151
|
Tsai IC, Pan ZC, Cheng HP, Liu CH, Lin BT, Jiang MJ. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. J Mol Cell Cardiol 2016; 98:18-27. [PMID: 27381955 DOI: 10.1016/j.yjmcc.2016.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/17/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022]
Abstract
Cellular senescence has emerged as an important player in both physiology and pathology. Excessive reactive oxygen species (ROS) is known to mediate cellular senescence. NADPH oxidases are major sources for ROS production in the vascular wall; the roles of different NADPH oxidase isoforms in cellular senescence remain unclear, however. We investigated the roles of two NADPH oxidase isoforms in mitochondrial dysfunction during angiotensin II (Ang II)-induced cellular senescence of human aortic vascular smooth muscle cells (VSMCs). Ang II (10(-7)M) stimulated ROS generation, exhibiting early increases between 30 and 60min and sustained increases between 24h and 72h, and induced VSMCs senescence after 48h or 72h treatment as assessed with senescence-associated β-galactosidase activity and the expression of two cell cycle inhibitors, p21 and p16. ROS scavengers and membrane-permeable catalase (catalase-PEG) reduced Ang II-stimulated cellular senescence. Furthermore, small interfering RNA (siRNA) of NADPH oxidase catalytic subunit Nox1, but not that of another isoform Nox4, inhibited Ang II-induced cellular senescence. Nox1 siRNA inhibited both early and sustained ROS increases induced by Ang II. In addition, a mitochondrial-specific antioxidant, mitoQ10, effectively inhibited Ang II-induced ROS increases and cellular senescence. Ang II decreased ATP synthesis and induced mitochondrial membrane depolarization, which were attenuated by pre-treating cells with Nox1 siRNA, mitoQ10 or catalase-PEG. The effect of Ang II on the mitochondrial regulator peroxisome-proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its downstream genes was examined. Ang II stimulated S570 phosphorylation of PGC-1α with concomitant decreases in catalase and uncoupling protein-2 (UCP-2) levels between 12h and 72h, which were inhibited by Nox1 siRNA. Knockdown of both catalase and UCP-2 mimicked Ang II-induced VSMC senescence. These results suggested that Ang II-stimulated Nox1 activation mediates mitochondrial dysfunction, probably by decreasing PGC-1α activity and increasing mitochondrial oxidative stress, and leads to cellular senescence of VSMCs.
Collapse
Affiliation(s)
- I-Ching Tsai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zih-Cian Pan
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hui-Pin Cheng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Chen-Hsiu Liu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Bor-Tyng Lin
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meei Jyh Jiang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 70101, Taiwan; Cardiovascular Research Center, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
152
|
Li H, He H, Wang Z, Cai J, Sun B, Wu Q, Zhang Y, Zhou G, Yang L. Rice protein suppresses ROS generation and stimulates antioxidant gene expression via Nrf2 activation in adult rats. Gene 2016; 585:256-64. [DOI: 10.1016/j.gene.2016.03.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
153
|
Nam SM, Kim JW, Yoo DY, Kim W, Jung HY, Choi JH, Hwang IK, Seong JK, Yoon YS. Effects of aluminum on the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in the dentate gyrus of D-galactose-treated mice via increasing oxidative stress. J Vet Sci 2016; 17:127-36. [PMID: 26243606 PMCID: PMC4921660 DOI: 10.4142/jvs.2016.17.2.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/16/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Aluminum (Al) accumulation increases with aging, and long-term exposure to Al is regarded as a risk factor for Alzheimer's disease. In this study, we investigated the effects of Al and/or D-galactose on neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons in the hippocampal dentate gyrus. AlCl3 (40 mg/kg/day) was intraperitoneally administered to C57BL/6J mice for 4 weeks. In addition, vehicle (physiological saline) or D-galactose (100 mg/kg) was subcutaneously injected to these mice immediately after AlCl3 treatment. Neural stem cells, proliferating cells, differentiating neuroblasts, and mature neurons were detected using the relevant marker for each cell type, including nestin, Ki67, doublecortin, and NeuN, respectively, via immunohistochemistry. Subchronic (4 weeks) exposure to Al in mice reduced neural stem cells, proliferating cells, and differentiating neuroblasts without causing any changes to mature neurons. This Al-induced reduction effect was exacerbated in D-galactose-treated mice compared to vehicle-treated adult mice. Moreover, exposure to Al enhanced lipid peroxidation in the hippocampus and expression of antioxidants such as Cu, Zn- and Mn-superoxide dismutase in D-galactose-treated mice. These results suggest that Al accelerates the reduction of neural stem cells, proliferating cells, and differentiating neuroblasts in D-galactose-treated mice via oxidative stress, without inducing loss in mature neurons.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea.,Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Koreaiversity, Seoul 08826, Korea
| |
Collapse
|
154
|
Vágási CI, Vincze O, Pătraş L, Osváth G, Marton A, Bărbos L, Sol D, Pap PL. Large-brained birds suffer less oxidative damage. J Evol Biol 2016; 29:1968-1976. [DOI: 10.1111/jeb.12920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 01/21/2023]
Affiliation(s)
- C. I. Vágási
- MTA-DE “Lendület” Behavioural Ecology Research Group; Department of Evolutionary Zoology; University of Debrecen; Debrecen Hungary
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
| | - O. Vincze
- MTA-DE “Lendület” Behavioural Ecology Research Group; Department of Evolutionary Zoology; University of Debrecen; Debrecen Hungary
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
| | - L. Pătraş
- Department of Molecular Biology and Biotechnology; Babeş-Bolyai University; Cluj Napoca Romania
| | - G. Osváth
- Museum of Zoology; Babeş-Bolyai University; Cluj Napoca Romania
| | - A. Marton
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
- ’Milvus Group’ Bird and Nature Protection Association; Tîrgu Mureș Romania
| | - L. Bărbos
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
- ’Milvus Group’ Bird and Nature Protection Association; Tîrgu Mureș Romania
| | - D. Sol
- CREAF; Cerdanyola del Vallès Spain
- CSIC; Cerdanyola del Vallès Spain
| | - P. L. Pap
- MTA-DE “Lendület” Behavioural Ecology Research Group; Department of Evolutionary Zoology; University of Debrecen; Debrecen Hungary
- Evolutionary Ecology Group; Hungarian Department of Biology and Ecology; Babeş-Bolyai University; Cluj Napoca Romania
| |
Collapse
|
155
|
Rojas Mora A, Meniri M, Glauser G, Vallat A, Helfenstein F. Badge Size Reflects Sperm Oxidative Status within Social Groups in the House Sparrow Passer domesticus. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
156
|
Jackson MJ. Reactive oxygen species in sarcopenia: Should we focus on excess oxidative damage or defective redox signalling? Mol Aspects Med 2016; 50:33-40. [PMID: 27161871 DOI: 10.1016/j.mam.2016.05.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022]
Abstract
Physical frailty in the elderly is driven by loss of muscle mass and function and hence preventing this is the key to reduction in age-related physical frailty. Our current understanding of the key areas in which ROS contribute to age-related deficits in muscle is through increased oxidative damage to cell constituents and/or through induction of defective redox signalling. Recent data have argued against a primary role for ROS as a regulator of longevity, but studies have persistently indicated that aspects of the aging phenotype and age-related disorders may be mediated by ROS. There is increasing interest in the effects of defective redox signalling in aging and some studies now indicate that this process may be important in reducing the integrity of the aging neuromuscular system. Understanding how redox-signalling pathways are altered by aging and the causes of the defective redox homeostasis seen in aging muscle provides opportunities to identify targeted interventions with the potential to slow or prevent age-related neuromuscular decline with a consequent improvement in quality of life for older people.
Collapse
Affiliation(s)
- Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L69 3GA, UK.
| |
Collapse
|
157
|
Abstract
Down syndrome (DS) is one of the most common chromosomal disorders, occurring in one out of 700-1000 live births, and the most common cause of mental retardation. Thyroid dysfunction is the most typical endocrine abnormality in patients with DS. It is well known that thyroid dysfunction is highly prevalent in children and adults with DS and that both hypothyroidism and hyperthyroidism are more common in patients with DS than in the general population. Increasing evidence has shown that DS individuals are under unusual increased oxidative stress, which may be involved in the higher prevalence and severity of a number of pathologies associated with the syndrome, as well as the accelerated ageing observed in these individuals. The gene for Cu/Zn superoxide dismutase (SOD1) is coded on chromosome 21 and it is overexpressed (~50%) resulting in an increase of reactive oxygen species (ROS) due to overproduction of hydrogen peroxide (H2O2). ROS leads to oxidative damage of DNA, proteins and lipids, therefore, oxidative stress may play an important role in the pathogenesis of DS.
Collapse
Affiliation(s)
| | - Ángela Casado
- Department of Cellular & Molecular Medicine, Centre for Biological Research - Spanish National Research Council (CIB-CSIC), Madrid, Spain
| |
Collapse
|
158
|
Chen YI, Wei PC, Hsu JL, Su FY, Lee WH. NPGPx (GPx7): a novel oxidative stress sensor/transmitter with multiple roles in redox homeostasis. Am J Transl Res 2016; 8:1626-1640. [PMID: 27186289 PMCID: PMC4859894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 10/31/2015] [Indexed: 06/05/2023]
Abstract
NPGPx (GPx7) is a member of the glutathione peroxidase (GPx) family without any GPx activity. GPx7 displays a unique function which serves as a stress sensor/transmitter to transfer the signal to its interacting proteins by shuttling disulfide bonds in response to various stresses. In this review, we focus on the exceptional structural and biochemical features of GPx7 compared to other 7 family members and described how GPx7 regulates the diverse signaling targets including GRP78, PDI, CPEB2, and XRN2, and their different roles in unfolded protein response, oxidative stress, and non-targeting siRNA stress response, respectively. The phenotypes associated with GPx7 deficiency in mouse or human including ROS accumulations, highly elevated cancer incidences, auto-immune disorders, and obesity are also revealed in this paper. Finally, we compare GPx8 with GPx7, which shares the highest structural similarity but different biological roles in stress response. These insights have thus provided a more comprehensive understanding of the role of GPx7 in the maintenance of redox homeostasis.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
- Graduate Program of Translational Medicine, National Taiwan UniversityTaipei 106, Taiwan
| | - Pei-Chi Wei
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
| | - Jye-Lin Hsu
- Research Center for Tumor Medical Science, China Medical UniversityTaichung 404, Taiwan
- Department of Medical Research, China Medical University HospitalTaichung 404, Taiwan
| | - Fang-Yi Su
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
- Graduate Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming UniversityTaipei 112, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia SinicaTaipei 115, Taiwan
- Institute of Clinical Medicine, China Medical UniversityTaichung 404, Taiwan
| |
Collapse
|
159
|
Wu JZ, Huang JH, Khanabdali R, Kalionis B, Xia SJ, Cai WJ. Pyrroloquinoline quinone enhances the resistance to oxidative stress and extends lifespan upon DAF-16 and SKN-1 activities in C. elegans. Exp Gerontol 2016; 80:43-50. [PMID: 27090484 DOI: 10.1016/j.exger.2016.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 03/18/2016] [Accepted: 04/09/2016] [Indexed: 12/21/2022]
Abstract
Pyrroloquinoline quinone (PQQ) is linked to fundamental biological processes such as mitochondrial biogenesis and lipid metabolism. PQQ may also function as an essential micronutrient during animal development. Recent studies have shown the therapeutic potential of PQQ for several age-related diseases due to its antioxidant capacity. However, whether PQQ can promote longevity is unknown. Here, we investigate the effects of PQQ on oxidative stress resistance as well as lifespan modulation in Caenorhabditis elegans. We find that PQQ enhances resistance to oxidative stress and extends the lifespan of C. elegans at optimal doses. The underlying molecular mechanism involves the increased activities of the primary lifespan extension transcriptional factors DAF-16/FOXO, the conserved oxidative stress-responsive transcription factor SKN-1/Nrf2, and upregulation of daf-16, skn-1 downstream targets including sod-3, hsp16.2, gst-1 and gst-10. Our findings uncover a novel role of PQQ in longevity, supporting PQQ as a possible dietary supplement for overall health improvement.
Collapse
Affiliation(s)
- J Z Wu
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China; Institute of Integrated Traditional Chinese and Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - J H Huang
- Institute of Integrated Traditional Chinese and Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - R Khanabdali
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, University of Melbourne Department of Obstetrics and Gynaecology, Royal Women's Hospital, Parkville 3052, Australia
| | - S J Xia
- Department of Geriatrics, Shanghai Institute of Geriatrics, Huadong Hospital, Fudan University, Shanghai 200040, China.
| | - W J Cai
- Institute of Integrated Traditional Chinese and Medicine and Western Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
160
|
Redmann M, Darley-Usmar V, Zhang J. The Role of Autophagy, Mitophagy and Lysosomal Functions in Modulating Bioenergetics and Survival in the Context of Redox and Proteotoxic Damage: Implications for Neurodegenerative Diseases. Aging Dis 2016; 7:150-62. [PMID: 27114848 PMCID: PMC4809607 DOI: 10.14336/ad.2015.0820] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Redox and proteotoxic stress contributes to age-dependent accumulation of dysfunctional mitochondria and protein aggregates, and is associated with neurodegeneration. The free radical theory of aging inspired many studies using reactive species scavengers such as alpha-tocopherol, ascorbate and coenzyme Q to suppress the initiation of oxidative stress. However, clinical trials have had limited success in the treatment of neurodegenerative diseases. We ascribe this to the emerging literature which suggests that the oxidative stress hypothesis does not encompass the role of reactive species in cell signaling and therefore the interception with reactive species with antioxidant supplementation may result in disruption of redox signaling. In addition, the accumulation of redox modified proteins or organelles cannot be reversed by oxidant intercepting antioxidants and must then be removed by alternative mechanisms. We have proposed that autophagy serves this essential function in removing damaged or dysfunctional proteins and organelles thus preserving neuronal function and survival. In this review, we will highlight observations regarding the impact of autophagy regulation on cellular bioenergetics and survival in response to reactive species or reactive species generating compounds, and in response to proteotoxic stress.
Collapse
Affiliation(s)
- Matthew Redmann
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology,; Department of Pathology, University of Alabama at Birmingham,; Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, Alabama 35294, USA
| |
Collapse
|
161
|
Aging Increases Susceptibility to High Fat Diet-Induced Metabolic Syndrome in C57BL/6 Mice: Improvement in Glycemic and Lipid Profile after Antioxidant Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1987960. [PMID: 27057272 PMCID: PMC4775807 DOI: 10.1155/2016/1987960] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has been considered a novel component of the metabolic syndrome (MetS), with the oxidative stress participating in its progression. This study aimed to evaluate the metabolic profile in young and old mice with MetS, and the effects of apocynin and tempol on glycemic and lipid parameters. Young and old C57BL/6 mice with high fat diet- (HFD-) induced MetS received apocynin and tempol 50 mg·kg−1/day in their drinking water for 10 weeks. After HFD, the young group showed elevated fasting glucose, worsened lipid profile in plasma, steatosis, and hepatic lipid peroxidation. Nevertheless, the old group presented significant increase in fasting insulin levels, insulin resistance, plasma and hepatic lipid peroxidation, and pronounced steatosis. The hepatic superoxide dismutase and catalase activity did not differ between the groups. Tempol and apocynin seemed to prevent hepatic lipid deposition in both groups. Furthermore, apocynin improved glucose tolerance and insulin sensitivity in old mice. In summary, old mice are more susceptible to HFD-induced metabolic changes than their young counterparts. Also, the antioxidant therapy improved insulin sensitivity and glucose tolerance, and in addition, apocynin seemed to prevent the HFD-induced hepatic fat deposition, suggesting an important role of oxidative stress in the induction of NAFLD.
Collapse
|
162
|
Schöttker B, Saum KU, Jansen EHJM, Holleczek B, Brenner H. Associations of metabolic, inflammatory and oxidative stress markers with total morbidity and multi-morbidity in a large cohort of older German adults. Age Ageing 2016; 45:127-35. [PMID: 26563887 DOI: 10.1093/ageing/afv159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/23/2015] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND imbalances in metabolic, inflammatory and redox homeostasis play an important role in the leading theories of age-related morbidity, but no large-scale epidemiological study has been conducted so far assessing their associations with total morbidity and multi-morbidity in the same model. METHODS analyses were conducted in 2,547 participants of an established population-based cohort study from Germany. The participants' median age was 70 years (range: 57-84) and 51.9% were women. End points were total somatic morbidity and multi-morbidity, assessed by the Cumulative Illness Rating Scale-Geriatric version. RESULTS overall, 251 study participants had multi-morbidity (9.9%). Except for the redox marker 'total thiol levels of proteins', all other assessed metabolic (obesity, diabetes, dyslipidaemia and hypertension), inflammatory (C-reactive protein) and oxidative stress markers (derivatives of reactive oxygen metabolites) were significantly associated with total somatic morbidity and multi-morbidity if assessed individually. If modelled jointly, effect estimates were attenuated but remained statistically significant for the outcome 'total morbidity' and for low weight, obesity, insufficiently controlled diabetes and derivatives of reactive oxygen metabolites with respect to the outcome 'multi-morbidity'. CONCLUSIONS results from this large sample of older adults support hypotheses that relate imbalances in metabolic, inflammatory and redox homeostasis to age-related morbidity. Despite over adjustment for closely related metabolic, inflammatory and oxidative stress conditions in the full model, independent associations of the markers with total morbidity and/or multi-morbidity were observed. Therefore, adverse metabolic, inflammatory and oxidative stress conditions may all play important roles in the pathogenesis of age-related morbidity, which should be investigated further in future longitudinal studies.
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Eugène H J M Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany Network Aging Research, University of Heidelberg, Heidelberg, Germany Division of Preventive Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
163
|
Changes in Oxidative Stress and Inflammatory Biomarkers in Fragile Adults over Fifty Years of Age and in Elderly People Exclusively Fed Enteral Nutrition. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:5709312. [PMID: 26697137 PMCID: PMC4678080 DOI: 10.1155/2016/5709312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 12/18/2022]
Abstract
We aim to evaluate whether exclusive feeding of an enteral formula enriched with n-3 long chain polyunsaturated fatty acids (n-3 LC-PUFA) affects oxidative stress and the antioxidant defence system and may improve the levels of some relevant inflammatory, and cardiovascular biomarkers in frail adults over fifty years of age and in elderly subjects. Fifty-five patients were divided into two groups and were exclusively fed a newly designed normoproteic and isocaloric enteral formula enriched with eicosapentaenoic (98 mg/d) and docosahexaenoic acids (46 mg/d) (n = 26) or a reference enteral diet (n = 29). Oxidative, inflammatory and cardiovascular risk biomarkers and red blood cell fatty acid profiles were determined at the beginning and after 90 and 180 days of feeding. The n-3 LC-PUFA percentage tended to be higher (P = 0.053) in the experimental group than in the reference group. Administration of the n-3 LC-PUFA diet did not increase oxidative stress or modify plasma antioxidant capacity but decreased antioxidant enzymatic activities. MMP-9 plasma concentration decreased with both formulae, whereas tPAI-1 tended to decrease (P = 0.116) with the administration of the experimental formula. In conclusion, administration of the new n-3 LC-PUFA-enriched product for 6 months did not negatively alter the oxidative status and improved some cardiovascular risk biomarkers.
Collapse
|
164
|
Sun J, Ming L, Shang F, Shen L, Chen J, Jin Y. Apocynin suppression of NADPH oxidase reverses the aging process in mesenchymal stem cells to promote osteogenesis and increase bone mass. Sci Rep 2015; 5:18572. [PMID: 26686764 PMCID: PMC4685263 DOI: 10.1038/srep18572] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
Because of the reduced potential for osteogenesis in aging bone marrow stromal cells, the balance of bone metabolism becomes disrupted, leading to various bone diseases. An increase in reactive oxygen species has been determined to be one of the key factors that accelerates the aging process in BMSCs. In these cells, increased expression of NADPH oxidases is the major source of ROS. In the current study, we suppressed the expression of NOX using apocynin, an effective antioxidant and free radical scavenger, and the results showed that aging BMSCs exhibited an enhanced potential for osteogenesis. The expression of potential key targets influencing this reversal was evaluated using qRT-PCR, and the expression of p53 was shown to be reduced with the suppression of NOX. We speculate that this may be one of the major reasons for the reversal of the aging process. We also examined the effect of apocynin in vivo, and the results showed that in SAMP6 mice, bone mineral density and total bone volume were increased after 3 months of apocynin treatment. In conclusion, our results demonstrate that in aging BMSCs, suppression of NADPH oxidase by apocynin partially reverses the aging process and enhances osteogenic potential.
Collapse
Affiliation(s)
- Jinlong Sun
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032, PR China.,State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Leiguo Ming
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Institute for Tissue Engineering and Regenerative Medicine Research of Xi'an, Xi'an, Shaanxi, 710032, China
| | - Fengqing Shang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lijuan Shen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032, PR China
| | - Jihua Chen
- State Key Laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi' an, Shaanxi 710032, PR China
| | - Yan Jin
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,State Key Laboratory of Military Stomatology, Department of Oral Histology and Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Institute for Tissue Engineering and Regenerative Medicine Research of Xi'an, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
165
|
Schöttker B, Brenner H, Jansen EHJM, Gardiner J, Peasey A, Kubínová R, Pająk A, Topor-Madry R, Tamosiunas A, Saum KU, Holleczek B, Pikhart H, Bobak M. Evidence for the free radical/oxidative stress theory of ageing from the CHANCES consortium: a meta-analysis of individual participant data. BMC Med 2015; 13:300. [PMID: 26666526 PMCID: PMC4678534 DOI: 10.1186/s12916-015-0537-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The free radical/oxidative stress theory of ageing has received considerable attention, but the evidence on the association of oxidative stress markers with mortality is sparse. METHODS We measured derivatives of reactive oxygen metabolite (D-ROM) levels as a proxy for the reactive oxygen species concentration and total thiol levels (TTL) as a proxy for the redox control status in 10,622 men and women (age range, 45-85 years), from population-based cohorts from Germany, Poland, Czech Republic, and Lithuania, of whom 1,702 died during follow-up. RESULTS Both oxidative stress markers were significantly associated with all-cause mortality independently from established risk factors (including inflammation) and from each other in all cohorts. Regarding cause-specific mortality, compared to low D-ROM levels (≤ 340 Carr U), very high D-ROM levels (>500 Carr U) were strongly associated with both cardiovascular (relative risk (RR), 5.09; 95 % CI, 2.67-9.69) and cancer mortality (RR, 4.34; 95 % CI, 2.31-8.16). TTL was only associated with CVD mortality (RR, 1.30; 95 % CI, 1.15-1.48, for one-standard-deviation-decrease). The strength of the association of TTL with CVD mortality increased with age of the participants (RR for one-standard-deviation-decrease in those aged 70-85 years was 1.65; 95 % CI, 1.22-2.24). CONCLUSIONS In these four population-based cohort studies from Central and Eastern Europe, the oxidative stress serum markers D-ROM and TTL were independently and strongly associated with all-cause and CVD mortality. In addition, D-ROM levels were also strongly associated with cancer mortality. This study provides epidemiological evidence supporting the free radical/oxidative stress theory of ageing and suggests that d-ROMs and TTL are useful oxidative stress markers associated with premature mortality.
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany. .,Network Aging Research, University of Heidelberg, Bergheimer Strasse 20, 69120, Heidelberg, Germany.
| | - Hermann Brenner
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Bergheimer Strasse 20, 69120, Heidelberg, Germany
| | - Eugène H J M Jansen
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, PO Box 1, 3720, BA, Bilthoven, The Netherlands
| | - Julian Gardiner
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| | - Anne Peasey
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| | | | - Andrzej Pająk
- Jagiellonian University Medical College, Faculty of Health Sciences, Krakow, Poland
| | - Roman Topor-Madry
- Jagiellonian University Medical College, Faculty of Health Sciences, Krakow, Poland
| | - Abdonas Tamosiunas
- Institute of Cardiology of Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Ageing Research, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Bernd Holleczek
- Saarland Cancer Registry, Präsident Baltz-Strasse 5, 66119, Saarbrücken, Germany
| | - Hynek Pikhart
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| | - Martin Bobak
- Department Epidemiology and Public Health, University College London, 1-19 Torrington Place, London, WC1E 6BT, Great Britain
| |
Collapse
|
166
|
Vaz CV, Marques R, Maia CJ, Socorro S. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin. Transl Res 2015; 166:693-705. [PMID: 26397424 DOI: 10.1016/j.trsl.2015.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022]
Abstract
Regucalcin (RGN) is a calcium (Ca(2+))-binding protein that displays a characteristic downregulated expression with aging in several tissues. Besides its role in regulating intracellular Ca(2+) homeostasis, RGN has been associated with the control of oxidative stress, cell proliferation, and apoptosis. Thus, the diminished expression of RGN with aging may contribute to the age-associated deterioration of cell function. In the present study, we hypothesized that the maintenance of high expression levels of RGN may prevent age-related alterations in the processes mentioned previously. First, we confirmed that RGN expression is significantly diminished in the prostate of 8-, 9-, 12-, and 24-months wild-type rats. Then, the effect of aging on lipid peroxidation, antioxidant defenses, cell proliferation, and apoptosis in the prostate of wild-type controls and transgenic rats overexpressing RGN (Tg-RGN) was investigated. The activity of glutathione and the antioxidant capacity were increased in Tg-RGN rats in response to the age-associated increase in thiobarbituric acid reactive substances levels, an effect not seen in wild type. Overexpression of RGN also counteracted the effect of aging increasing prostate cell proliferation. In contrast to wild-type animals, the prostate weight of Tg-RGN did not change with aging and was underpinned by the diminished expression of stem cell factor and c-kit, and increased expression of p53. In addition, aged Tg-RGN animals displayed increased expression (activity) of apoptosis regulators, therefore not showing the age-induced resistance to apoptosis observed in wild type. Altogether, these findings indicate the protective role of RGN against the development of age-related pathologies, such as, for example, prostate cancer.
Collapse
Affiliation(s)
- Cátia V Vaz
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ricardo Marques
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Sílvia Socorro
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
167
|
Speakman JR, Blount JD, Bronikowski AM, Buffenstein R, Isaksson C, Kirkwood TBL, Monaghan P, Ozanne SE, Beaulieu M, Briga M, Carr SK, Christensen LL, Cochemé HM, Cram DL, Dantzer B, Harper JM, Jurk D, King A, Noguera JC, Salin K, Sild E, Simons MJP, Smith S, Stier A, Tobler M, Vitikainen E, Peaker M, Selman C. Oxidative stress and life histories: unresolved issues and current needs. Ecol Evol 2015; 5:5745-57. [PMID: 26811750 PMCID: PMC4717350 DOI: 10.1002/ece3.1790] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/20/2015] [Indexed: 12/12/2022] Open
Abstract
Life‐history theory concerns the trade‐offs that mold the patterns of investment by animals between reproduction, growth, and survival. It is widely recognized that physiology plays a role in the mediation of life‐history trade‐offs, but the details remain obscure. As life‐history theory concerns aspects of investment in the soma that influence survival, understanding the physiological basis of life histories is related, but not identical, to understanding the process of aging. One idea from the field of aging that has gained considerable traction in the area of life histories is that life‐history trade‐offs may be mediated by free radical production and oxidative stress. We outline here developments in this field and summarize a number of important unresolved issues that may guide future research efforts. The issues are as follows. First, different tissues and macromolecular targets of oxidative stress respond differently during reproduction. The functional significance of these changes, however, remains uncertain. Consequently there is a need for studies that link oxidative stress measurements to functional outcomes, such as survival. Second, measurements of oxidative stress are often highly invasive or terminal. Terminal studies of oxidative stress in wild animals, where detailed life‐history information is available, cannot generally be performed without compromising the aims of the studies that generated the life‐history data. There is a need therefore for novel non‐invasive measurements of multi‐tissue oxidative stress. Third, laboratory studies provide unrivaled opportunities for experimental manipulation but may fail to expose the physiology underpinning life‐history effects, because of the benign laboratory environment. Fourth, the idea that oxidative stress might underlie life‐history trade‐offs does not make specific enough predictions that are amenable to testing. Moreover, there is a paucity of good alternative theoretical models on which contrasting predictions might be based. Fifth, there is an enormous diversity of life‐history variation to test the idea that oxidative stress may be a key mediator. So far we have only scratched the surface. Broadening the scope may reveal new strategies linked to the processes of oxidative damage and repair. Finally, understanding the trade‐offs in life histories and understanding the process of aging are related but not identical questions. Scientists inhabiting these two spheres of activity seldom collide, yet they have much to learn from each other.
Collapse
Affiliation(s)
- John R Speakman
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK; State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing China
| | - Jonathan D Blount
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | - Anne M Bronikowski
- Department of Ecology, Evolution and Organismal Biology Iowa State University 251 Bessey Hall Ames Iowa 50011
| | - Rochelle Buffenstein
- Physiology, Barshop Institute for Aging and Longevity Research UTHSCSA 15355 Lambda Drive San Antonio Texas 78245
| | - Caroline Isaksson
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Tom B L Kirkwood
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Michaël Beaulieu
- Zoological Institute and Museum University of Greifswald Johann-Sebastian Bach Str. 11/12 Greifswald 17489 Germany
| | - Michael Briga
- Behavioral Biology University of Groningen Nijenborgh 7 Groningen 9747 AG The Netherlands
| | - Sarah K Carr
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Level 4 Wellcome Trust-MRC Institute of Metabolic Science Addenbrooke's Hospital Cambridge CB2 0QQ UK
| | - Louise L Christensen
- Institute of Biological and Environmental Sciences University of Aberdeen Tillydrone Avenue Aberdeen AB24 2TZ UK
| | - Helena M Cochemé
- MRC Clinical Sciences Centre Imperial College London Hammersmith Hospital Campus Du Cane Road London W12 0NN UK
| | - Dominic L Cram
- Department of Zoology University of Cambridge Cambridge CB2 3EJ UK
| | - Ben Dantzer
- Department of Psychology University of Michigan Ann Arbor Michigan 48109
| | - Jim M Harper
- Department of Biological Sciences Sam Houston State University 1900 Avenue I LDB 100B Huntsville Texas 77341
| | - Diana Jurk
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Annette King
- The Newcastle University Institute for Ageing Institute for Cell & Molecular Biosciences Campus for Ageing and Vitality Newcastle upon Tyne NE4 5PL UK
| | - Jose C Noguera
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Elin Sild
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Mirre J P Simons
- Department of Animal and Plant Sciences University of Sheffield Alfred Denny Building, Western Bank Sheffield S10 2TN UK
| | - Shona Smith
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| | - Antoine Stier
- Department Ecology, Physiology et Ethology University of Strasbourg - IPHC (UMR7178) 23, rue Becquerel Strasbourg 67087 France
| | - Michael Tobler
- Department of Biology Lund University Solvegatan 37 Lund 223 62 Sweden
| | - Emma Vitikainen
- Centre for Ecology and Conservation University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | | | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Graham Kerr Building Glasgow G12 8QQ UK
| |
Collapse
|
168
|
Ganie SA, Dar TA, Bhat AH, Dar KB, Anees S, Zargar MA, Masood A. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders. Rejuvenation Res 2015; 19:21-40. [PMID: 26087000 DOI: 10.1089/rej.2015.1704] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Tanveer Ali Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Aashiq Hussain Bhat
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Khalid B Dar
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | - Suhail Anees
- 1 Department of Clinical Biochemistry, University of Kashmir Srinagar , India
| | | | - Akbar Masood
- 2 Department of Biochemistry, University of Kashmir Srinagar , India
| |
Collapse
|
169
|
Stier A, Reichert S, Criscuolo F, Bize P. Red blood cells open promising avenues for longitudinal studies of ageing in laboratory, non-model and wild animals. Exp Gerontol 2015; 71:118-34. [DOI: 10.1016/j.exger.2015.09.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
|
170
|
Multifactorial processes to slowing the biological clock: Insights from a comparative approach. Exp Gerontol 2015; 71:27-37. [DOI: 10.1016/j.exger.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 08/29/2015] [Indexed: 02/07/2023]
|
171
|
Iefimenko OY, Savchenko IO, Falalyeyeva TM, Beregova TV, Zholobak NM, Shcherbakov OB, Malyukin YV, Spivak MY. [THE INFLUENCE OF NANODISPERSE CERIUM DIOXIDE ON ONTOGENETIC CHANGES OF ANTIOXIDANT SYSTEM IN THE MUCOSA OF THE STOMACH AND COLON IN RATS]. ACTA ACUST UNITED AC 2015; 61:44-50. [PMID: 26495735 DOI: 10.15407/fz61.03.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was established that with age the content of lipid peroxidation products increased in the mucosa of the stomach: Diene conjugates by 30%, products which react to thiobarbituric acid by 285% and Schif bases by 181%. Nanodisperse cerium dioxide (NCD) reduced the content of lipid peroxidation in the gastric mucosa in old rats: Diene conjugates by 43 %, products which react to thiobarbituric acid by 51% and Schif bases by 44% relative to the control group of rats given age. Similarly, it was established that the content of Diene conjugates increased by 40%, products which react to thiobarbituric acid by 114% and Schif bases by 132% in the mucosa of the colon of old rats. NDC significant reduced the content of products which react to thiobarbituric acid by 69% and Schyf basics by 132%. In the stomach superoxide dismutase (by 43%) and catalase activity (by 24%) decreases with age, while in the colon superoxide dismutase activity increases (by 43%). In the colon NCD significant decreased superoxide dismutase (by 34%) and catalase activity (by 21%) relative to controls. Thus, the NDC restores lipid peroxidation in the gastric mucosa and colon, in which develops oxidative stress with age.
Collapse
|
172
|
Park KHJ. Mechanisms of Muscle Denervation in Aging: Insights from a Mouse Model of Amyotrophic Lateral Sclerosis. Aging Dis 2015; 6:380-9. [PMID: 26425392 DOI: 10.14336/ad.2015.0506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Abstract
Muscle denervation at the neuromuscular junction (NMJ) is thought to be a contributing factor in age-related muscle weakness. Therefore, understanding the mechanisms that modulate NMJ innervation is a key to developing therapies to combat age-related muscle weakness affecting the elderly. Two mouse models, one lacking the Cu/Zn superoxide dismutase (SOD1) gene and another harboring the transgenic mutant human SOD1 gene, display progressive changes at the NMJ, including muscle endplate fragmentation, nerve terminal sprouting, and denervation. These changes at the NMJ share many of the common features observed in the NMJs of aged mice. In this review, research findings demonstrating the effects of PGC-1α, IGF-1, GDNF, MyoD, myogenin, and miR-206 on NMJ innervation patterns in the G93A SOD1 mice will be highlighted in the context of age-related muscle denervation.
Collapse
Affiliation(s)
- Kevin H J Park
- Department of Psychology and Neuroscience Program, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
173
|
Le Bourg É. [Factors modulating ageing and longevity: Linear or more complex relationships?]. Presse Med 2015; 44:1003-8. [PMID: 26358675 DOI: 10.1016/j.lpm.2015.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023] Open
Abstract
It is often accepted that various factors modulate ageing and longevity in a linear way, a higher/lower level of the factor delaying ageing and/or increasing longevity. However, many examples (e.g. the effects of diet restriction or antioxidants and of telomere attrition) show that this view can be wrong. For instance, mild stress has often positive effects on ageing and longevity, and severe stress opposite effects. The dose-response relationship is thus not linear but has an inverted U-shape. Therefore, in many cases, the concept of factors modulating ageing and longevity in a linear way should be rejected, and this has consequences for physicians' guidance.
Collapse
Affiliation(s)
- Éric Le Bourg
- Université Paul-Sabatier, centre de recherche sur la cognition animale, UMR CNRS 5169, 118, route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
174
|
Icariin, a natural flavonol glycoside, extends healthspan in mice. Exp Gerontol 2015; 69:226-35. [DOI: 10.1016/j.exger.2015.06.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 11/20/2022]
|
175
|
Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers. Biogerontology 2015; 16:761-74. [PMID: 26298568 DOI: 10.1007/s10522-015-9599-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/12/2015] [Indexed: 01/29/2023]
Abstract
Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.
Collapse
|
176
|
Havird JC, Hall MD, Dowling DK. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation. Bioessays 2015. [PMID: 26201475 DOI: 10.1002/bies.201500057] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation.
Collapse
Affiliation(s)
- Justin C Havird
- Deptartment of Biological Sciences, Auburn University, Auburn, AL, USA.,Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Matthew D Hall
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
177
|
Buffenstein R, Nelson OL, Corbit KC. Questioning the preclinical paradigm: natural, extreme biology as an alternative discovery platform. Aging (Albany NY) 2015; 6:913-20. [PMID: 25553771 PMCID: PMC4276785 DOI: 10.18632/aging.100704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pace at which science continues to advance is astonishing. From cosmology, microprocessors, structural engineering, and DNA sequencing our lives are continually affected by science-based technology. However, progress in treating human ailments, especially age-related conditions such as cancer and Alzheimer's disease, moves at a relative snail's pace. Given that the amount of investment is not disproportionately low, one has to question why our hopes for the development of efficacious drugs for such grievous illnesses have been frustratingly unrealized. Here we discuss one aspect of drug development –rodent models – and propose an alternative approach to discovery research rooted in evolutionary experimentation. Our goal is to accelerate the conversation around how we can move towards more translative preclinical work.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, TX University of Texas Health Science Center at San Antonio, TX USA
| | - O Lynne Nelson
- Department of Veterinary Clinical Sciences, Washington State University, Pullman, WA 9916, USA
| | - Kevin C Corbit
- Department of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA 91360, USA
| |
Collapse
|
178
|
Schöttker B, Zhang Y, Heiss JA, Butterbach K, Jansen EHJM, Bewerunge-Hudler M, Saum KU, Holleczek B, Brenner H. Discovery of a novel epigenetic cancer marker related to the oxidative status of human blood. Genes Chromosomes Cancer 2015; 54:583-94. [PMID: 26173806 DOI: 10.1002/gcc.22271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 05/18/2015] [Indexed: 01/08/2023] Open
Abstract
Long-lasting oxidative stress exposure may lead to relatively stable epigenetic modifications of the DNA in order to activate anti-oxidative defence mechanisms. Oxidative stress related DNA methylation may therefore be associated (causally or as a by-product) with cancer. We measured derivatives of reactive oxygen metabolites (D-ROM), total thiol levels (TTL) and DNA methylation with the Illumina Infinium 450K BeadChip in three samples of German individuals aged ≥50 years: n = 1,000 ESTHER study baseline participants (DNA methylation only), n = 99 ESTHER eight-year follow-up participants and n = 142 participants of the BLITZ study. The correlation coefficient of methylation at cg10342304 and D-ROM in the ESTHER 8-year follow-up sample (r = -0.427; P = 1 × 10(-5)) was replicated with a P-value indicating statistical significance after correction for multiple testing in the BLITZ sample (r = -0.192; P = 0.022). The association was robust to adjusting for potential confounders. In the ESTHER baseline sample, the hazard ratio for cancer development in 11 years of follow-up comparing bottom and top quartile of DNA methylation at cg10342304 was 1.86 (95%-confidence-interval 1.01-3.43). In summary, this first epigenome-wide screening and replication study with oxidative status markers observed a negative correlation of D-ROM levels and DNA methylation at cg10342304 in two independent cohorts. This CpG site is located in the body region of the nucleoredoxin gene. The nucleoredoxin protein is a redox-dependent inhibitor of the Wnt/ß-catenin signaling pathway, a well-characterized cancer pathway. If the observed CpG-cancer association can be successfully replicated by other studies, this epigenetic marker could be an interesting biomarker of cancer risk.
Collapse
Affiliation(s)
- Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Jonathan A Heiss
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Katja Butterbach
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Eugène H J M Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Melanie Bewerunge-Hudler
- Genomics and Proteomics Core Facilities Expression Profiling, German Cancer Research Center, Heidelberg, Germany
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | | | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
179
|
Mitochondrial Oxidative Stress, Mitochondrial DNA Damage and Their Role in Age-Related Vascular Dysfunction. Int J Mol Sci 2015; 16:15918-53. [PMID: 26184181 PMCID: PMC4519931 DOI: 10.3390/ijms160715918] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/17/2015] [Accepted: 06/29/2015] [Indexed: 02/06/2023] Open
Abstract
The prevalence of cardiovascular diseases is significantly increased in the older population. Risk factors and predictors of future cardiovascular events such as hypertension, atherosclerosis, or diabetes are observed with higher frequency in elderly individuals. A major determinant of vascular aging is endothelial dysfunction, characterized by impaired endothelium-dependent signaling processes. Increased production of reactive oxygen species (ROS) leads to oxidative stress, loss of nitric oxide (•NO) signaling, loss of endothelial barrier function and infiltration of leukocytes to the vascular wall, explaining the low-grade inflammation characteristic for the aged vasculature. We here discuss the importance of different sources of ROS for vascular aging and their contribution to the increased cardiovascular risk in the elderly population with special emphasis on mitochondrial ROS formation and oxidative damage of mitochondrial DNA. Also the interaction (crosstalk) of mitochondria with nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases is highlighted. Current concepts of vascular aging, consequences for the development of cardiovascular events and the particular role of ROS are evaluated on the basis of cell culture experiments, animal studies and clinical trials. Present data point to a more important role of oxidative stress for the maximal healthspan (healthy aging) than for the maximal lifespan.
Collapse
|
180
|
Lee S, Han KH, Yabuki E, Nakamura Y, Kawakami S, Shimada K, Hayakawa T, Onoue H, Fukushima M. Dietary l-cysteine inhibits d-galactosamine-induced acute liver injury in rats. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0147-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
181
|
Kumar D, Rizvi SI. Markers of oxidative stress in senescent erythrocytes obtained from young and old age rats. Rejuvenation Res 2015; 17:446-52. [PMID: 25065263 DOI: 10.1089/rej.2014.1573] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The role of oxidative stress during aging is well documented. Evidence is available linking animal life span to the development of oxidative stress. Up to a certain limit of oxidative stress, cells function to counteract the oxidant effects and to restore redox balance by resetting critical homeostatic parameters. Red blood cells (RBCs) offer a very good model to study cellular senescence. In vivo aging of red blood cells is associated with increased cellular density, which corresponds to increased cell age. The present study aims to investigate age-dependent oxidative stress in RBC subpopulations obtained after Percoll density gradient centrifugation from young and old rats. We observe an increase in plasma membrane redox system (PMRS) activity (p<0.001) and lipid peroxidation (p<0.001) between less dense and senescent RBCs in both young and old rats. Our findings provide evidence of a higher level of oxidative stress in senescent erythrocytes, with the effect being more pronounced in old (24-month-old) rats compared to young (4-month-old) rats. The present findings emphasize the role of oxidative stress not only in organismal aging but also in cell senescence.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Allahabad , Allahabad, India
| | | |
Collapse
|
182
|
Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 2015; 576:8-16. [PMID: 25841340 PMCID: PMC4843805 DOI: 10.1016/j.abb.2015.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/31/2015] [Indexed: 01/09/2023]
Abstract
The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel's second axiom that "evolution is smarter than we are" and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Miranda E Orr
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Karl A Rodriguez
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Rochelle Buffenstein
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
183
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
184
|
Seshadri S, Mroczkowska S, Qin L, Patel S, Ekart A, Gherghel D. Systemic circulatory influences on retinal microvascular function in middle-age individuals with low to moderate cardiovascular risk. Acta Ophthalmol 2015; 93:e266-74. [PMID: 25487686 DOI: 10.1111/aos.12594] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
Abstract
PURPOSE To investigate the relationship between retinal microvascular reactivity, circulatory markers for CVD risk and systemic antioxidative defence capacity in healthy middle-aged individuals with low to moderate risk of CVD. METHODS Retinal vascular reactivity to flickering light was assessed in 102 healthy participants (46-60 years) by means of dynamic retinal vessel analysis (DVA). Other vascular assessments included carotid intima-media thickness (C-IMT) and blood pressure (BP) measurements. Total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG) and blood glutathione levels in its reduced (GSH) and oxidized (GSSG) forms were also determined for each participant, along with Framingham risk scores (FRS). RESULTS Retinal arterial baseline diameter fluctuation (BDF) was independently, significantly and negatively influenced by LDL-C levels (β = -0.53, p = 0.027). Moreover, the arterial dilation slope (SlopeAD ) was independently, significantly and positively associated with redox index (GSH: GSSG ratio, β = 0.28, p = 0.016), while the arterial constriction slope (SlopeAC ) was significantly and negatively influenced by blood GSH levels (β = -0.20, p = 0.042), and positively associated with FRS (β = 0.25, p = 0.009). Venous BDF and dilation amplitude (DA) were also negatively influenced by plasma LDL-C levels (β = -0.83, p = 0.013; and β = -0.22, p = 0.028, respectively). CONCLUSIONS In otherwise healthy individuals with low to moderate cardiovascular risk, retinal microvascular dilation and constriction responses to stress levels are influenced by systemic antioxidant capacity, and circulating markers for cardiovascular risk.
Collapse
Affiliation(s)
- Swathi Seshadri
- Vascular Research Laboratory; Ophthalmic Research Group; School of Life and Health Sciences; Aston University; Birmingham UK
| | - Stephanie Mroczkowska
- Vascular Research Laboratory; Ophthalmic Research Group; School of Life and Health Sciences; Aston University; Birmingham UK
| | - Lu Qin
- Vascular Research Laboratory; Ophthalmic Research Group; School of Life and Health Sciences; Aston University; Birmingham UK
| | - Sunni Patel
- Vascular Research Laboratory; Ophthalmic Research Group; School of Life and Health Sciences; Aston University; Birmingham UK
| | - Aniko Ekart
- School of Engineering and Applied Sciences; Aston University; Birmingham UK
| | - Doina Gherghel
- Vascular Research Laboratory; Ophthalmic Research Group; School of Life and Health Sciences; Aston University; Birmingham UK
| |
Collapse
|
185
|
Dunnick JK, Sanders JM, Kissling GE, Johnson CL, Boyle MH, Elmore SA. Environmental chemical exposure may contribute to uterine cancer development: studies with tetrabromobisphenol A. Toxicol Pathol 2015; 43:464-73. [PMID: 25476797 PMCID: PMC6706771 DOI: 10.1177/0192623314557335] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used flame retardant, caused uterine tumors in rats. In this study, TBBPA was administered to male and female Wistar Han rats and B6C3F1/N mice by oral gavage in corn oil for 2 years at doses up to 1,000 mg/kg. TBBPA induced uterine epithelial tumors including adenomas, adenocarcinomas, and malignant mixed Müllerian tumors (MMMTs). In addition, endometrial epithelial atypical hyperplasia occurred in TBBPA-treated rats. Also found to be related to TBBPA treatment, but at lower incidence and at a lower statistical significance, were testicular tumors in rats, and hepatic tumors, hemangiosarcomas (all organs), and intestinal tumors in male mice. It is hypothesized that the TBBPA uterine tumor carcinogenic mechanisms involve altered estrogen levels and/or oxidative damage. TBBPA treatment may affect hydroxysteroid-dehydrogenase-17β (HSD17β) and/or sulfotransferases, enzymes involved in estrogen homeostasis. Metabolism of TBBPA may also result in the formation of free radicals. The finding of TBBPA-mediated uterine cancer in rats is of concern because TBBPA exposure is widespread and endometrial tumors are a common malignancy in women. Further work is needed to understand TBBPA cancer mechanisms.
Collapse
Affiliation(s)
- J K Dunnick
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - J M Sanders
- National Cancer Institute, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - G E Kissling
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, North Carolina, USA
| | - C L Johnson
- Charles River Laboratories, Pathology Associates, Research Triangle Park, North Carolina, USA
| | - M H Boyle
- Integrated Laboratory Systems, Research Triangle Park, North Carolina, USA
| | - S A Elmore
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, North Carolina, USA
| |
Collapse
|
186
|
García‐Matas S, Paul RK, Molina‐Martínez P, Palacios H, Gutierrez VM, Corpas R, Pallas M, Cristòfol R, Cabo R, Sanfeliu C. In vitro caloric restriction induces protective genes and functional rejuvenation in senescent SAMP8 astrocytes. Aging Cell 2015; 14:334-44. [PMID: 25711920 PMCID: PMC4406662 DOI: 10.1111/acel.12259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 12/12/2022] Open
Abstract
Astrocytes are key cells in brain aging, helping neurons to undertake healthy aging or otherwise letting them enter into a spiral of neurodegeneration. We aimed to characterize astrocytes cultured from senescence-accelerated prone 8 (SAMP8) mice, a mouse model of brain pathological aging, along with the effects of caloric restriction, the most effective rejuvenating treatment known so far. Analysis of the transcriptomic profiles of SAMP8 astrocytes cultured in control conditions and treated with caloric restriction serum was performed using mRNA microarrays. A decrease in mitochondrial and ribosome mRNA, which was restored by caloric restriction, confirmed the age-related profile of SAMP8 astrocytes and the benefits of caloric restriction. An amelioration of antioxidant and neurodegeneration-related pathways confirmed the brain benefits of caloric restriction. Studies of oxidative stress and mitochondrial function demonstrated a reduction of oxidative damage and partial improvement of mitochondria after caloric restriction. In summary, caloric restriction showed a significant tendency to normalize pathologically aged astrocytes through the activation of pathways that are protective against the age-related deterioration of brain physiology.
Collapse
Affiliation(s)
- Silvia García‐Matas
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Rajib K. Paul
- Experimental Gerontology Section TGB NIA NIH251 Bayview Blvd Baltimore MD 21224
| | - Patricia Molina‐Martínez
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Hector Palacios
- Experimental Gerontology Section TGB NIA NIH251 Bayview Blvd Baltimore MD 21224
| | | | - Rubén Corpas
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Mercè Pallas
- Department of Pharmacology and Therapeutic Chemistry Faculty of Pharmacy IBUB, University of Barcelona and CIBERNED 08028 Barcelona Spain
| | - Rosa Cristòfol
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| | - Rafael Cabo
- Experimental Gerontology Section TGB NIA NIH251 Bayview Blvd Baltimore MD 21224
| | - Coral Sanfeliu
- Aging and Neurodegeneration Unit Biomedical Research Institute of Barcelona (IIBB) Consejo Superior de Investigaciones Científicas and IDIBAPS 08036 Barcelona Spain
| |
Collapse
|
187
|
Huang Y, Chen N, Miao D. Biological effects of pyrroloquinoline quinone on liver damage in Bmi-1 knockout mice. Exp Ther Med 2015; 10:451-458. [PMID: 26622336 DOI: 10.3892/etm.2015.2532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022] Open
Abstract
Pyrroloquinoline quinone (PQQ) has been demonstrated to function as an antioxidant by scavenging free radicals and subsequently protecting the mitochondria from oxidative stress-induced damage. The aim of the present study was to investigate whether PQQ is able to rescue premature senescence in the liver, induced by the deletion of B cell-specific Moloney MLV insertion site-1 (Bmi-1), by inhibiting oxidative stress. In vivo, the mice were allocated into three groups that underwent the following treatment protocols. WT mice received a normal diet, while BKO mice also received a normal diet. An additional group of BKO mice were fed a PQQ-supplemented diet (BKO + PQQ; 4 mg PQQ/kg in the normal diet). The results indicated that PQQ partially rescued the liver damage induced by the deletion of Bmi-1. PQQ was demonstrated to exhibit these therapeutic effects on liver damage through multiple aspects, including the promotion of proliferation, antiapoptotic effects, the inhibition of senescence, the upregulation of antioxidant ability, the downregulation of cell cycle protein expression, the scavenging of reactive oxygen species and the reduction of DNA damage. The results of these experiments indicated that treatment of BKO mice with a moderate dose of PQQ significantly protected the liver from deleterious effects by inhibiting oxidative stress and participating in DNA damage repair. Therefore, PQQ has great potential as a therapeutic agent against oxidative stress during liver damage.
Collapse
Affiliation(s)
- Yuanqing Huang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China ; Department of Stomatology, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Ning Chen
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
188
|
Abstract
The era in which ROS (reactive oxygen species) were simply the 'bad boys of biology' is clearly over. High levels of ROS are still rightfully considered to be toxic to many cellular processes and, as such, contribute to disease conditions and cell death. However, the high toxicity of ROS is also extremely beneficial, particularly as it is used to kill invading micro-organisms during mammalian host defence. Moreover, a transient, often more localized, increase in ROS levels appears to play a major role in signal transduction processes and positively affects cell growth, development and differentiation. At the heart of all these processes are redox-regulated proteins, which use oxidation-sensitive cysteine residues to control their function and by extension the function of the pathways that they are part of. Our work has contributed to changing the view about ROS through: (i) our characterization of Hsp33 (heat-shock protein 33), one of the first redox-regulated proteins identified, whose function is specifically activated by ROS, (ii) the development of quantitative tools that reveal extensive redox-sensitive processes in bacteria and eukaryotes, and (iii) the discovery of a link between early exposure to oxidants and aging. Our future research programme aims to generate an integrated and system-wide view of the beneficial and deleterious effects of ROS with the central goal to develop more effective antioxidant strategies and more powerful antimicrobial agents.
Collapse
|
189
|
Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, Hubbard GB, Ikeno Y, Zhang Y, Feng B, Li X, Serre T, Qi W, Van Remmen H, Miller RA, Bath KG, de Cabo R, Xu H, Neretti N, Sedivy JM. Reduced expression of MYC increases longevity and enhances healthspan. Cell 2015; 160:477-88. [PMID: 25619689 DOI: 10.1016/j.cell.2014.12.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 10/21/2014] [Accepted: 12/03/2014] [Indexed: 01/18/2023]
Abstract
MYC is a highly pleiotropic transcription factor whose deregulation promotes cancer. In contrast, we find that Myc haploinsufficient (Myc(+/-)) mice exhibit increased lifespan. They show resistance to several age-associated pathologies, including osteoporosis, cardiac fibrosis, and immunosenescence. They also appear to be more active, with a higher metabolic rate and healthier lipid metabolism. Transcriptomic analysis reveals a gene expression signature enriched for metabolic and immune processes. The ancestral role of MYC as a regulator of ribosome biogenesis is reflected in reduced protein translation, which is inversely correlated with longevity. We also observe changes in nutrient and energy sensing pathways, including reduced serum IGF-1, increased AMPK activity, and decreased AKT, TOR, and S6K activities. In contrast to observations in other longevity models, Myc(+/-) mice do not show improvements in stress management pathways. Our findings indicate that MYC activity has a significant impact on longevity and multiple aspects of mammalian healthspan.
Collapse
Affiliation(s)
- Jeffrey W Hofmann
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Xiaoai Zhao
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Marco De Cecco
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Luca Pagliaroli
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Jayameenakshi Manivannan
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gene B Hubbard
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuji Ikeno
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yongqing Zhang
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Bin Feng
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Xiaxi Li
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Thomas Serre
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Wenbo Qi
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Holly Van Remmen
- Department of Cellular and Structural Biology, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Haiyan Xu
- Hallett Center for Diabetes and Endocrinology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
190
|
Boparai RK, Arum O, Miquet JG, Masternak MM, Bartke A, Khardori RK. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice. Int J Endocrinol 2015; 2015:282375. [PMID: 26089880 PMCID: PMC4451995 DOI: 10.1155/2015/282375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH) intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.
Collapse
Affiliation(s)
- Ravneet K. Boparai
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9636, USA
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Oge Arum
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- *Oge Arum:
| | - Johanna G. Miquet
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michal M. Masternak
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
| | - Romesh K. Khardori
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9636, USA
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23510, USA
| |
Collapse
|
191
|
Abstract
Geriatrics is a medical practice that addresses the complex needs of older patients and emphasizes maintaining functional independence even in the presence of chronic disease. Treatment of geriatric patients requires a different strategy and is very complex. Geriatric medicines aim to promote health by preventing and treating diseases and disabilities in older adults. Development of effective dietary interventions for promoting healthy aging is an active but challenging area of research because aging is associated with an increased risk of chronic disease, disability, and death. Aging populations are a global phenomenon. The most widespread conditions affecting older people are hypertension, congestive heart failure, dementia, osteoporosis, breathing problems, cataract, and diabetes to name a few. Decreased immunity is also partially responsible for the increased morbidity and mortality resulting from infectious agents in the elderly. Nutritional status is one of the chief variables that explains differences in both the incidence and pathology of infection. Elderly people are at increased risk for micronutrient deficiencies due to a variety of factors including social, physical, economic, and emotional obstacles to eating. Thus there is an urgent need to shift priorities to increase our attention on ways to prevent chronic illnesses associated with aging. Individually, people must put increased efforts into establishing healthy lifestyle practices, including consuming a more healthful diet. The present review thus focuses on the phytochemicals of nutraceutical importance for the geriatric population.
Collapse
Affiliation(s)
- Charu Gupta
- Amity Institute for Herbal Research & Studies, Amity University UP, Noida, India
| | | |
Collapse
|
192
|
Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never! Biogerontology 2014; 16:249-64. [PMID: 25537184 DOI: 10.1007/s10522-014-9546-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/05/2014] [Indexed: 01/01/2023]
Abstract
Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).
Collapse
|
193
|
Strachecka A, Krauze M, Olszewski K, Borsuk G, Paleolog J, Merska M, Chobotow J, Bajda M, Grzywnowicz K. Unexpectedly strong effect of caffeine on the vitality of western honeybees (Apis mellifera). BIOCHEMISTRY (MOSCOW) 2014; 79:1192-201. [DOI: 10.1134/s0006297914110066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
194
|
Ihle KE, Fondrk MK, Page RE, Amdam GV. Genotype effect on lifespan following vitellogenin knockdown. Exp Gerontol 2014; 61:113-22. [PMID: 25497555 DOI: 10.1016/j.exger.2014.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 11/27/2014] [Accepted: 12/06/2014] [Indexed: 01/20/2023]
Abstract
Honey bee workers display remarkable flexibility in the aging process. This plasticity is closely tied to behavioral maturation. Workers who initiate foraging behavior at earlier ages have shorter lifespans, and much of the variation in total lifespan can be explained by differences in pre-foraging lifespan. Vitellogenin (Vg), a yolk precursor protein, influences worker lifespan both as a regulator of behavioral maturation and through anti-oxidant and immune functions. Experimental reduction of Vg mRNA, and thus Vg protein levels, in wild-type bees results in precocious foraging behavior, decreased lifespan, and increased susceptibility to oxidative damage. We sought to separate the effects of Vg on lifespan due to behavioral maturation from those due to immune and antioxidant function using two selected strains of honey bees that differ in their phenotypic responsiveness to Vg gene knockdown. Surprisingly, we found that lifespans lengthen in the strain described as behaviorally and hormonally insensitive to Vg reduction. We then performed targeted gene expression analyses on genes hypothesized to mediate aging and lifespan: the insulin-like peptides (Ilp1 and 2) and manganese superoxide dismutase (mnSOD). The two honey bee Ilps are the most upstream components in the insulin-signaling pathway, which influences lifespan in Drosophila melanogaster and other organisms, while manganese superoxide dismutase encodes an enzyme with antioxidant functions in animals. We found expression differences in the llps in fat body related to behavior (llp1 and 2) and genetic background (Ilp2), but did not find strain by treatment effects. Expression of mnSOD was also affected by behavior and genetic background. Additionally, we observed a differential response to Vg knockdown in fat body expression of mnSOD, suggesting that antioxidant pathways may partially explain the strain-specific lifespan responses to Vg knockdown.
Collapse
Affiliation(s)
- Kate E Ihle
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA; Smithsonian Tropical Research Institute, Panama City, Panama, Apartado Postal 0843-03092, Panama.
| | - M Kim Fondrk
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA; University of California, Davis, Department of Entomology and Nematology, Shields Avenue, Davis, CA 95616-5270, USA.
| | - Robert E Page
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA.
| | - Gro V Amdam
- Arizona State University, School of Life Sciences, Tempe, AZ 85287, USA; Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, Aas 1432, Norway.
| |
Collapse
|
195
|
Tang Y, Purkayastha S, Cai D. Hypothalamic microinflammation: a common basis of metabolic syndrome and aging. Trends Neurosci 2014; 38:36-44. [PMID: 25458920 DOI: 10.1016/j.tins.2014.10.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022]
Abstract
Chronic microinflammation is a hallmark of many aging-related neurodegenerative diseases as well as metabolic syndrome-driven diseases. Recent research indicates that chronic caloric excess can lead to hypothalamic microinflammation, which in turn participates in the development and progression of metabolic syndrome disorders such as obesity, glucose intolerance, and hypertension. Additionally, it was recently shown that increasing age after young adulthood can cause hypothalamic microinflammation independently of nutritional status, mediating a central mechanism of systemic aging. Taken together, these findings suggest that the hypothalamus has a fundamental role, via hypothalamic microinflammation, in translating overnutrition and aging into complex outcomes. Here we summarize recent work and suggest a conceptual model in which hypothalamic microinflammation is a common mediator of metabolic syndrome and aging.
Collapse
Affiliation(s)
- Yizhe Tang
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Sudarshana Purkayastha
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
196
|
Spindler SR, Mote PL, Lublin AL, Flegal JM, Dhahbi JM, Li R. Nordihydroguaiaretic Acid Extends the Lifespan of Drosophila and Mice, Increases Mortality-Related Tumors and Hemorrhagic Diathesis, and Alters Energy Homeostasis in Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1479-89. [PMID: 25380600 PMCID: PMC4631105 DOI: 10.1093/gerona/glu190] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/15/2014] [Indexed: 12/20/2022] Open
Abstract
Mesonordihydroguaiaretic acid (NDGA) extends murine lifespan. The studies reported here describe its dose dependence, effects on body weight, toxicity-related clinical chemistries, and mortality-related pathologies. In flies, we characterized its effects on lifespan, food consumption, body weight, and locomotion. B6C3F1 mice were fed AIN-93M diet supplemented with 1.5, 2.5, 3.5, or 4.5g NDGA/kg diet (1.59, 2.65, 3.71 and 4.77mg/kg body weight/day) beginning at 12 months of age. Only the 3.5mg/kg diet produced a highly significant increase in lifespan, as judged by either the Mantel–Cox log-rank test (p = .008) or the Gehan–Breslow–Wilcoxon test (p = .009). NDGA did not alter food intake, but dose-responsively reduced weight, suggesting it decreased the absorption or increased the utilization of calories. NDGA significantly increased the incidence of liver, lung, and thymus tumors, and peritoneal hemorrhagic diathesis found at necropsy. However, clinical chemistries found little evidence for overt toxicity. While NDGA was not overtly toxic at its therapeutic dosage, its association with severe end of life pathologies does not support the idea that NDGA consumption will increase human lifespan or health-span. The less toxic derivatives of NDGA which are under development should be explored as anti-aging therapeutics.
Collapse
Affiliation(s)
- Stephen R Spindler
- Department of Biochemistry, University of California at Riverside, Riverside, California;
| | - Patricia L Mote
- Department of Biochemistry, University of California at Riverside, Riverside, California
| | - Alex L Lublin
- Department of Biochemistry, University of California at Riverside, Riverside, California
| | - James M Flegal
- Department of Statistics, University of California at Riverside, Riverside, California
| | - Joseph M Dhahbi
- Department of Biochemistry, University of California at Riverside, Riverside, California
| | | |
Collapse
|
197
|
Coban FK, Ince S, Kucukkurt I, Demirel HH, Hazman O. Boron attenuates malathion-induced oxidative stress and acetylcholinesterase inhibition in rats. Drug Chem Toxicol 2014; 38:391-9. [DOI: 10.3109/01480545.2014.974109] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
198
|
Melatonin and the Charlson Comorbidity Index (CCI): the Treviso Longeva (Trelong) study. Int J Biol Markers 2014; 29:e253-60. [PMID: 24557791 DOI: 10.5301/jbm.5000077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2014] [Indexed: 12/15/2022]
Abstract
INTRODUCTION It has been reported that elderly subjects have a compromised ability to produce melatonin nightly, and that reduced melatonin levels may be a risk factor for cancer. The purpose of this study was to evaluate the relationship between melatonin levels and chronic diseases in a cohort of elderly subjects using the Charlson comorbidity index (CCI). DESIGN We performed a secondary data analysis of a longitudinal study of a representative, age-stratified, sample population. SETTING The Treviso Longeva (Trelong) study, in Treviso, Italy. PARTICIPANTS A total of 114 men and 146 women, aged 77 years and older, still alive after 7 years of follow-up. MEASUREMENTS As an estimation of serum melatonin secretion levels, urinary 6-sulfatoxymelatonin (aMT6s) was assayed in the urine of 260 elderly subjects using an enzyme-linked immunosorbent assay (ELISA) kit (product 01-EK-M6S, ALPCO Immunoassays, Windham, NH). All aMT6s levels were creatinine standardized ([aMT6s]/[creatinine]), and the CCI was calculated. RESULTS The melatonin levels decreased with aging despite not reaching statistical significance, and the decrease was more evident in males than in females (40.5 ng vs 47.0 ng aMT6s/mg creatinine, ns). Melatonin levels were significantly lower in patients reporting insomnia (p=0.05). The CCI score was inversely correlated with the levels of melatonin (p=0.03). Melatonin levels of subjects affected by CCI pathologies were significantly lower than those of healthy subjects (p=0.03) and of subjects suffering from diseases not included in the CCI and, therefore, less severe (p=0.03). CONCLUSION Melatonin appears to be a marker of disease state and severity, as well as of sleep disorders, in the elderly. These early findings would confirm the protective role of melatonin against several chronic diseases. The benefits of this agent as a possible medication should be more thoroughly clinically tested.
Collapse
|
199
|
Sun X, Wheeler CT, Yolitz J, Laslo M, Alberico T, Sun Y, Song Q, Zou S. A mitochondrial ATP synthase subunit interacts with TOR signaling to modulate protein homeostasis and lifespan in Drosophila. Cell Rep 2014; 8:1781-1792. [PMID: 25220459 DOI: 10.1016/j.celrep.2014.08.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/24/2014] [Accepted: 08/09/2014] [Indexed: 10/24/2022] Open
Abstract
Diet composition is a critical determinant of lifespan, and nutrient imbalance is detrimental to health. However, how nutrients interact with genetic factors to modulate lifespan remains elusive. We investigated how diet composition influences mitochondrial ATP synthase subunit d (ATPsyn-d) in modulating lifespan in Drosophila. ATPsyn-d knockdown extended lifespan in females fed low carbohydrate-to-protein (C:P) diets but not the high C:P ratio diet. This extension was associated with increased resistance to oxidative stress; transcriptional changes in metabolism, proteostasis, and immune genes; reduced protein damage and aggregation, and reduced phosphorylation of S6K and ERK in TOR and mitogen-activated protein kinase (MAPK) signaling, respectively. ATPsyn-d knockdown did not extend lifespan in females with reduced TOR signaling induced genetically by Tsc2 overexpression or pharmacologically by rapamycin. Our data reveal a link among diet, mitochondria, and MAPK and TOR signaling in aging and stresses the importance of considering genetic background and diet composition in implementing interventions for promoting healthy aging.
Collapse
Affiliation(s)
- Xiaoping Sun
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Charles T Wheeler
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Jason Yolitz
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Mara Laslo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Thomas Alberico
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Yaning Sun
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Sige Zou
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA.
| |
Collapse
|
200
|
Allison DB, Antoine LH, Ballinger SW, Bamman MM, Biga P, Darley-Usmar VM, Fisher G, Gohlke JM, Halade GV, Hartman JL, Hunter GR, Messina JL, Nagy TR, Plaisance EP, Powell ML, Roth KA, Sandel MW, Schwartz TS, Smith DL, Sweatt JD, Tollefsbol TO, Watts SA, Yang Y, Zhang J, Austad SN. Aging and energetics' 'Top 40' future research opportunities 2010-2013. F1000Res 2014; 3:219. [PMID: 25324965 PMCID: PMC4197746 DOI: 10.12688/f1000research.5212.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/08/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND As part of a coordinated effort to expand our research activity at the interface of Aging and Energetics a team of investigators at The University of Alabama at Birmingham systematically assayed and catalogued the top research priorities identified in leading publications in that domain, believing the result would be useful to the scientific community at large. OBJECTIVE To identify research priorities and opportunities in the domain of aging and energetics as advocated in the 40 most cited papers related to aging and energetics in the last 4 years. DESIGN The investigators conducted a search for papers on aging and energetics in Scopus, ranked the resulting papers by number of times they were cited, and selected the ten most-cited papers in each of the four years that include 2010 to 2013, inclusive. RESULTS Ten research categories were identified from the 40 papers. These included: (1) Calorie restriction (CR) longevity response, (2) role of mTOR (mechanistic target of Rapamycin) and related factors in lifespan extension, (3) nutrient effects beyond energy (especially resveratrol, omega-3 fatty acids, and selected amino acids), 4) autophagy and increased longevity and health, (5) aging-associated predictors of chronic disease, (6) use and effects of mesenchymal stem cells (MSCs), (7) telomeres relative to aging and energetics, (8) accretion and effects of body fat, (9) the aging heart, and (10) mitochondria, reactive oxygen species, and cellular energetics. CONCLUSION The field is rich with exciting opportunities to build upon our existing knowledge about the relations among aspects of aging and aspects of energetics and to better understand the mechanisms which connect them.
Collapse
Affiliation(s)
- David B. Allison
- Office of Energetics, University of Alabama at Birmingham, Birmingham, USA
- School of Public Health, University of Alabama at Birmingham, Birmingham, USA
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Lisa H. Antoine
- Office of Energetics, University of Alabama at Birmingham, Birmingham, USA
- School of Engineering, University of Alabama at Birmingham, Birmingham, USA
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Scott W. Ballinger
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Marcas M. Bamman
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Cell, Developmental, & Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
- Birmingham VA Medical Center, Birmingham, USA
| | - Peggy Biga
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Victor M. Darley-Usmar
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Gordon Fisher
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Julia M. Gohlke
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Ganesh V. Halade
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Medicine – Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, USA
| | - John L. Hartman
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Genetics, University of Alabama at Birmingham, Birmingham, USA
| | - Gary R. Hunter
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Joseph L. Messina
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
- Birmingham VA Medical Center, Birmingham, USA
| | - Tim R. Nagy
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Eric P. Plaisance
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Mickie L. Powell
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Kevin A. Roth
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Michael W. Sandel
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, USA
| | - Tonia S. Schwartz
- School of Public Health, University of Alabama at Birmingham, Birmingham, USA
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
| | - Daniel L. Smith
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
| | - J. David Sweatt
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| | - Trygve O. Tollefsbol
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Stephen A. Watts
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Yongbin Yang
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, USA
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Steven N. Austad
- Nutrition and Obesity Research Center, University of Alabama at Birmingham, Birmingham, USA
- Department of Biology, University of Alabama at Birmingham, Birmingham, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, USA
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|