151
|
Dieterle MP, Husari A, Steinberg T, Wang X, Ramminger I, Tomakidi P. Role of Mechanotransduction in Periodontal Homeostasis and Disease. J Dent Res 2021; 100:1210-1219. [PMID: 33870741 DOI: 10.1177/00220345211007855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Novel findings broaden the concept of mechanotransduction (MT) in biophysically stimulated tissues such as the periodontium by considering nuclear MT, convergence of intracellular MT pathways, and mechanoresponsive cotranscription factors such as Yes-associated protein 1 (YAP1). Regarding periodontal disease, recent studies have elucidated the role of bacterial gingipain proteases in disturbing the barrier function of cadherins, thereby promoting periodontal inflammation. This leads to dysregulation of extracellular matrix homeostasis via proteases and changes the cell's biophysical environment, which leads to alterations in MT-induced cell behavior and loss of periodontal integrity. Newest experimental evidence from periodontal ligament cells suggests that the Hippo signaling protein YAP1, in addition to integrin-FAK (focal adhesion kinase) mechanosignaling, also regulates cell stemness. By addressing mechanosignaling-dependent transcription factors, YAP1 is involved in osteogenic and myofibroblast differentiation and influences core steps of autophagy. Recent in vivo evidence elucidates the decisive role of YAP1 in epithelial homeostasis and underlines its impact on oral pathologies, such as periodontitis-linked oral squamous cell carcinogenesis. Here, new insights reveal that YAP1 contributes to carcinogenesis via overexpression rather than mutation; promotes processes such as apoptosis resistance, epithelial-mesenchymal transition, or metastasis; and correlates with poor prognosis in oral squamous cell carcinoma. Furthermore, YAP1 has been shown to contribute to periodontitis-induced bone loss. Mechanistically, molecules identified to regulate YAP1-related periodontal homeostasis and disease include cellular key players such as MAPK (mitogen-activated protein kinase), JNK (c-Jun N-terminal kinase), Rho (Ras homologue) and ROCK (Rho kinase), Bcl-2 (B-cell lymphoma 2), AP-1 (activator protein 1), and c-myc (cellular myelocytomatosis). These findings qualify YAP1 as a master regulator of mechanobiology and cell behavior in human periodontal tissues. This review summarizes the most recent developments in MT-related periodontal research, thereby offering insights into outstanding research questions and potential applications of molecular or biophysical strategies aiming at periodontal disease mitigation or prevention.
Collapse
Affiliation(s)
- M P Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - A Husari
- Department of Orthodontics, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - T Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - X Wang
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - I Ramminger
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
152
|
Iyer KV, Taubenberger A, Zeidan SA, Dye NA, Eaton S, Jülicher F. Apico-basal cell compression regulates Lamin A/C levels in epithelial tissues. Nat Commun 2021; 12:1756. [PMID: 33767161 PMCID: PMC7994818 DOI: 10.1038/s41467-021-22010-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The levels of nuclear protein Lamin A/C are crucial for nuclear mechanotransduction. Lamin A/C levels are known to scale with tissue stiffness and extracellular matrix levels in mesenchymal tissues. But in epithelial tissues, where cells lack a strong interaction with the extracellular matrix, it is unclear how Lamin A/C is regulated. Here, we show in epithelial tissues that Lamin A/C levels scale with apico-basal cell compression, independent of tissue stiffness. Using genetic perturbations in Drosophila epithelial tissues, we show that apico-basal cell compression regulates the levels of Lamin A/C by deforming the nucleus. Further, in mammalian epithelial cells, we show that nuclear deformation regulates Lamin A/C levels by modulating the levels of phosphorylation of Lamin A/C at Serine 22, a target for Lamin A/C degradation. Taken together, our results reveal a mechanism of Lamin A/C regulation which could provide key insights for understanding nuclear mechanotransduction in epithelial tissues.
Collapse
Affiliation(s)
- K. Venkatesan Iyer
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.419560.f0000 0001 2154 3117Max Planck Institute for the Physics of Complex Systems, Dresden, Germany ,grid.34980.360000 0001 0482 5067Present Address: Department of Mechanical Engineering, Indian Institute of Science, Bangalore, India
| | - Anna Taubenberger
- grid.4488.00000 0001 2111 7257Biotechnology Center TU Dresden, Dresden, Germany
| | - Salma Ahmed Zeidan
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Natalie A. Dye
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Suzanne Eaton
- grid.419537.d0000 0001 2113 4567Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Frank Jülicher
- grid.419560.f0000 0001 2154 3117Max Planck Institute for the Physics of Complex Systems, Dresden, Germany ,grid.4488.00000 0001 2111 7257Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany ,grid.495510.cCenter for Systems Biology Dresden, Dresden, Germany
| |
Collapse
|
153
|
Kronenberg-Tenga R, Tatli M, Eibauer M, Wu W, Shin JY, Bonne G, Worman HJ, Medalia O. A lamin A/C variant causing striated muscle disease provides insights into filament organization. J Cell Sci 2021; 134:jcs.256156. [PMID: 33536248 DOI: 10.1242/jcs.256156] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
The LMNA gene encodes the A-type lamins, which polymerize into ∼3.5-nm-thick filaments and, together with B-type lamins and associated proteins, form the nuclear lamina. Mutations in LMNA cause a wide variety of pathologies. In this study, we analyzed the nuclear lamina of embryonic fibroblasts from Lmna H222P/H222P mice, which develop cardiomyopathy and muscular dystrophy. Although the organization of the lamina appeared unaltered, there were changes in chromatin and B-type lamin expression. An increase in nuclear size and consequently a relative reduction in heterochromatin near the lamina allowed for a higher resolution structural analysis of lamin filaments using cryo-electron tomography. This was most apparent when visualizing lamin filaments in situ and using a nuclear extraction protocol. Averaging of individual segments of filaments in Lmna H222P/H222P mouse fibroblasts resolved two polymers that constitute the mature filaments. Our findings provide better views of the organization of lamin filaments and the effect of a striated muscle disease-causing mutation on nuclear structure.
Collapse
Affiliation(s)
- Rafael Kronenberg-Tenga
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wei Wu
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ji-Yeon Shin
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Centre de Recherche en Myologie, Institut de Myologie, F-75651 Paris CEDEX 13, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
154
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
155
|
Srivastava N, Nader GPDF, Williart A, Rollin R, Cuvelier D, Lomakin A, Piel M. Nuclear fragility, blaming the blebs. Curr Opin Cell Biol 2021; 70:100-108. [PMID: 33662810 DOI: 10.1016/j.ceb.2021.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Although textbook pictures depict the cell nucleus as a simple ovoid object, it is now clear that it adopts a large variety of shapes in tissues. When cells deform, because of cell crowding or migration through dense matrices, the nucleus is subjected to large constraints that alter its shape. In this review, we discuss recent studies related to nuclear fragility, focusing on the surprising finding that the nuclear envelope can form blebs. Contrary to the better-known plasma membrane blebs, nuclear blebs are unstable and almost systematically lead to nuclear envelope opening and uncontrolled nucleocytoplasmic mixing. They expand, burst, and repair repeatedly when the nucleus is strongly deformed. Although blebs are a major source of nuclear instability, they are poorly understood so far, which calls for more in-depth studies of these structures.
Collapse
Affiliation(s)
- Nishit Srivastava
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | | | - Alice Williart
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Romain Rollin
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris France
| | - Damien Cuvelier
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France
| | - Alexis Lomakin
- St. Anna Children's Cancer Research Institute, Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, And Medical University of Vienna, Vienna, Austria
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS, UMR 144, Paris, France.
| |
Collapse
|
156
|
Shah P, Hobson CM, Cheng S, Colville MJ, Paszek MJ, Superfine R, Lammerding J. Nuclear Deformation Causes DNA Damage by Increasing Replication Stress. Curr Biol 2021; 31:753-765.e6. [PMID: 33326770 PMCID: PMC7904640 DOI: 10.1016/j.cub.2020.11.037] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, i.e., the spreading of tumor cells from the primary tumor to distant organs, is responsible for the vast majority of cancer deaths. In the process, cancer cells migrate through narrow interstitial spaces substantially smaller in cross-section than the cell. During such confined migration, cancer cells experience extensive nuclear deformation, nuclear envelope rupture, and DNA damage. The molecular mechanisms responsible for the confined migration-induced DNA damage remain incompletely understood. Although in some cell lines, DNA damage is closely associated with nuclear envelope rupture, we show that, in others, mechanical deformation of the nucleus is sufficient to cause DNA damage, even in the absence of nuclear envelope rupture. This deformation-induced DNA damage, unlike nuclear-envelope-rupture-induced DNA damage, occurs primarily in S/G2 phase of the cell cycle and is associated with replication forks. Nuclear deformation, resulting from either confined migration or external cell compression, increases replication stress, possibly by increasing replication fork stalling, providing a molecular mechanism for the deformation-induced DNA damage. Thus, we have uncovered a new mechanism for mechanically induced DNA damage, linking mechanical deformation of the nucleus to DNA replication stress. This mechanically induced DNA damage could not only increase genomic instability in metastasizing cancer cells but could also cause DNA damage in non-migrating cells and tissues that experience mechanical compression during development, thereby contributing to tumorigenesis and DNA damage response activation.
Collapse
Affiliation(s)
- Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chad M Hobson
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Svea Cheng
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Marshall J Colville
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Matthew J Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA; Graduate Field of Biophysics, Cornell University, Ithaca, NY 14853, USA
| | - Richard Superfine
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
157
|
Naetar N, Georgiou K, Knapp C, Bronshtein I, Zier E, Fichtinger P, Dechat T, Garini Y, Foisner R. LAP2alpha maintains a mobile and low assembly state of A-type lamins in the nuclear interior. eLife 2021; 10:e63476. [PMID: 33605210 PMCID: PMC7939549 DOI: 10.7554/elife.63476] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
Lamins form stable filaments at the nuclear periphery in metazoans. Unlike B-type lamins, lamins A and C localize also in the nuclear interior, where they interact with lamin-associated polypeptide 2 alpha (LAP2α). Using antibody labeling, we previously observed a depletion of nucleoplasmic A-type lamins in mouse cells lacking LAP2α. Here, we show that loss of LAP2α actually causes formation of larger, biochemically stable lamin A/C structures in the nuclear interior that are inaccessible to lamin A/C antibodies. While nucleoplasmic lamin A forms from newly expressed pre-lamin A during processing and from soluble mitotic lamins in a LAP2α-independent manner, binding of LAP2α to lamin A/C during interphase inhibits formation of higher order structures, keeping nucleoplasmic lamin A/C in a mobile state independent of lamin A/C S22 phosphorylation. We propose that LAP2α is essential to maintain a mobile lamin A/C pool in the nuclear interior, which is required for proper nuclear functions.
Collapse
Affiliation(s)
- Nana Naetar
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| | - Konstantina Georgiou
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| | - Christian Knapp
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| | - Irena Bronshtein
- Physics Department and Nanotechnology Institute, Bar Ilan UniversityRamat GanIsrael
| | - Elisabeth Zier
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| | - Petra Fichtinger
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| | - Thomas Dechat
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| | - Yuval Garini
- Physics Department and Nanotechnology Institute, Bar Ilan UniversityRamat GanIsrael
| | - Roland Foisner
- Max Perutz Labs, Center for Medical Biochemistry, Medical University of Vienna, Vienna Biocenter Campus (VBC)ViennaAustria
| |
Collapse
|
158
|
Gil L, Niño SA, Capdeville G, Jiménez-Capdeville ME. Aging and Alzheimer's disease connection: Nuclear Tau and lamin A. Neurosci Lett 2021; 749:135741. [PMID: 33610669 DOI: 10.1016/j.neulet.2021.135741] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Age-related pathologies like Alzheimer`s disease (AD) imply cellular responses directed towards repairing DNA damage. Postmitotic neurons show progressive accumulation of oxidized DNA during decades of brain aging, which is especially remarkable in AD brains. The characteristic cytoskeletal pathology of AD neurons is brought about by the progressive changes that neurons undergo throughout aging, and their irreversible nuclear transformation initiates the disease. This review focusses on critical molecular events leading to the loss of plasticity that underlies cognitive deficits in AD. During healthy neuronal aging, nuclear Tau participates in the regulation of the structure and function of the chromatin. The aberrant cell cycle reentry initiated for DNA repair triggers a cascade of events leading to the dysfunctional AD neuron, whereby Tau protein exits the nucleus leading to chromatin disorganization. Lamin A, which is not typically expressed in neurons, appears at the transformation from senile to AD neurons and contributes to halting the consequences of cell cycle reentry and nuclear Tau exit, allowing the survival of the neuron. Nevertheless, this irreversible nuclear transformation alters the nucleic acid and protein synthesis machinery as well as the nuclear lamina and cytoskeleton structures, leading to neurofibrillary tangles formation and final neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad "Alfonso X el Sabio", Madrid, Spain
| | - Sandra A Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | |
Collapse
|
159
|
Auguste G, Rouhi L, Matkovich SJ, Coarfa C, Robertson MJ, Czernuszewicz G, Gurha P, Marian AJ. BET bromodomain inhibition attenuates cardiac phenotype in myocyte-specific lamin A/C-deficient mice. J Clin Invest 2021; 130:4740-4758. [PMID: 32484798 DOI: 10.1172/jci135922] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
Mutation in the LMNA gene, encoding lamin A/C, causes a diverse group of diseases called laminopathies. Cardiac involvement is the major cause of death and manifests as dilated cardiomyopathy, heart failure, arrhythmias, and sudden death. There is no specific therapy for LMNA-associated cardiomyopathy. We report that deletion of Lmna in cardiomyocytes in mice leads to severe cardiac dysfunction, conduction defect, ventricular arrhythmias, fibrosis, apoptosis, and premature death within 4 weeks. The phenotype is similar to LMNA-associated cardiomyopathy in humans. RNA sequencing, performed before the onset of cardiac dysfunction, led to identification of 2338 differentially expressed genes (DEGs) in Lmna-deleted cardiomyocytes. DEGs predicted activation of bromodomain-containing protein 4 (BRD4), a regulator of chromatin-associated proteins and transcription factors, which was confirmed by complementary approaches, including chromatin immunoprecipitation sequencing. Daily injection of JQ1, a specific BET bromodomain inhibitor, partially reversed the DEGs, including those encoding secretome; improved cardiac function; abrogated cardiac arrhythmias, fibrosis, and apoptosis; and prolonged the median survival time 2-fold in the myocyte-specific Lmna-deleted mice. The findings highlight the important role of LMNA in cardiomyocytes and identify BET bromodomain inhibition as a potential therapeutic target in LMNA-associated cardiomyopathy, for which there is no specific effective therapy.
Collapse
Affiliation(s)
- Gaelle Auguste
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Scot J Matkovich
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cristian Coarfa
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Grazyna Czernuszewicz
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Ali J Marian
- Center for Cardiovascular Genetics, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, and Department of Medicine, University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
160
|
Karoutas A, Akhtar A. Functional mechanisms and abnormalities of the nuclear lamina. Nat Cell Biol 2021; 23:116-126. [PMID: 33558730 DOI: 10.1038/s41556-020-00630-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
Alterations in nuclear shape are present in human diseases and ageing. A compromised nuclear lamina is molecularly interlinked to altered chromatin functions and genomic instability. Whether these alterations are a cause or a consequence of the pathological state are important questions in biology. Here, we summarize the roles of nuclear envelope components in chromatin organization, phase separation and transcriptional and epigenetic regulation. Examining these functions in healthy backgrounds will guide us towards a better understanding of pathological alterations.
Collapse
Affiliation(s)
- Adam Karoutas
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Francis Crick Institute, London, UK
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
161
|
Cellular stress signaling activates type-I IFN response through FOXO3-regulated lamin posttranslational modification. Nat Commun 2021; 12:640. [PMID: 33510167 PMCID: PMC7843645 DOI: 10.1038/s41467-020-20839-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/19/2020] [Indexed: 01/16/2023] Open
Abstract
Neural stem/progenitor cells (NSPCs) persist over the lifespan while encountering constant challenges from age or injury related brain environmental changes like elevated oxidative stress. But how oxidative stress regulates NSPC and its neurogenic differentiation is less clear. Here we report that acutely elevated cellular oxidative stress in NSPCs modulates neurogenic differentiation through induction of Forkhead box protein O3 (FOXO3)-mediated cGAS/STING and type I interferon (IFN-I) responses. We show that oxidative stress activates FOXO3 and its transcriptional target glycine-N-methyltransferase (GNMT) whose upregulation triggers depletion of s-adenosylmethionine (SAM), a key co-substrate involved in methyl group transfer reactions. Mechanistically, we demonstrate that reduced intracellular SAM availability disrupts carboxymethylation and maturation of nuclear lamin, which induce cytosolic release of chromatin fragments and subsequent activation of the cGAS/STING-IFN-I cascade to suppress neurogenic differentiation. Together, our findings suggest the FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signaling cascade as a critical stress response program that regulates long-term regenerative potential. Neural stem and progenitor cells (NSPCs) encounter constant stresses during aging, such as elevated oxidative stress. Here the authors show that oxidative stress induced reduction in NSPC neural differentiation is mediated by a FOXO3-GNMT/SAM-lamin-cGAS/STING-IFN-I signalling cascade initiated by FOXO3 oxidation.
Collapse
|
162
|
Li G, Chen S, Zhang Y, Xu H, Xu D, Wei Z, Gao X, Cai W, Mao N, Zhang L, Li S, Yang F, Liu H, Li S. Matrix stiffness regulates α-TAT1-mediated acetylation of α-tubulin and promotes silica-induced epithelial-mesenchymal transition via DNA damage. J Cell Sci 2021; 134:224091. [PMID: 33310909 DOI: 10.1242/jcs.243394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Silicosis is characterized by silica exposure-induced lung interstitial fibrosis and formation of silicotic nodules, resulting in lung stiffening. The acetylation of microtubules mediated by α-tubulin N-acetyltransferase 1 (α-TAT1) is a posttranslational modification that promotes microtubule stability in response to mechanical stimulation. α-TAT1 and downstream acetylated α-tubulin (Ac-α-Tub) are decreased in silicosis, promoting the epithelial-mesenchymal transition (EMT); however, the underlying mechanisms are unknown. We found that silica, matrix stiffening or their combination triggered Ac-α-Tub downregulation in alveolar epithelial cells, followed by DNA damage and replication stress. α-TAT1 elevated Ac-α-Tub to limit replication stress and the EMT via trafficking of p53-binding protein 1 (53BP1, also known as TP53BP1). The results provide evidence that α-TAT1 and Ac-α-Tub inhibit the EMT and silicosis fibrosis by preventing 53BP1 mislocalization and relieving DNA damage. This study provides insight into how the cell cycle is regulated during the EMT and why the decrease in α-TAT1 and Ac-α-Tub promotes silicosis fibrosis.This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Gengxu Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Si Chen
- Department of Neurosurgery, Tangshan People's Hospital, Tangshan 063210, China
| | - Yi Zhang
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Hong Xu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Dingjie Xu
- College of Traditional Chinese Medicine, North China University of Science and Technology, Tangshan 063210, China
| | - Zhongqiu Wei
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Xuemin Gao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Wenchen Cai
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Na Mao
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Lijuan Zhang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shumin Li
- Basic Medicine College, North China University of Science and Technology, Tangshan 063210, China
| | - Fang Yang
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Heliang Liu
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| | - Shifeng Li
- School of Public Health, Medical Research Center, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
163
|
Proshkina EN, Solovev IA, Shaposhnikov MV, Moskalev AA. Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Mol Biol 2021. [DOI: 10.1134/s0026893320060096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
164
|
Laly AC, Sliogeryte K, Pundel OJ, Ross R, Keeling MC, Avisetti D, Waseem A, Gavara N, Connelly JT. The keratin network of intermediate filaments regulates keratinocyte rigidity sensing and nuclear mechanotransduction. SCIENCE ADVANCES 2021; 7:7/5/eabd6187. [PMID: 33571121 PMCID: PMC7840118 DOI: 10.1126/sciadv.abd6187] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/09/2020] [Indexed: 05/03/2023]
Abstract
The keratin network of intermediate filaments provides keratinocytes with essential mechanical strength and resilience, but the contribution to mechanosensing remains poorly understood. Here, we investigated the role of the keratin cytoskeleton in the response to altered matrix rigidity. We found that keratinocytes adapted to increasing matrix stiffness by forming a rigid, interconnected network of keratin bundles, in conjunction with F-actin stress fiber formation and increased cell stiffness. Disruption of keratin stability by overexpression of the dominant keratin 14 mutation R416P inhibited the normal mechanical response to substrate rigidity, reducing F-actin stress fibers and cell stiffness. The R416P mutation also impaired mechanotransduction to the nuclear lamina, which mediated stiffness-dependent chromatin remodeling. By contrast, depletion of the cytolinker plectin had the opposite effect and promoted increased mechanoresponsiveness and up-regulation of lamin A/C. Together, these results demonstrate that the keratin cytoskeleton plays a key role in matrix rigidity sensing and downstream signal transduction.
Collapse
Affiliation(s)
- Ana C Laly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kristina Sliogeryte
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Oscar J Pundel
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rosie Ross
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael C Keeling
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | - Deepa Avisetti
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Núria Gavara
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
- Serra-Hunter Program, Biophysics and Bioengineering Unit, Department of Biomedicine, University of Barcelona, Barcelona, Spain
| | - John T Connelly
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
165
|
Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 2021; 22:22-38. [PMID: 33188273 DOI: 10.1038/s41580-020-00306-w] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2020] [Indexed: 12/22/2022]
Abstract
Mechanical forces shape cells and tissues during development and adult homeostasis. In addition, they also signal to cells via mechanotransduction pathways to control cell proliferation, differentiation and death. These processes require metabolism of nutrients for both energy generation and biosynthesis of macromolecules. However, how cellular mechanics and metabolism are connected is still poorly understood. Here, we discuss recent evidence indicating how the mechanical cues exerted by the extracellular matrix (ECM), cell-ECM and cell-cell adhesion complexes influence metabolic pathways. Moreover, we explore the energy and metabolic requirements associated with cell mechanics and ECM remodelling, implicating a reciprocal crosstalk between cell mechanics and metabolism.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy
| | | | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK.
| | - Sirio Dupont
- Department of Molecular Medicine, University of Padua Medical School, Padua, Italy.
| |
Collapse
|
166
|
Actin on and around the Nucleus. Trends Cell Biol 2020; 31:211-223. [PMID: 33376040 DOI: 10.1016/j.tcb.2020.11.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022]
Abstract
Actin plays roles in many important cellular processes, including cell motility, organelle movement, and cell signaling. The discovery of transmembrane actin-binding proteins at the outer nuclear membrane (ONM) raises the exciting possibility that actin can play a role in direct force transmission to the nucleus and the genome at its interior. Actin-dependent nucleus displacement was first described a decade ago. We are now gaining a more detailed understanding of its mechanisms, as well as new roles for actin during mitosis and meiosis, for gene expression, and in the cell's response to mechanical stimuli. Here we review these recent developments, the actin-binding proteins involved, the tissue specificity of these mechanisms, and methods developed to reconstitute and study this interaction in vitro.
Collapse
|
167
|
dos Santos Á, Cook AW, Gough RE, Schilling M, Olszok N, Brown I, Wang L, Aaron J, Martin-Fernandez ML, Rehfeldt F, Toseland CP. DNA damage alters nuclear mechanics through chromatin reorganization. Nucleic Acids Res 2020; 49:340-353. [PMID: 33330932 PMCID: PMC7797048 DOI: 10.1093/nar/gkaa1202] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Martin Schilling
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Nora A Olszok
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Florian Rehfeldt
- Correspondence may also be addressed to Florian Rehfeldt. Tel: +49 921 55 2504;
| | | |
Collapse
|
168
|
Chirico N, Van Laake LW, Sluijter JPG, van Mil A, Dierickx P. Cardiac circadian rhythms in time and space: The future is in 4D. Curr Opin Pharmacol 2020; 57:49-59. [PMID: 33338891 DOI: 10.1016/j.coph.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
The circadian clock synchronizes the body into 24-h cycles, thereby anticipating variations in tissue-specific diurnal tasks, such as response to increased cardiac metabolic demand during the active period of the day. As a result, blood pressure, heart rate, cardiac output, and occurrence of fatal cardiovascular events fluctuate in a diurnal manner. The heart contains different cell types that make up and reside in an environment of biochemical, mechanical, and topographical signaling. Cardiac architecture is essential for proper heart development as well as for maintenance of cell homeostasis and tissue repair. In this review, we describe the possibilities of studying circadian rhythmicity in the heart by using advanced in vitro systems that mimic the native cardiac 3D microenvironment which can be tuned in time and space. Harnessing the knowledge that originates from those in vitro models could significantly improve innovative cardiac modeling and regenerative strategies.
Collapse
Affiliation(s)
- Nino Chirico
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Linda W Van Laake
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alain van Mil
- Regenerative Medicine Center, Circulatory Health Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, the Netherlands; Department of Cardiology and Experimental Cardiology Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pieterjan Dierickx
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA.
| |
Collapse
|
169
|
Goodwin K, Nelson CM. Mechanics of Development. Dev Cell 2020; 56:240-250. [PMID: 33321105 DOI: 10.1016/j.devcel.2020.11.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 01/06/2023]
Abstract
Mechanical forces are integral to development-from the earliest stages of embryogenesis to the construction and differentiation of complex organs. Advances in imaging and biophysical tools have allowed us to delve into the developmental mechanobiology of increasingly complex organs and organisms. Here, we focus on recent work that highlights the diversity and importance of mechanical influences during morphogenesis. Developing tissues experience intrinsic mechanical signals from active forces and changes to tissue mechanical properties as well as extrinsic mechanical signals, including constraint and compression, pressure, and shear forces. Finally, we suggest promising avenues for future work in this rapidly expanding field.
Collapse
Affiliation(s)
- Katharine Goodwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
170
|
Chen NY, Kim PH, Fong LG, Young SG. Nuclear membrane ruptures, cell death, and tissue damage in the setting of nuclear lamin deficiencies. Nucleus 2020; 11:237-249. [PMID: 32910721 PMCID: PMC7529418 DOI: 10.1080/19491034.2020.1815410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/26/2022] Open
Abstract
The nuclear membranes function as a barrier to separate the cell nucleus from the cytoplasm, but this barrier can be compromised by nuclear membrane ruptures, leading to intermixing of nuclear and cytoplasmic contents. Spontaneous nuclear membrane ruptures (i.e., ruptures occurring in the absence of mechanical stress) have been observed in cultured cells, but they are more frequent in the setting of defects or deficiencies in nuclear lamins and when cells are subjected to mechanical stress. Nuclear membrane ruptures in cultured cells have been linked to DNA damage, but the relevance of ruptures to developmental or physiologic processes in vivo has received little attention. Recently, we addressed that issue by examining neuronal migration in the cerebral cortex, a developmental process that subjects the cell nucleus to mechanical stress. In the setting of lamin B1 deficiency, we observed frequent nuclear membrane ruptures in migrating neurons in the developing cerebral cortex and showed that those ruptures are likely the cause of observed DNA damage, neuronal cell death, and profound neuropathology. In this review, we discuss the physiologic relevance of nuclear membrane ruptures, with a focus on migrating neurons in cell culture and in the cerebral cortex of genetically modified mice.
Collapse
Affiliation(s)
- Natalie Y. Chen
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Paul H. Kim
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Loren G. Fong
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Stephen G. Young
- Department of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, USA
- Department of Molecular Biology Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
171
|
Zhang M, Sun Q, Liu Y, Chu Z, Yu L, Hou Y, Kang H, Wei Q, Zhao W, Spatz JP, Zhao C, Cavalcanti-Adam EA. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials 2020; 268:120543. [PMID: 33260094 DOI: 10.1016/j.biomaterials.2020.120543] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 01/14/2023]
Abstract
Hydrogels with tunable mechanical properties have provided a tremendous opportunity to regulate stem cell differentiation. Hydrogels with osteoid (about 30-40 kPa) or higher stiffness are usually required to induce the osteogenic differentiation of mesenchymal stem cells (MSCs). It is yet difficult to achieve the same differentiation on very soft hydrogels, because of low environmental mechanical stimuli and restricted cellular mechanotransduction. Here, we modulate cellular spatial sensing of integrin-adhesive ligands via quasi-hexagonally arranged nanopatterns to promote cell mechanosensing on hydrogels having low stiffness (about 3 kPa). The increased interligand spacing has been shown to regulate actomyosin force loading to recruit extra integrins on soft hydrogels. It therefore activates mechanotransduction and promotes the osteogenic differentiation of MSCs on soft hydrogels to the level comparable with the one observed on osteoid stiffness. Our work opens up new possibilities for the design of biomaterials and tissue scaffolds for regenerative therapeutics.
Collapse
Affiliation(s)
- Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China; Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| | - Qian Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| | - Yiling Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Heemin Kang
- Department of Biomicrosystem Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China; College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China.
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China; College of Biomedical Engineering, Sichuan University, 610064, Chengdu, China
| | - Elisabetta A Cavalcanti-Adam
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany; Department of Biophysical Chemistry, Heidelberg University, INF 253, 69120, Heidelberg, Germany
| |
Collapse
|
172
|
Sjöqvist M, Antfolk D, Suarez-Rodriguez F, Sahlgren C. From structural resilience to cell specification - Intermediate filaments as regulators of cell fate. FASEB J 2020; 35:e21182. [PMID: 33205514 PMCID: PMC7839487 DOI: 10.1096/fj.202001627r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/05/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
During the last decades intermediate filaments (IFs) have emerged as important regulators of cellular signaling events, ascribing IFs with functions beyond the structural support they provide. The organ and developmental stage‐specific expression of IFs regulate cell differentiation within developing or remodeling tissues. Lack of IFs causes perturbed stem cell differentiation in vasculature, intestine, nervous system, and mammary gland, in transgenic mouse models. The aberrant cell fate decisions are caused by deregulation of different stem cell signaling pathways, such as Notch, Wnt, YAP/TAZ, and TGFβ. Mutations in genes coding for IFs cause an array of different diseases, many related to stem cell dysfunction, but the molecular mechanisms remain unresolved. Here, we provide a comprehensive overview of how IFs interact with and regulate the activity, localization and function of different signaling proteins in stem cells, and how the assembly state and PTM profile of IFs may affect these processes. Identifying when, where and how IFs and cell signaling congregate, will expand our understanding of IF‐linked stem cell dysfunction during development and disease.
Collapse
Affiliation(s)
- Marika Sjöqvist
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Daniel Antfolk
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Freddy Suarez-Rodriguez
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia Sahlgren
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, Åbo Akademi University and University of Turku, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
173
|
Abstract
The nuclear envelope is often depicted as a static barrier that regulates access between the nucleus and the cytosol. However, recent research has identified many conditions in cultured cells and in vivo in which nuclear membrane ruptures cause the loss of nuclear compartmentalization. These conditions include some that are commonly associated with human disease, such as migration of cancer cells through small spaces and expression of nuclear lamin disease mutations in both cultured cells and tissues undergoing nuclear migration. Nuclear membrane ruptures are rapidly repaired in the nucleus but persist in nuclear compartments that form around missegregated chromosomes called micronuclei. This review summarizes what is known about the mechanisms of nuclear membrane rupture and repair in both the main nucleus and micronuclei, and highlights recent work connecting the loss of nuclear integrity to genome instability and innate immune signaling. These connections link nuclear membrane rupture to complex chromosome alterations, tumorigenesis, and laminopathy etiologies.
Collapse
Affiliation(s)
- John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Emily M Hatch
- Division of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA;
| |
Collapse
|
174
|
Zinner M, Lukonin I, Liberali P. Design principles of tissue organisation: How single cells coordinate across scales. Curr Opin Cell Biol 2020; 67:37-45. [PMID: 32889170 DOI: 10.1016/j.ceb.2020.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 12/18/2022]
Abstract
Cells act as building blocks of multicellular organisms, forming higher-order structures at different biological scales. Niches, tissues and, ultimately, entire organisms consist of single cells that remain in constant communication. Emergence of developmental patterns and tissue architecture thus relies on single cells acting as a collective, coordinating growth, migration, cell fate transitions and cell type sorting. For this, information has to be transmitted forward from cells to tissues and fed back to the individual cell to allow dynamic and robust coordination. Here, we define the design principles of tissue organisation integrating chemical, genetic and mechanical cues. We also review the state-of-the-art technologies used for dissecting collective cellular behaviours at single cell- and tissue-level resolution. We finally outline future challenges that lie in a comprehensive understanding of how single cells coordinate across biological scales to insure robust development, homoeostasis and regeneration of tissues.
Collapse
Affiliation(s)
- Marietta Zinner
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Ilya Lukonin
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research (FMI), Maulbeerstrasse 66, 4058, Basel, Switzerland; University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| |
Collapse
|
175
|
Fedintsev A, Moskalev A. Stochastic non-enzymatic modification of long-lived macromolecules - A missing hallmark of aging. Ageing Res Rev 2020; 62:101097. [PMID: 32540391 DOI: 10.1016/j.arr.2020.101097] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/05/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Damage accumulation in long-living macromolecules (especially extracellular matrix (ECM) proteins, nuclear pore complex (NPC) proteins, and histones) is a missing hallmark of aging. Stochastic non-enzymatic modifications of ECM trigger cellular senescence as well as many other hallmarks of aging affect organ barriers integrity and drive tissue fibrosis. The importance of it for aging makes it a key target for interventions. The most promising of them can be AGE inhibitors (chelators, O-acetyl group or transglycating activity compounds, amadorins and amadoriases), glucosepane breakers, stimulators of elastogenesis, and RAGE antagonists.
Collapse
Affiliation(s)
- Alexander Fedintsev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Institute of Biology of FRC of Komi Scientific Center, Ural Branch of Russian Academy of Sciences, Syktyvkar, Russia.
| |
Collapse
|
176
|
Varlet AA, Helfer E, Badens C. Molecular and Mechanobiological Pathways Related to the Physiopathology of FPLD2. Cells 2020; 9:cells9091947. [PMID: 32842478 PMCID: PMC7565540 DOI: 10.3390/cells9091947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Laminopathies are rare and heterogeneous diseases affecting one to almost all tissues, as in Progeria, and sharing certain features such as metabolic disorders and a predisposition to atherosclerotic cardiovascular diseases. These two features are the main characteristics of the adipose tissue-specific laminopathy called familial partial lipodystrophy type 2 (FPLD2). The only gene that is involved in FPLD2 physiopathology is the LMNA gene, with at least 20 mutations that are considered pathogenic. LMNA encodes the type V intermediate filament lamin A/C, which is incorporated into the lamina meshwork lining the inner membrane of the nuclear envelope. Lamin A/C is involved in the regulation of cellular mechanical properties through the control of nuclear rigidity and deformability, gene modulation and chromatin organization. While recent studies have described new potential signaling pathways dependent on lamin A/C and associated with FPLD2 physiopathology, the whole picture of how the syndrome develops remains unknown. In this review, we summarize the signaling pathways involving lamin A/C that are associated with the progression of FPLD2. We also explore the links between alterations of the cellular mechanical properties and FPLD2 physiopathology. Finally, we introduce potential tools based on the exploration of cellular mechanical properties that could be redirected for FPLD2 diagnosis.
Collapse
Affiliation(s)
- Alice-Anaïs Varlet
- Marseille Medical Genetics (MMG), INSERM, Aix Marseille University, 13005 Marseille, France;
| | - Emmanuèle Helfer
- Centre Interdisciplinaire de Nanoscience de Marseille (CINAM), CNRS, Aix Marseille University, 13009 Marseille, France
- Correspondence: (E.H.); (C.B.); Tel.: +33-6-60-30-28-91 (E.H.); +33-4-91-78-68-94 (C.B.)
| | - Catherine Badens
- Marseille Medical Genetics (MMG), INSERM, Aix Marseille University, 13005 Marseille, France;
- Correspondence: (E.H.); (C.B.); Tel.: +33-6-60-30-28-91 (E.H.); +33-4-91-78-68-94 (C.B.)
| |
Collapse
|
177
|
Cho S, Paik DT, Wu JC. An extracellular matrix paradox in myocardial scar formation. Signal Transduct Target Ther 2020; 5:151. [PMID: 32788685 PMCID: PMC7423912 DOI: 10.1038/s41392-020-00270-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David T Paik
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
178
|
Structural and Mechanical Aberrations of the Nuclear Lamina in Disease. Cells 2020; 9:cells9081884. [PMID: 32796718 PMCID: PMC7464082 DOI: 10.3390/cells9081884] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/02/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
The nuclear lamins are the major components of the nuclear lamina in the nuclear envelope. Lamins are involved in numerous functions, including a role in providing structural support to the cell and the mechanosensing of the cell. Mutations in the genes encoding for lamins lead to the rare diseases termed laminopathies. However, not only laminopathies show alterations in the nuclear lamina. Deregulation of lamin expression is reported in multiple cancers and several viral infections lead to a disrupted nuclear lamina. The structural and mechanical effects of alterations in the nuclear lamina can partly explain the phenotypes seen in disease, such as muscular weakness in certain laminopathies and transmigration of cancer cells. However, a lot of answers to questions about the relation between changes in the nuclear lamina and disease development remain elusive. Here, we review the current understandings of the contribution of the nuclear lamina in the structural support and mechanosensing of healthy and diseased cells.
Collapse
|
179
|
Nuclear mechanosensing: mechanism and consequences of a nuclear rupture. Mutat Res 2020; 821:111717. [PMID: 32810711 DOI: 10.1016/j.mrfmmm.2020.111717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
The physical connections between the cytoskeletal system and the nucleus provide a route for the nucleus to sense the mechanical stress both inside and outside of the cell. Failure to withstand such stress leads to nuclear rupture, which is observed in human diseases. In this review, we will go through the recent findings and our current understandings of nuclear rupture. Starting with the triggers of nuclear rupture, including the aberrant nuclear lamina composition and the elevated actomyosin contractility. We will also discuss the role of ESCRT-III in nuclear rupture repair and the biological consequences of nuclear rupture, including the negative impacts on cellular compartmentalization, DNA damage, and cellular differentiation. Recent studies on nuclear rupture provide further insights into the direct mechanistic link between nuclear rupture and several pathological conditions. Such knowledge can guide us in developing potential therapeutic solutions for the patients.
Collapse
|
180
|
Paik DT, Cho S, Tian L, Chang HY, Wu JC. Single-cell RNA sequencing in cardiovascular development, disease and medicine. Nat Rev Cardiol 2020; 17:457-473. [PMID: 32231331 PMCID: PMC7528042 DOI: 10.1038/s41569-020-0359-y] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 02/08/2023]
Abstract
Advances in single-cell RNA sequencing (scRNA-seq) technologies in the past 10 years have had a transformative effect on biomedical research, enabling the profiling and analysis of the transcriptomes of single cells at unprecedented resolution and throughput. Specifically, scRNA-seq has facilitated the identification of novel or rare cell types, the analysis of single-cell trajectory construction and stem or progenitor cell differentiation, and the comparison of healthy and disease-related tissues at single-cell resolution. These applications have been critical in advances in cardiovascular research in the past decade as evidenced by the generation of cell atlases of mammalian heart and blood vessels and the elucidation of mechanisms involved in cardiovascular development and stem or progenitor cell differentiation. In this Review, we summarize the currently available scRNA-seq technologies and analytical tools and discuss the latest findings using scRNA-seq that have substantially improved our knowledge on the development of the cardiovascular system and the mechanisms underlying cardiovascular diseases. Furthermore, we examine emerging strategies that integrate multimodal single-cell platforms, focusing on future applications in cardiovascular precision medicine that use single-cell omics approaches to characterize cell-specific responses to drugs or environmental stimuli and to develop effective patient-specific therapeutics.
Collapse
Affiliation(s)
- David T Paik
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, Stanford, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford, CA, USA.
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
181
|
Hobson CM, Kern M, O'Brien ET, Stephens AD, Falvo MR, Superfine R. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Mol Biol Cell 2020; 31:1788-1801. [PMID: 32267206 DOI: 10.1101/2020.02.10.942581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023] Open
Abstract
Nuclei are often under external stress, be it during migration through tight constrictions or compressive pressure by the actin cap, and the mechanical properties of nuclei govern their subsequent deformations. Both altered mechanical properties of nuclei and abnormal nuclear morphologies are hallmarks of a variety of disease states. Little work, however, has been done to link specific changes in nuclear shape to external forces. Here, we utilize a combined atomic force microscope and light sheet microscope to show SKOV3 nuclei exhibit a two-regime force response that correlates with changes in nuclear volume and surface area, allowing us to develop an empirical model of nuclear deformation. Our technique further decouples the roles of chromatin and lamin A/C in compression, showing they separately resist changes in nuclear volume and surface area, respectively; this insight was not previously accessible by Hertzian analysis. A two-material finite element model supports our conclusions. We also observed that chromatin decompaction leads to lower nuclear curvature under compression, which is important for maintaining nuclear compartmentalization and function. The demonstrated link between specific types of nuclear morphological change and applied force will allow researchers to better understand the stress on nuclei throughout various biological processes.
Collapse
Affiliation(s)
- Chad M Hobson
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Megan Kern
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - E Timothy O'Brien
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D Stephens
- Biology Department, The University of Massachusetts at Amherst, Amherst, MA 01003, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael R Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard Superfine
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
182
|
Hobson CM, Kern M, O’Brien ET, Stephens AD, Falvo MR, Superfine R. Correlating nuclear morphology and external force with combined atomic force microscopy and light sheet imaging separates roles of chromatin and lamin A/C in nuclear mechanics. Mol Biol Cell 2020; 31:1788-1801. [PMID: 32267206 PMCID: PMC7521857 DOI: 10.1091/mbc.e20-01-0073] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/31/2022] Open
Abstract
Nuclei are often under external stress, be it during migration through tight constrictions or compressive pressure by the actin cap, and the mechanical properties of nuclei govern their subsequent deformations. Both altered mechanical properties of nuclei and abnormal nuclear morphologies are hallmarks of a variety of disease states. Little work, however, has been done to link specific changes in nuclear shape to external forces. Here, we utilize a combined atomic force microscope and light sheet microscope to show SKOV3 nuclei exhibit a two-regime force response that correlates with changes in nuclear volume and surface area, allowing us to develop an empirical model of nuclear deformation. Our technique further decouples the roles of chromatin and lamin A/C in compression, showing they separately resist changes in nuclear volume and surface area, respectively; this insight was not previously accessible by Hertzian analysis. A two-material finite element model supports our conclusions. We also observed that chromatin decompaction leads to lower nuclear curvature under compression, which is important for maintaining nuclear compartmentalization and function. The demonstrated link between specific types of nuclear morphological change and applied force will allow researchers to better understand the stress on nuclei throughout various biological processes.
Collapse
Affiliation(s)
- Chad M. Hobson
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Megan Kern
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - E. Timothy O’Brien
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Andrew D. Stephens
- Biology Department, The University of Massachusetts at Amherst, Amherst, MA 01003, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Richard Superfine
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
183
|
Guo X, Dai X, Wu X, Zhou T, Ni J, Xue J, Wang X. Understanding the birth of rupture-prone and irreparable micronuclei. Chromosoma 2020; 129:181-200. [PMID: 32671520 DOI: 10.1007/s00412-020-00741-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
Micronuclei are extra-nuclear bodies mainly derived from ana-telophase lagging chromosomes/chromatins (LCs) that are not incorporated into primary nuclei at mitotic exit. Unlike primary nuclei, most micronuclei are enclosed by nuclear envelope (NE) that is highly susceptible to spontaneous and irreparable rupture. Ruptured micronuclei act as triggers of chromothripsis-like chaotic chromosomal rearrangements and cGAS-mediated innate immunity and inflammation, raising the view that micronuclei play active roles in human aging and tumorigenesis. Thus, understanding the ways in which micronuclear envelope (mNE) goes awry acquires increased importance. Here, we review the data to present a general framework for this question. We firstly describe NE reassembly after mitosis and NE repair during interphase. Simultaneously, we briefly discuss how mNE is organized and how mNE rupture controls the fate of micronuclei and micronucleated cells. As a focus of this review, we highlight current knowledge about why mNE is rupture-prone and irreparable. For this, we survey observations from a series of elegant studies to provide a systematic overview. We conclude that the birth of rupture-prone and irreparable micronuclei may be the cumulative effects of their intracellular geographic origins, biophysical properties, and specific mNE features. We propose that DNA damage and immunogenicity in micronuclei increase stepwise from altered mNE components, mNE rupture, and refractory to repair. Throughout our discussion, we note interesting issues in mNE fragility that have yet to be resolved.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Xueqin Dai
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue Wu
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
184
|
Piccus R, Brayson D. The nuclear envelope: LINCing tissue mechanics to genome regulation in cardiac and skeletal muscle. Biol Lett 2020; 16:20200302. [PMID: 32634376 DOI: 10.1098/rsbl.2020.0302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Regulation of the genome is viewed through the prism of gene expression, DNA replication and DNA repair as controlled through transcription, chromatin compartmentalisation and recruitment of repair factors by enzymes such as DNA polymerases, ligases, acetylases, methylases and cyclin-dependent kinases. However, recent advances in the field of muscle cell physiology have also shown a compelling role for 'outside-in' biophysical control of genomic material through mechanotransduction. The crucial hub that transduces these biophysical signals is called the Linker of Nucleoskeleton and Cytoskeleton (LINC). This complex is embedded across the nuclear envelope, which separates the nucleus from the cytoplasm. How the LINC complex operates to mechanically regulate the many functions of DNA is becoming increasingly clear, and recent advances have provided exciting insight into how this occurs in cells from mechanically activated tissues such as skeletal and cardiac muscle. Nevertheless, there are still some notable shortcomings in our understanding of these processes and resolving these will likely help us understand how muscle diseases manifest at the level of the genome.
Collapse
Affiliation(s)
- Rachel Piccus
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Daniel Brayson
- School of Cardiovascular Medicine and Sciences, King's College London, London SE5 9NU, UK.,Molecular Neurosciences, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK
| |
Collapse
|
185
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
186
|
Zuela-Sopilniak N, Bar-Sela D, Charar C, Wintner O, Gruenbaum Y, Buxboim A. Measuring nucleus mechanics within a living multicellular organism: Physical decoupling and attenuated recovery rate are physiological protective mechanisms of the cell nucleus under high mechanical load. Mol Biol Cell 2020; 31:1943-1950. [PMID: 32583745 PMCID: PMC7525816 DOI: 10.1091/mbc.e20-01-0085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Nuclei within cells are constantly subjected to compressive, tensile, and shear forces, which regulate nucleoskeletal and cytoskeletal remodeling, activate signaling pathways, and direct cell-fate decisions. Multiple rheological methods have been adapted for characterizing the response to applied forces of isolated nuclei and nuclei within intact cells. However, in vitro measurements fail to capture the viscoelastic modulation of nuclear stress-strain relationships by the physiological tethering to the surrounding cytoskeleton, extracellular matrix and cells, and tissue-level architectures. Using an equiaxial stretching apparatus, we applied a step stress and measured nucleus deformation dynamics within living Caenorhabditis elegans nematodes. Nuclei deformed nonmonotonically under constant load. Nonmonotonic deformation was conserved across tissues and robust to nucleoskeletal and cytoskeletal perturbations, but it required intact linker of nucleoskeleton and cytoskeleton complex attachments. The transition from creep to strain recovery fits a tensile-compressive linear viscoelastic model that is indicative of nucleoskeletal–cytoskeletal decoupling under high load. Ce-lamin (lmn-1) knockdown softened the nucleus, whereas nematode aging stiffened the nucleus and decreased deformation recovery rate. Recovery lasted minutes rather than seconds due to physiological damping of the released mechanical energy, thus protecting nuclear integrity and preventing chromatin damage.
Collapse
Affiliation(s)
- Noam Zuela-Sopilniak
- Departments of Genetics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Daniel Bar-Sela
- Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Chayki Charar
- Departments of Genetics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Oren Wintner
- Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yosef Gruenbaum
- Departments of Genetics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Amnon Buxboim
- Cell and Developmental Biology, The Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel.,Alexander Grass Center for Bioengineering, The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 9190416, Israel
| |
Collapse
|
187
|
Nuclear mechanotransduction in stem cells. Curr Opin Cell Biol 2020; 64:97-104. [DOI: 10.1016/j.ceb.2020.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
|
188
|
Alcorta-Sevillano N, Macías I, Rodríguez CI, Infante A. Crucial Role of Lamin A/C in the Migration and Differentiation of MSCs in Bone. Cells 2020; 9:cells9061330. [PMID: 32466483 PMCID: PMC7348862 DOI: 10.3390/cells9061330] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/17/2022] Open
Abstract
Lamin A/C, intermediate filament proteins from the nuclear lamina encoded by the LMNA gene, play a central role in mediating the mechanosignaling of cytoskeletal forces into nucleus. In fact, this mechanotransduction process is essential to ensure the proper functioning of other tasks also mediated by lamin A/C: the structural support of the nucleus and the regulation of gene expression. In this way, lamin A/C is fundamental for the migration and differentiation of mesenchymal stem cells (MSCs), the progenitors of osteoblasts, thus affecting bone homeostasis. Bone formation is a complex process regulated by chemical and mechanical cues, coming from the surrounding extracellular matrix. MSCs respond to signals modulating the expression levels of lamin A/C, and therefore, adapting their nuclear shape and stiffness. To promote cell migration, MSCs need soft nuclei with low lamin A content. Conversely, during osteogenic differentiation, lamin A/C levels are known to be increased. Several LMNA mutations present a negative impact in the migration and osteogenesis of MSCs, affecting bone tissue homeostasis and leading to pathological conditions. This review aims to describe these concepts by discussing the latest state-of-the-art in this exciting area, focusing on the relationship between lamin A/C in MSCs' function and bone tissue from both, health and pathological points of view.
Collapse
|
189
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
190
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
191
|
Janota CS, Calero-Cuenca FJ, Gomes ER. The role of the cell nucleus in mechanotransduction. Curr Opin Cell Biol 2020; 63:204-211. [PMID: 32361559 DOI: 10.1016/j.ceb.2020.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 01/12/2023]
Abstract
Mechanical forces are known to influence cellular processes with consequences at the cellular and physiological level. The cell nucleus is the largest and stiffest organelle, and it is connected to the cytoskeleton for proper cellular function. The connection between the nucleus and the cytoskeleton is in most cases mediated by the linker of nucleoskeleton and cytoskeleton (LINC) complex. Not surprisingly, the nucleus and the associated cytoskeleton are implicated in multiple mechanotransduction pathways important for cellular activities. Herein, we review recent advances describing how the LINC complex, the nuclear lamina, and nuclear pore complexes are involved in nuclear mechanotransduction. We will also discuss how the perinuclear actin cytoskeleton is important for the regulation of nuclear mechanotransduction. Additionally, we discuss the relevance of nuclear mechanotransduction for cell migration, development, and how nuclear mechanotransduction impairment leads to multiple disorders.
Collapse
Affiliation(s)
- Cátia S Janota
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Javier Calero-Cuenca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Edgar R Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
192
|
Cardiac regeneration as an environmental adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118623. [DOI: 10.1016/j.bbamcr.2019.118623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022]
|
193
|
Eissenberg JC, Gonzalo S. Pushing the limit on laminopathies. NATURE MATERIALS 2020; 19:378-380. [PMID: 32210401 PMCID: PMC8315305 DOI: 10.1038/s41563-020-0648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mutations to lamins in skeletal muscle cells have been shown to reduce nuclear stability, increase nuclear envelope rupture, and induce DNA damage and cell death. New research shows that limiting mechanical loads can rescue myofibre function and viability.
Collapse
Affiliation(s)
- Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
194
|
Earle AJ, Kirby TJ, Fedorchak GR, Isermann P, Patel J, Iruvanti S, Moore SA, Bonne G, Wallrath LL, Lammerding J. Mutant lamins cause nuclear envelope rupture and DNA damage in skeletal muscle cells. NATURE MATERIALS 2020; 19:464-473. [PMID: 31844279 PMCID: PMC7102937 DOI: 10.1038/s41563-019-0563-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/12/2019] [Indexed: 05/19/2023]
Abstract
Mutations in the LMNA gene, which encodes the nuclear envelope (NE) proteins lamins A/C, cause Emery-Dreifuss muscular dystrophy, congenital muscular dystrophy and other diseases collectively known as laminopathies. The mechanisms responsible for these diseases remain incompletely understood. Using three mouse models of muscle laminopathies and muscle biopsies from individuals with LMNA-related muscular dystrophy, we found that Lmna mutations reduced nuclear stability and caused transient rupture of the NE in skeletal muscle cells, resulting in DNA damage, DNA damage response activation and reduced cell viability. NE and DNA damage resulted from nuclear migration during skeletal muscle maturation and correlated with disease severity in the mouse models. Reduction of cytoskeletal forces on the myonuclei prevented NE damage and rescued myofibre function and viability in Lmna mutant myofibres, indicating that myofibre dysfunction is the result of mechanically induced NE damage. Taken together, these findings implicate mechanically induced DNA damage as a pathogenic contributor to LMNA skeletal muscle diseases.
Collapse
Affiliation(s)
- Ashley J Earle
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Tyler J Kirby
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Gregory R Fedorchak
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Philipp Isermann
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jineet Patel
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Sushruta Iruvanti
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Steven A Moore
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gisèle Bonne
- Sorbonne Université, Inserm UMRS 974, Center of Research in Myology, Association Institute of Myology, Paris, France
| | - Lori L Wallrath
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
195
|
Gil L, Niño SA, Chi-Ahumada E, Rodríguez-Leyva I, Guerrero C, Rebolledo AB, Arias JA, Jiménez-Capdeville ME. Perinuclear Lamin A and Nucleoplasmic Lamin B2 Characterize Two Types of Hippocampal Neurons through Alzheimer's Disease Progression. Int J Mol Sci 2020; 21:E1841. [PMID: 32155994 PMCID: PMC7084765 DOI: 10.3390/ijms21051841] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent reports point to a nuclear origin of Alzheimer's disease (AD). Aged postmitotic neurons try to repair their damaged DNA by entering the cell cycle. This aberrant cell cycle re-entry involves chromatin modifications where nuclear Tau and the nuclear lamin are involved. The purpose of this work was to elucidate their participation in the nuclear pathological transformation of neurons at early AD. METHODOLOGY The study was performed in hippocampal paraffin embedded sections of adult, senile, and AD brains at I-VI Braak stages. We analyzed phospho-Tau, lamins A, B1, B2, and C, nucleophosmin (B23) and the epigenetic marker H4K20me3 by immunohistochemistry. RESULTS Two neuronal populations were found across AD stages, one is characterized by a significant increase of Lamin A expression, reinforced perinuclear Lamin B2, elevated expression of H4K20me3 and nuclear Tau loss, while neurons with nucleoplasmic Lamin B2 constitute a second population. CONCLUSIONS The abnormal cell cycle reentry in early AD implies a fundamental neuronal transformation. This implies the reorganization of the nucleo-cytoskeleton through the expression of the highly regulated Lamin A, heterochromatin repression and building of toxic neuronal tangles. This work demonstrates that nuclear Tau and lamin modifications in hippocampal neurons are crucial events in age-related neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain; (L.G.)
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Erika Chi-Ahumada
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Carmen Guerrero
- Banco de cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Belén Rebolledo
- Banco de cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - José A. Arias
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain; (L.G.)
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
196
|
Loss of an H3K9me anchor rescues laminopathy-linked changes in nuclear organization and muscle function in an Emery-Dreifuss muscular dystrophy model. Genes Dev 2020; 34:560-579. [PMID: 32139421 PMCID: PMC7111258 DOI: 10.1101/gad.332213.119] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 02/14/2020] [Indexed: 12/30/2022]
Abstract
In this study, Harr et al. use C. elegans to investigate the consequences of a missense mutation (Y45C) in lamin A (encoded by LMNA) found in the human Emery-Dreifuss muscular dystrophy (EDMD) syndrome. Using muscle-specific emerin Dam-ID and other in vivo approaches, the authors report that they were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for treating EDMD. Mutations in the nuclear structural protein lamin A produce rare, tissue-specific diseases called laminopathies. The introduction of a human Emery-Dreifuss muscular dystrophy (EDMD)-inducing mutation into the C. elegans lamin (LMN-Y59C), recapitulates many muscular dystrophy phenotypes, and correlates with hyper-sequestration of a heterochromatic array at the nuclear periphery in muscle cells. Using muscle-specific emerin Dam-ID in worms, we monitored the effects of the mutation on endogenous chromatin. An increased contact with the nuclear periphery along chromosome arms, and an enhanced release of chromosomal centers, coincided with the disease phenotypes of reduced locomotion and compromised sarcomere integrity. The coupling of the LMN-Y59C mutation with the ablation of CEC-4, a chromodomain protein that anchors H3K9-methylated chromatin at the nuclear envelope (NE), suppressed the muscle-associated disease phenotypes. Deletion of cec-4 also rescued LMN-Y59C-linked alterations in chromatin organization and some changes in transcription. Sequences that changed position in the LMN-Y59C mutant, are enriched for E2F (EFL-2)-binding sites, consistent with previous studies suggesting that altered Rb-E2F interaction with lamin A may contribute to muscle dysfunction. In summary, we were able to counteract the dominant muscle-specific defects provoked by LMNA mutation by the ablation of a lamin-associated H3K9me anchor, suggesting a novel therapeutic pathway for EDMD.
Collapse
|
197
|
"The nuclear envelope, a meiotic jack-of-all-trades". Curr Opin Cell Biol 2020; 64:34-42. [PMID: 32109733 DOI: 10.1016/j.ceb.2019.12.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
The nucleus is one of the membrane-bound organelles that are a distinguishing feature between eukaryotes and prokaryotes. During meiosis, the nuclear envelope takes on functions beyond separating the nucleoplasm from the cytoplasm. These include associations with meiotic chromosomes to mediate pairing, being a sensor for recombination progression, and supportive of enormous nuclear growth during oocyte formation. In this review, we highlight recent results that have contributed to our understanding of meiotic nuclear envelope function and dynamics.
Collapse
|
198
|
Abstract
The EMBO/EMBL Symposium 'Mechanical Forces in Development' was held in Heidelberg, Germany, on 3-6 July 2019. This interdisciplinary symposium brought together an impressive and diverse line-up of speakers seeking to address the origin and role of mechanical forces in development. Emphasising the importance of integrative approaches and theoretical simulations to obtain comprehensive mechanistic insights into complex morphogenetic processes, the meeting provided an ideal platform to discuss the concepts and methods of developmental mechanobiology in an era of fast technical and conceptual progress. Here, we summarise the concepts and findings discussed during the meeting, as well as the agenda it sets for the future of developmental mechanobiology.
Collapse
Affiliation(s)
- Adrien Hallou
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK .,Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK.,Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK
| | - Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
199
|
Abstract
During aging, deterioration in cardiac structure and function leads to increased susceptibility to heart failure. The need for interventions to combat this age-related cardiac decline is becoming increasingly urgent as the elderly population continues to grow. Our understanding of cardiac aging, and aging in general, is limited. However, recent studies of age-related decline and its prevention through interventions like exercise have revealed novel pathological and cardioprotective pathways. In this review, we summarize recent findings concerning the molecular mechanisms of age-related heart failure and highlight exercise as a valuable experimental platform for the discovery of much-needed novel therapeutic targets in this chronic disease.
Collapse
Affiliation(s)
- Haobo Li
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Margaret H Hastings
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - James Rhee
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.).,Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston (J.R.)
| | - Lena E Trager
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Jason D Roh
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| | - Anthony Rosenzweig
- From the Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, Boston (H.L., M.H.H., J.R., L.E.T., J.D.R., A.R.)
| |
Collapse
|
200
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|