings from diverse species continue to provide insights into the shared and divergent needs of these special reproductive cells.
Collapse
Affiliation(s)
- Susan Strome
- Molecular, Cell &Developmental Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Dustin Updike
- Kathryn W. Davis Center for Regenerative Biology &Medicine, Mount Desert Island Biological Laboratory, Bar Harbor, Maine 04672, USA
| |
Collapse
|
170
|
Biason-Lauber A, Chaboissier MC. Ovarian development and disease: The known and the unexpected. Semin Cell Dev Biol 2015; 45:59-67. [DOI: 10.1016/j.semcdb.2015.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 11/29/2022]
|
171
|
Abstract
With few exceptions, all animals acquire the ability to produce eggs or sperm at some point in their life cycle. Despite this near-universal requirement for sexual reproduction, there exists an incredible diversity in germ line development. For example, animals exhibit a vast range of differences in the timing at which the germ line, which retains reproductive potential, separates from the soma, or terminally differentiated, nonreproductive cells. This separation may occur during embryonic development, after gastrulation, or even in adults, depending on the organism. The molecular mechanisms of germ line segregation are also highly diverse, and intimately intertwined with the overall transition from a fertilized egg to an embryo. The earliest embryonic stages of many species are largely controlled by maternally supplied factors. Later in development, patterning control shifts to the embryonic genome and, concomitantly with this transition, the maternally supplied factors are broadly degraded. This chapter attempts to integrate these processes--germ line segregation, and how the divergence of germ line and soma may utilize the egg to embryo transitions differently. In some embryos, this difference is subtle or maybe lacking altogether, whereas in other embryos, this difference in utilization may be a key step in the divergence of the two lineages. Here, we will focus our discussion on the echinoderms, and in particular the sea urchins, in which recent studies have provided mechanistic understanding in germ line determination. We propose that the germ line in sea urchins requires an acquisition of maternal factors from the egg and, when compared to other members of the taxon, this appears to be a derived mechanism. The acquisition is early--at the 32-cell stage--and involves active protection of maternal mRNAs, which are instead degraded in somatic cells with the maternal-to-embryonic transition. We collectively refer to this model as the Time Capsule method for germ line determination.
Collapse
Affiliation(s)
- S Zachary Swartz
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA
| | - Gary M Wessel
- Department of Molecular and Cellular Biology, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
172
|
Abstract
Embryos of many animal models express germ line determinants that suppress transcription and mediate early germ line commitment, which occurs before the somatic cell lineages are established. However, not all animals segregate their germ line in this manner. The 'last cell standing' model describes primordial germ cell (PGC) development in axolotls, in which PGCs are maintained by an extracellular signalling niche, and germ line commitment occurs after gastrulation. Here, we propose that this 'stochastic' mode of PGC specification is conserved in vertebrates, including non-rodent mammals. We postulate that early germ line segregation liberates genetic regulatory networks for somatic development to evolve, and that it therefore emerged repeatedly in the animal kingdom in response to natural selection.
Collapse
Affiliation(s)
- Andrew D Johnson
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ramiro Alberio
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
173
|
Cell Therapy in Patients with Critical Limb Ischemia. Stem Cells Int 2015; 2015:931420. [PMID: 26300924 PMCID: PMC4537766 DOI: 10.1155/2015/931420] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/30/2014] [Accepted: 12/02/2014] [Indexed: 12/13/2022] Open
Abstract
Critical limb ischemia (CLI) represents the most advanced stage of peripheral arterial obstructive disease (PAOD) with a severe obstruction of the arteries which markedly reduces blood flow to the extremities and has progressed to the point of severe rest pain and/or even tissue loss. Recent therapeutic strategies have focused on restoring this balance in favor of tissue survival using exogenous molecular and cellular agents to promote regeneration of the vasculature. These are based on stimulation of angiogenesis by extracellular and cellular components. This review article carries out a systematic analysis of the most recent scientific literature on the application of stem cells in patients with CLI. The results obtained from the detailed analysis of the recent literature data have confirmed the beneficial role of cell therapy in reducing the rate of major amputations in patients with CLI and improving their quality of life.
Collapse
|
174
|
Sasaki K, Yokobayashi S, Nakamura T, Okamoto I, Yabuta Y, Kurimoto K, Ohta H, Moritoki Y, Iwatani C, Tsuchiya H, Nakamura S, Sekiguchi K, Sakuma T, Yamamoto T, Mori T, Woltjen K, Nakagawa M, Yamamoto T, Takahashi K, Yamanaka S, Saitou M. Robust In Vitro Induction of Human Germ Cell Fate from Pluripotent Stem Cells. Cell Stem Cell 2015; 17:178-94. [PMID: 26189426 DOI: 10.1016/j.stem.2015.06.014] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 12/17/2022]
Abstract
Mechanisms underlying human germ cell development are unclear, partly due to difficulties in studying human embryos and lack of suitable experimental systems. Here, we show that human induced pluripotent stem cells (hiPSCs) differentiate into incipient mesoderm-like cells (iMeLCs), which robustly generate human primordial germ cell-like cells (hPGCLCs) that can be purified using the surface markers EpCAM and INTEGRINα6. The transcriptomes of hPGCLCs and primordial germ cells (PGCs) isolated from non-human primates are similar, and although specification of hPGCLCs and mouse PGCs rely on similar signaling pathways, hPGCLC specification transcriptionally activates germline fate without transiently inducing eminent somatic programs. This includes genes important for naive pluripotency and repression of key epigenetic modifiers, concomitant with epigenetic reprogramming. Accordingly, BLIMP1, which represses somatic programs in mice, activates and stabilizes a germline transcriptional circuit and represses a default neuronal differentiation program. Together, these findings provide a foundation for understanding and reconstituting human germ cell development in vitro.
Collapse
Affiliation(s)
- Kotaro Sasaki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shihori Yokobayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ikuhiro Okamoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Moritoki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Nephro-Urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Shinichiro Nakamura
- Research Center for Animal Life Science, Shiga University of Medical Science, Seta-Tsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | | | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takahide Mori
- Academia for Repro-Regenerative Medicine, 394-1 Higashi-Hinodono-cho, Ichijo-Shinmachi-Higashiiru, Kamigyo-ku, Kyoto 602-0917, Japan
| | - Knut Woltjen
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masato Nakagawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
175
|
Wnt signaling in testis development: Unnecessary or essential? Gene 2015; 565:155-65. [DOI: 10.1016/j.gene.2015.04.066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/29/2015] [Accepted: 04/24/2015] [Indexed: 11/24/2022]
|
176
|
Nettersheim D, Jostes S, Sharma R, Schneider S, Hofmann A, Ferreira HJ, Hoffmann P, Kristiansen G, Esteller MB, Schorle H. BMP Inhibition in Seminomas Initiates Acquisition of Pluripotency via NODAL Signaling Resulting in Reprogramming to an Embryonal Carcinoma. PLoS Genet 2015; 11:e1005415. [PMID: 26226633 PMCID: PMC4520454 DOI: 10.1371/journal.pgen.1005415] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
Type II germ cell cancers (GCC) can be subdivided into seminomas and non-seminomas. Seminomas are similar to carcinoma in situ (CIS) cells, the common precursor of type II GCCs, with regard to epigenetics and expression, while embryonal carcinomas (EC) are totipotent and differentiate into teratomas, yolk-sac tumors and choriocarcinomas. GCCs can present as seminomas with a non-seminoma component, raising the question if a CIS gives rise to seminomas and ECs at the same time or whether seminomas can be reprogrammed to ECs. In this study, we utilized the seminoma cell line TCam-2 that acquires an EC-like status after xenografting into the murine flank as a model for a seminoma to EC transition and screened for factors initiating and driving this process. Analysis of expression and DNA methylation dynamics during transition of TCam-2 revealed that many pluripotency- and reprogramming-associated genes were upregulated while seminoma-markers were downregulated. Changes in expression level of 53 genes inversely correlated to changes in DNA methylation. Interestingly, after xenotransplantation 6 genes (GDF3, NODAL, DNMT3B, DPPA3, GAL, AK3L1) were rapidly induced, followed by demethylation of their genomic loci, suggesting that these 6 genes are poised for expression driving the reprogramming. We demonstrate that inhibition of BMP signaling is the initial event in reprogramming, resulting in activation of the pluripotency-associated genes and NODAL signaling. We propose that reprogramming of seminomas to ECs is a multi-step process. Initially, the microenvironment causes inhibition of BMP signaling, leading to induction of NODAL signaling. During a maturation phase, a fast acting NODAL loop stimulates its own activity and temporarily inhibits BMP signaling. During the stabilization phase, a slow acting NODAL loop, involving WNTs re-establishes BMP signaling and the pluripotency circuitry. In parallel, DNMT3B-driven de novo methylation silences seminoma-associated genes and epigenetically fixes the EC state.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Sina Jostes
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Rakesh Sharma
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Simon Schneider
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University Medical School, Bonn, Germany
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Per Hoffmann
- Institute of Human Genetics, University Medical School, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Medical School, Bonn, Germany
| | - Manel B Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| |
Collapse
|
177
|
Moreno I, Míguez-Forjan JM, Simón C. Artificial gametes from stem cells. Clin Exp Reprod Med 2015; 42:33-44. [PMID: 26161331 PMCID: PMC4496429 DOI: 10.5653/cerm.2015.42.2.33] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
The generation of artificial gametes is a real challenge for the scientific community today. In vitro development of human eggs and sperm will pave the way for the understanding of the complex process of human gametogenesis and will provide with human gametes for the study of infertility and the onset of some inherited disorders. However, the great promise of artificial gametes resides in their future application on reproductive treatments for all these people wishing to have genetically related children and for which gamete donation is now their unique option of parenthood. This is the case of infertile patients devoid of suitable gametes, same sex couples, singles and those fertile couples in a high risk of transmitting serious diseases to their progeny. In the search of the best method to obtain artificial gametes, many researchers have successfully obtained human germ cell-like cells from stem cells at different stages of differentiation. In the near future, this field will evolve to new methods providing not only viable but also functional and safe artificial germ cells. These artificial sperm and eggs should be able to recapitulate all the genetic and epigenetic processes needed for the correct gametogenesis, fertilization and embryogenesis leading to the birth of a healthy and fertile newborn.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Department of Research and Development, Igenomix S.L., Paternam, Spain
| | | | - Carlos Simón
- Department of Research and Development, Igenomix S.L., Paternam, Spain. ; Fundación Instituto Valenciano de Infertilidad (FIVI), Valencia, Spain. ; Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
178
|
Günesdogan U, Magnúsdóttir E, Surani MA. Primordial germ cell specification: a context-dependent cellular differentiation event [corrected]. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0543. [PMID: 25349452 PMCID: PMC4216466 DOI: 10.1098/rstb.2013.0543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
During embryonic development, the foundation of the germline is laid by the specification of primordial germ cells (PGCs) from the postimplantation epiblast via bone morphogenetic protein (BMP) and WNT signalling. While the majority of epiblast cells undergo differentiation towards somatic cell lineages, PGCs initiate a unique cellular programme driven by the cooperation of the transcription factors BLIMP1, PRDM14 and AP2γ. These factors synergistically suppress the ongoing somatic differentiation and drive the re-expression of pluripotency and germ cell-specific genes accompanied by global epigenetic changes. However, an unresolved question is how postimplantation epiblast cells acquire the developmental competence for the PGC fate downstream of BMP/WNT signalling. One emerging concept is that transcriptional enhancers might play a central role in the establishment of developmental competence and the execution of cell fate determination. Here, we discuss recent advances on the specification and reprogramming of PGCs thereby highlighting the concept of enhancer function.
Collapse
Affiliation(s)
- Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 3DY, UK Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Erna Magnúsdóttir
- Department of Biochemistry and Molecular Biology, BioMedical Center, University of Iceland, 101 Reykjavík, Iceland
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK Department of Physiology, Development and Neuroscience, University of Cambridge, Downing St., Cambridge CB2 3DY, UK Wellcome Trust Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
179
|
Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. J Mol Biol 2015; 428:1409-22. [PMID: 26119455 DOI: 10.1016/j.jmb.2015.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023]
Abstract
Mesendoderm (ME) refers to the primitive streak in mammalian embryos, which has the ability to further differentiate into mesoderm and endoderm. A better understanding on the regulatory networks of ME differentiation of embryonic stem (ES) cells would provide important insights on early embryo patterning and a possible guidance for ES applications in regenerative medicine. Studies on developmental biology and embryology have offered a great deal of knowledge about key signaling pathways involved in primitive streak formation. Recently, various chemically defined recipes have been formulated to induce differentiation of ES cells toward ME in vitro, which greatly facilitate the elucidation of the regulatory mechanisms of different signals involved in ME specification. Among the extrinsic signals, transforming growth factor-β/Activin signaling and Wnt signaling have been shown to be the most critical ones. On another side, intrinsic epigenetic regulation has been indicated to be important in ME determination. In this review, we summarize the current understanding on the extrinsic and intrinsic regulations of ES cells-to-ME differentiation and the crosstalk among them, aiming to get a general overview on ME specification and primitive streak formation.
Collapse
|
180
|
Faial T, Bernardo AS, Mendjan S, Diamanti E, Ortmann D, Gentsch GE, Mascetti VL, Trotter MWB, Smith JC, Pedersen RA. Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development 2015; 142:2121-35. [PMID: 26015544 PMCID: PMC4483767 DOI: 10.1242/dev.117838] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 04/30/2015] [Indexed: 12/17/2022]
Abstract
The transcription factor brachyury (T, BRA) is one of the first markers of gastrulation and lineage specification in vertebrates. Despite its wide use and importance in stem cell and developmental biology, its functional genomic targets in human cells are largely unknown. Here, we use differentiating human embryonic stem cells to study the role of BRA in activin A-induced endoderm and BMP4-induced mesoderm progenitors. We show that BRA has distinct genome-wide binding landscapes in these two cell populations, and that BRA interacts and collaborates with SMAD1 or SMAD2/3 signalling to regulate the expression of its target genes in a cell-specific manner. Importantly, by manipulating the levels of BRA in cells exposed to different signalling environments, we demonstrate that BRA is essential for mesoderm but not for endoderm formation. Together, our data illuminate the function of BRA in the context of human embryonic development and show that the regulatory role of BRA is context dependent. Our study reinforces the importance of analysing the functions of a transcription factor in different cellular and signalling environments.
Collapse
Affiliation(s)
- Tiago Faial
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Andreia S Bernardo
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sasha Mendjan
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Evangelia Diamanti
- Cambridge Institute for Medical Research and Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
| | - Daniel Ortmann
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - George E Gentsch
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Victoria L Mascetti
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Matthew W B Trotter
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK
| | - James C Smith
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Roger A Pedersen
- The Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0SZ, UK Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
181
|
The Transcriptome and DNA Methylome Landscapes of Human Primordial Germ Cells. Cell 2015; 161:1437-52. [DOI: 10.1016/j.cell.2015.05.015] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/26/2015] [Accepted: 04/24/2015] [Indexed: 12/18/2022]
|
182
|
Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopiña J, Chen PY, Clark AT. DNA Demethylation Dynamics in the Human Prenatal Germline. Cell 2015; 161:1425-36. [PMID: 26004067 DOI: 10.1016/j.cell.2015.05.012] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/13/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
Abstract
Global DNA demethylation in humans is a fundamental process that occurs in pre-implantation embryos and reversion to naive ground state pluripotent stem cells (PSCs). However, the extent of DNA methylation reprogramming in human germline cells is unknown. Here, we performed whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq) of human prenatal germline cells from 53 to 137 days of development. We discovered that the transcriptome and methylome of human germline is distinct from both human PSCs and the inner cell mass (ICM) of human blastocysts. Using this resource to monitor the outcome of global DNA demethylation with reversion of primed PSCs to the naive ground state, we uncovered hotspots of ultralow methylation at transposons that are protected from demethylation in the germline and ICM. Taken together, the human germline serves as a valuable in vivo tool for monitoring the epigenome of cells that have emerged from a global DNA demethylation event.
Collapse
Affiliation(s)
- Sofia Gkountela
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kelvin X Zhang
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tiasha A Shafiq
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wen-Wei Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Joseph Hargan-Calvopiña
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
183
|
Lei X, Deng Z, Zhang H, Zhao H, Zhou J, Liu S, Chen Q, Ning L, Cao Y, Wang X, Zhang X, Duan E. Rotary suspension culture enhances mesendoderm differentiation of embryonic stem cells through modulation of Wnt/β-catenin pathway. Stem Cell Rev Rep 2015; 10:526-38. [PMID: 24793926 DOI: 10.1007/s12015-014-9511-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, physical factors in the local cellular microenvironment have been confirmed with strong influences on regulating stem cell fate. Despite the recent identification of the rotary cell culture system (RCCS) as a bioreactor for culturing stem cells, the underlying biological role provided by RCCS in the lineage differentiation of embryonic stem cells (ESCs) remains largely undefined. Here, we explored the embryoid body (EB) formation and subsequent differentiation of mouse ESCs in RCCS. We demonstrated that EBs formed in RCCS were more homogeneous and bigger in size compared with those in the static condition. Further, we determined that mesendoderm differentiation was prominently enhanced, while neuroectodermal differentiation was significantly suppressed in RCCS. Surprisingly, we found that Wnt/β-catenin signaling was greatly enhanced mainly due to the increased expression of Wnt3 during ESC differentiation in RCCS. Inhibition of Wnt/β-catenin signaling by DKK1 decreased the expression of Brachyury and attenuated mesendoderm differentiation in RCCS. Intriguingly, Wnt3a markedly increased Brachyury expression under static condition rather than in RCCS. Taken together, our findings uncover a new role of rotary suspension culture in initializing the early differentiation of ESCs.
Collapse
Affiliation(s)
- Xiaohua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Kumano G. Evolution of germline segregation processes in animal development. Dev Growth Differ 2015; 57:324-32. [DOI: 10.1111/dgd.12211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Gaku Kumano
- Asamushi Research Center for Marine Biology; Graduate School of Life Science; Tohoku University; 9 Sakamoto Asamushi Aomori 039-3501 Japan
| |
Collapse
|
185
|
Kurimoto K, Yabuta Y, Hayashi K, Ohta H, Kiyonari H, Mitani T, Moritoki Y, Kohri K, Kimura H, Yamamoto T, Katou Y, Shirahige K, Saitou M. Quantitative Dynamics of Chromatin Remodeling during Germ Cell Specification from Mouse Embryonic Stem Cells. Cell Stem Cell 2015; 16:517-32. [PMID: 25800778 DOI: 10.1016/j.stem.2015.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/14/2015] [Accepted: 02/27/2015] [Indexed: 12/18/2022]
Abstract
Germ cell specification is accompanied by epigenetic remodeling, the scale and specificity of which are unclear. Here, we quantitatively delineate chromatin dynamics during induction of mouse embryonic stem cells (ESCs) to epiblast-like cells (EpiLCs) and from there into primordial germ cell-like cells (PGCLCs), revealing large-scale reorganization of chromatin signatures including H3K27me3 and H3K9me2 patterns. EpiLCs contain abundant bivalent gene promoters characterized by low H3K27me3, indicating a state primed for differentiation. PGCLCs initially lose H3K4me3 from many bivalent genes but subsequently regain this mark with concomitant upregulation of H3K27me3, particularly at developmental regulatory genes. PGCLCs progressively lose H3K9me2, including at lamina-associated perinuclear heterochromatin, resulting in changes in nuclear architecture. T recruits H3K27ac to activate BLIMP1 and early mesodermal programs during PGCLC specification, which is followed by BLIMP1-mediated repression of a broad range of targets, possibly through recruitment and spreading of H3K27me3. These findings provide a foundation for reconstructing regulatory networks of the germline epigenome.
Collapse
Affiliation(s)
- Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Developmental Stem Cell Biology, Faculty of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan; JST, PRESTO, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Kiyonari
- Laboratories of Animal Resource Development and Genetic Engineering, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima Minami, Chuou-ku, Kobe 650-0047, Japan
| | - Tadahiro Mitani
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshinobu Moritoki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Nephro-Urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kenjiro Kohri
- Department of Nephro-Urology, Graduate School of Medical Sciences, Nagoya City University, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuki Katou
- Laboratory of Genome Structure and Function, Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
186
|
Abstract
Understanding the molecular events of reproduction requires a system to differentiate human pluripotent stem cells to germline cells (gametes) in vitro. Such a system is not only critical to unlock the secrets of germline development; it may also allow screening for environmental agents that affect gametogenesis. Two recent papers, one in this issue of TheEMBO Journal, have developed complementary approaches for generating human germline cells with unprecedented efficiency from pluripotent stem cells(Sugawa et al, 2015; Irie et al, 2015). This work illustrates the power and limitations of extrapolating molecular pathways for lineage differentiation from mice to humans and illuminates the importance of using human cell-based models to study reproductive health.
Collapse
Affiliation(s)
- Di Chen
- Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
187
|
Sugawa F, Araúzo-Bravo MJ, Yoon J, Kim KP, Aramaki S, Wu G, Stehling M, Psathaki OE, Hübner K, Schöler HR. Human primordial germ cell commitment in vitro associates with a unique PRDM14 expression profile. EMBO J 2015; 34:1009-24. [PMID: 25750208 PMCID: PMC4406649 DOI: 10.15252/embj.201488049] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 02/18/2015] [Indexed: 01/30/2023] Open
Abstract
Primordial germ cells (PGCs) develop only into sperm and oocytes in vivo. The molecular mechanisms underlying human PGC specification are poorly understood due to inaccessibility of cell materials and lack of in vitro models for tracking the earliest stages of germ cell development. Here, we describe a defined and stepwise differentiation system for inducing pre-migratory PGC-like cells (PGCLCs) from human pluripotent stem cells (PSCs). In response to cytokines, PSCs differentiate first into a heterogeneous mesoderm-like cell population and then into PGCLCs, which exhibit minimal PRDM14 expression. PGC specification in humans is similar to the murine process, with the sequential activation of mesodermal and PGC genes, and the suppression of neural induction and of de novo DNA methylation, suggesting that human PGC formation is induced via epigenesis, the process of germ cell specification via inductive signals from surrounding somatic cells. This study demonstrates that PGC commitment in humans shares key features with that of the mouse, but also highlights key differences, including transcriptional regulation during the early stage of human PGC development (3–6 weeks). A more comprehensive understanding of human germ cell development may lead to methodology for successfully generating PSC-derived gametes for reproductive medicine.
Collapse
Affiliation(s)
- Fumihiro Sugawa
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marcos J Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany Group of Computational Biology and Bioinformatics, Biodonostia Health Research Institute, San Sebastián, Spain IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Juyong Yoon
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kee-Pyo Kim
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Shinya Aramaki
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Stehling
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Olympia E Psathaki
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Karin Hübner
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany Medical Faculty, University of Münster, Münster, Germany
| |
Collapse
|
188
|
Abstract
Primordial germ cells (PGCs) are the earliest population of germ cells established during embryonic development and constitute the beginning of the totipotent state. A recent study provides a new protocol for the efficient generation of PGC-like cells from human embryonic stem cells, providing an in vitro platform to study human PGC differentiation and specification.
Collapse
|
189
|
Xu B, Ji X, Chen X, Yao M, Han X, Chen M, Tang W, Xia Y. Effect of perfluorooctane sulfonate on pluripotency and differentiation factors in mouse embryoid bodies. Toxicology 2015; 328:160-167. [PMID: 25510869 DOI: 10.1016/j.tox.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022]
Abstract
Perfluorooctane sulfonate (PFOS) poses potential risks to early development, but the molecular mechanisms how PFOS affects embryonic development are still unclear. Mouse embryoid bodies (mEBs) provide ideal models for testing safety or toxicity of chemicals in vitro. In this study, mEBs were exposed to PFOS up to 6 days and then their pluripotency and differentiation markers were evaluated. Our data showed that the mRNA and protein levels of pluripotency markers (Oct4, Sox2, Nanog) in mEBs were significantly increased following exposure to PFOS. Meanwhile, the expressions of miR-134, miR-145, miR-490-3p were decreased accordingly. PFOS reduced the mRNA levels of endodermal markers (Sox17, FOXA2), mesodermal markers (SMA, Brachyury) and ectodermal markers (Nestin, Fgf5) in mEBs. Meanwhile, PFOS increased the mRNA and protein levels of polycomb group (PcG) family members (Cbx4, Cbx7, Ezh2). Overall, our results showed that PFOS could increase the expression levels of pluripotency factors and decrease the differentiation markers.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Endocrinology, The Affiliated Jiangyin People's Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Xiaoli Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengmeng Yao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
190
|
Irie N, Weinberger L, Tang WWC, Kobayashi T, Viukov S, Manor YS, Dietmann S, Hanna JH, Surani MA. SOX17 is a critical specifier of human primordial germ cell fate. Cell 2014; 160:253-68. [PMID: 25543152 PMCID: PMC4310934 DOI: 10.1016/j.cell.2014.12.013] [Citation(s) in RCA: 604] [Impact Index Per Article: 54.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/13/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
Specification of primordial germ cells (PGCs) marks the beginning of the totipotent state. However, without a tractable experimental model, the mechanism of human PGC (hPGC) specification remains unclear. Here, we demonstrate specification of hPGC-like cells (hPGCLCs) from germline competent pluripotent stem cells. The characteristics of hPGCLCs are consistent with the embryonic hPGCs and a germline seminoma that share a CD38 cell-surface marker, which collectively defines likely progression of the early human germline. Remarkably, SOX17 is the key regulator of hPGC-like fate, whereas BLIMP1 represses endodermal and other somatic genes during specification of hPGCLCs. Notable mechanistic differences between mouse and human PGC specification could be attributed to their divergent embryonic development and pluripotent states, which might affect other early cell-fate decisions. We have established a foundation for future studies on resetting of the epigenome in hPGCLCs and hPGCs for totipotency and the transmission of genetic and epigenetic information. A defined model for hPGCLC specification from germline-competent hESCs Expression profiles of hPGCLCs match with authentic hPGCs SOX17 is the key regulator of hPGCLC CD38 glycoprotein is a cell-surface marker of the human germline
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK
| | - Leehee Weinberger
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Walfred W C Tang
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK
| | - Toshihiro Kobayashi
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK
| | - Sergey Viukov
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yair S Manor
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sabine Dietmann
- Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK
| | - Jacob H Hanna
- The Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3EG, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
191
|
Abstract
Poised (bivalent) chromatin is defined by the simultaneous presence of histone modifications associated with both gene activation and repression. This epigenetic feature was first observed at promoters of lineage-specific regulatory genes in embryonic stem cells in culture. More recent work has shown that, in vivo, mammalian germ cells maintain poised chromatin at promoters of many genes that regulate somatic development, and that they retain this state from fetal stages through meiosis and gametogenesis. We hypothesize that the poised chromatin state is essential for germ cell identity and function. We propose three roles for poised chromatin in the mammalian germ line: prevention of DNA methylation, maintenance of germ cell identity and preparation for totipotency. We discuss these roles in the context of recently proposed models for germline potency and epigenetic inheritance.
Collapse
Affiliation(s)
- Bluma J Lesch
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David C Page
- Whitehead Institute, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
192
|
Irie N, Tang WWC, Azim Surani M. Germ cell specification and pluripotency in mammals: a perspective from early embryogenesis. Reprod Med Biol 2014; 13:203-215. [PMID: 25298745 PMCID: PMC4182624 DOI: 10.1007/s12522-014-0184-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/19/2014] [Indexed: 12/01/2022] Open
Abstract
Germ cells are unique cell types that generate a totipotent zygote upon fertilization, giving rise to the next generation in mammals and many other multicellular organisms. How germ cells acquire this ability has been of considerable interest. In mammals, primordial germ cells (PGCs), the precursors of sperm and oocytes, are specified around the time of gastrulation. PGCs are induced by signals from the surrounding extra-embryonic tissues to the equipotent epiblast cells that give rise to all cell types. Currently, the mechanism of PGC specification in mammals is best understood from studies in mice. Following implantation, the epiblast cells develop as an egg cylinder while the extra-embryonic ectoderm cells which are the source of important signals for PGC specification are located over the egg cylinder. However, in most cases, including humans, the epiblast cells develop as a planar disc, which alters the organization and the source of the signaling for cell fates. This, in turn, might have an effect on the precise mechanism of PGC specification in vivo as well as in vitro using pluripotent embryonic stem cells. Here, we discuss how the key early embryonic differences between rodents and other mammals may affect the establishment of the pluripotency network in vivo and in vitro, and consequently the basis for PGC specification, particularly from pluripotent embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - Walfred W. C. Tang
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| | - M. Azim Surani
- Wellcome Trust/Cancer Research UK, Gurdon InstituteUniversity of CambridgeTennis Court RoadCB2 1QNCambridgeUK
| |
Collapse
|
193
|
Itoh F, Watabe T, Miyazono K. Roles of TGF-β family signals in the fate determination of pluripotent stem cells. Semin Cell Dev Biol 2014; 32:98-106. [PMID: 24910449 DOI: 10.1016/j.semcdb.2014.05.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022]
Abstract
Members of the transforming growth factor-β (TGF-β) family have been implicated in embryogenesis as well as in the determination of the cell fates of mouse and human embryonic stem (ES) cells, which are characterized by their self-renewal and pluripotency. The cellular responses to TGF-β family signals are divergent depending on the cellular context and local environment. TGF-β family signals play critical roles both in the maintenance of the pluripotent state of ES cells by inducing the expression of Nanog, Oct4, and Sox2, and in their differentiation into various cell types by regulating the expression of master regulatory genes. Moreover, multiple lines of evidence have suggested the importance of TGF-β family signals in establishing induced pluripotent stem (iPS) cells. Since ES and iPS cells have great potential for applications in regenerative medicine, it is critical to figure out the mechanisms underlying their self-renewal, pluripotency, and differentiation. Here, we discuss the roles of TGF-β family ligands and their downstream signaling molecules, Smad proteins, in the maintenance of the pluripotency and lineage specification of mouse and human ES and iPS cells.
Collapse
Affiliation(s)
- Fumiko Itoh
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| | - Tetsuro Watabe
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; PRESTO, Japan Science Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kohei Miyazono
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
194
|
Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD. Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos. Development 2014; 141:2429-40. [PMID: 24917499 PMCID: PMC4050694 DOI: 10.1242/dev.105346] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/22/2014] [Indexed: 01/18/2023]
Abstract
A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.
Collapse
Affiliation(s)
- Jodie Chatfield
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Marie-Anne O'Reilly
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Rosemary F Bachvarova
- Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Catherine Redwood
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Maggie Walmsley
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | - Mathew Loose
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, UK
| |
Collapse
|
195
|
PRDM14: a unique regulator for pluripotency and epigenetic reprogramming. Trends Biochem Sci 2014; 39:289-98. [PMID: 24811060 DOI: 10.1016/j.tibs.2014.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/03/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
PRDM14 belongs to the PR domain-containing (PRDM) transcriptional regulators. Among the PRDM family members, PRDM14 shows specific expression in preimplantation embryos, primordial germ cells (PGCs), and embryonic stem cells (ESCs) in vitro, and accordingly plays a key role in the regulation of their pluripotency and epigenetic reprogramming, most notably, genome-wide DNA demethylation. The function of PRDM14 appears to be conserved between mice and humans, but it shows several characteristic differences between the two species. A precise understanding of the function of PRDM14 in mice and humans would shed new light on the regulation of pluripotency and the epigenome in these two species, providing a foundation for better control of stem cell fates in a broader context.
Collapse
|
196
|
Lei X, Deng Z, Zhang H, Zhao H, Zhou J, Liu S, Chen Q, Ning L, Cao Y, Wang X, Zhang X, Duan E. Rotary Suspension Culture Enhances Mesendoderm Differentiation of Embryonic Stem Cells Through Modulation of Wnt/β-catenin Pathway. Stem Cell Rev Rep 2014. [DOI: doi 10.1007/s12015-014-9511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
197
|
Song HW, Wilkinson MF. Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 2014; 30:14-26. [PMID: 24560784 DOI: 10.1016/j.semcdb.2014.02.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Spermatogenesis is a multistep process that generates millions of spermatozoa per day in mammals. A key to this process is the spermatogonial stem cell (SSC), which has the dual property of continually renewing and undergoing differentiation into a spermatogonial progenitor that expands and further differentiates. In this review, we will focus on how these proliferative and early differentiation steps in mammalian male germ cells are controlled by transcription factors. Most of the transcription factors that have so far been identified as promoting SSC self-renewal (BCL6B, BRACHYURY, ETV5, ID4, LHX1, and POU3F1) are upregulated by glial cell line-derived neurotrophic factor (GDNF). Since GDNF is crucial for promoting SSC self-renewal, this suggests that these transcription factors are responsible for coordinating the action of GDNF in SSCs. Other transcription factors that promote SSC self-renewal are expressed independently of GDNF (FOXO1, PLZF, POU5F1, and TAF4B) and thus may act in non-GDNF pathways to promote SSC cell growth or survival. Several transcription factors have been identified that promote spermatogonial differentiation (DMRT1, NGN3, SOHLH1, SOHLH2, SOX3, and STAT3); some of these may influence the decision of an SSC to commit to differentiate while others may promote later spermatogonial differentiation steps. Many of these transcription factors regulate each other and act on common targets, suggesting they integrate to form complex transcriptional networks in self-renewing and differentiating spermatogonia.
Collapse
Affiliation(s)
- Hye-Won Song
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
198
|
Abstract
Reporting in Developmental Cell, Aramaki et al. (2013) identify T as a key mediator of primordial germ cell (PGC) specification in the embryo. Deconstruction of how Bmp and Wnt signals regulate the expression and targeting of T to regulatory elements of either mesodermal or PGC genes has implications for differentiation in vitro.
Collapse
Affiliation(s)
- Andrea V Cantú
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA
| | - Diana J Laird
- Department of Ob/Gyn and Reproductive Sciences, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, 35 Medical Center Way, San Francisco, CA 94143, USA.
| |
Collapse
|