151
|
Zhou Y, Huang L, Zheng W, An J, Zhan Z, Wang L, Chen Z, Liu L. Recurrent nonsevere hypoglycemia exacerbates imbalance of mitochondrial homeostasis leading to synapse injury and cognitive deficit in diabetes. Am J Physiol Endocrinol Metab 2018; 315:E973-E986. [PMID: 29969317 DOI: 10.1152/ajpendo.00133.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Recurrent nonsevere hypoglycemia (RH) can lead to cognitive dysfunction in patients with diabetes, although the involved mechanisms remain unclear. Here, we aimed to investigate the mechanism underlying RH-induced cognitive deficits with a focus on mitochondrial homeostasis. To establish a model that mimicked RH in patients with type 1 diabetes (T1DM) receiving insulin therapy, streptozotocin-induced mice with T1DM were subjected to recurrent, twice-weekly insulin injections over 4 wk. We found that RH disrupted the mitochondrial fine structure, reduced the number of mitochondria, and upregulated the expression of mitochondrial dynamics and mitophagy markers, including dynamin-related protein 1 (Drp1), Bcl-2/adenovirus E1B 19-kDa-interacting protein-3 (BNIP3), and microtubule-associated protein 1 light-chain 3 (LC3) in the hippocampus of T1DM mice. Moreover, RH and chronic hyperglycemia synergistically promoted the production of reactive oxygen species, impaired mitochondrial membrane potential, and suppressed mitochondrial energy metabolism. Under diabetic conditions, RH also altered the synaptic morphology and reduced the expression of synaptic marker proteins. Long-term recognition memory and spatial memory, assessed with the Morris water maze test, were also impaired. However, these effects were largely prevented by mitochondrial division inhibitor 1, a potent and selective Drp1 inhibitor. Thus, it appears that RH exacerbates the imbalance of mitochondrial homeostasis, leading to synapse injury and cognitive deficits in diabetes. The adjustment of mitochondrial homeostasis could serve as an effective neuroprotective approach when addressing low blood sugar conditions.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Lishan Huang
- Department of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Wenting Zheng
- Department of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Jingjing An
- The School of Pharmacy, Fujian Medical University , Fuzhou , China
| | - Zhidong Zhan
- Department of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Linxi Wang
- Department of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| | - Zhou Chen
- The School of Pharmacy, Fujian Medical University , Fuzhou , China
| | - Libin Liu
- Department of Endocrinology, Fujian Medical University Union Hospital , Fuzhou , China
| |
Collapse
|
152
|
Anacardium microcarpum Promotes Neuroprotection Dependently of AKT and ERK Phosphorylation but Does Not Prevent Mitochondrial Damage by 6-OHDA. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2131895. [PMID: 30510616 PMCID: PMC6231360 DOI: 10.1155/2018/2131895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/11/2018] [Accepted: 08/18/2018] [Indexed: 11/18/2022]
Abstract
Parkinson's disease is a degenerative and progressive illness characterized by the degeneration of dopaminergic neurons. 6-hydroxydopamine (6-OHDA) is a widespread model for induction of molecular and behavioral alterations similar to Parkinson and has contributed for testing of compounds with neuroprotective potential. The Brazilian plant Anacardium microcarpum is used in folk medicine for treatment of several illnesses; however, the knowledge about toxicology and biological effects for this plant is very rare. The neuroprotective effect from hydroalcoholic extract and methanolic and acetate fraction of A. microcarpum on 6-OHDA-induced damage on chicken brain slices was investigated in this study. 6-OHDA decreased cellular viability measured by MTT reduction assay, induced lipid peroxidation by HPLC, stimulated Glutathione-S-Transferase and Thioredoxin Reductase activity, and decreased Glutathione Peroxidase activity and the total content of thiols containing compounds. The methanolic fraction of A. microcarpum presented the better neuroprotective effects in 6-OHDA-induced damage in relation with hydroalcoholic and acetate fraction. The presence of AKT and ERK1/2 pharmacological inhibitors blocked the protective effect of methanolic fraction suggesting the involvement of survival pathways in the neuroprotection by the plant. The plant did not prevent 6-OHDA autoxidation or 6-OHDA-induced mitochondrial dysfunction. Thus, the neuroprotective effect of the methanolic fraction of A. microcarpum appears to be attributed in part to chelating properties of extract toward reactive species and is dependent on ERK1/2 and AKT phosphorylation. This study contributes to the understanding of biochemical mechanisms implied in neuroprotective effects of the vegetal species A. microcarpum.
Collapse
|
153
|
Piotrowska-Nowak A, Kosior-Jarecka E, Schab A, Wrobel-Dudzinska D, Bartnik E, Zarnowski T, Tonska K. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Exp Eye Res 2018; 178:186-197. [PMID: 30312593 DOI: 10.1016/j.exer.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide. However, the cause of retinal ganglion cell loss and damage of the optic nerve in its pathogenesis is largely unknown. The high energy demands of these cells may reflect their strong dependence on mitochondrial function and thus sensitivity to mitochondrial defects. To address this issue, we studied whole mitochondrial genome variation in normal tension glaucoma patients and control individuals from the Polish population using next generation sequencing. Our findings indicate that few features of mitochondrial DNA variation are different for glaucoma patients and control subjects. New insights into normal tension glaucoma development are discussed. We provide also a comprehensive approach for mitochondrial DNA analysis and variant evaluation.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Aleksandra Schab
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Dominika Wrobel-Dudzinska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland; Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Tomasz Zarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Katarzyna Tonska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| |
Collapse
|
154
|
Cruz ACP, Ferrasa A, Muotri AR, Herai RH. Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 2018; 46:345-360. [PMID: 30218715 DOI: 10.1016/j.mito.2018.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/24/2018] [Accepted: 09/11/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are small cytosolic organelles and the main source of energy production for the cells, especially in the brain. This organelle has its own genome, the mitochondrial DNA (mtDNA), and genetic variants in this molecule can alter the normal energy metabolism in the brain, contributing to the development of a wide assortment of Neurological Disorders (ND), including neurodevelopmental syndromes, neurodegenerative diseases and neuropsychiatric disorders. These ND are comprised by a heterogeneous group of syndromes and diseases that encompass different cognitive phenotypes and behavioral disorders, such as autism, Asperger's syndrome, pervasive developmental disorder, attention deficit hyperactivity disorder, Huntington disease, Leigh Syndrome and bipolar disorder. In this work we carried out a Systematic Literature Review (SLR) to identify and describe the mitochondrial genetic variants associated with the occurrence of ND. Most of genetic variants found in mtDNA were associated with Single Nucleotide Polimorphisms (SNPs), ~79%, with ~15% corresponding to deletions, ~3% to Copy Number Variations (CNVs), ~2% to insertions and another 1% included mtDNA replication problems and genetic rearrangements. We also found that most of the variants were associated with coding regions of mitochondrial proteins but were also found in regulatory transcripts (tRNA and rRNA) and in the D-Loop replication region of the mtDNA. After analysis of mtDNA deletions and CNV, none of them occur in the D-Loop region. This SLR shows that all transcribed mtDNA molecules have mutations correlated with ND. Finally, we describe that all mtDNA variants found were associated with deterioration of cognitive (dementia) and intellectual functions, learning disabilities, developmental delays, and personality and behavior problems.
Collapse
Affiliation(s)
- Ana Carolina P Cruz
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil
| | - Adriano Ferrasa
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Department of Informatics (DEINFO), Universidade Estadual de Ponta Grossa (UEPG), Ponta Grossa, Paraná 84030-900, Brazil
| | - Alysson R Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92037-0695, USA
| | - Roberto H Herai
- Experimental Multiuser Laboratory (LEM), Graduate Program in Health Sciences (PPGCS), School of Medicine (PPGCS), Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba, Paraná 80215-901, Brazil; Lico Kaesemodel Institute (ILK), Curitiba, Paraná 80240-000, Brazil.
| |
Collapse
|
155
|
Zhang J, Zhang W, Zhang T, Zhou Q, Liu J, Liu Y, Kong D, Yu W, Liu R, Hai C. TGF-β1 induces epithelial-to-mesenchymal transition via inhibiting mitochondrial functions in A549 cells. Free Radic Res 2018; 52:1432-1444. [DOI: 10.1080/10715762.2018.1500020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jiaxin Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Wei Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Tao Zhang
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Qingbiao Zhou
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Jiangzheng Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Ying Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Weihua Yu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
156
|
Ahmad W. Dihydrolipoamide dehydrogenase suppression induces human tau phosphorylation by increasing whole body glucose levels in a C. elegans model of Alzheimer's Disease. Exp Brain Res 2018; 236:2857-2866. [PMID: 30056470 DOI: 10.1007/s00221-018-5341-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/21/2018] [Indexed: 12/01/2022]
Abstract
The microtubule associated tau protein becomes hyperphosphorylated in Alzheimer's disease (AD). While hyperphosphorylation promotes neurodegeneration, the cause and consequences of this abnormal modification are poorly understood. As impaired energy metabolism is an important hallmark of AD progression, we tested whether it could trigger phosphorylation of human tau protein in a transgenic Caenorhabditis elegans model of AD. We found that inhibition of a mitochondrial enzyme of energy metabolism, dihydrolipoamide dehydrogenase (DLD) results in elevated whole-body glucose levels as well as increased phosphorylation of tau. Hyperglycemia and tau phosphorylation were induced by either RNAi suppression of the dld-1 gene or by inhibition of the DLD enzyme by the inhibitor, 2-methoxyindole-2-carboxylic acid (MICA). Although the calcium ionophore A23187 could reduce tau phosphorylation induced by either chemical or genetic suppression of DLD, it was unable to reduce tau phosphorylation induced by hyperglycemia. While inhibition of the dld-1 gene or treatment with MICA partially reversed the inhibition of acetylcholine neurotransmission by tau, neither treatment affected tau inhibited mobility. Conclusively, any abnormalities in energy metabolism were found to significantly affect the AD disease pathology.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
157
|
Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, Giraldez L, Echeverria V, Barrera-Bailon B, Aliev G, Sahebkar A, Ashraf GM, Barreto GE. Extracts of Physalis peruviana Protect Astrocytic Cells Under Oxidative Stress With Rotenone. Front Chem 2018; 6:276. [PMID: 30175092 PMCID: PMC6108337 DOI: 10.3389/fchem.2018.00276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
The use of medicinal plants to counteract the oxidative damage in neurodegenerative diseases has steadily increased over the last few years. However, the rationale for using these natural compounds and their therapeutic benefit are not well explored. In this study, we evaluated the effect of different Physalis peruviana extracts on astrocytic cells (T98G) subjected to oxidative damage induced by rotenone. Extracts of fresh and dehydrated fruits of the plant with different polarities were prepared and tested in vitro. Our results demonstrated that the ethanolic extract of fresh fruits (EF) and acetone-dehydrated fruit extract (AD) increased cell viability, reduced the formation of reactive oxygen species (ROS) and preserved mitochondrial membrane potential. In contrast, we observed a significant reduction in mitochondrial mass when rotenone-treated cells were co-treated with EF and AD. These effects were accompanied by a reduction in the percentage of cells with fragmented/condensed nuclei and increased expression of endogenous antioxidant defense survival proteins such as ERK1/2. In conclusion, our findings suggest that ethanolic and acetone extracts from P. peruviana are potential medicinal plant extracts to overcome oxidative damage induced by neurotoxic compounds.
Collapse
Affiliation(s)
- Natalia Areiza-Mazo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jorge Robles
- Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jairo A Zamudio-Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lisandro Giraldez
- Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, United States
| | - Biviana Barrera-Bailon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia.,GALLY International Biomedical Research Consulting LLC., San Antonio, TX, United States.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, United States
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
158
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
159
|
PGC-1α sparks the fire of neuroprotection against neurodegenerative disorders. Ageing Res Rev 2018; 44:8-21. [PMID: 29580918 DOI: 10.1016/j.arr.2018.03.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 12/30/2022]
Abstract
Recently, growing evidence has demonstrated that peroxisome proliferator activated receptor γ (PPARγ) coactivator-1α (PGC-1α) is a superior transcriptional regulator that acts via controlling the expression of anti-oxidant enzymes and uncoupling proteins and inducing mitochondrial biogenesis, which plays a beneficial part in the central nervous system (CNS). Given the significance of PGC-1α, we summarize the current literature on the molecular mechanisms and roles of PGC-1α in the CNS. Thus, in this review, we first briefly introduce the basic characteristics regarding PGC-1α. We then depict some of its important cerebral functions and discuss upstream modulators, partners, and downstream effectors of the PGC-1α signaling pathway. Finally, we highlight recent progress in research on the involvement of PGC-1α in certain major neurodegenerative disorders (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Collectively, the data presented here may be useful for supporting the future potential of PGC-1α as a therapeutic target.
Collapse
|
160
|
Ramot Y, Alam M, Oláh A, Bíró T, Ponce L, Chéret J, Bertolini M, Paus R. Peroxisome Proliferator–Activated Receptor-γ−Mediated Signaling Regulates Mitochondrial Energy Metabolism in Human Hair Follicle Epithelium. J Invest Dermatol 2018; 138:1656-1659. [DOI: 10.1016/j.jid.2018.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 12/27/2022]
|
161
|
D'Angelo M, Antonosante A, Castelli V, Catanesi M, Moorthy N, Iannotta D, Cimini A, Benedetti E. PPARs and Energy Metabolism Adaptation during Neurogenesis and Neuronal Maturation. Int J Mol Sci 2018; 19:ijms19071869. [PMID: 29949869 PMCID: PMC6073366 DOI: 10.3390/ijms19071869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 11/20/2022] Open
Abstract
Peroxisome proliferator activated receptors (PPARs) are a class of ligand-activated transcription factors, belonging to the superfamily of receptors for steroid and thyroid hormones, retinoids, and vitamin D. PPARs control the expression of several genes connected with carbohydrate and lipid metabolism, and it has been demonstrated that PPARs play important roles in determining neural stem cell (NSC) fate. Lipogenesis and aerobic glycolysis support the rapid proliferation during neurogenesis, and specific roles for PPARs in the control of different phases of neurogenesis have been demonstrated. Understanding the changes in metabolism during neuronal differentiation is important in the context of stem cell research, neurodegenerative diseases, and regenerative medicine. In this review, we will discuss pivotal evidence that supports the role of PPARs in energy metabolism alterations during neuronal maturation and neurodegenerative disorders.
Collapse
Affiliation(s)
- Michele D'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - NandhaKumar Moorthy
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Dalila Iannotta
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
162
|
Danduga RCSR, Dondapati SR, Kola PK, Grace L, Tadigiri RVB, Kanakaraju VK. Neuroprotective activity of tetramethylpyrazine against 3-nitropropionic acid induced Huntington's disease-like symptoms in rats. Biomed Pharmacother 2018; 105:1254-1268. [PMID: 30021362 DOI: 10.1016/j.biopha.2018.06.079] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is an autosomal neurodegenerative disease characterized by chorea, dystonia, motor ataxia, cognitive decline and psychiatric disorders with gradual loss of nerve cells and has no existing cure for the disease. In the present study, a mitochondrial toxin, 3-nitropropionic acid (3-NP) is used to induce HD like symptoms in rats. Tetramethylpyrazine is one of the active ingredients of Chuan Xiong which was reported to have neurotrophic and neuroprotective activities. The present study was designed to evaluate the role of TMP on 3-NP induced behavioral, biochemical, neurochemical, and histological alterations in the different regions of the brain. Animals were pretreated with normal saline/TMP for 7 days. From 8th day, the treatment groups were co-administered with 3-NP (10 mg/kg, i.p) and continued to the 21st day of the treatment protocol. At the end of the study, we found that the TMP improved all the behavioral performances of 3-NP induced neurotoxic rats, significantly. Further, oxidative stress parameters (lipid peroxidation, reduced glutathione, catalase, and superoxide dismutase), succinate dehydrogenase enzyme, and neurochemical (GABA and glutamate) estimations were done in the brain homogenate. In our study, the treatment with TMP ameliorated the 3-NP induced alterations, in the biochemical and neurochemical parameter in the brain homogenate, dose-dependently. The protective role of TMP further confirmed by measuring the lesion area with the 2,3,5-triphenyltetrazolium chloride staining of the brain slices and histopathological alteration in the hippocampus (CA1 and CA3) and striatal regions of the brain. Hence, the present findings suggest that the protective role of TMP against 3-NP induced behavioral, biochemical, neurochemical, and histological alterations in rats.
Collapse
Affiliation(s)
| | - Subba Reddy Dondapati
- Department of Pharmacology, Nirmala College of Pharmacy, Atmakur, Andhra Pradesh, India
| | - Phani Kumar Kola
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| | - Lilly Grace
- Department of Pharmacology, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| | | | - Vijaya Kishore Kanakaraju
- Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Acharya Nagarjuna University, India
| |
Collapse
|
163
|
Observing DNA in live cells. Biochem Soc Trans 2018; 46:729-740. [PMID: 29871877 DOI: 10.1042/bst20170301] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
The structural organization and dynamics of DNA are known to be of paramount importance in countless cellular processes, but capturing these events poses a unique challenge. Fluorescence microscopy is well suited for these live-cell investigations, but requires attaching fluorescent labels to the species under investigation. Over the past several decades, a suite of techniques have been developed for labeling and imaging DNA, each with various advantages and drawbacks. Here, we provide an overview of the labeling and imaging tools currently available for visualizing DNA in live cells, and discuss their suitability for various applications.
Collapse
|
164
|
Ben-Shachar D, Ene HM. Mitochondrial Targeted Therapies: Where Do We Stand in Mental Disorders? Biol Psychiatry 2018; 83:770-779. [PMID: 28965983 DOI: 10.1016/j.biopsych.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/26/2017] [Accepted: 08/06/2017] [Indexed: 12/20/2022]
Abstract
The neurobiology of psychiatric disorders is still unclear, although changes in multiple neuronal systems, specifically the dopaminergic, glutamatergic, and gamma-aminobutyric acidergic systems as well as abnormalities in synaptic plasticity and neural connectivity, are currently suggested to underlie their pathophysiology. A growing body of evidence suggests multifaceted mitochondrial dysfunction in mental disorders, which is in line with their role in neuronal activity, growth, development, and plasticity. In this review, we describe the main endeavors toward development of treatments that will enhance mitochondrial function and their transition into clinical use in congenital mitochondrial diseases and chronic disorders such as types 1 and 2 diabetes, cardiovascular disorders, and cancer. In addition, we discuss the relevance of mitochondrial targeted treatments to mental disorders and their potential to become a novel therapeutic strategy that will improve the efficiency of the current treatments.
Collapse
Affiliation(s)
- Dorit Ben-Shachar
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus and B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Hila M Ene
- Laboratory of Psychobiology, Department of Psychiatry, Rambam Health Care Campus and B. Rappaport Faculty of Medicine, Rappaport Family Institute for Research in Medical Sciences, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
165
|
Oxidant/Antioxidant Imbalance in Alzheimer's Disease: Therapeutic and Diagnostic Prospects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6435861. [PMID: 29636850 PMCID: PMC5831771 DOI: 10.1155/2018/6435861] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid β (Aβ) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aβ overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.
Collapse
|
166
|
Khacho M, Clark A, Svoboda DS, MacLaurin JG, Lagace DC, Park DS, Slack RS. Mitochondrial dysfunction underlies cognitive defects as a result of neural stem cell depletion and impaired neurogenesis. Hum Mol Genet 2018; 26:3327-3341. [PMID: 28595361 DOI: 10.1093/hmg/ddx217] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.
Collapse
Affiliation(s)
- Mireille Khacho
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Alysen Clark
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Devon S Svoboda
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Jason G MacLaurin
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - David S Park
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine, University of Ottawa Brain and Mind Research Institute, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
167
|
Chae JW, Chua PS, Ng T, Yeo AHL, Shwe M, Gan YX, Dorajoo S, Foo KM, Loh KWJ, Koo SL, Chay WY, Tan TJY, Beh SY, Lim EH, Lee GE, Dent R, Yap YS, Ng R, Ho HK, Chan A. Association of mitochondrial DNA content in peripheral blood with cancer-related fatigue and chemotherapy-related cognitive impairment in early-stage breast cancer patients: a prospective cohort study. Breast Cancer Res Treat 2018; 168:713-721. [DOI: 10.1007/s10549-017-4640-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/23/2017] [Indexed: 12/24/2022]
|
168
|
|
169
|
Scholpa NE, Lynn MK, Corum D, Boger HA, Schnellmann RG. 5-HT 1F receptor-mediated mitochondrial biogenesis for the treatment of Parkinson's disease. Br J Pharmacol 2018; 175:348-358. [PMID: 29057453 PMCID: PMC5758398 DOI: 10.1111/bph.14076] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Parkinson's disease is characterized by progressive decline in motor function due to degeneration of nigrostriatal dopaminergic neurons, as well as other deficits including cognitive impairment and behavioural abnormalities. Mitochondrial dysfunction, leading to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity and oxidative stress, is implicated in the pathophysiology of Parkinson's disease. Using the 5-HT1F receptor agonist LY344864, a known inducer of mitochondrial biogenesis (MB), we investigated the therapeutic efficacy of stimulating MB on dopaminergic neuron loss in a mouse model of Parkinson's disease. EXPERIMENTAL APPROACH Male C57BL/6 mice underwent bilateral intrastriatal 6-hydroxydopamine or saline injections and daily treatment with 2 mg·kg-1 LY344864 or vehicle for 14 days beginning 7 days post-lesion. Tyrosine hydroxylase immunoreactivity (TH-ir) and MB were assessed in the brains of all groups following treatment, and locomotor activity was evaluated prior to lesioning, 7 days post-lesion and after treatment. KEY RESULTS Increased mitochondrial DNA content and nuclear- and mitochondrial-encoded mRNA and protein expression was observed in specific brain regions of LY344864-treated naïve and lesioned mice, indicating augmented MB. LY344864 attenuated TH-ir loss in the striatum and substantia nigra compared to vehicle-treated lesioned animals. LY344864 treatment also increased locomotor activity in 6-hydroxydopamine lesioned mice, while vehicle treatment had no effect. CONCLUSIONS AND IMPLICATIONS These data revealed that LY344864-induced MB attenuates dopaminergic neuron loss and improves behavioural endpoints in this model. We suggest that stimulating MB may be beneficial for the treatment of Parkinson's disease and that the 5-HT1F receptor may be an effective therapeutic target.
Collapse
Affiliation(s)
- Natalie E Scholpa
- Department of Pharmacology and Toxicology, College of PharmacyUniversity of ArizonaTucsonAZUSA
| | - Mary K Lynn
- Department of NeuroscienceMedical University of South CarolinaCharlestonSCUSA
| | - Daniel Corum
- Department of Drug Discovery and Biomedical SciencesMedical University of South CarolinaCharlestonSCUSA
| | - Heather A Boger
- Department of NeuroscienceMedical University of South CarolinaCharlestonSCUSA
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of PharmacyUniversity of ArizonaTucsonAZUSA
- Southern Arizona VA Health Care SystemTucsonAZUSA
| |
Collapse
|
170
|
Carmo C, Naia L, Lopes C, Rego AC. Mitochondrial Dysfunction in Huntington’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1049:59-83. [DOI: 10.1007/978-3-319-71779-1_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
171
|
Penke B, Fülöp L, Szűcs M, Frecska E. The Role of Sigma-1 Receptor, an Intracellular Chaperone in Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:97-116. [PMID: 28554311 PMCID: PMC5771390 DOI: 10.2174/1570159x15666170529104323] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/15/2017] [Accepted: 05/25/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Widespread protein aggregation occurs in the living system under stress or during aging, owing to disturbance of endoplasmic reticulum (ER) proteostasis. Many neurodegenerative diseases may have a common mechanism: the failure of protein homeostasis. Perturbation of ER results in unfolded protein response (UPR). Prolonged chronical UPR may activate apoptotic pathways and cause cell death. METHODS Research articles on Sigma-1 receptor were reviewed. RESULTS ER is associated to mitochondria by the mitochondria-associated ER-membrane, MAM. The sigma-1 receptor (Sig-1R), a well-known ER-chaperone localizes in the MAM. It serves for Ca2+-signaling between the ER and mitochondria, involved in ion channel activities and especially important during neuronal differentiation. Sig-1R acts as central modulator in inter-organelle signaling. Sig-1R helps cell survival by attenuating ER-stress. According to sequence based predictions Sig-1R is a 223 amino acid protein with two transmembrane (2TM) domains. The X-ray structure of the Sig-1R [1] showed a membrane-bound trimeric assembly with one transmembrane (1TM) region. Despite the in vitro determined assembly, the results of in vivo studies are rather consistent with the 2TM structure. The receptor has unique and versatile pharmacological profile. Dimethyl tryptamine (DMT) and neuroactive steroids are endogenous ligands that activate Sig-1R. The receptor has a plethora of interacting client proteins. Sig-1R exists in oligomeric structures (dimer-trimer-octamer-multimer) and this fact may explain interaction with diverse proteins. CONCLUSION Sig-1R agonists have been used in the treatment of different neurodegenerative diseases, e.g. Alzheimer's and Parkinson's diseases (AD and PD) and amyotrophic lateral sclerosis. Utilization of Sig-1R agents early in AD and similar other diseases has remained an overlooked therapeutic opportunity.
Collapse
Affiliation(s)
- Botond Penke
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Lívia Fülöp
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Mária Szűcs
- University of Szeged, Department of Medical Chemistry, Faculty of Medicine, Szeged, Hungary
| | - Ede Frecska
- University of Debrecen, Department of Psychiatry, Faculty of Medicine, Debrecen, Hungary
| |
Collapse
|
172
|
Gaignard P, Liere P, Thérond P, Schumacher M, Slama A, Guennoun R. Role of Sex Hormones on Brain Mitochondrial Function, with Special Reference to Aging and Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:406. [PMID: 29270123 PMCID: PMC5725410 DOI: 10.3389/fnagi.2017.00406] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/24/2017] [Indexed: 01/18/2023] Open
Abstract
The mitochondria have a fundamental role in both cellular energy supply and oxidative stress regulation and are target of the effects of sex steroids, particularly the neuroprotective ones. Aging is associated with a decline in the levels of different steroid hormones, and this decrease may underline some neural dysfunctions. Besides, modifications in mitochondrial functions associated with aging processes are also well documented. In this review, we will discuss studies that describe the modifications of brain mitochondrial function and of steroid levels associated with physiological aging and with neurodegenerative diseases. A special emphasis will be placed on describing and discussing our recent findings concerning the concomitant study of mitochondrial function (oxidative phosphorylation, oxidative stress) and brain steroid levels in both young (3-month-old) and aged (20-month-old) male and female mice.
Collapse
Affiliation(s)
- Pauline Gaignard
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Philippe Liere
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Patrice Thérond
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Michael Schumacher
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Abdelhamid Slama
- Biochemistry Laboratory, Bicêtre Hospital, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Rachida Guennoun
- U1195 Inserm and University Paris-Sud and University Paris-Saclay, Le Kremlin-Bicêtre, France
| |
Collapse
|
173
|
Moos WH, Faller DV, Glavas IP, Harpp DN, Irwin MH, Kanara I, Pinkert CA, Powers WR, Steliou K, Vavvas DG, Kodukula K. Epigenetic Treatment of Neurodegenerative Ophthalmic Disorders: An Eye Toward the Future. Biores Open Access 2017; 6:169-181. [PMID: 29291141 PMCID: PMC5747116 DOI: 10.1089/biores.2017.0036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Eye disease is one of the primary medical conditions that requires attention and therapeutic intervention in ageing populations worldwide. Further, the global burden of diabetes and obesity, along with heart disease, all lead to secondary manifestations of ophthalmic distress. Therefore, there is increased interest in developing innovative new approaches that target various mechanisms and sequelae driving conditions that result in adverse vision. The research challenge is even greater given that the terrain of eye diseases is difficult to landscape into a single therapeutic theme. This report addresses the burden of eye disease due to mitochondrial dysfunction, including antioxidant, autophagic, epigenetic, mitophagic, and other cellular processes that modulate the biomedical end result. In this light, we single out lipoic acid as a potent known natural activator of these pathways, along with alternative and potentially more effective conjugates, which together harness the necessary potency, specificity, and biodistribution parameters required for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Walter H. Moos
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, California
- ShangPharma Innovation, Inc., South San Francisco, California
| | - Douglas V. Faller
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
| | - Ioannis P. Glavas
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - David N. Harpp
- Department of Chemistry, McGill University, Montreal, QC, Canada
| | - Michael H. Irwin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | | | - Carl A. Pinkert
- Department of Biological Sciences, College of Arts and Sciences, The University of Alabama, Tuscaloosa, Alabama
| | - Whitney R. Powers
- Department of Health Sciences, Boston University, Boston, Massachusetts
- Department of Anatomy, Boston University School of Medicine, Boston, Massachusetts
| | - Kosta Steliou
- Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts
- PhenoMatriX, Inc., Natick, Massachusetts
| | - Demetrios G. Vavvas
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Krishna Kodukula
- ShangPharma Innovation, Inc., South San Francisco, California
- PhenoMatriX, Inc., Natick, Massachusetts
- Bridgewater College, Bridgewater, Virginia
| |
Collapse
|
174
|
Verma T, Mallik SB, Ramalingayya GV, Nayak PG, Kishore A, Pai KSR, Nandakumar K. Sodium valproate enhances doxorubicin-induced cognitive dysfunction in Wistar rats. Biomed Pharmacother 2017; 96:736-741. [PMID: 29049976 DOI: 10.1016/j.biopha.2017.09.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Increasing number of scientific reports have highlighted the role of histone acetylation/deacetylation in neurodegenerative conditions, including chemotherapy-induced cognitive dysfunction (also known as chemobrain). Multiple sources state that increased activity of histone deacetylases (HDACs) play a detrimental role in chemobrain. In the present study, sodium valproate, a well-known HDAC inhibitor, was explored for its neuroprotective potential against chemobrain development. METHODS Doxorubicin (DOX), a chemotherapeutic agent, was used to induce chemobrain in experimental animals while treating with sodium valproate simultaneously. The animals were subjected to novel object recognition test (NORT) in order to assess their cognitive status and further, brain antioxidant levels were estimated. The animal body weights and survival were noted throughout the period of the study. Blood parameters such as red blood cell count, white blood cell count and haemoglobin levels were also measured. RESULTS Our findings are in contradiction to the known neuroprotective properties of valproic acid. We observed that sodium valproate failed to prevent chemobrain development in DOX treated animals. In fact, treatment with sodium valproate dose dependently worsened cognitive status in DOX treated animals including their brain antioxidant status, possibly leading to neuronal damage through free radical induced toxicity. CONCLUSION The present study highlights the caution that needs to be exercised in projecting HDAC inhibitors as in vivo neuroprotective agents, due to the complexity of existing neurological pathways and the diverse roles of histone deacetylases.
Collapse
Affiliation(s)
- Thaneshwar Verma
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Sanchari Basu Mallik
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - G V Ramalingayya
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India; Discovery Biology, Suven Life Sciences Limited, Hyderabad, Telangana, 502307, India
| | - Pawan G Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - K Sreedhara R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal, Karnataka, 576104, India.
| |
Collapse
|
175
|
Rose J, Brian C, Woods J, Pappa A, Panayiotidis MI, Powers R, Franco R. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival. Toxicology 2017; 391:109-115. [PMID: 28655545 PMCID: PMC5681369 DOI: 10.1016/j.tox.2017.06.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/13/2017] [Accepted: 06/21/2017] [Indexed: 12/11/2022]
Abstract
Mitochondrial dysfunction is central to the pathogenesis of neurological disorders. Neurons rely on oxidative phosphorylation to meet their energy requirements and thus alterations in mitochondrial function are linked to energy failure and neuronal cell death. Furthermore, in neurons, dysfunctional mitochondria are reported to increase the steady-state levels of reactive oxygen species derived from the leakage of electrons from the electron transport chain. Research aimed at understanding mitochondrial dysfunction and its role in neurological disorders has been primarily geared towards neurons. In contrast, the effects of mitochondrial dysfunction in glial cells' function and its implication for neuronal homeostasis and brain function has been largely understudied. Unlike neurons and oligodendrocytes, astrocytes and microglia do not degenerate upon the impairment of mitochondrial function, as they rely primarily on glycolysis to produce energy and have a higher antioxidant capacity than neurons. However, recent evidence highlights the role of mitochondrial metabolism and signaling in glial cell function. In this work, we review the functional role of mitochondria in glial cells and the evidence regarding its potential role regulating neuronal homeostasis and disease progression.
Collapse
Affiliation(s)
- Jordan Rose
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Christian Brian
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Jade Woods
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Dragana, 68100 Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, UK
| | - Robert Powers
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States; Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Rodrigo Franco
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, United States; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68588, United States.
| |
Collapse
|
176
|
Collina S, Rui M, Stotani S, Bignardi E, Rossi D, Curti D, Giordanetto F, Malacrida A, Scuteri A, Cavaletti G. Are sigma receptor modulators a weapon against multiple sclerosis disease? Future Med Chem 2017; 9:2029-2051. [PMID: 29076758 DOI: 10.4155/fmc-2017-0122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Effective therapies for multiple sclerosis (MS) are still missing. This neurological disease affects more than 2.5 million people worldwide. To date, biological immunomodulatory drugs are effective and safe during short-term treatment, but they are suitable only for parenteral administration and they are expensive. Accordingly, academic and industrial environments are still focusing their efforts toward the development of new MS drugs. Considering that neurodegeneration is a contributory factor in the onset of MS, herein we will focus on the crucial role played by sigma 1 receptors (S1Rs) in MS. A pilot study was performed, evaluating the effect of the S1R agonist (R)-RC33 on rat dorsal root ganglia experimental model. The encouraging results support the potential of S1R agonists for MS treatment.
Collapse
Affiliation(s)
- Simona Collina
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Marta Rui
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, Dortmund 44227, Germany
| | - Emanuele Bignardi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Rossi
- Department of Drug Sciences, Medicinal Chemistry & Pharmaceutical Technology Section, Centre for Health Technologies (CHT), University of Pavia, Viale Taramelli 12, Pavia 27100, Italy
| | - Daniela Curti
- Department of Biology & Biotechnology 'L. Spallanzani', Laboratory of Cellular & Molecular Neuropharmacology, University of Pavia, Via Ferrata 9, Pavia 27100, Italy
| | | | - Alessio Malacrida
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Arianna Scuteri
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, Department of Medicine & Surgery & Milan Center for Neuroscience, University of Milan Bicocca, Via Cadore 48, Monza 20900, Italy
| |
Collapse
|
177
|
Neth BJ, Craft S. Insulin Resistance and Alzheimer's Disease: Bioenergetic Linkages. Front Aging Neurosci 2017; 9:345. [PMID: 29163128 PMCID: PMC5671587 DOI: 10.3389/fnagi.2017.00345] [Citation(s) in RCA: 198] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022] Open
Abstract
Metabolic dysfunction is a well-established feature of Alzheimer's disease (AD), evidenced by brain glucose hypometabolism that can be observed potentially decades prior to the development of AD symptoms. Furthermore, there is mounting support for an association between metabolic disease and the development of AD and related dementias. Individuals with insulin resistance, type 2 diabetes mellitus (T2D), hyperlipidemia, obesity, or other metabolic disease may have increased risk for the development of AD and similar conditions, such as vascular dementia. This association may in part be due to the systemic mitochondrial dysfunction that is common to these pathologies. Accumulating evidence suggests that mitochondrial dysfunction is a significant feature of AD and may play a fundamental role in its pathogenesis. In fact, aging itself presents a unique challenge due to inherent mitochondrial dysfunction and prevalence of chronic metabolic disease. Despite the progress made in understanding the pathogenesis of AD and in the development of potential therapies, at present we remain without a disease-modifying treatment. In this review, we will discuss insulin resistance as a contributing factor to the pathogenesis of AD, as well as the metabolic and bioenergetic disruptions linking insulin resistance and AD. We will also focus on potential neuroimaging tools for the study of the metabolic dysfunction commonly seen in AD with hopes of developing therapeutic and preventative targets.
Collapse
Affiliation(s)
- Bryan J Neth
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
178
|
Amorim JA, Canas PM, Tomé AR, Rolo AP, Agostinho P, Palmeira CM, Cunha RA. Mitochondria in Excitatory and Inhibitory Synapses have Similar Susceptibility to Amyloid-β Peptides Modeling Alzheimer’s Disease. J Alzheimers Dis 2017; 60:525-536. [DOI: 10.3233/jad-170356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- João A. Amorim
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Paula M. Canas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Angelo R. Tomé
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Anabela P. Rolo
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Paula Agostinho
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| | - Carlos M. Palmeira
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Rodrigo A. Cunha
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
179
|
Wang K, Chen Z, Huang L, Meng B, Zhou X, Wen X, Ren D. Naringenin reduces oxidative stress and improves mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons. Int J Mol Med 2017; 40:1582-1590. [PMID: 28949376 DOI: 10.3892/ijmm.2017.3134] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 08/25/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress and mitochondrial dysfunction are considered to be major contributing factors in the development and progression of many neurodegenerative diseases. Naringenin (NAR) is an abundant flavanone in the Citrus genus and has been found to exert antioxidant, anticarcinogenic and antimutagenic effects. However, the potential underlying mechanism of its antioxidant effects remains unclear. In the present study, the authors investigated the antioxidant effect of NAR on neurons in vitro. Neurons isolated from the brains of Sprague-Dawley rats were randomly divided into a control group, model group, NAR-L group, NAR-M group and NAR-H group. The model group received hypoxia and re-oxygenation treatment, and the NAR-L, NAR-M and NAR-H groups received 20, 40 and 80 µM NAR, respectively. The levels of reactive oxygen species (ROS) in each group were detected by chloromethyl-2',7'dichlorodihydro fluorescein diacetate staining, and differences in mitochondrial dysfunction were analyzed through measurement of mitochondrial membrane potential (∆ψm), adenine nucleotide translocase transport activity and adenine nucleotide levels. MTT and flow cytometry assays were also used to analyze cell proliferation and apoptosis, and the effects of NAR on the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway were investigated using small interfering RNA methods. The authors detected an increased accumulation of ROS in the model group, and high-dose NAR could significantly reduce the levels of ROS. Furthermore, NAR could improve mitochondrial dysfunction, as indicated by increased levels of high-energy phosphates, enhanced mitochondrial ANT transport activity and increased mitochondrial membrane potential. Moreover, NAR increased cell viability and decreased the rate of cell apoptosis. NAR also increased the expression of Nrf2 and its downstream target genes. These findings demonstrated that NAR could reduce oxidative stress and improve mitochondrial dysfunction via activation of the Nrf2/ARE signaling pathway in neurons.
Collapse
Affiliation(s)
- Kaihua Wang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| | - Zhenzhen Chen
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| | - Longjian Huang
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| | - Bing Meng
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| | - Xinmei Zhou
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| | - Xiaodong Wen
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| | - Ding Ren
- Department of Neurology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi 530011, P.R. China
| |
Collapse
|
180
|
Xu G, Lu H, Dong Y, Shapoval D, Soriano S, Liu X, Zhang Y, Xie Z. Coenzyme Q10 reduces sevoflurane-induced cognitive deficiency in young mice. Br J Anaesth 2017; 119:481-491. [DOI: 10.1093/bja/aex071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2017] [Indexed: 12/26/2022] Open
|
181
|
Murphy LC, Millar JK. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr Res 2017; 187:55-61. [PMID: 28082141 DOI: 10.1016/j.schres.2016.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are dynamic organelles that are essential to power the process of neurotransmission. Neurons must therefore ensure that mitochondria maintain their functional integrity and are efficiently transported along the full extent of the axons and dendrites, from soma to synapses. Mitochondrial dynamics (trafficking, fission and fusion) co-ordinately regulate mitochondrial quality control and function. DISC1 is a component of the mitochondrial transport machinery and regulates mitochondrial dynamics. DISC1's role in this is adversely affected by sequence variants connected to brain structure/function and disease risk, and by mutant truncation. The DISC1 interactors NDE1 and GSK3β are also involved, indicating a convergence of putative risk factors for psychiatric illness upon mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
182
|
Wang X, Zhai H, Wang F. 6-OHDA Induces Oxidation of F-box Protein Fbw7β by Chaperone-Mediated Autophagy in Parkinson’s Model. Mol Neurobiol 2017; 55:4825-4833. [DOI: 10.1007/s12035-017-0686-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/11/2017] [Indexed: 01/04/2023]
|
183
|
Navarro E, Gonzalez-Lafuente L, Pérez-Liébana I, Buendia I, López-Bernardo E, Sánchez-Ramos C, Prieto I, Cuadrado A, Satrustegui J, Cadenas S, Monsalve M, López MG. Heme-Oxygenase I and PCG-1α Regulate Mitochondrial Biogenesis via Microglial Activation of Alpha7 Nicotinic Acetylcholine Receptors Using PNU282987. Antioxid Redox Signal 2017; 27:93-105. [PMID: 27554853 DOI: 10.1089/ars.2016.6698] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS A loss in brain acetylcholine and cholinergic markers, subchronic inflammation, and impaired mitochondrial function, which lead to low-energy production and high oxidative stress, are common pathological factors in several neurodegenerative diseases (NDDs). Glial cells are important for brain homeostasis, and microglia controls the central immune response, where α7 acetylcholine nicotinic receptors (nAChR) seem to play a pivotal role; however, little is known about the effects of this receptor in metabolism. Therefore, the aim of this study was to evaluate if glial mitochondrial energetics could be regulated through α7 nAChR. RESULTS Primary glial cultures treated with the α7 nicotinic agonist PNU282987 increased their mitochondrial mass and their mitochondrial oxygen consumption without increasing oxidative stress; these changes were abolished when nuclear erythroid 2-related factor 2 (Nrf2) was absent, heme oxygenase-1 (HO-1) was inhibited, or peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) was silenced. More specifically, microglia of animals treated intraperitoneally with the α7 nAChR agonist PNU282987 (10 mg/kg) showed a significant increase in mitochondrial mass. Interestingly, LysMcre-Hmox1Δ/Δ and PGC-1α-/- animals showed lower microglial mitochondrial levels and treatment with PNU282987 did not produce effects on mitochondrial levels. INNOVATION Increases in microglial mitochondrial mass and metabolism can be achieved via α7 nAChR by a mechanism that implicates Nrf2, HO-1, and PGC-1α. This signaling pathway could open a new strategy for the treatment of NDDs, such as Alzheimer's, characterized by a reduction of cholinergic markers. CONCLUSION α7 nAChR signaling increases glial mitochondrial mass, both in vitro and in vivo, via HO-1 and PCG-1α. These effects could be of potential benefit in the context of NDDs. Antioxid. Redox Signal. 27, 93-105.
Collapse
Affiliation(s)
- Elisa Navarro
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Laura Gonzalez-Lafuente
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Irene Pérez-Liébana
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain
| | - Izaskun Buendia
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| | - Elia López-Bernardo
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | | | - Ignacio Prieto
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Antonio Cuadrado
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Jorgina Satrustegui
- 3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Susana Cadenas
- 2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain .,3 Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid , Madrid, Spain
| | - Maria Monsalve
- 4 Instituto de Investigaciones Biomédicas Alberto Sols , Madrid, Spain
| | - Manuela G López
- 1 Instituto Teófilo Hernando, Departamento Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid , Madrid, Spain .,2 Instituto de Investigación Sanitaria Princesa (IIS-IP) , Madrid, Spain
| |
Collapse
|
184
|
Korábečný J, Nepovimová E, Cikánková T, Špilovská K, Vašková L, Mezeiová E, Kuča K, Hroudová J. Newly Developed Drugs for Alzheimer's Disease in Relation to Energy Metabolism, Cholinergic and Monoaminergic Neurotransmission. Neuroscience 2017; 370:191-206. [PMID: 28673719 DOI: 10.1016/j.neuroscience.2017.06.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 11/18/2022]
Abstract
Current options for Alzheimer's disease (AD) treatment are based on administration of cholinesterase inhibitors (donepezil, rivastigmine, galantamine) and/or memantine, acting as an N-methyl-D-aspartate (NMDA). Therapeutic approaches vary and include novel cholinesterase inhibitors, modulators of NMDA receptors, monoamine oxidase (MAO) inhibitors, immunotherapeutics, modulators of mitochondrial permeability transition pores (mPTP), amyloid-beta binding alcohol dehydrogenase (ABAD) modulators, antioxidant agents, etc. The novel trends of AD therapy are focused on multiple targeted ligands, where mostly ChE inhibition is combined with additional biological properties, positively affecting neuronal energy metabolism as well as mitochondrial functions, and possessing antioxidant properties. The present review summarizes newly developed drugs targeting cholinesterase and MAO, as well as drugs affecting mitochondrial functions.
Collapse
Affiliation(s)
- Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Eugenie Nepovimová
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Katarína Špilovská
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Třebešská 1575, 500 01 Hradec Králové, Czech Republic
| | - Lucie Vašková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Eva Mezeiová
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic; Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic
| | - Kamil Kuča
- Biomedical Research Centre, University Hospital Hradec Kralové, Sokolská 581, 500 05 Hradec Králové, Czech Republic; Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
185
|
Liu YC, Gao XX, Zhang ZG, Lin ZH, Zou QL. PPAR Gamma Coactivator 1 Beta (PGC-1β) Reduces Mammalian Target of Rapamycin (mTOR) Expression via a SIRT1-Dependent Mechanism in Neurons. Cell Mol Neurobiol 2017; 37:879-887. [PMID: 27631411 PMCID: PMC11482222 DOI: 10.1007/s10571-016-0425-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/03/2016] [Indexed: 11/27/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a key regulator of metabolism, cell growth, and protein synthesis. Since decreased mTOR activity has been found to slow aging in many species, the aim of this study was to examine the activity of mTOR and its phosphorylated form in in vitro and in vivo models mimicking Alzheimer's disease (AD), and investigate the potential pathway of PGC-1β in regulating mTOR expression. Primary neurons and N2a cells were treated with Aβ25-35, while untreated cells served as controls. The expression of mTOR, p-mTOR (Ser2448), and PGC-1β was determined with Western blotting and RT-PCR assay, and the translocation of mTOR was detected using confocal microscopy. Aβ25-35 treatment stimulated the translocation of mTOR from cytoplasm to nucleus, and resulted in elevated expression of mTOR and p-mTOR (Ser2448) and reduced PGC-1β expression. In addition, overexpression of PGC-1β was found to decrease mTOR expression. The results of this study demonstrate that Aβ increases the expression of mTOR and p-mTOR at the site of Ser2448, and the stimulation of Aβ is likely to depend on sirtuin 1, PPARγ, and PGC-1β pathway in regulating mTOR expression.
Collapse
Affiliation(s)
- Ying-Chun Liu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Xiao-Xiao Gao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Zhi-Guang Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Zhao-Hua Lin
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China
| | - Qi-Lian Zou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Shangjie Town, Minhou County, Fuzhou, 350108, Fujian, China.
| |
Collapse
|
186
|
Bulteau AL, Mena NP, Auchère F, Lee I, Prigent A, Lobsiger CS, Camadro JM, Hirsch EC. Dysfunction of mitochondrial Lon protease and identification of oxidized protein in mouse brain following exposure to MPTP: Implications for Parkinson disease. Free Radic Biol Med 2017; 108:236-246. [PMID: 28365360 DOI: 10.1016/j.freeradbiomed.2017.03.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/19/2017] [Accepted: 03/22/2017] [Indexed: 10/19/2022]
Abstract
Compelling evidence suggests that mitochondrial dysfunction leading to reactive oxygen species (ROS) production and protein oxidation could represent a critical event in the pathogenesis of Parkinson's disease (PD). Pioneering studies have shown that the mitochondrial matrix contains the Lon protease, which degrades oxidized, dysfunctional, and misfolded protein. Using the PD animal model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication in mice, we showed that Lon protease expression increased in the ventral mesencephalon of intoxicated animals, concomitantly with the appearance of oxidized proteins and dopaminergic cell loss. In addition, we report that Lon is inactivated by ROS. Moreover, proteomic experiments provide evidence of carbonylation in α-ketoglutarate dehydrogenase (KGDH), aconitase or subunits of respiratory chain complexes. Lon protease inactivation upon MPTP treatment in mice raises the possibility that Lon protease dysfunction is an early event in the pathogenesis of PD.
Collapse
Affiliation(s)
- Anne-Laure Bulteau
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| | - Natalia P Mena
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France; Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Millennium Institute of Cell Dynamics and Biotechnology, Santiago, Chile
| | - Françoise Auchère
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Irene Lee
- Case Western Reserve University Department of Chemistry, Cleveland, OH 44106, USA
| | - Annick Prigent
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Christian S Lobsiger
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France
| | - Jean-Michel Camadro
- Laboratoire Mitochondries, Métaux et Stress Oxydatif, Département de Pathologie Moléculaire et Cellulaire, Institut Jacques Monod, Université Paris-Diderot/CNRS, Paris, France
| | - Etienne C Hirsch
- INSERM, U1127, The Brain and Spinal Cord Institute (ICM), Hôpital de la Salpêtrière, 75013 Paris, France; CNRS, UMR 7225, Centre de Recherche en neurosciences, ICM, Thérapeutique expérimentale de la neurodégénérescence, Hôpital de la Salpêtrière, Paris, F-75005 Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
187
|
Godoy JA, Zolezzi JM, Inestrosa NC. INT131 increases dendritic arborization and protects against Aβ toxicity by inducing mitochondrial changes in hippocampal neurons. Biochem Biophys Res Commun 2017; 490:955-962. [PMID: 28655613 DOI: 10.1016/j.bbrc.2017.06.146] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 06/23/2017] [Indexed: 01/09/2023]
Abstract
In previous studies, we have demonstrated the beneficial effects of classic PPARγ agonists on neuroprotection against Aβ oligomer neurotoxicity in a double transgenic mouse model of Alzheimer' disease (AD). INT-131, a novel, non-thiazolidinedione compound that belongs to a new family of drugs, selective PPARγ modulators (SPPARMs), has provided an emerging opportunity for the treatment of type 2 diabetes mellitus and metabolic syndrome. However, its role in the central nervous system has not been studied. The aim of this study was to evaluate the putative neuroprotective role of INT131 in hippocampal neurons. We found that INT131 increased dendritic branching, promoted neuronal survival against Aβ amyloid, increased expression of PGC1-1α and modulated neuronal mitochondrial dynamics. Our results suggest that INT131, a drug that has been shown to be safe and effective in metabolic disorders, may constitute a new therapeutic alternative for AD.
Collapse
Affiliation(s)
- Juan A Godoy
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Juan M Zolezzi
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
188
|
Insights into the mechanisms of copper dyshomeostasis in amyotrophic lateral sclerosis. Expert Rev Mol Med 2017; 19:e7. [PMID: 28597807 DOI: 10.1017/erm.2017.9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.
Collapse
|
189
|
Komlódi T, Tretter L. Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle. Neuropharmacology 2017; 123:287-298. [PMID: 28495375 DOI: 10.1016/j.neuropharm.2017.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/05/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
Methylene blue (MB), a potential neuroprotective agent, is efficient in various neurodegenerative disease models. Beneficial effects of MB have been attributed to improvements in mitochondrial functions. Substrate-level phosphorylation (SLP) results in the production of ATP independent from the ATP synthase (ATP-ase). In energetically compromised mitochondria, ATP produced by SLP can prevent the reversal of the adenine nucleotide translocase and thus the hydrolysis of glycolytic ATP. The aim of the present study was to investigate the effect of MB on mitochondrial SLP catalysed by succinyl-CoA ligase. Measurements were carried out on isolated guinea pig cortical mitochondria respiring on α-ketoglutarate, glutamate, malate or succinate. The mitochondrial functions and parameters like ATP synthesis, oxygen consumption, membrane potential, and NAD(P)H level were followed online, in parallel with the redox state of MB. SLP-mediated ATP synthesis was measured in the presence of inhibitors for ATP-ase and adenylate kinase. In the presence of the ATP-ase inhibitor oligomycin MB stimulated respiration with all of the respiratory substrates. However, the rate of ATP synthesis increased only with substrates α-ketoglutarate and glutamate (forming succinyl-CoA). MB efficiently stimulated SLP and restored the membrane potential in mitochondria also with the combined inhibition of Complex I and ATP synthase. ATP formed by SLP alleviated the energetic insufficiency generated by the lack of oxidative phosphorylation. Thus, the MB-mediated stimulation of SLP might be important in maintaining the energetic competence of mitochondria and in preventing the mitochondrial hydrolysis of glycolytic ATP. The mitochondrial effects of MB are explained by the ability to accept electrons from reducing equivalents and transfer them to cytochrome c bypassing the respiratory Complexes I and III.
Collapse
Affiliation(s)
- T Komlódi
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto St., Budapest, 1094, Hungary
| | - L Tretter
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, 37-47 Tuzolto St., Budapest, 1094, Hungary.
| |
Collapse
|
190
|
Hernansanz-Agustín P, Ramos E, Navarro E, Parada E, Sánchez-López N, Peláez-Aguado L, Cabrera-García JD, Tello D, Buendia I, Marina A, Egea J, López MG, Bogdanova A, Martínez-Ruiz A. Mitochondrial complex I deactivation is related to superoxide production in acute hypoxia. Redox Biol 2017; 12:1040-1051. [PMID: 28511347 PMCID: PMC5430576 DOI: 10.1016/j.redox.2017.04.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/28/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Mitochondria use oxygen as the final acceptor of the respiratory chain, but its incomplete reduction can also produce reactive oxygen species (ROS), especially superoxide. Acute hypoxia produces a superoxide burst in different cell types, but the triggering mechanism is still unknown. Herein, we show that complex I is involved in this superoxide burst under acute hypoxia in endothelial cells. We have also studied the possible mechanisms by which complex I could be involved in this burst, discarding reverse electron transport in complex I and the implication of PTEN-induced putative kinase 1 (PINK1). We show that complex I transition from the active to ‘deactive’ form is enhanced by acute hypoxia in endothelial cells and brain tissue, and we suggest that it can trigger ROS production through its Na+/H+ antiporter activity. These results highlight the role of complex I as a key actor in redox signalling in acute hypoxia. Complex I is involved in the superoxide burst produced by cells in acute hypoxia. Complex I is deactivated in acute hypoxia. Deactive complex I is involved in superoxide production in acute hypoxia, probably through its Na+/H+ antiporter activity. Complex I deactivation occurs in brain tissue hypoxia ex vivo and in vivo.
Collapse
Affiliation(s)
- Pablo Hernansanz-Agustín
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM) and Instituto de Investigaciones Biomédicas Alberto Sols, E-28029 Madrid, Spain
| | - Elena Ramos
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | - Elisa Navarro
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Esther Parada
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Nuria Sánchez-López
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - Laura Peláez-Aguado
- Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - J Daniel Cabrera-García
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain
| | - Daniel Tello
- Unidad de Investigación, Hospital Santa Cristina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IP), E-28009 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular "Severo Ochoa (CBSMO), Consejo Superior de Investigaciones Científicas (CSIC) - UAM, E-28049 Madrid, Spain
| | - Javier Egea
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando, Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28029 Madrid, Spain
| | - Anna Bogdanova
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, CH-8057 Zurich, Switzerland
| | - Antonio Martínez-Ruiz
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), E-28006 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain.
| |
Collapse
|
191
|
Wong-Guerra M, Jiménez-Martin J, Pardo-Andreu GL, Fonseca-Fonseca LA, Souza DO, de Assis AM, Ramirez-Sanchez J, Del Valle RMS, Nuñez-Figueredo Y. Mitochondrial involvement in memory impairment induced by scopolamine in rats. Neurol Res 2017; 39:649-659. [PMID: 28398193 DOI: 10.1080/01616412.2017.1312775] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Gilberto L Pardo-Andreu
- c Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos , Universidad de La Habana , La Habana , Cuba
| | - Luis A Fonseca-Fonseca
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | - Diogo O Souza
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Adriano M de Assis
- d Departamento de Bioquímica, PPG em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde , Universidade Federal do Rio Grande do Sul , Porto Alegre , Brazil
| | - Jeney Ramirez-Sanchez
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| | | | - Yanier Nuñez-Figueredo
- a Laboratorio de Neuroprotección , Centro de Investigación y Desarrollo de Medicamentos , La Habana , Cuba
| |
Collapse
|
192
|
Clementi ME, Pani G, Sampaolese B, Tringali G. Punicalagin reduces H 2O 2-induced cytotoxicity and apoptosis in PC12 cells by modulating the levels of reactive oxygen species. Nutr Neurosci 2017; 21:447-454. [PMID: 28393656 DOI: 10.1080/1028415x.2017.1306935] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
BACKGROUND Oxidative stress has long been linked to neuronal cell death in many neurodegenerative diseases. Antioxidant conventional supplements are poorly effective in preventing neuronal damage caused by oxidative stress due to their inability to cross the blood brain barrier. Hence the use of molecules extracted from plants and fruits such as phenolics, flavonoids, and terpenoids compounds constitute a new wave of antioxidant therapies to defend against free radicals. OBJECTIVE In this study we examined the effects of punicalagin, a ellagitannin isolated from the pomegranate juice, on a rat adrenal pheochromocytoma cell line, treated with hydrogen peroxide, evaluating the viability, oxidation potential, mitochondrial function, and eventual apoptosis. METHODS This study was performed on PC12 cells pretreated with punicalagin (0.5, 1, 5, 10 e 20 µM) 24 hours before of the damage by hydrogen peroxide (H2O2). H2O2 concentration (300 µM) used in our study was determined by preliminary experiments of time course. The cell viability and ROS production were evaluated by MTS assay and cytofluorometry assays, respectively. Subsequently, the number of apoptotic-positive cells and mitochondrial transmembrane potential, were measured by flow cytometry, in the same experimental paradigm. Finally, the expression of Bax and enzymatic activity of Caspase 3, some of the principle actors of programmed cell death, were investigated by semiquantitative PCR and utilizing a colorimetric assay kit, respectively. RESULTS We found that pretreatment with punicalagin protected the cells from H2O2-induced damage. In particular, the protective effect seemed to be correlated with a control both in radical oxygen species production and in mitochondrial functions. In fact the cells treated with H2O2 showed an altered mitochondrial membrane integrity while the pretreatment with punicalagin retained both the cellular viability and the mitochondrial membrane potential similar to the control. Furthermore, the punicalagin, modulated the apoptotic cascade triggered reducing Bax gene expression and Caspase 3 activity. DISCUSSION Results of the present study demonstrated a neuroprotective effect of punicalagin on H2O2-induced PC12 cell death, including mitochondria damage and expression of apoptotic gene Bax; therefore we hypothesize a possible prevent role for this molecule in neurodegenerative diseases related to oxidative stress.
Collapse
Affiliation(s)
- Maria Elisabetta Clementi
- a CNR-ICRM Istituto di"Chimica del Riconoscimento Molecolare", c/o Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giovambattista Pani
- b Istituto di Patologia Generale , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Beatrice Sampaolese
- a CNR-ICRM Istituto di"Chimica del Riconoscimento Molecolare", c/o Istituto di Biochimica e Biochimica Clinica , Università Cattolica del Sacro Cuore , Rome , Italy
| | - Giuseppe Tringali
- c Istituto di Farmacologia , Università Cattolica del Sacro Cuore , Rome , Italy
| |
Collapse
|
193
|
URB597 reduces biochemical, behavioral and morphological alterations in two neurotoxic models in rats. Biomed Pharmacother 2017; 88:745-753. [DOI: 10.1016/j.biopha.2017.01.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 11/21/2022] Open
|
194
|
Silva-Palacios A, Colín-González AL, López-Cervantes SP, Zazueta C, Luna-López A, Santamaría A, Königsberg M. Tert-buthylhydroquinone pre-conditioning exerts dual effects in old female rats exposed to 3-nitropropionic acid. Redox Biol 2017; 12:610-624. [PMID: 28391182 PMCID: PMC5384325 DOI: 10.1016/j.redox.2017.03.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The brain is a very susceptible organ to structural and functional alterations caused by oxidative stress and its vulnerability increases with age. Understanding the antioxidant response activated by the transcription factor Nrf2 has become very important in the aging field in order to activate cellular protection. However, the role of Nrf2 inducers during old age has not been completely understood. Our aim was to activate the Nrf2 pathway by pre-treating old rats with a widely used Nrf2-inducer, tert-buthylhydroquinone (tBHQ), prior to 3-nitropropionic acid (3-NP) insult, in order to evaluate its effects at a behavioral, morphological and biochemical levels. 3-NP has been used to reproduce the biochemical and pathophysiological characteristics of Huntington's disease due to an oxidative effect. Our results suggest that tBHQ confers an important protective effect against 3-NP toxicity; nevertheless, Nrf2 seems not to be the main protective pathway associated to neuroprotection. Hormetic responses include the activation of more than one transcription factor. Nrf2 and NFκB are known to simultaneously initiate different cellular responses against stress by triggering parallel mechanisms, therefore NFκB nuclear accumulation was also evaluated. Old rats are able to activate an hormetic response against 3NP toxicity. tBHQ pre-conditioning exerts an antioxidant-prooxidant, dual role in old rats. tBHQ activates a crosstalk mechanism between NFκB and Nrf2.
Collapse
Affiliation(s)
- Alejandro Silva-Palacios
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico; Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; Posgrado en Biología Experimental, Universidad Autonomas Metropolitana, Iztapalapa, Ciudad de México, Mexico
| | - Ana L Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Ciudad de México 14269, Mexico
| | - Stefanie P López-Cervantes
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico
| | | | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, SSA, Ciudad de México 14269, Mexico
| | - Mina Königsberg
- Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México 09340, Mexico.
| |
Collapse
|
195
|
Agnihotri SK, Shen R, Li J, Gao X, Büeler H. Loss of PINK1 leads to metabolic deficits in adult neural stem cells and impedes differentiation of newborn neurons in the mouse hippocampus. FASEB J 2017; 31:2839-2853. [PMID: 28325755 DOI: 10.1096/fj.201600960rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/06/2017] [Indexed: 12/18/2022]
Abstract
Emerging evidence suggests that mitochondrial dynamics regulates adult hippocampal neurogenesis (AHN). Although abnormal AHN has been linked to depression, anxiety, and cognitive dysfunction, which are features of neurodegenerative conditions, including Parkinson's disease (PD), the impact of mitochondrial deficits on AHN have not been explored previously in a model of neurodegeneration. Here, we used PTEN-induced kinase 1-deficient (PINK1-/- ) mice that lacked a mitochondrial kinase mutated in recessive familial PD. We show that mitochondrial defects, elevated glycolysis, and increased apoptosis are associated with impaired but not abrogated differentiation of PINK1-deficient neural stem cells (NSCs) in culture. In the dentate gyrus of PINK1-/- mice, newly generated doublecortin-positive neurons show aberrant dendritic morphology, and their maturation is compromised compared with wild-type mice. In addition, in vivo labeling of NSCs with 5-ethynyl-2'-deoxyuridine shows that proliferating NSC numbers are normal, but the differentiation of NSCs to doublecortin-positive neuroblasts and mature NeuN+ neurons is impeded in PINK1-/- mice. Finally, we demonstrate that home cage activity and corticosterone levels of PINK1-/- mice are normal, thereby excluding reduced physical activity and increased stress as causes of neurogenesis defects. Our results reveal a new and important relationship between mitochondrial dysfunction and impaired AHN in a genetic PD model. Targeting mitochondrial function and metabolism to increase AHN may hold promise for the treatment of affective disorders and the mitigation of related symptoms in PD and other neurodegenerative conditions.-Agnihotri, S. K., Shen, R., Li, J., Gao, X., Büeler, H. Loss of PINK1 leads to metabolic deficits in adult neural stem cells and impedes differentiation of newborn neurons in the mouse hippocampus.
Collapse
Affiliation(s)
| | - Ruifang Shen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jihong Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Hansruedi Büeler
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China;
| |
Collapse
|
196
|
Seo JY, Lim SS, Kim J, Lee KW, Kim JS. Alantolactone and Isoalantolactone Prevent Amyloid β 25-35 -induced Toxicity in Mouse Cortical Neurons and Scopolamine-induced Cognitive Impairment in Mice. Phytother Res 2017; 31:801-811. [PMID: 28326625 DOI: 10.1002/ptr.5804] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/03/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
Given the evidence for detoxifying/antioxidant enzyme-inducing activities by alantolactone (AL) and isoalantolactone (IAL), the purpose of this study was to investigate the effects of AL and IAL on Aβ25-35 -induced cell death in mouse cortical neuron cells and to determine their effects on scopolamine-induced amnesia in mice. Our data demonstrated that both compounds effectively attenuated the cytotoxicity of Aβ25-35 (10 μM) in neuronal cells derived from the mouse cerebral cortex. It was also found that the production of intracellular reactive oxygen species, including superoxide anion induced by Aβ25-35 , was inhibited. Moreover, the administration of the sesquiterpenes reversed scopolamine-induced cognitive impairments as assessed by Morris water, Y-maze, and the passive avoidance tests, and the compounds decreased acetylcholinesterase (AChE) activities in a dose-dependent manner. Interestingly, AL and IAL did not improve scopolamine-induced cognitive deficit in Nrf2-/- mice, suggesting that memory improvement by sesquiterpenes was mediated not only by the activation of the Nrf2 signaling pathway but also by their inhibitory activity against AChE. In conclusion, our results showed that AL and IAL had neuroprotective effects and reversed cognitive impairments induced by scopolamine in a mouse model. Therefore, AL and IAL deserve further study as potential therapeutic agents for reactive oxygen species-related neurodegenerative diseases. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ji Yeon Seo
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, Hallym University, Chuncheon, 24252, Korea
| | - Jiyoung Kim
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Jong-Sang Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Korea
| |
Collapse
|
197
|
Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y. Investigation of Long Non-coding RNA Expression Profiles in the Substantia Nigra of Parkinson's Disease. Cell Mol Neurobiol 2017; 37:329-338. [PMID: 27151187 PMCID: PMC11482081 DOI: 10.1007/s10571-016-0373-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/17/2015] [Indexed: 01/18/2023]
Abstract
Genetics is considered as an important risk factor in the pathological changes of Parkinson's disease (PD). Substantia nigra (SN) is thought to be the most vulnerable area in this process. In recent decades, however, few related long non-coding RNAs (lncRNAs) in the SN of PD patients had been identified and the functions of those lncRNAs had been studied even less. In this study, we sought to investigate the lncRNA expression profiles and their potential functions in the SN of PD patients. We screened lncRNA expression profiles in the SN of PD patients using the lncRNA mining approach from the ArrayExpress database, which included GSE20295. The samples were from 11 of PD and 14 of normal tissue samples. We identified 87 lncRNAs that were altered significantly in the SN during the occurrence of PD. Among these lncRNAs, lncRNA AL049437 and lncRNA AK021630 varied most dramatically. AL049437 was up-regulated in the PD samples, while AK021630 was down-regulated. Based on the results, we focused on the potential roles of the two lncRNAs in the pathogenesis of PD by the knockdown of the expression of AL049437 or AK021630 in human neuroblastoma SH-SY5Y cell line. Results indicated that the reduction in AL049437 level increased cell viability, mitochondrial transmembrane potential (Δψm), mitochondrial mass, and tyrosine hydroxylase (TyrH) secretion. By contrast, the knockdown of AK021630 resulted in the opposite effect. Based on these results, we speculated that lncRNA AL049437 likely contributed to the risk of PD, while lncRNA AK021630 likely inhibited the occurrence of PD.
Collapse
Affiliation(s)
- Yaohui Ni
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yaqin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hongzhi Zhou
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yuanyuan Zhang
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
198
|
Shi X, Zhao M, Fu C, Fu A. Intravenous administration of mitochondria for treating experimental Parkinson's disease. Mitochondrion 2017; 34:91-100. [PMID: 28242362 DOI: 10.1016/j.mito.2017.02.005] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/06/2017] [Accepted: 02/23/2017] [Indexed: 12/25/2022]
Abstract
Mitochondrial dysfunction is associated with a large number of human diseases, including neurological and muscular degeneration, cardiovascular disorders, obesity, diabetes, aging and rare mitochondrial diseases. Replacement of dysfunctional mitochondria with functional exogenous mitochondria is proposed as a general principle to treat these diseases. Here we found that mitochondria isolated from human hepatoma cell could naturally enter human neuroblastoma SH-SY5Y cell line, and when the mitochondria were intravenously injected into mice, all of the mice were survived and no obvious abnormality appeared. The results of in vivo distribution suggested that the exogenous mitochondria distributed in various tissues including brain, liver, kidney, muscle and heart, which would benefit for multi-systemically mitochondrial diseases. In normal mice, mitochondrial supplement improved their endurance by increase of energy production in forced swimming test; and in experimental Parkinson's disease (PD) model mice induced by respiratory chain inhibitor MPTP, mitochondrial replacement prevented experimental PD progress through increasing the activity of electron transport chain, decreasing reactive oxygen species level, and preventing cell apoptosis and necrosis. Since effective drugs remain elusive to date for mitochondrial diseases, the strategy of mitochondrial replacement would provide an essential and innovative approach as mitochondrial therapy.
Collapse
Affiliation(s)
- Xianxun Shi
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ming Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Chen Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| |
Collapse
|
199
|
Larsen PA, Lutz MW, Hunnicutt KE, Mihovilovic M, Saunders AM, Yoder AD, Roses AD. The Alu neurodegeneration hypothesis: A primate-specific mechanism for neuronal transcription noise, mitochondrial dysfunction, and manifestation of neurodegenerative disease. Alzheimers Dement 2017; 13:828-838. [PMID: 28242298 PMCID: PMC6647845 DOI: 10.1016/j.jalz.2017.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/12/2017] [Accepted: 01/24/2017] [Indexed: 01/13/2023]
Abstract
It is hypothesized that retrotransposons have played a fundamental role in primate evolution and that enhanced neurologic retrotransposon activity in humans may underlie the origin of higher cognitive function. As a potential consequence of this enhanced activity, it is likely that neurons are susceptible to deleterious retrotransposon pathways that can disrupt mitochondrial function. An example is observed in the TOMM40 gene, encoding a β-barrel protein critical for mitochondrial preprotein transport. Primate-specific Alu retrotransposons have repeatedly inserted into TOMM40 introns, and at least one variant associated with late-onset Alzheimer’s disease originated from an Alu insertion event. We provide evidence of enriched Alu content in mitochondrial genes and postulate that Alus can disrupt mitochondrial populations in neurons, thereby setting the stage for progressive neurologic dysfunction. This Alu neurodegeneration hypothesis is compatible with decades of research and offers a plausible mechanism for the disruption of neuronal mitochondrial homeostasis, ultimately cascading into neurodegenerative disease.
Collapse
Affiliation(s)
- Peter A Larsen
- Department of Biology, Duke University, Durham, NC, USA.
| | - Michael W Lutz
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | | | - Mirta Mihovilovic
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Ann M Saunders
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA; Duke Lemur Center, Duke University, Durham, NC, USA
| | - Allen D Roses
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA; Zinfandel Pharmaceuticals, Inc, Durham, NC, USA
| |
Collapse
|
200
|
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci 2017; 18:ijms18020435. [PMID: 28218653 PMCID: PMC5343969 DOI: 10.3390/ijms18020435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Collapse
|