151
|
Francolini I, Piozzi A. Role of Antioxidant Molecules and Polymers in Prevention of Bacterial Growth and Biofilm Formation. Curr Med Chem 2020; 27:4882-4904. [DOI: 10.2174/0929867326666190409120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Background:
Antioxidants are multifaceted molecules playing a crucial role in several
cellular functions. There is by now a well-established knowledge about their involvement in numerous
processes associated with aging, including vascular damage, neurodegenerative diseases and
cancer. An emerging area of application has been lately identified for these compounds in relation to
the recent findings indicating their ability to affect biofilm formation by some microbial pathogens,
including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature was
performed using a focused review question. The quality of retrieved papers was appraised using
standard tools.
Results:
One hundred sixty-five papers extracted from pubmed database and published in the last
fifteen years were included in this review focused on the assessment of the antimicrobial and antibiofilm
activity of antioxidant compounds, including vitamins, flavonoids, non-flavonoid polyphenols,
and antioxidant polymers. Mechanisms of action of some important antioxidant compounds,
especially for vitamin C and phenolic acids, were identified.
Conclusion:
The findings of this review confirm the potential benefits of the use of natural antioxidants
as antimicrobial/antibiofilm compounds. Generally, gram-positive bacteria were found to be
more sensitive to antioxidants than gram-negatives. Antioxidant polymeric systems have also been
developed mainly derived from functionalization of polysaccharides with antioxidant molecules.
The application of such systems in clinics may permit to overcome some issues related to the systemic
delivery of antioxidants, such as poor absorption, loss of bioactivity, and limited half-life.
However, investigations focused on the study of antibiofilm activity of antioxidant polymers are still
very limited in number and therefore they are strongly encouraged in order to lay the foundations for
application of antioxidant polymers in treatment of biofilm-based infections.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| |
Collapse
|
152
|
Purification, biochemical characterization and DNA protection against oxidative damage of a novel recombinant superoxide dismutase from psychrophilic bacterium Halomonas sp. ANT108. Protein Expr Purif 2020; 173:105661. [DOI: 10.1016/j.pep.2020.105661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
|
153
|
Han Z, Sun J, Wang A, Lv A, Hu X, Chen L, Guo Y. Differentially expressed proteins in the intestine of Cynoglossus semilaevis Günther following a Shewanella algae challenge. FISH & SHELLFISH IMMUNOLOGY 2020; 104:111-122. [PMID: 32525078 DOI: 10.1016/j.fsi.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Fish intestine is an important constituent of the mucosal immune system. The gut and gut-associated lymphoid tissue construct a local immune environment. A Shewanella algae strain was previously reported to be a pathogen causing ascitic disease accompanied with intestinal inflammation in Cynoglossus semilaevis. This study aimed to investigate the intestine immune response in C. semilaevis to S. algae infection at the protein level. Two-dimensional electrophoresis coupled with mass spectrometry proteomics was utilized to compare protein expression in the intestines from normal and S. algae-infected C. semilaevis. A total of 70 differentially expressed proteins (DEPs), consisting of 16 upregulated and 54 downregulated proteins, were identified in the intestine tissue of C. Semilaevis. These protein expression changes were further validated using western blot analysis and quantitative real-time PCR. Gene ontology enrichment analysis showed that these 70 DEPs could be assigned across three categories: "cellular components", "molecular function", and "biological process". Forty-one DEPs (six up-regulated and 35 down-regulated proteins) related to metabolic processes were identified. In addition, 20 DEPs (eight up-regulated and 12 down-regulated proteins) related to stress and immune responses were identified. A protein-protein interaction network generated by the STRING (Search Tool for the Retrieval of Interacting Genes/protein) revealed that 30 DEPs interacted with one another to form an integrated network. Among them, 29 DEPs were related to stress, immune, and metabolism processes. In the network, some of the immune related proteins (C9, FGB, KNG1, apolipoprotein A-IV-like, and PDIA3) were up-regulated and most DEPs involved in metabolism processes were down-regulated. These results indicate that the immune defense response of the intestine was activated and the intestinal function associated with metabolism processes was disturbed. This study provides valuable information for further research into the functions of these DEPs in fish.
Collapse
Affiliation(s)
- Zhuoran Han
- Key Laboratory of Ecology and Environment Science of Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China; Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Anli Wang
- Key Laboratory of Ecology and Environment Science of Higher Education Institutes, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, China.
| | - Aijun Lv
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Xiucai Hu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Limei Chen
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Yongjun Guo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
154
|
Mayfield JR, Grotemeyer EN, Jackson TA. Concerted proton-electron transfer reactions of manganese-hydroxo and manganese-oxo complexes. Chem Commun (Camb) 2020; 56:9238-9255. [PMID: 32578605 PMCID: PMC7429365 DOI: 10.1039/d0cc01201g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.
Collapse
Affiliation(s)
- Jaycee R Mayfield
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, KS 66045, USA.
| | | | | |
Collapse
|
155
|
Results from the Population-Based Gutenberg Health Study Revealing Four Altered Autoantibodies in Retinal Vein Occlusion Patients. J Ophthalmol 2020; 2020:8386160. [PMID: 32802490 PMCID: PMC7411451 DOI: 10.1155/2020/8386160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Retinal vein occlusion (RVO) is the second most common retinal vascular disease and a major cause of visual impairment. In this study, we aimed to observe whether RVO cases have different antibody profiles as a new potential risk factor and whether a conversion of retinal vein occlusion (RVO) to neovascular glaucoma (NVG), one of the major complications, is occurring within a 5-year timeframe. Methods We performed a nested case-control study (1 : 4) within the Gutenberg Health Study (GHS), a population-based, prospective cohort study in the Rhine-Main Region of Germany including 15,010 participants. RVO subjects (n = 59) were identified by grading of fundus photographs. Optic nerves of RVO subjects and age- and sex-matched controls (n = 229) at baseline and their follow-up examination after 5 years were analyzed for glaucomatous alterations. Of all RVO subjects and controls, serum autoantibody profiles were measured using in-house manufactured antigen-antibody microarrays. Results Of the 59 RVO patients, 3 patients (5%) showed glaucomatous optic disc alterations at baseline, whereas no new glaucoma case was detected at 5-year follow-up. Four of the autoantibodies measured (against dermcidin, neurotrophin-3, superoxide dismutase 1, and signal recognition particle 14 kDa protein) were significantly increased in the serum of RVO patients (p < 0.001). Multivariable conditional logistic regression analysis showed that 3 of these 4 antibodies were independent of cardiovascular risk factors. Conclusions We found several autoantibodies associated with RVO, targeting proteins and structures possibly involved in RVO pathogenesis.
Collapse
|
156
|
Pedone E, Fiorentino G, Bartolucci S, Limauro D. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants (Basel) 2020; 9:antiox9080703. [PMID: 32756530 PMCID: PMC7465337 DOI: 10.3390/antiox9080703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
- Correspondence:
| |
Collapse
|
157
|
Nadarajah KK. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:E5208. [PMID: 32717820 PMCID: PMC7432042 DOI: 10.3390/ijms21155208] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Climate change-induced abiotic stress results in crop yield and production losses. These stresses result in changes at the physiological and molecular level that affect the development and growth of the plant. Reactive oxygen species (ROS) is formed at high levels due to abiotic stress within different organelles, leading to cellular damage. Plants have evolved mechanisms to control the production and scavenging of ROS through enzymatic and non-enzymatic antioxidative processes. However, ROS has a dual function in abiotic stresses where, at high levels, they are toxic to cells while the same molecule can function as a signal transducer that activates a local and systemic plant defense response against stress. The effects, perception, signaling, and activation of ROS and their antioxidative responses are elaborated in this review. This review aims to provide a purview of processes involved in ROS homeostasis in plants and to identify genes that are triggered in response to abiotic-induced oxidative stress. This review articulates the importance of these genes and pathways in understanding the mechanism of resistance in plants and the importance of this information in breeding and genetically developing crops for resistance against abiotic stress in plants.
Collapse
Affiliation(s)
- Kalaivani K Nadarajah
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM BANGI, Malaysia
| |
Collapse
|
158
|
Kwok ML, Chan KM. Oxidative stress and apoptotic effects of copper and cadmium in the zebrafish liver cell line ZFL. Toxicol Rep 2020; 7:822-835. [PMID: 32670800 PMCID: PMC7347715 DOI: 10.1016/j.toxrep.2020.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/08/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress and apoptosis created by Cu2+ and Cd2+ insults were studied in ZFL. Cu2+ and Cd2+ both created lipid peroxidation, causing oxidative stress in cytoplasm. Mitochondrial superoxide was induced by Cd2+ but supressed by Cu2+. Cu2+ suppressed Casp3 activity, resulting in suppressed the apoptosis. Pre-treatments of low concentration of Cu2+ protected the cell from Cd2+ insults.
Copper (Cu) and cadmium (Cd) are widely used in industrial activities, resulting in Cu and Cd contamination in aquatic systems worldwide. Although Cu plays an essential role in many biological functions, an excessive amount of the metal causes cytotoxicity. In contrast, Cd is a non-essential metal that usually co-exists with Cu. Together, they cause oxidative stress in cells, leading to cell damage. These metal ions are also believed to cause cell apoptosis. In this study, we used a zebrafish liver cell line, ZFL, to study combined Cu and Cd cytotoxicity. Although Cd is more toxic than Cu, both were found to regulate the expression of oxidative stress related genes, and neither significantly altered the activity of oxidative stress related enzymes. Co-exposure tests with the antioxidant N-acetyl-l-cysteine and the Cu chelator bathocuproinedisulfonic acid disodium salt demonstrated that Cd toxicity was due to the oxidative stress caused by Cu, and that Cu at a low concentration could in fact exert an antioxidant effect against the oxidative stress in ZFL. Excessive Cu concentration triggered the expression of initiator caspases (caspase 8 and caspase 9) but suppressed that of an executioner caspase (caspase 3), halting apoptosis. Cd could only trigger the expression of initiator caspases; it could not halt apoptosis. However, a low concentration of Cu reduced the mitochondrial superoxide level, suppressing the Cd-induced apoptotic effects in ZFL.
Collapse
Key Words
- BCS, bathocuproinedisulfonic acid disodium salt
- CAT, catalase protein
- Casp3, caspase 3 protein
- Casp8, caspase 8 protein
- Casp9, caspase 9 protein
- Cd, cadmium
- Combined effects
- Cu, copper
- Cytotoxicity
- GR, glutathione reductase protein
- GST, glutathione-S-transferase protein
- LC, lethal concentration
- LC20, lethal concentration of 20 % population
- LC50, median lethal concentration
- Mitochondrial function
- NAC, N-acetyl-l-cysteine
- PBS, phosphate-buffered saline
- SOD, superoxide dismutase proteins
- VE, tocopherol (Vitamin E)
- cat, catalase gene
- ccs, copper chaperone for superoxide dismutase gene
- ef1a, elongation factor 1-alpha gene
- gr, glutathione reductase gene
- gst, glutathione-S-transferase gene
- mtDNA, mitochondrial DNA
- sod1, superoxide dismutase 1 gene
- sod2, superoxide dismutase 2 gene
- ybx1, Y box-binding protein 1 gene
- z, zebrafish
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| | - King Ming Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong
| |
Collapse
|
159
|
Kwok RML, Chan KM. WITHDRAWN: Oxidative Stress and Apoptotic Effects of Copper and Cadmium in the Zebrafish Liver Cell Line ZFL. Toxicol Rep 2020. [DOI: 10.1016/j.toxrep.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
160
|
Saccà SC, Vernazza S, Iorio EL, Tirendi S, Bassi AM, Gandolfi S, Izzotti A. Molecular changes in glaucomatous trabecular meshwork. Correlations with retinal ganglion cell death and novel strategies for neuroprotection. PROGRESS IN BRAIN RESEARCH 2020; 256:151-188. [PMID: 32958211 DOI: 10.1016/bs.pbr.2020.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by retinal ganglion cell loss. Although significant advances in ophthalmologic knowledge and practice have been made, some glaucoma mechanisms are not yet understood, therefore, up to now there is no effective treatment able to ensure healing. Indeed, either pharmacological or surgical approaches to this disease aim in lowering intraocular pressure, which is considered the only modifiable risk factor. However, it is well known that several factors and metabolites are equally (if not more) involved in glaucoma. Oxidative stress, for instance, plays a pivotal role in both glaucoma onset and progression because it is responsible for the trabecular meshwork cell damage and, consequently, for intraocular pressure increase as well as for glaucomatous damage cascade. This review at first shows accurately the molecular-derived dysfunctions in antioxidant system and in mitochondria homeostasis which due to both oxidative stress and aging, lead to a chronic inflammation state, the trabecular meshwork damage as well as the glaucoma neurodegeneration. Therefore, the main molecular events triggered by oxidative stress up to the proapoptotic signals that promote the ganglion cell death have been highlighted. The second part of this review, instead, describes some of neuroprotective agents such as polyphenols or polyunsaturated fatty acids as possible therapeutic source against the propagation of glaucomatous damage.
Collapse
Affiliation(s)
- Sergio C Saccà
- Policlinico San Martino University Hospital, Department of Neuroscience and sense organs, Ophthalmology Unit, Genoa, Italy.
| | | | | | - Sara Tirendi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Anna Maria Bassi
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Pisa, Italy
| | - Stefano Gandolfi
- Ophthalmology Unit, Department of Biological, Biotechnological and Translational Sciences, University of Parma, Parma, Italy
| | - Alberto Izzotti
- Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy; Mutagenesis Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
161
|
Kohan R, Collin A, Guizzardi S, Tolosa de Talamoni N, Picotto G. Reactive oxygen species in cancer: a paradox between pro- and anti-tumour activities. Cancer Chemother Pharmacol 2020; 86:1-13. [PMID: 32572519 DOI: 10.1007/s00280-020-04103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Cancer constitutes a group of heterogeneous diseases that share common features. They involve the existence of altered cellular pathways which result in uncontrolled cell proliferation. Deregulation of production and/or elimination of reactive oxygen species (ROS) appear to be a relevant issue in most of them. ROS have a dual role in cell metabolism: they are compromised in normal cellular homeostasis, but their overproduction has been reported to promote oxidative stress (OS), a process that may induce the damage of cell structures. ROS accumulation is implicated in the activation of signaling pathways that promote cell proliferation and metabolic adaptations to tumour growth. One characteristic of cancer cells is the sensitivity to OS, which often results from the combination of high anabolic needs and hypoxic growth conditions. However, there is still no clear evidence about the levels of oxidant species that promote cellular transformation or, otherwise, if OS induction could be adequate as an antitumour therapeutic tool. There is a need for novel therapeutic strategies based on the new knowledge of cancer biology. Targeting oncogenic molecular mechanisms with non-classical agents and/or natural compounds would be beneficial as chemoprevention or new adjuvant therapies. In addition, epigenetics and environment, and particularly dietary factors may influence the development and prevention of cancer. This article will present a revision of the current research about molecular aspects proposed to be involved in the anticancer features of oxidant and antioxidant-based therapies targeting cancer cells, and their participation in the balance of oxidative species and cancer cell death.
Collapse
Affiliation(s)
- Romina Kohan
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, INICSA (CONICET-UNC), Pabellón Argentina, 2do Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.,Cátedra de Biología Celular A, Facultad de Odontología, UNC, Córdoba, Argentina
| | - Alejandro Collin
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, INICSA (CONICET-UNC), Pabellón Argentina, 2do Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Solange Guizzardi
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, INICSA (CONICET-UNC), Pabellón Argentina, 2do Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Nori Tolosa de Talamoni
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, INICSA (CONICET-UNC), Pabellón Argentina, 2do Piso, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gabriela Picotto
- Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, UNC, INICSA (CONICET-UNC), Pabellón Argentina, 2do Piso, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
162
|
Wang H, Ki JS. Molecular identification, differential expression and protective roles of iron/manganese superoxide dismutases in the green algae Closterium ehrenbergii against metal stress. Eur J Protistol 2020; 74:125689. [DOI: 10.1016/j.ejop.2020.125689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
|
163
|
Selvi A, Devi K, Manimekalai R, Prathima PT. Comparative analysis of drought-responsive transcriptomes of sugarcane genotypes with differential tolerance to drought. 3 Biotech 2020; 10:236. [PMID: 32399386 PMCID: PMC7203378 DOI: 10.1007/s13205-020-02226-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
Water stress causes considerable yield losses in sugarcane. To investigate differentially expressed genes under water stress, two sugarcane genotypes were subjected to three water-deficit levels (mild, moderate, and severe) and subsequent recovery and leaf transcriptome was generated using Illumina NextSeq sequencing. Among the differentially expressed genes, the tolerant genotype Co 06022 generated 2970 unigenes (p ≤ 0.05, functionally known, non-redundant DEGs) at 2-day stress, and there was a progressive decrease in the expressed genes as the stress period increased with 2109 unigenes at 6-day stress and 2307 unigenes at 10-day stress. There was considerable reduction at recovery with 1334 unigenes expressed at 10 days after recovery. However, in the susceptible genotype Co 8021, the number of unigenes expressed at 2 days was lower (2025) than the tolerant genotype and a further reduction was seen at 6-day stress (1552). During recovery, more differentially expressed genes were observed in the susceptible cultivar indicating that the cultivar has to activate more functions/processes to recover from the damage caused by stress. Comparison of DEGs between all stages of stress and recovery in both genotypes revealed that, the commonly up- and down-regulated genes across different stages were approximately double in the tolerant genotype. The most enriched gene ontology classes were heme binding, peroxidase activity and metal ion binding in the biological process and response to oxidative stress, hydrogen peroxide catabolic process and response to stress in the molecular function category. The cellular component was enriched with DEGs involved in extracellular region followed by integral component of membrane. The KEGG pathway analysis revealed important metabolic activities and functionally important genes involved in mitigating water-deficit stress in both the varieties. In addition, several unannotated genes in important pathways were detected and together may provide novel insights into water-deficit tolerance mechanisms in sugarcane. The reliability of the observed expression patterns was confirmed by qRT-PCR. The results of this study will help to identify useful genes for improving drought tolerance in sugarcane.
Collapse
Affiliation(s)
- A. Selvi
- Biotechnology Section, Division of Crop Improvement, Indian Council of Agricultural Research- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | - K. Devi
- Biotechnology Section, Division of Crop Improvement, Indian Council of Agricultural Research- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | - R. Manimekalai
- Biotechnology Section, Division of Crop Improvement, Indian Council of Agricultural Research- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| | - P. T. Prathima
- Biotechnology Section, Division of Crop Improvement, Indian Council of Agricultural Research- Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641 007 India
| |
Collapse
|
164
|
Kumar Pal C, Mahato S, Joshi M, Paul S, Roy Choudhury A, Biswas B. Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
165
|
Huehne PS, Bhinija K, Srisomsap C, Chokchaichamnankit D, Weeraphan C, Svasti J, Mongkolsuk S. Detection of superoxide dismutase (Cu-Zn) isoenzymes in leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl orchid by comparative proteomic analysis. Biochem Biophys Rep 2020; 22:100762. [PMID: 32395639 PMCID: PMC7210398 DOI: 10.1016/j.bbrep.2020.100762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 11/28/2022] Open
Abstract
Typically, biological systems are protected from the toxic effect of free radicals by antioxidant defense. Extracts from orchids have been reported to show high levels of exogenous antioxidant activity including Bulbophyllum orchids but so far, there have been no reports on antioxidant enzymes. Therefore, differences in protein expression from leaves and pseudobulbs of Bulbophyllum morphologlorum Kraenzl and Dendrobium Sonia Earsakul were studied using two-dimensional gel electrophoresis and mass spectrometry (LC/MS/MS). Interestingly, the largest group of these stress response proteins were associated with antioxidant defense and temperature stress, including superoxide dismutase (Cu–Zn) and heat shock protein 70. The high expression of this antioxidant enzyme from Bulbophyllum morphologlorum Kraenzl was confirmed by activity staining on native-PAGE, and the two Cu/Zn-SODs isoenzymes were identified as Cu/Zn-SOD 1 and Cu/Zn-SOD 2 by LC/MS/MS. The results suggested that Bulbophyllum orchid can be a potential plant source for medicines and natural antioxidant supplements.
Collapse
Affiliation(s)
- Pattana S Huehne
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Kisana Bhinija
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Chantragan Srisomsap
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | | | - Churat Weeraphan
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.,Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| |
Collapse
|
166
|
Stephenie S, Chang YP, Gnanasekaran A, Esa NM, Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
167
|
Chatzidimitriou E, Bisaccia P, Corrà F, Bonato M, Irato P, Manuto L, Toppo S, Bakiu R, Santovito G. Copper/Zinc Superoxide Dismutase from the Crocodile Icefish Chionodraco hamatus: Antioxidant Defense at Constant Sub-Zero Temperature. Antioxidants (Basel) 2020; 9:325. [PMID: 32316382 PMCID: PMC7222407 DOI: 10.3390/antiox9040325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
In the present study, we describe the purification and molecular characterization of Cu,Zn superoxide dismutase (SOD) from Chionodraco hamatus, an Antarctic teleost widely distributed in many areas of the Ross Sea that plays a pivotal role in the Antarctic food chain. The primary sequence was obtained using biochemical and molecular biology approaches and compared with Cu,Zn SODs from other organisms. Multiple sequence alignment using the amino acid sequence revealed that Cu,Zn SOD showed considerable sequence similarity with its orthologues from various vertebrate species, but also some specific substitutions directly linked to cold adaptation. Phylogenetic analyses presented the monophyletic status of Antartic Teleostei among the Perciformes, confirming the erratic differentiation of these proteins and concurring with the theory of the "unclock-like" behavior of Cu,Zn SOD evolution. Expression of C. hamatus Cu,Zn SOD at both the mRNA and protein levels were analyzed in various tissues, highlighting the regulation of gene expression related to environmental stress conditions and also animal physiology. The data presented are the first on the antioxidant enzymes of a fish belonging to the Channichthyidae family and represent an important starting point in understanding the antioxidant systems of these organisms that are subject to constant risk of oxidative stress.
Collapse
Affiliation(s)
- Evangelia Chatzidimitriou
- Institute of Natural Resource Sciences, ZHAW Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Paola Bisaccia
- Department of Biology, University of Padova, 35131 Padova, Italy; (P.B.); (F.C.); (M.B.); (P.I.)
| | - Francesca Corrà
- Department of Biology, University of Padova, 35131 Padova, Italy; (P.B.); (F.C.); (M.B.); (P.I.)
| | - Marco Bonato
- Department of Biology, University of Padova, 35131 Padova, Italy; (P.B.); (F.C.); (M.B.); (P.I.)
| | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (P.B.); (F.C.); (M.B.); (P.I.)
| | - Laura Manuto
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (L.M.); (S.T.)
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy; (L.M.); (S.T.)
- CRIBI Biotech Centre, University of Padova, 35131 Padova, Italy
| | - Rigers Bakiu
- Department of Aquaculture and Fisheries, Agricultural University of Tirana, 1000 Tiranë, Albania;
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (P.B.); (F.C.); (M.B.); (P.I.)
| |
Collapse
|
168
|
Characterisation of recombinant thermostable manganese-superoxide dismutase (NeMnSOD) from Nerium oleander. Mol Biol Rep 2020; 47:3251-3270. [DOI: 10.1007/s11033-020-05374-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/07/2020] [Indexed: 12/17/2022]
|
169
|
O'Brien J, Pastora A, Stoner A, Spatafora G. The S. mutans mntE gene encodes a manganese efflux transporter. Mol Oral Microbiol 2020; 35:129-140. [PMID: 32129937 DOI: 10.1111/omi.12286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is a colonizer of the human dentition, and under conditions of dysbiosis is the primary causative agent of dental caries. The pathogenic potential of S. mutans depends, in part, on its ability to regulate the transport of metal ions across the plasma membrane to maintain intracellular metal ion homeostasis. Research in our laboratory has focused on the Mn2+ -specific SloC lipoprotein importer and its regulator encoded by the S. mutans sloR gene. Herein, we used a bioinformatics approach to identify a gene on the S. mutans UA159 chromosome, SMU_1176, as a metal ion efflux transporter that contributes to S. mutans manganese ion homeostasis. Metal ion sensitivity assays performed with the wild-type S. mutans UA159 strain and an isogenic SMU_1176 insertion-deletion mutant, called GMS3000, revealed significantly heightened sensitivity of GMS3000 to MnSO4 challenge. 54 Mn uptake experiments support the accumulation of 54 Mn in GMS3000 cell pellets when compared to 54 Mn concentrations in UA159 or in a complemented strain of GMS3000, called GMS3001. Inductively coupled plasma mass spectrometry (ICP-MS) studies were performed in parallel to quantify intracellular manganese concentrations in these strains, the results of which corroborate the 54 Mn uptake studies, and support the SMU_1176 gene product as a Mn2+ efflux protein. Expression profiling experiments revealed de-repression of SMU_1176 gene transcription in the SloR-deficient GMS584 strain of S. mutans, especially under high manganese conditions. In conclusion, the S. mutans SMU_1176 gene, which we renamed mntE, is a manganese efflux transporter that contributes to essential metal ion homeostasis as part of the SloR regulon.
Collapse
Affiliation(s)
- Joseph O'Brien
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Alexander Pastora
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Andrew Stoner
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Grace Spatafora
- Program in Molecular Biology & Biochemistry, Department of Biology, Middlebury College, Middlebury, VT, USA
| |
Collapse
|
170
|
Brêda-Alves F, Militão FP, de Alvarenga BF, Miranda PF, de Oliveira Fernandes V, Cordeiro-Araújo MK, Chia MA. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. CHEMOSPHERE 2020; 243:125318. [PMID: 31995862 DOI: 10.1016/j.chemosphere.2019.125318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 06/10/2023]
Abstract
Increased agricultural intensification goes with the widespread use of herbicides that adversely affect aquatic biodiversity. The effects of herbicides on toxin-producing cyanobacteria have been poorly studied. The present study aimed to investigate the toxicological and physiological effects of the herbicide clethodim on Raphidiopsis raciborskii (a.k.a. Cylindrospermopsis raciborskii) ITEPA1 and Microcystis aeruginosa BCCUSP232. On day four of the experiment, the exposure to 25 mg/L clethodim resulted in the highest cell density of R. raciborskii. Similarly, exposure to the 1, 5, 20, and 50 mg/L clethodim treatments resulted in the highest cell densities of M. aeruginosa on day 4 of the experiment. Medium effect concentrations (EC50) after 96 h of exposure of both strains to clethodim were 192.98 mg/L and 168.73 mg/L for R. raciborskii and M. aeruginosa, respectively. The presence of clethodim significantly increased the total microcystin content of M. aeruginosa compared to the control cultures. At 400 mg/L, total saxitoxins content of R. raciborskii was 27% higher than that of the control cultures on day 4. In contrast, cultures exposed to 100 mg/L clethodim had the lowest saxitoxins levels per cell quota. There was an increase in the levels of intracellular hydrogen peroxide in both species during exposure to clethodim, which was followed by significant changes (p < 0.05) in the activity of antioxidant enzymes such as peroxidase and superoxide dismutase. These results revealed that the presence of low levels of clethodim in the aquatic environment might lead to the excessive proliferation of cyanobacteria and alteration of their cyanotoxins content.
Collapse
Affiliation(s)
- Fernanda Brêda-Alves
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil.
| | - Frederico Pacheco Militão
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Brener Freitas de Alvarenga
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Pamela Ferreira Miranda
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Valéria de Oliveira Fernandes
- Laboratory of Taxonomy and Ecology of Algae Continents, Department of Botany, Federal University of Espírito Santo, Av. Fernando Ferrari, 29075-015, Brazil
| | - Micheline Kézia Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, 810001, Nigeria; Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, São Dimas, 13418-900, Piracicaba, SP, Brazil.
| |
Collapse
|
171
|
Olson KR. Reactive oxygen species or reactive sulfur species: why we should consider the latter. ACTA ACUST UNITED AC 2020; 223:223/4/jeb196352. [PMID: 32102833 DOI: 10.1242/jeb.196352] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The biological effects of oxidants, especially reactive oxygen species (ROS), include signaling functions (oxidative eustress), initiation of measures to reduce elevated ROS (oxidative stress), and a cascade of pathophysiological events that accompany excessive ROS (oxidative distress). Although these effects have long been studied in animal models with perturbed ROS, their actions under physiological conditions are less clear. I propose that some of the apparent uncertainty may be due to confusion of ROS with endogenously generated reactive sulfur species (RSS). ROS and RSS are chemically similar, but RSS are more reactive and versatile, and can be stored and reused. Both ROS and RSS signal via oxidation reactions with protein cysteine sulfur and they produce identical effector responses, but RSS appear to be more effective. RSS in the form of persulfidated cysteines (Cys-S-S) are produced endogenously and co-translationally introduced into proteins, and there is increasing evidence that many cellular proteins are persulfidated. A number of practical factors have contributed to confusion between ROS and RSS, and these are discussed herein. Furthermore, essentially all endogenous antioxidant enzymes appeared shortly after life began, some 3.8 billion years ago, when RSS metabolism dominated evolution. This was long before the rise in ROS, 600 million years ago, and I propose that these same enzymes, with only minor modifications, still effectively metabolize RSS in extant organisms. I am not suggesting that all ROS are RSS; however, I believe that the relative importance of ROS and RSS in biological systems needs further consideration.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| |
Collapse
|
172
|
Unsal V, Dalkıran T, Çiçek M, Kölükçü E. The Role of Natural Antioxidants Against Reactive Oxygen Species Produced by Cadmium Toxicity: A Review. Adv Pharm Bull 2020; 10:184-202. [PMID: 32373487 PMCID: PMC7191230 DOI: 10.34172/apb.2020.023] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a significant ecotoxic heavy metal that adversely affects all biological processes of humans, animals and plants. Exposure to acute and chronic Cd damages many organs in humans and animals (e.g. lung, liver, brain, kidney, and testes). In humans, the Cd concentration at birth is zero, but because the biological half-life is long (about 30 years in humans), the concentration increases with age. The industrial developments of the last century have significantly increased the use of this metal. Especially in developing countries, this consumption is higher. Oxidative stress is the imbalance between antioxidants and oxidants. Cd increases reactive oxygen species (ROS) production and causes oxidative stress. Excess cellular levels of ROS cause damage to proteins, nucleic acids, lipids, membranes and organelles. This damage has been associated with various diseases. These include cancer, hypertension, ischemia/perfusion, cardiovascular diseases, chronic obstructive pulmonary disease, diabetes, insulin resistance, acute respiratory distress syndrome, idiopathic pulmonary fibrosis, asthma, skin diseases, chronic kidney disease, eye diseases, neurodegenerative diseases (amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington disease). Natural antioxidants are popular drugs that are used by the majority of people and have few side effects. Natural antioxidants play an important role in reducing free radicals caused by Cd toxicity. Our goal in this review is to establish the relationship between Cd and oxidative stress and to discuss the role of natural antioxidants in reducing Cd toxicity.
Collapse
Affiliation(s)
- Velid Unsal
- Faculty of Health Sciences and Central Research Laboratory, Mardin Artuklu University, Mardin, Turkey
| | - Tahir Dalkıran
- Department of Pediatric Intensive Care, Necip Fazıl City Hospital, 46030, Kahramanmaras, Turkey
| | - Mustafa Çiçek
- Department of Anatomy, Faculty of Medicine, Kahramanmaraş Sütçü imam University, Kahramanmaras, Turkey
| | - Engin Kölükçü
- Department of Urology, Faculty of Medicine, Gaziosmanpasa University,Tokat, Turkey
| |
Collapse
|
173
|
Iglesias-Pedraz JM, Comai L. Measurements of Hydrogen Peroxide and Oxidative DNA Damage in a Cell Model of Premature Aging. Methods Mol Biol 2020; 2144:245-257. [PMID: 32410041 DOI: 10.1007/978-1-0716-0592-9_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Reactive oxygen species (ROS) represent a number of highly reactive oxygen-derived by-products generated by the normal mitochondrial respiration and other cellular metabolic reactions. ROS can oxidize macromolecules including lipids, proteins, and nucleic acids. Under physiological condition, the cellular levels of ROS are controlled by several antioxidant enzymes. However, an imbalance between ROS production and detoxification results in oxidative stress, which leads to the accumulation of macromolecular damage and progressive decline in normal physiological functions.Oxidative deterioration of DNA can result in lesion that are mutagenic and contribute to aging and age-related diseases. Therefore, methods for the detection of ROS and oxidative deterioration of macromolecules such as DNA in cells provide important tool in aging research. Here, we described protocols for the detection of cytoplasmic and mitochondria pools of hydrogen peroxide, and the DNA modification 8-oxoguanine, a biomarker of oxidative damage, that are applicable to cell-based studies on aging and other related areas.
Collapse
Affiliation(s)
- Juan Manuel Iglesias-Pedraz
- Laboratorio de Genética Molecular y Bioquímica, Departamento de Investigación, Desarrollo e Innovación, Universidad Científica del Sur, Lima, Peru
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
174
|
Kwok ML, Hu XL, Meng Q, Chan KM. Whole-transcriptome sequencing (RNA-seq) analyses of the zebrafish liver cell line, ZFL, after acute exposure to Cu2+ ions. Metallomics 2020; 12:732-751. [DOI: 10.1039/d0mt00005a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All cells require Cu as a cofactor, but Cu2+ induces toxicity and oxidative damage. A strict system is thus needed to maintain Cu homeostasis.
Collapse
Affiliation(s)
- Man Long Kwok
- School of Life Sciences
- The Chinese University of Hong Kong
- Sha Tin
- Hong Kong
| | - Xue Lei Hu
- School of Life Sciences
- The Chinese University of Hong Kong
- Sha Tin
- Hong Kong
| | - Qi Meng
- School of Life Sciences
- The Chinese University of Hong Kong
- Sha Tin
- Hong Kong
| | - King Ming Chan
- School of Life Sciences
- The Chinese University of Hong Kong
- Sha Tin
- Hong Kong
| |
Collapse
|
175
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
176
|
Kolahi M, Mohajel Kazemi E, Yazdi M, Goldson-Barnaby A. Oxidative stress induced by cadmium in lettuce (Lactuca sativa Linn.): Oxidative stress indicators and prediction of their genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:71-89. [PMID: 31734520 DOI: 10.1016/j.plaphy.2019.10.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination with heavy metals is of concern as plants have the ability to absorb chemical toxicants facilitating the entry of toxic metals into the food chain. Lettuce (Lactuca sativa Linn.) was cultured in four nutrient solutions containing different concentrations of cadmium (0, 3, 6, and 9 mmol). The impact of heavy metal on the morphological features, antioxidant properties and antioxidant enzymes activity were investigated with primary focus on superoxide dismutase, ascorbate peroxidase, peroxidase and catalase enzymes. In silico methods were utilized in the study of the genes of these enzymes. Significant changes were observed in the morphological features of the plant with plants appearing stunted, more spherical and yellow in colour. A decrease in the dry mass of the plant was also detected. The Translocation factor (TF) for cadmium was significantly high in lettuce. Enhanced antioxidant enzymatic activity suggests that these enzymes are integrally involved in the defense mechanism of the plant to heavy metal stress. Also observed was an increase in total soluble protein, and total phenolic content. Total flavonoid content was not significantly affected. Fourteen genes encoding for ascorbate peroxidase and nineteen genes for superoxide dismutase were identified in lettuce. These enzymes varied from each other with regards to the number of exons and amino acids present, as well as their location within the cell. Plants exhibit various response mechanisms to combat heavy metal contamination.
Collapse
Affiliation(s)
- M Kolahi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - E Mohajel Kazemi
- Department of Plant Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - M Yazdi
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A Goldson-Barnaby
- Department of Chemistry, University of the West Indies, Mona, Jamaica
| |
Collapse
|
177
|
Ji X, Wu Z, Sung S, Lee PH. Metagenomics and metatranscriptomics analyses reveal oxygen detoxification and mixotrophic potentials of an enriched anammox culture in a continuous stirred-tank reactor. WATER RESEARCH 2019; 166:115039. [PMID: 31520814 DOI: 10.1016/j.watres.2019.115039] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/18/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
The metabolisms of anaerobic ammonium oxidation (anammox) bacteria related to ammonia oxidation with nitrite reduction and autotrophic carbon fixation have been extensively observed. However, little is known about the specific metabolic pathways associated with oxygen detoxification and organic carbon utilization. To this end, we obtained high abundance of anammox species (∼50%) in a lab-scale continuous stirred-tank reactor (CSTR) at room temperature without strict anaerobic condition. The draft genome of the dominant anammox bacteria affiliated to Ca. Brocadia sp. was recovered. Its metabolic pathways and genes expression were reconstructed and examined through metagenomic and metatranscriptomic analyses. Interestingly, the results suggested that this anammox lineage likely performs oxygen detoxification with genes encoding superoxide dismutase (SOD) and cytochrome c peroxidase (Ccp). Moreover, the Ccp-activated hydrogen peroxide (intermediate of oxygen detoxification) reduction might be energetically beneficial for the observed acetate conversion related to cell synthesis of Ca. Brocadia sp. This study offers a comprehensive understanding on the diverse metabolic activities in anammox species affiliated to Ca. Brocadia sp., and expanded the applicability of anammox process.
Collapse
Affiliation(s)
- Xiaoming Ji
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Zhuoying Wu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, UK
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management University of Hawaii at Hilo, USA
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London, UK.
| |
Collapse
|
178
|
Pal CK, Mahato S, Yadav HR, Shit M, Choudhury AR, Biswas B. Bio-mimetic of catecholase and phosphatase activity by a tetra-iron(III) cluster. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114156] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
179
|
Mejeha OK, Head IM, Sherry A, McCann CM, Leary P, Jones DM, Gray ND. Beyond N and P: The impact of Ni on crude oil biodegradation. CHEMOSPHERE 2019; 237:124545. [PMID: 31549657 DOI: 10.1016/j.chemosphere.2019.124545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
N and P are the key limiting nutrients considered most important for the stimulation of crude oil degradation but other trace nutrients may also be important. Experimental soil microcosms were setup to investigate crude oil degradation in the context of Ni amendments. Amended Nickel as NiO, NiCl2, or, a porphyrin complex either inhibited, had no effect, or, enhanced aerobic hydrocarbon degradation in an oil-contaminated soil. Biodegradation was significantly (95% confidence) enhanced (70%) with low levels of Ni-Porph (12 mg/kg) relative to an oil-only control; whereas, NiO (200 and 350 mg/kg) significantly inhibited (36 and 87%) biodegradation consistent with oxide particle induced reactive oxygen stress. Microbial community compositions were also significantly affected by Ni. In 16S rRNA sequence libraries, the enriched hydrocarbon degrading genus, Rhodococcus, was partially replaced by a Nocardia sp. in the presence of low levels of NiO (12 and 50 mg/kg). In contrast, the highest relative and absolute Rhodococcus abundances were coincident with the maximal rates of oil degradation observed in the Ni-Porph-amended soils. Growth dependent constitutive requirements for Ni-dependent urease or perhaps Ni-dependent superoxide dismutase enzymes (found in Rhodococcus genomes) provided a mechanistic explanation for stimulation. These results suggest biostimulation technologies, in addition to N and P, should also consider trace nutrients such as Ni tacitly considered adequately supplied and available in a typical soil.
Collapse
Affiliation(s)
- Obioma K Mejeha
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom; Federal University of Technology, P. M. B. 1526, Owerri, Nigeria.
| | - Ian M Head
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Angela Sherry
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Clare M McCann
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Peter Leary
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - D Martin Jones
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| | - Neil D Gray
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
180
|
Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019; 139:104405. [PMID: 31707126 DOI: 10.1016/j.fitote.2019.104405] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023]
Abstract
There is a continuing rise in the occurrence of multidrug-resistant bacterial infections. Antibiotic resistance to currently available antibiotics has become a global health issue leading to an urgent need for alternative antibacterial strategies. There has been a renewed interest in the development of antibacterial agents from natural sources, and trans-cinnamaldehyde is an example of a naturally occurring compound that has received significant attention in recent years. Trans-Cinnamaldehyde has been shown to possess substantial antimicrobial activity, as well as an array of other medicinal properties, and represents an intriguing hit compound from which a number of derivatives have been developed. In some cases, these derivatives have been shown to possess improved activity, not only compared to trans-cinnamaldehyde but also to commonly used antibiotics. Therefore, understanding the antibacterial mechanisms of action that these compounds elicit is imperative in order to facilitate their development and the development of new antibacterial agents that could exploit similar mechanistic approaches. The purpose of this review is to provide an overview of current knowledge on the antibacterial activity and mechanisms of action of cinnamaldehyde and its derivatives, and to highlight significant contributions made in this research area. It is hoped that the findings presented in this work will aid the future development of new antibacterial agents.
Collapse
Affiliation(s)
- Amanda A Doyle
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
181
|
Oliveira RADC, de Andrade AS, Imparato DO, de Lima JGS, de Almeida RVM, Lima JPMS, Pasquali MADB, Dalmolin RJS. Analysis of Arabidopsis thaliana Redox Gene Network Indicates Evolutionary Expansion of Class III Peroxidase in Plants. Sci Rep 2019; 9:15741. [PMID: 31673065 PMCID: PMC6823369 DOI: 10.1038/s41598-019-52299-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic metabolism and may cause oxidative damage to biomolecules. Plants have a complex redox system, involving enzymatic and non-enzymatic compounds. The evolutionary origin of enzymatic antioxidant defense in plants is yet unclear. Here, we describe the redox gene network for A. thaliana and investigate the evolutionary origin of this network. We gathered from public repositories 246 A. thaliana genes directly involved with ROS metabolism and proposed an A. thaliana redox gene network. Using orthology information of 238 Eukaryotes from STRINGdb, we inferred the evolutionary root of each gene to reconstruct the evolutionary history of A. thaliana antioxidant gene network. We found two interconnected clusters: one formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase; and the other formed entirely by class III peroxidases. Each cluster emerged in different periods of evolution: the cluster formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase emerged before opisthokonta-plant divergence; the cluster composed by class III peroxidases emerged after opisthokonta-plant divergence and therefore contained the most recent network components. According to our results, class III peroxidases are in expansion throughout plant evolution, with new orthologs emerging in each evaluated plant clade divergence.
Collapse
Affiliation(s)
- Raffael Azevedo de Carvalho Oliveira
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Abraão Silveira de Andrade
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - João Paulo Matos Santos Lima
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil.,Food Engineering Unit, UAEALI, UFCG, Campina Grande, Brazil.,Graduate Program in Natural Resources, PPGRN, UFCG, Campina Grande, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
182
|
The Biochemical Properties of Manganese in Plants. PLANTS 2019; 8:plants8100381. [PMID: 31569811 PMCID: PMC6843630 DOI: 10.3390/plants8100381] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 01/12/2023]
Abstract
Manganese (Mn) is an essential micronutrient with many functional roles in plant metabolism. Manganese acts as an activator and co-factor of hundreds of metalloenzymes in plants. Because of its ability to readily change oxidation state in biological systems, Mn plays and important role in a broad range of enzyme-catalyzed reactions, including redox reactions, phosphorylation, decarboxylation, and hydrolysis. Manganese(II) is the prevalent oxidation state of Mn in plants and exhibits fast ligand exchange kinetics, which means that Mn can often be substituted by other metal ions, such as Mg(II), which has similar ion characteristics and requirements to the ligand environment of the metal binding sites. Knowledge of the molecular mechanisms catalyzed by Mn and regulation of Mn insertion into the active site of Mn-dependent enzymes, in the presence of other metals, is gradually evolving. This review presents an overview of the chemistry and biochemistry of Mn in plants, including an updated list of known Mn-dependent enzymes, together with enzymes where Mn has been shown to exchange with other metal ions. Furthermore, the current knowledge of the structure and functional role of the three most well characterized Mn-containing metalloenzymes in plants; the oxygen evolving complex of photosystem II, Mn superoxide dismutase, and oxalate oxidase is summarized.
Collapse
|
183
|
Folgueira I, Lamas J, de Felipe AP, Sueiro RA, Leiro JM. Identification and Molecular Characterization of Superoxide Dismutases Isolated From A Scuticociliate Parasite: Physiological Role in Oxidative Stress. Sci Rep 2019; 9:13329. [PMID: 31527617 PMCID: PMC6746850 DOI: 10.1038/s41598-019-49750-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022] Open
Abstract
Philasterides dicentrarchi is a free-living microaerophilic scuticociliate that can become a facultative parasite and cause a serious parasitic disease in farmed fish. Both the free-living and parasitic forms of this scuticociliate are exposed to oxidative stress associated with environmental factors and the host immune system. The reactive oxygen species (ROS) generated by the host are neutralized by the ciliate by means of antioxidant defences. In this study we aimed to identify metalloenzymes with superoxide dismutase (SOD) activity capable of inactivating the superoxide anion (•O2-) generated during induction of oxidative stress. P. dicentrarchi possesses the three characteristic types of SOD isoenzymes in eukaryotes: copper/zinc-SOD, manganese-SOD and iron-SOD. The Cu/Zn-SOD isoenzymes comprise three types of homodimeric proteins (CSD1-3) of molecular weight (MW) 34-44 kDa and with very different AA sequences. All Cu/Zn-SODs are sensitive to NaCN, located in the cytosol and in the alveolar sacs, and one of them (CSD2) is extracellular. Mn- and Fe-SOD transcripts encode homodimeric proteins (MSD and FSD, respectively) in their native state: a) MSD (MW 50 kDa) is insensitive to H2O2 and NaN3 and is located in the mitochondria; and b) FSD (MW 60 kDa) is sensitive to H2O2, NaN3 and the polyphenol trans-resveratrol and is located extracellularly. Expression of SOD isoenzymes increases when •O2- is induced by ultraviolet (UV) irradiation, and the increase is proportional to the dose of energy applied, indicating that these enzymes are actively involved in cellular protection against oxidative stress.
Collapse
Affiliation(s)
- Iria Folgueira
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research and Food Analysis, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Jesús Lamas
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Ana Paula de Felipe
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research and Food Analysis, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Rosa Ana Sueiro
- Department of Microbiology and Parasitology, Laboratory of Parasitology, Institute of Research and Food Analysis, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - José Manuel Leiro
- Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| |
Collapse
|
184
|
Tounsi S, Feki K, Kamoun Y, Saïdi MN, Jemli S, Ghorbel M, Alcon C, Brini F. Highlight on the expression and the function of a novel MnSOD from diploid wheat (T. monococcum) in response to abiotic stress and heavy metal toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:384-394. [PMID: 31401434 DOI: 10.1016/j.plaphy.2019.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Superoxide dismutases (SODs) play a pivotal role in improving abiotic stress tolerance in plant cells. A novel manganese superoxide dismutase gene, denoted as TmMnSOD, was identified from Triticum monococcum. The encoded protein displayed high sequence identity with MnSOD family members and was highly homologous to TdMnSOD from durum wheat. Furthermore, the 3D structure analysis revealed that TmMnSOD displayed homotetramer subunit organization, incorporating four Mn2+ ions. Notably, TmMnSOD structure contains predominantly alpha helices with three beta sheets. On the other hand, under stress conditions, TmMnSOD transcript level was significantly up-regulated by salt, oxidative and heavy metal stresses. At the functional level, TmMnSOD imparts tolerance of yeast and E. coli cells under diverse stresses. Promoter analysis of TmMnSOD gene showed the presence of a great number of salt and pathogen-responsive cis-regulatory elements, highlighting the interest of this gene in breeding programs towards improved tolerance to salt stress in wheat.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Kaouthar Feki
- Laboratory of Legumes, Centre of Biotechnology Bordj Cedria, BP 901, 2050, Hammam Lif, Tunisia
| | - Yosra Kamoun
- Laboratory of Molecular Biotechnology of Eukaryotes, Centre of Biotechnology of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Mohamed Najib Saïdi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Sonia Jemli
- Laboratory of Microbial Biotechnology and Enzymes Engineering, Centre of Biotechnology of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Mouna Ghorbel
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Carine Alcon
- Biochimie & Physiologie Moléculaire des plantes, PHIV platform, UMR 5004 CNRS/386 INRA/Supagro Montpellier / Université Montpellier 2, Campus Supagro-INRA, 34060, Montpellier Cedex 2, France
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia.
| |
Collapse
|
185
|
Woźniak A, Bednarski W, Dancewicz K, Gabryś B, Borowiak-Sobkowiak B, Bocianowski J, Samardakiewicz S, Rucińska-Sobkowiak R, Morkunas I. Oxidative stress links response to lead and Acyrthosiphon pisum in Pisum sativum L. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:152996. [PMID: 31352020 DOI: 10.1016/j.jplph.2019.152996] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/08/2019] [Accepted: 06/11/2019] [Indexed: 05/20/2023]
Abstract
This study demonstrates the impact of lead at hormetic (0.075 mM Pb(NO3)2) and sublethal (0.5 mM Pb(NO3)2) doses on the intensity of oxidative stress in pea seedlings (Pisum sativum L. cv. 'Cysterski'). Our first objective was to determine how exposure of pea seedlings to Pb alters the plant defence responses to pea aphid (Acyrthosiphon pisum Harris), and whether these responses could indirectly affect A. pisum. The second objective was to investigate the effects of various Pb concentrations in the medium on demographic parameters of pea aphid population and the process of its feeding on edible pea. We found that the dose of Pb sublethal for pea seedlings strongly reduced net reproductive rate and limited the number of A. pisum individuals reaching the phloem. An important defence line of pea seedlings growing on Pb-supplemented medium and next during combinatory effect of the two stressors Pb and A. pisum was a high generation of superoxide anion (O2-). This was accompanied by a considerable reduction in superoxide dismutase (SOD) activity, and a decrease in the level of Mn2+ ions. A the same time, weak activity of Mn-SOD was detected in the roots of the seedlings exposed to the sublethal dose of Pb and during Pb and aphid interaction. Apart from the marked increase in O2-, an increase in semiquinone radicals occurred, especially in the roots of the seedlings treated with the sublethal dose of Pb and both infested and non-infested with aphids. Also, hydrogen peroxide (H2O2) generation markedly intensified in aphid-infested leaves. It reached the highest level 24 h post infestation (hpi), mainly in the cell wall of leaf epidermis. This may be related to the function of H2O2 as a signalling molecule that triggers defence mechanisms. The activity of peroxidase (POX), an important enzyme involved in scavenging H2O2, was also high at 24 hpi and at subsequent time points. Moreover, the contents of thiobarbituric acid reactive substances (TBARS), products of lipid peroxidation, rose but to a small degree thanks to an efficient antioxidant system. Total antioxidant capacity (TAC) dependent on the pool of fast antioxidants, both in infested and non-infested and leaves was higher than in the control. In conclusion, the reaction of pea seedlings to low and sublethal doses of Pb and then A. pisum infestation differed substantially and depended on a direct contact of the stress factor with the organ (Pb with roots and A. pisum with leaves). The probing behavior of A. pisum also depended on Pb concentration in the plant tissues.
Collapse
Affiliation(s)
- Agnieszka Woźniak
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznań, Poland
| | - Katarzyna Dancewicz
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516, Zielona Góra, Poland
| | - Beata Gabryś
- Department of Botany and Ecology, University of Zielona Góra, Prof. Z. Szafrana 1, 65-516, Zielona Góra, Poland
| | - Beata Borowiak-Sobkowiak
- Department of Entomology and Environmental Protection, Poznań University of Life Sciences, Dąbrowskiego 159, Poznań, 60-594, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Renata Rucińska-Sobkowiak
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
186
|
Ślesak I, Kula M, Ślesak H, Miszalski Z, Strzałka K. How to define obligatory anaerobiosis? An evolutionary view on the antioxidant response system and the early stages of the evolution of life on Earth. Free Radic Biol Med 2019; 140:61-73. [PMID: 30862543 DOI: 10.1016/j.freeradbiomed.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
One of the former definitions of "obligate anaerobiosis" was based on three main criteria: 1) it occurs in organisms, so-called obligate anaerobes, which live in environments without oxygen (O2), 2) O2-dependent (aerobic) respiration, and 3) antioxidant enzymes are absent in obligate anaerobes. In contrast, aerobes need O2 in order to grow and develop properly. Obligate (or strict) anaerobes belong to prokaryotic microorganisms from two domains, Bacteria and Archaea. A closer look at anaerobiosis covers a wide range of microorganisms that permanently or in a time-dependent manner tolerate different concentrations of O2 in their habitats. On this basis they can be classified as obligate/facultative anaerobes, microaerophiles and nanaerobes. Paradoxically, O2 tolerance in strict anaerobes is usually, as in aerobes, associated with the activity of the antioxidant response system, which involves different antioxidant enzymes responsible for removing excess reactive oxygen species (ROS). In our opinion, the traditional definition of "obligate anaerobiosis" loses its original sense. Strict anaerobiosis should only be restricted to the occurrence of O2-independent pathways involved in energy generation. For that reason, a term better than "obligate anaerobes" would be O2/ROS tolerant anaerobes, where the role of the O2/ROS detoxification system is separated from O2-independent metabolic pathways that supply energy. Ubiquitous key antioxidant enzymes like superoxide dismutase (SOD) and superoxide reductase (SOR) in contemporary obligate anaerobes might suggest that their origin is ancient, maybe even the beginning of the evolution of life on Earth. It cannot be ruled out that c. 3.5 Gyr ago, local microquantities of O2/ROS played a role in the evolution of the last universal common ancestor (LUCA) of all modern organisms. On the basis of data in the literature, the hypothesis that LUCA could be an O2/ROS tolerant anaerobe is discussed together with the question of the abiotic sources of O2/ROS and/or the early evolution of cyanobacteria that perform oxygenic photosynthesis.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Monika Kula
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Zbigniew Miszalski
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland.
| | - Kazimierz Strzałka
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387, Krakow, Poland; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| |
Collapse
|
187
|
Olson KR. Hydrogen sulfide, reactive sulfur species and coping with reactive oxygen species. Free Radic Biol Med 2019; 140:74-83. [PMID: 30703482 DOI: 10.1016/j.freeradbiomed.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/19/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
Life began in a ferruginous (anoxic and Fe2+ dominated) world around 3.8 billion years ago (bya). Hydrogen sulfide (H2S) and other sulfur molecules from hydrothermal vents and other fissures provided many key necessities for life's origin including catalytic platforms (primordial enzymes) that also served as primitive boundaries (cell walls), substrates for organic synthesis and a continuous source of energy in the form of reducing equivalents. Anoxigenic photosynthesis oxidizing H2S followed within a few hundred million years and laid the metabolic groundwork for oxidative photosynthesis some half-billion years later that slightly and episodically increased atmospheric oxygen around 2.3 bya. This oxidized terrestrial sulfur to sulfate which was washed to the sea where it was reduced creating vast euxinic (anoxic and sulfidic) areas. It was in this environment that eukaryotic cells appeared around 1.5 bya and where they evolved for nearly 1 billion additional years. Oxidative photosynthesis finally oxidized the oceans and around 0.6 bya oxygen levels in the atmosphere and oceans began to rise toward present day levels. This is purported to have been a life-threatening event due to the prevalence of reactive oxygen species (ROS) and thus necessitated the elaboration of chemical and enzymatic antioxidant mechanisms. However, these antioxidants initially appeared around the time of anoxigenic photosynthesis suggesting a commitment to metabolism of reactive sulfur species (RSS). This review examines these events and suggests that many of the biological attributes assigned to ROS may, in fact, be due to RSS. This is underscored by observations that ROS and RSS are chemically similar, often indistinguishable by analytical methods and the fact that the bulk of biochemical and physiological experiments are performed in unphysiologically oxic environments where ROS are artifactually favored over RSS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine-South Bend, Raclin Carmichael Hall, 1234 Notre Dame Ave, South Bend, IN 46617, USA.
| |
Collapse
|
188
|
Palmieri G, Arciello S, Bimonte M, Carola A, Tito A, Gogliettino M, Cocca E, Fusco C, Balestrieri M, Colucci MG, Apone F. The extraordinary resistance to UV radiations of a manganese superoxide dismutase of Deinococcus radiodurans offers promising potentialities in skin care applications. J Biotechnol 2019; 302:101-111. [DOI: 10.1016/j.jbiotec.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 11/25/2022]
|
189
|
Biswas S, Mitra A, Banerjee S, Singh R, Das A, Paine TK, Bandyopadhyay P, Paul S, Biswas AN. A High Spin Mn(IV)-Oxo Complex Generated via Stepwise Proton and Electron Transfer from Mn(III)–Hydroxo Precursor: Characterization and C–H Bond Cleavage Reactivity. Inorg Chem 2019; 58:9713-9722. [DOI: 10.1021/acs.inorgchem.9b00579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Sachidulal Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India
| | - Amritaa Mitra
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Reena Singh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Abhishek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinaki Bandyopadhyay
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Siliguri 734013, India
| | - Satadal Paul
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Achintesh N. Biswas
- Department of Chemistry, National Institute of Technology Sikkim, Ravangla, South Sikkim 737139, India
| |
Collapse
|
190
|
Keskin I, Forsgren E, Lehmann M, Andersen PM, Brännström T, Lange DJ, Synofzik M, Nordström U, Zetterström P, Marklund SL, Gilthorpe JD. The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension. Acta Neuropathol 2019; 138:85-101. [PMID: 30863976 PMCID: PMC6570705 DOI: 10.1007/s00401-019-01986-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low O2 tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.
Collapse
Affiliation(s)
- Isil Keskin
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Elin Forsgren
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Manuela Lehmann
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Peter M Andersen
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Thomas Brännström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden
| | - Dale J Lange
- Department of Neurology, Hospital for Special Surgery and Weill Cornell Medical Center, New York, NY, 10021, USA
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Research Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany
| | - Ulrika Nordström
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden
| | - Per Zetterström
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden
| | - Stefan L Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90185, Umeå, Sweden.
| | - Jonathan D Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
191
|
Abstract
Nickel is an essential cofactor for some pathogen virulence factors. Due to its low availability in hosts, pathogens must efficiently transport the metal and then balance its ready intracellular availability for enzyme maturation with metal toxicity concerns. The most notable virulence-associated components are the Ni-enzymes hydrogenase and urease. Both enzymes, along with their associated nickel transporters, storage reservoirs, and maturation enzymes have been best-studied in the gastric pathogen Helicobacter pylori, a bacterium which depends heavily on nickel. Molecular hydrogen utilization is associated with efficient host colonization by the Helicobacters, which include both gastric and liver pathogens. Translocation of a H. pylori carcinogenic toxin into host epithelial cells is powered by H2 use. The multiple [NiFe] hydrogenases of Salmonella enterica Typhimurium are important in host colonization, while ureases play important roles in both prokaryotic (Proteus mirabilis and Staphylococcus spp.) and eukaryotic (Cryptoccoccus genus) pathogens associated with urinary tract infections. Other Ni-requiring enzymes, such as Ni-acireductone dioxygenase (ARD), Ni-superoxide dismutase (SOD), and Ni-glyoxalase I (GloI) play important metabolic or detoxifying roles in other pathogens. Nickel-requiring enzymes are likely important for virulence of at least 40 prokaryotic and nine eukaryotic pathogenic species, as described herein. The potential for pathogenic roles of many new Ni-binding components exists, based on recent experimental data and on the key roles that Ni enzymes play in a diverse array of pathogens.
Collapse
|
192
|
Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation. Int J Mol Sci 2019; 20:ijms20123101. [PMID: 31242611 PMCID: PMC6627786 DOI: 10.3390/ijms20123101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022] Open
Abstract
Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. In this study, 40 putative APX, 28 GPX, 16 CAT, and 41 SOD genes were identified from genomes of the resurrection species Boea hygrometrica, Selaginella lepidophylla, Xerophyta viscosa, and Oropetium thomaeum, and the mesophile Selaginellamoellendorffii. Phylogenetic analyses classified the APX, GPX, and SOD proteins into five clades each, and CAT proteins into three clades. Using co-expression network analysis, various regulatory modules were discovered, mainly involving glutathione, that likely work together to maintain ROS homeostasis upon desiccation stress in resurrection species. These regulatory modules also support the existence of species-specific ROS detoxification systems. The results suggest molecular pathways that regulate ROS in resurrection species and the role of APX, GPX, CAT and SOD genes in resurrection species during stress.
Collapse
|
193
|
Santolini J, Wootton SA, Jackson AA, Feelisch M. The Redox architecture of physiological function. CURRENT OPINION IN PHYSIOLOGY 2019; 9:34-47. [PMID: 31417975 PMCID: PMC6686734 DOI: 10.1016/j.cophys.2019.04.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The ability of organisms to accommodate variations in metabolic need and environmental conditions is essential for their survival. However, an explanation is lacking as to how the necessary accommodations in response to these challenges are organized and coordinated from (sub)cellular to higher-level physiological functions, especially in mammals. We propose that the chemistry that enables coordination and synchronization of these processes dates to the origins of Life. We offer a conceptual framework based upon the nature of electron exchange (Redox) processes that co-evolved with biological complexification, giving rise to a multi-layered system in which intra/intercellular and inter-organ exchange processes essential to sensing and adaptation stay fully synchronized. Our analysis explains why Redox is both the lingua franca and the mechanism that enable integration by connecting the various elements of regulatory processes. We here define these interactions across levels of organization as the 'Redox Interactome'. This framework provides novel insight into the chemical and biological basis of Redox signalling and may explain the recent convergence of metabolism, bioenergetics, and inflammation as well as the relationship between Redox stress and human disease.
Collapse
Affiliation(s)
- Jerome Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette Cedex, France
| | - Stephen A Wootton
- Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Tremona Road, Southampton, SO16 6YD, UK
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine and Institute for Life Sciences, University of Southampton, NIHR Southampton Biomedical Research Centre, Southampton General Hospital, Tremona Road, Southampton, SO16 6YD, UK
| |
Collapse
|
194
|
Mecina GF, Chia MA, Cordeiro-Araújo MK, Bittencourt-Oliveira MDC, Varela RM, Torres A, González Molinillo JM, Macías FA, da Silva RMG. Effect of flavonoids isolated from Tridax procumbens on the growth and toxin production of Microcystis aeruginos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:81-91. [PMID: 30954847 DOI: 10.1016/j.aquatox.2019.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
The excessive proliferation of toxin producing cyanobacteria constitutes a significant health risk to the environment and humans. This is due to the contamination of potable water and accumulation of cyanotoxins in plant and animal tissues. As a means of controlling bloom forming cyanobacteria, secondary metabolites with pro-oxidative activities from plants are used to treat water bodies contaminated with cyanobacterial blooms and their associated toxins. The objective of the present study was to evaluate the mechanism of action of extract, fractions and isolated flavonoids of Tridax procumbens L. on Microcystis aeruginosa (Kützing) Kützing. by monitoring changes in growth, oxidative stress, antioxidant response, and cyanatoxin microcystins (MCs) production. The extract, fraction 3 and the isolated flavonoids significantly reduced the cell density of the cyanobacterium. Furthermore, the extract and fraction 3 increased the production of reactive oxygen species, induced lipid peroxidation, and altered antioxidant enzyme activities of M. aeruginosa. The total MCs content of the cyanobacterium was negatively affected by the presence of the extract, fractions and isolated flavonoids. The present study show that T. procumbens has secondary metabolites that are capable of interfering with the physiology and microcystins production of M. aeruginosa. These characteristics are promising for the control of this noxious cyanobacterium in aquatic ecosystems.
Collapse
Affiliation(s)
- Gustavo Franciscatti Mecina
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages Assis, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Avenida Dom Antônio 2100, CEP: 19806-900, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, CEP: 14800-060, Araraquara, São Paulo, Brazil
| | - Mathias Ahii Chia
- Department of Botany, Ahmadu Bello University, Zaria, 810001 Nigeria
| | - Micheline Kézia Cordeiro-Araújo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Maria do Carmo Bittencourt-Oliveira
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Rosa Maria Varela
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - Ascensión Torres
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - José María González Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - Francisco Antonio Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional 6 (ceiA3), School of Science, University of Cadiz, C/República Saharaui 7, 11510, Puerto Real, Cadiz, Spain
| | - Regildo Márcio Gonçalves da Silva
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages Assis, Department of Biotechnology, Laboratory of Herbal Medicine and Natural Products, Avenida Dom Antônio 2100, CEP: 19806-900, Assis, São Paulo, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Rua Prof. Francisco Degni 55, CEP: 14800-060, Araraquara, São Paulo, Brazil.
| |
Collapse
|
195
|
Olson KR, Gao Y. Effects of inhibiting antioxidant pathways on cellular hydrogen sulfide and polysulfide metabolism. Free Radic Biol Med 2019; 135:1-14. [PMID: 30790656 DOI: 10.1016/j.freeradbiomed.2019.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/18/2022]
Abstract
Elaborate antioxidant pathways have evolved to minimize the threat of excessive reactive oxygen species (ROS) and to regulate ROS as signaling entities. ROS are chemically and functionally similar to reactive sulfur species (RSS) and both ROS and RSS have been shown to be metabolized by the antioxidant enzymes, superoxide dismutase and catalase. Here we use fluorophores to examine the effects of a variety of inhibitors of antioxidant pathways on metabolism of two important RSS, hydrogen sulfide (H2S with AzMC) and polysulfides (H2Sn, where n = 2-7, with SSP4) in HEK293 cells. Cells were exposed to inhibitors for up to 5 days in normoxia (21% O2) and hypoxia (5% O2), conditions also known to affect ROS production. Decreasing intracellular glutathione (GSH) with l-buthionine-sulfoximine (BSO) or diethyl maleate (DEM) decreased H2S production for 5 days but did not affect H2Sn. The glutathione reductase inhibitor, auranofin, initially decreased H2S and H2Sn but after two days H2Sn increased over controls. Inhibition of peroxiredoxins with conoidin A decreased H2S and increased H2Sn, whereas the glutathione peroxidase inhibitor, tiopronin, increased H2S. Aminoadipic acid, an inhibitor of cystine uptake did not affect either H2S or H2Sn. In buffer, the glutathione reductase and thioredoxin reductase inhibitor, 2-AAPA, the glutathione peroxidase mimetic, ebselen, and tiopronin variously reacted directly with AzMC and SSP4, reacted with H2S and H2S2, or optically interfered with AzMC or SSP4 fluorescence. Collectively these results show that antioxidant inhibitors, generally known for their ability to increase cellular ROS, have various effects on cellular RSS. These findings suggest that the inhibitors may affect cellular sulfur metabolism pathways that are not related to ROS production and in some instances they may directly affect RSS or the methods used to measure them. They also illustrate the importance of carefully evaluating RSS metabolism when biologically or pharmacologically attempting to manipulate ROS.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN, 46617, USA
| |
Collapse
|
196
|
Jair HW, Lu HF, Huang YW, Pan SY, Lin IL, Huang HH, Yang TC. Roles of the Two-MnSOD System of Stenotrophomonas maltophilia in the Alleviation of Superoxide Stress. Int J Mol Sci 2019; 20:ijms20071770. [PMID: 30974814 PMCID: PMC6479884 DOI: 10.3390/ijms20071770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/28/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
Manganese-dependent superoxide dismutase (MnSOD, SodA) and iron-dependent SOD (FeSOD, SodB) are critical cytosolic enzymes for alleviating superoxide stress. Distinct from the singular sodA gene in most bacteria, Stenotrophomonas maltophilia harbors two sodA genes, sodA1 and sodA2. The roles of SodA1, SodA2, and SodB of S. maltophilia in alleviating superoxide stress were investigated. The expression of sod genes was determined by promoter–xylE transcriptional fusion assay and qRT–PCR. SodA2 and sodB expressions were proportional to the bacterial logarithmic growth, but unaffected by menadione (MD), iron, or manganese challenges. SodA1 was intrinsically unexpressed and inducibly expressed by MD. Complementary expression of sodA1 was observed when sodA2 was inactivated. The individual or combined sod deletion mutants were constructed using the gene replacement strategy. The functions of SODs were assessed by evaluating cell viabilities of different sod mutants in MD, low iron-stressed, and/or low manganese-stressed conditions. Inactivation of SodA1 or SodA2 alone did not affect bacterial viability; however, simultaneously inactivating sodA1 and sodA2 significantly compromised bacterial viability in both aerobic growth and stressed conditions. SodA1 can either rescue or support SodA2 when SodA2 is defective or insufficiently potent. The presence of two MnSODs gives S. maltophilia an advantage against superoxide stress.
Collapse
Affiliation(s)
- Herng-Woei Jair
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 11220; Taiwan.
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 11220; Taiwan.
- Department of Restaurant, Hotel and Institutional Management, 24205, Fu-Jen Catholic University, New Taipei City 24205, Taiwan.
| | - Yi-Wei Huang
- Department of Biotechnology and Laboratory Science in Medicine, 11221, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Sz-Yun Pan
- Department of Biotechnology and Laboratory Science in Medicine, 11221, National Yang-Ming University, Taipei 11221, Taiwan.
| | - I-Ling Lin
- Department of Biotechnology and Laboratory Science in Medicine, 11221, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Hsin-Hui Huang
- Department of Biotechnology and Laboratory Science in Medicine, 11221, National Yang-Ming University, Taipei 11221, Taiwan.
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, 11221, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
197
|
Kim SH, Lim JW, Kim H. Astaxanthin Prevents Decreases in Superoxide Dismutase 2 Level and Superoxide Dismutase Activity in Helicobacter pylori-infected Gastric Epithelial Cells. J Cancer Prev 2019; 24:54-58. [PMID: 30993096 PMCID: PMC6453584 DOI: 10.15430/jcp.2019.24.1.54] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022] Open
Abstract
Background Helicobacter pylori increases production of reactive oxygen species (ROS), which activates inflammatory and carcinogenesis-related signaling pathways in gastric epithelial cells. Therefore, reducing ROS, by upregulating antioxidant enzyme, such as superoxide dismutase (SOD), may be a novel strategy to prevent H. pylori-associated gastric diseases. Astaxanthin is an antioxidant carotenoid that prevents oxidative stress-induced cell injury. The present study was aimed to determine whether H. pylori decreases SOD activity by changing the levels of SOD1/SOD2 and whether astaxanthin prevents changes in SOD levels and activity in H. pylori-infected gastric epithelial AGS cells. Methods AGS cells were pre-treated with astaxanthin for 3 hours prior to H. pylori infection and cultured for 1 hour in the presence of H. pylori. SOD levels and activity were assessed by Western blot analysis and a commercial assay kit, respectively. Mitochondrial ROS was determined using MitoSOX fluorescence. Results H. pylori decreased SOD activity and the SOD2 level, but increased mitochondrial ROS in AGS cells. The SOD1 level was not changed by H. pylori infection. Astaxanthin prevented H. pylori-induced decreases in the SOD2 level and SOD activity and reduced mitochondrial ROS in AGS cells. Conclusions Consumption of astaxanthin-rich food may prevent the development of H. pylori-associated gastric disorders by suppressing mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Suhn Hyung Kim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Joo Weon Lim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brian Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
198
|
Krewing M, Jarzina F, Dirks T, Schubert B, Benedikt J, Lackmann JW, Bandow JE. Plasma-sensitive Escherichia coli mutants reveal plasma resistance mechanisms. J R Soc Interface 2019; 16:20180846. [PMID: 30913981 PMCID: PMC6451402 DOI: 10.1098/rsif.2018.0846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/28/2019] [Indexed: 12/31/2022] Open
Abstract
Non-thermal atmospheric pressure plasmas are investigated as augmenting therapy to combat bacterial infections. The strong antibacterial effects of plasmas are attributed to the complex mixture of reactive species, (V)UV radiation and electric fields. The experience with antibiotics is that upon their introduction as medicines, resistance occurs in pathogens and spreads. To assess the possibility of bacterial resistance developing against plasma, we investigated intrinsic protective mechanisms that allow Escherichia coli to survive plasma stress. We performed a genome-wide screening of single-gene knockout mutants of E. coli and identified 87 mutants that are hypersensitive to the effluent of a microscale atmospheric pressure plasma jet. For selected genes ( cysB, mntH, rep and iscS) we showed in complementation studies that plasma resistance can be restored and increased above wild-type levels upon over-expression. To identify plasma-derived components that the 87 genes confer resistance against, mutants were tested for hypersensitivity against individual stressors (hydrogen peroxide, superoxide, hydroxyl radicals, ozone, HOCl, peroxynitrite, NO•, nitrite, nitrate, HNO3, acid stress, diamide, heat stress and detergents). k-means++ clustering revealed that most genes protect from hydrogen peroxide, superoxide and/or nitric oxide. In conclusion, individual bacterial genes confer resistance against plasma providing insights into the antibacterial mechanisms of plasma.
Collapse
Affiliation(s)
- Marco Krewing
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Fabian Jarzina
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Tim Dirks
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Britta Schubert
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Jan Benedikt
- Experimental Plasma Physics, Christian-Albrechts-Universität zu Kiel, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Jan-Wilm Lackmann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr-Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany
| |
Collapse
|
199
|
Verma D, Lakhanpal N, Singh K. Genome-wide identification and characterization of abiotic-stress responsive SOD (superoxide dismutase) gene family in Brassica juncea and B. rapa. BMC Genomics 2019; 20:227. [PMID: 30890148 PMCID: PMC6425617 DOI: 10.1186/s12864-019-5593-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background Abiotic stresses like drought, heat, cold and salinity cause major productivity loss in the rapeseed-mustard crops (Brassica). Major efforts have been made in the past to identify genes that provide resistance against such stresses. Superoxide dismutase (SOD) proteins, member of the metallo-enzyme family play vital role in protecting plants against abiotic stresses. In the present study, genome-wide analysis of abiotic stress responsive SOD gene family has been done in B. juncea and B. rapa. Results A total of 29 and 18 SOD genes were identified in B. juncea and B. rapa respectively and chromosome location mapping indicated their wide distribution across genome. On the basis of domain composition, the SODs were phylogenetically classified into sub-groups which was also substantiated by the gene structure and sub-cellular locations of SOD proteins. Functional annotation of SODs was also done by Gene Ontology (GO) mapping and the result was corroborated by the identified cis-regulatory elements in the promoter region of SOD genes. Based on FPKM analysis of SRA data available for drought, heat and salt stress, we identified 14 and 10 abiotic stress responsive SOD genes in B. rapa and B. juncea respectively. The differential expression analysis under drought and heat stress of identified abiotic-stress responsive SOD genes was done through quantitative Real Time PCR. Conclusion We identified abiotic-stress responsive genes that could help in improving the plant tolerance against abiotic stresses. This was the first study to describe the genome-wide analysis of SOD gene family in B. rapa and B. juncea, and the results will help in laying basic ground for future work of cloning and functional validation of SOD genes during abiotic stresses leading to Brassica crop improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5593-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Neha Lakhanpal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
200
|
Meurer MC, Mees M, Mariano LNB, Boeing T, Somensi LB, Mariott M, da Silva RDCMVDAF, Dos Santos AC, Longo B, Santos França TC, Klein-Júnior LC, de Souza P, de Andrade SF, da Silva LM. Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis. Nutr Res 2019; 66:95-106. [PMID: 30979660 DOI: 10.1016/j.nutres.2019.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 02/13/2019] [Accepted: 03/04/2019] [Indexed: 01/08/2023]
Abstract
Given the role of oxidative stress in ulcerative colitis (UC) etiology, and the amount of lutein (a carotenoid with antioxidant properties) in the dry hydroalcoholic extract of Tagetes erecta flowers (DHETE), this study investigated the intestinal anti-inflammatory properties of DHETE in an animal model of UC. The amount of lutein in the extract was determined by 1H-nuclear magnetic resonance spectroscopy, and total phenols, radical scavenger capability, cytotoxicity, and effects on reactive oxygen species and nitric oxide production were evaluated in vitro. Experimental UC was established by adding 5% dextran sulfate sodium (DSS) to drinking water, with the effects of DHETE (30-300 mg/kg, once a day for 7 days) on the morphological (colon length and weight), clinical (disease activity index and body weight loss), microscopic (histological score and mucin levels), and biochemical parameters analyzed. The lutein concentration found in DHETE was 8.2%, and DHETE scavenged 2,2-diphenyl-1-picrylhydrazyl radicals at 1000 μg/mL The exposure of intestinal epithelial cells to DHETE did not change its viability but reduced reactive oxygen species and nitric oxide production after lipopolysaccharide stimulation. In vivo, DHETE (300 mg/kg) attenuated weight loss, disease activity index, colon shortening, and histopathological changes promoted by DSS intake. Moreover, DHETE increased mucin colonic staining. The treatment with DHETE decreased myeloperoxidase activity as well as tumor necrosis factor and interleukin-6 levels. The extract also increased reduced glutathione levels and catalase activity and normalized superoxide dismutase and glutathione-S-transferase activities. In conclusion, DHETE reduced colitis severity by attenuating inflammatory cytokine secretion and improved the endogenous antioxidant defense in DSS-induced UC in mice.
Collapse
Affiliation(s)
- Marianne Caroline Meurer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Mariéli Mees
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Luísa Nathalia Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Marihá Mariott
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Rita de Cássia Melo Vilhena de Andrade Fonseca da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Ana Caroline Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Bruna Longo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Tauini Caroline Santos França
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Luiz Carlos Klein-Júnior
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901
| | - Luísa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI)-Campus Itajaí, Santa Catarina, Brazil. Rua Uruguai, 458, Centro. CEP: 88302-901.
| |
Collapse
|