151
|
Wolden-Kirk H, Rondas D, Bugliani M, Korf H, Van Lommel L, Brusgaard K, Christesen HT, Schuit F, Proost P, Masini M, Marchetti P, Eizirik DL, Overbergh L, Mathieu C. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans. Endocrinology 2014; 155:736-47. [PMID: 24424042 DOI: 10.1210/en.2013-1409] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protection against insulitis and diabetes by active vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), in nonobese diabetic mice has until now mainly been attributed to its immunomodulatory effects, but also protective effects of this hormone on inflammation-induced β-cell death have been reported. The aim of this study was to clarify the molecular mechanisms by which 1,25(OH)2D3 contributes to β-cell protection against cytokine-induced β-cell dysfunction and death. Human and mouse islets were exposed to IL-1β and interferon-γ in the presence or absence of 1,25(OH)2D3. Effects on insulin secretion and β-cell survival were analyzed by glucose-stimulated insulin release and electron microscopy or Hoechst/propidium iodide staining, respectively. Gene expression profiles were assessed by Affymetrix microarrays. Nuclear factor-κB activity was tested, whereas effects on secreted chemokines/cytokines were confirmed by ELISA and migration studies. Cytokine exposure caused a significant increase in β-cell apoptosis, which was almost completely prevented by 1,25(OH)2D3. In addition, 1,25(OH)2D3 restored insulin secretion from cytokine-exposed islets. Microarray analysis of murine islets revealed that the expression of approximately 4000 genes was affected by cytokines after 6 and 24 hours (n = 4; >1.3-fold; P < .02), of which nearly 250 genes were modified by 1,25(OH)2D3. These genes belong to functional groups involved in immune response, chemotaxis, cell death, and pancreatic β-cell function/phenotype. In conclusion, these findings demonstrate a direct protective effect of 1,25(OH)2D3 against inflammation-induced β-cell dysfunction and death in human and murine islets, with, in particular, alterations in chemokine production by the islets. These effects may contribute to the beneficial effects of 1,25(OH)2D3 against the induction of autoimmune diabetes.
Collapse
Affiliation(s)
- H Wolden-Kirk
- Clinical and Experimental Endocrinology (H.W.-K., D.R., H.K., L.O., C.M.), University Hospital Gasthuisberg, Gene Expression Unit (L.V.L., F.S.), Department of Molecular and Cellular Medicine, Department of Microbiology and Immunology (P.P.), B-3000 Leuven, Belgium; Hans Christian Andersen Children's Hospital (H.W.-K., H.T.C.) and Department of Clinical Genetics (K.B., D.L.E.), Odense University Hospital, DK-5000, Odense, Denmark; Department of Endocrinology and Metabolism (M.B., P.M.), Metabolic Unit, and Department of General Pathology (M.M.), University of Pisa, Pisa, Italy; and Laboratory of Experimental Medicine (D.L.E.), Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Dotta F, Sebastiani G. Enteroviral infections and development of type 1 diabetes: The Brothers Karamazov within the CVBs. Diabetes 2014; 63:384-6. [PMID: 24464713 DOI: 10.2337/db13-1441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; and Fondazione Umberto Di Mario ONLUS, Toscana Life Sciences, Siena, Italy
| | | |
Collapse
|
153
|
Lee CN, Lew AM, Wu L. The potential role of dendritic cells in the therapy of Type 1 diabetes. Immunotherapy 2014; 5:591-606. [PMID: 23725283 DOI: 10.2217/imt.13.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is the result of T-cell mediated autoimmune destruction of pancreatic islet β-cells. The two current treatments for T1D are based on insulin or islet-cell replacement rather than the pathogenesis of T1D and remain problematic. Islet/pancreas transplantation does not cater for the majority of sufferers due to the lack of supply of organs and the need for continuous immunosuppression regimens. The mainstay treatment is insulin replacement, but this is disruptive to lifestyle and does not protect against severe long-term complications. An early vaccination and long-term restoration of immune tolerance to self-antigens in T1D patients (reversing the immunopathogenesis of the disease) would be preferable. Dendritic cells (DCs) are potent APCs and play an important role in inducing and maintaining immune tolerance. Targeting DCs through different DC surface molecules shows effective modulation of immune responses. Their feasibility for immunotherapy to prolong transplant survival and cancer immunotherapy has been demonstrated. Therefore, DCs could potentially be used in the treatment of autoimmune diseases. This review summarizes new insights into DCs as a potential therapeutic target for the treatment of T1D.
Collapse
Affiliation(s)
- Chin-Nien Lee
- Molecular Immunology Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | | | | |
Collapse
|
154
|
Gorus FK, Keymeulen B, Veld PAI, Pipeleers DG. Predictors of progression to Type 1 diabetes: preparing for immune interventions in the preclinical disease phase. Expert Rev Clin Immunol 2014; 9:1173-83. [DOI: 10.1586/1744666x.2013.856757] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
155
|
Abstract
Over the past decade, knowledge of the pathogenesis and natural history of type 1 diabetes has grown substantially, particularly with regard to disease prediction and heterogeneity, pancreatic pathology, and epidemiology. Technological improvements in insulin pumps and continuous glucose monitors help patients with type 1 diabetes manage the challenge of lifelong insulin administration. Agents that show promise for averting debilitating disease-associated complications have also been identified. However, despite broad organisational, intellectual, and fiscal investments, no means for preventing or curing type 1 diabetes exists, and, globally, the quality of diabetes management remains uneven. This Seminar discusses current progress in epidemiology, pathology, diagnosis, and treatment of type 1 diabetes, and prospects for an improved future for individuals with this disease.
Collapse
Affiliation(s)
- Mark A Atkinson
- Department of Pathology and Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| | | | - Aaron W Michels
- Barbara Davis Center for Childhood Diabetes, Aurora, CO, USA
| |
Collapse
|
156
|
Bonifacio E, Krumsiek J, Winkler C, Theis FJ, Ziegler AG. A strategy to find gene combinations that identify children who progress rapidly to type 1 diabetes after islet autoantibody seroconversion. Acta Diabetol 2014; 51:403-11. [PMID: 24249616 DOI: 10.1007/s00592-013-0526-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 10/19/2013] [Indexed: 01/21/2023]
Abstract
We recently developed a novel approach capable of identifying gene combinations to obtain maximal disease risk stratification. Type 1 diabetes has a preclinical phase including seroconversion to autoimmunity and subsequent progression to diabetes. Here, we applied our gene combination approach to identify combinations that contribute either to islet autoimmunity or to the progression from islet autoantibodies to diabetes onset. We examined 12 type 1 diabetes susceptibility genes (INS, ERBB3, PTPN2, IFIH1, PTPN22, KIAA0350, CD25, CTLA4, SH2B3, IL2, IL18RAP, IL10) in a cohort of children of parents with type 1 diabetes and prospectively followed from birth. The most predictive combination was subsequently applied to a smaller validation cohort. The combinations of genes only marginally contributed to the risk of developing islet autoimmunity, but could substantially modify risk of progression to diabetes in islet autoantibody-positive children. The greatest discrimination was provided by risk allele scores of five genes, INS, IFIH1, IL18RAP, CD25, and IL2 genes, which could identify 80 % of islet autoantibody-positive children who progressed to diabetes within 6 years of seroconversion and discriminate high risk (63 % within 6 years; 95 % CI 45-81 %) and low risk (11 % within 6 years; 95 % CI 0.1-22 %; p = 4 × 10(-5)) antibody-positive children. Risk stratification by these five genes was confirmed in a second cohort of islet autoantibody children. These findings highlight genes that may affect the rate of the beta-cell destruction process once autoimmunity has initiated and may help to identify islet autoantibody-positive subjects with rapid progression to diabetes.
Collapse
Affiliation(s)
- Ezio Bonifacio
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstrasse 105, 01307, Dresden, Germany,
| | | | | | | | | |
Collapse
|
157
|
Xue M, Jackson CJ. Activated protein C and its potential applications in prevention of islet β-cell damage and diabetes. VITAMINS AND HORMONES 2014; 95:323-63. [PMID: 24559924 DOI: 10.1016/b978-0-12-800174-5.00013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Activated protein C (APC) is derived from its precursor, protein C (PC). Originally thought to be synthesized exclusively by the liver, recent reports have shown that PC is also produced by many other cells including pancreatic islet β cells. APC functions as a physiological anticoagulant with anti-inflammatory, anti-apoptotic, and barrier-stabilizing properties. APC exerts its protective effects via an intriguing mechanism requiring combinations of endothelial PC receptor, protease-activated receptors, epidermal growth factor receptor, Tie2 or CD11b, depending on cell types. Diabetes is a chronic condition resulted from the body's inability to produce and/or properly use insulin. The prevalence of diabetes has risen dramatically and has become one of the major causes of premature mortality and morbidity worldwide. Diabetes prevention is an ideal approach to reduce this burden. Type 1 and type 2 diabetes are the major forms of diabetes mellitus, and both are characterized by an autoimmune response, intraislet inflammation, β-cell apoptosis, and progressive β-cell loss. Protecting β-cell from damage is critical in both prevention and treatment of diabetes. Recent in vitro and animal studies show that APC's strong anti-inflammatory and anti-apoptotic properties are beneficial in preventing β-cell destruction and diabetes in the NOD mouse model of type 1 diabetes. Future preventive and therapeutic uses of APC in diabetes look very promising.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Christopher J Jackson
- Sutton Arthritis Research Laboratories, Kolling Institute of Medical Research, The University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
158
|
Creusot RJ, Giannoukakis N, Trucco M, Clare-Salzler MJ, Fathman CG. It's time to bring dendritic cell therapy to type 1 diabetes. Diabetes 2014; 63:20-30. [PMID: 24357690 PMCID: PMC3968436 DOI: 10.2337/db13-0886] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rémi J. Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY
| | - Nick Giannoukakis
- Division of Immunogenetics, Department of Pediatrics, John G. Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Massimo Trucco
- Division of Immunogenetics, Department of Pediatrics, John G. Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michael J. Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - C. Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Corresponding author: C. Garrison Fathman,
| |
Collapse
|
159
|
Abstract
Inflammation-induced inhibition of the insulin signalling pathway can lead to insulin resistance and contribute to the development of type 2 diabetes mellitus (T2DM). Obesity and insulin resistance are associated with a chronic but subclinical inflammatory process that impairs insulin action in most tissues and could also hamper pancreatic β-cell function. The involvement of monocytic cells and the profiles of the chemokines and cytokines induced by this inflammation suggest an innate immune response. However, emerging data indicate that elements of the adaptive immune system could also be involved. As activation of an adaptive response requires antigen specificity, some researchers have hypothesized that T2DM evolves from an innate immune response to an autoimmune condition. In this Perspectives article, we present the arguments for and against this hypothesis and discuss which mechanisms could be involved in a putative switch from innate immunity to autoimmunity.
Collapse
Affiliation(s)
- Lício A Velloso
- Laboratory of Cell Signalling, Obesity and Comorbidities Research Centre, University of Campinas, DCM-FCM UNICAMP, 13,084-970 Campinas, São Paulo, Brazil
| | | | | |
Collapse
|
160
|
Delaleu N, Nguyen CQ, Tekle KM, Jonsson R, Peck AB. Transcriptional landscapes of emerging autoimmunity: transient aberrations in the targeted tissue's extracellular milieu precede immune responses in Sjögren's syndrome. Arthritis Res Ther 2013; 15:R174. [PMID: 24286337 PMCID: PMC3978466 DOI: 10.1186/ar4362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 10/11/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction Our understanding of autoimmunity is skewed considerably towards the late stages of overt disease and chronic inflammation. Defining the targeted organ’s role during emergence of autoimmune diseases is, however, critical in order to define their etiology, early and covert disease phases and delineate their molecular basis. Methods Using Sjögren’s syndrome (SS) as an exemplary rheumatic autoimmune disease and temporal global gene-expression profiling, we systematically mapped the transcriptional landscapes and chronological interrelationships between biological themes involving the salivary glands’ extracellular milieu. The time period studied spans from pre- to subclinical and ultimately to onset of overt disease in a well-defined model of spontaneous SS, the C57BL/6.NOD-Aec1Aec2 strain. In order to answer this aim of great generality, we developed a novel bioinformatics-based approach, which integrates comprehensive data analysis and visualization within interactive networks. The latter are computed by projecting the datasets as a whole on a priori-defined consensus-based knowledge. Results Applying these methodologies revealed extensive susceptibility loci-dependent aberrations in salivary gland homeostasis and integrity preceding onset of overt disease by a considerable amount of time. These alterations coincided with innate immune responses depending predominantly on genes located outside of the SS-predisposing loci Aec1 and Aec2. Following a period of transcriptional stability, networks mapping the onset of overt SS displayed, in addition to natural killer, T- and B-cell-specific gene patterns, significant reversals of focal adhesion, cell-cell junctions and neurotransmitter receptor-associated alterations that had prior characterized progression from pre- to subclinical disease. Conclusions This data-driven methodology advances unbiased assessment of global datasets an allowed comprehensive interpretation of complex alterations in biological states. Its application delineated a major involvement of the targeted organ during the emergence of experimental SS.
Collapse
|
161
|
Dahan R, Gebe JA, Preisinger A, James EA, Tendler M, Nepom GT, Reiter Y. Antigen-specific immunomodulation for type 1 diabetes by novel recombinant antibodies directed against diabetes-associates auto-reactive T cell epitope. J Autoimmun 2013; 47:83-93. [PMID: 24090977 DOI: 10.1016/j.jaut.2013.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022]
Abstract
The trimolecular complex composed of autoreactive T-cell receptor, MHC class II, and an autoantigenic peptide plays a central role in the activation of pathogenic Islet-specific CD4+ T cells in type 1 diabetes (T1D). We isolated and characterized novel antibodies against autoreactive T-cell epitopes associated with T1D. Our antibodies mimic the specificity of the T-cell receptor (TCR), while binding MHC class II/peptide complexes in an autoantigen peptide specific, MHC-restricted manner. The isolated TCR-like antibodies were directed against the minimal T-cell epitope GAD-555-567 in the context of the HLA-DR4-diabetic-associated molecule. A representative high-affinity TCR-like antibody clone (G3H8) enabled the detection of intra- and extra-cellular DR4/GAD-555-567 complexes in antigen presenting cells. I561M single mutation at the central position (P5) of the GAD-555-567 peptide abolished the binding of G3H8 to the DR4/GAD complex, demonstrating its high fine TCR-like specificity. The G3H8 TCR-like antibody significantly inhibited GAD-555-567 specific, DR4 restricted T-cell response in vitro and in vivo in HLA-DR4 transgenic mice. Our findings constitute a proof-of-concept for the utility of TCR-like antibodies as antigen-specific immunomodulation agents for regulating pathogenic T-cells and suggest that TCR-like antibodies targeting autoreactive MHC class II epitopes are valuable research tools that enable studies related to antigen presentation as well as novel therapeutic agents that may be used to modulate autoimmune disorders such as T1D.
Collapse
Affiliation(s)
- Rony Dahan
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | | | |
Collapse
|
162
|
Ilonen J, Hammais A, Laine AP, Lempainen J, Vaarala O, Veijola R, Simell O, Knip M. Patterns of β-cell autoantibody appearance and genetic associations during the first years of life. Diabetes 2013; 62:3636-40. [PMID: 23835325 PMCID: PMC3781470 DOI: 10.2337/db13-0300] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We analyzed demographic and genetic differences between children with various diabetes-associated autoantibodies reflecting the autoimmune process. In a prospective birth cohort comprising children with HLA-conferred susceptibility to type 1 diabetes (T1D), the pattern of autoantibody appearance was analyzed in 520 children with advanced β-cell autoimmunity associated with high risk for disease. In 315 cases, a single biochemical autoantibody could be identified in the first positive sample as insulin (insulin autoantibody [IAA]) in 180, as GAD (GAD antibody [GADA]) in 107, and as IA-2 antigen (IA-2 antibody [IA-2A]) in 28. The age at seroconversion differed significantly between the three groups (P = 0.003). IAA as the first autoantibody showed a peak time of appearance during the second year of life, whereas GADA as the first autoantibody peaked later, between 3 and 5 years of age. The risk-associated insulin gene rs689 A/A genotypes were more frequent in children with IAA as the first autoantibody compared with the other children (P = 0.002). The primary autoantigen in the development of β-cell autoimmunity and T1D seems to strongly correlate with age and genetic factors, indicating heterogeneity in the initiation of the disease process.
Collapse
Affiliation(s)
- Jorma Ilonen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Clinical Microbiology, University of Eastern Finland, Kuopio, Finland
- Corresponding author: Jorma Ilonen,
| | - Anna Hammais
- Immunogenetics Laboratory, University of Turku, Turku, Finland
| | | | - Johanna Lempainen
- Immunogenetics Laboratory, University of Turku, Turku, Finland
- Department of Pediatrics, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Outi Vaarala
- Immune Response Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Riitta Veijola
- Department of Pediatrics, Institute of Clinical Medicine, University of Oulu, Oulu, Finland
- Oulu University Hospital, Oulu, Finland
| | - Olli Simell
- Department of Pediatrics, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Children’s Hospital, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Folkhälsan Research Center, Helsinki, Finland
| |
Collapse
|
163
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing beta-cells are destroyed. Islet or pancreas transplantation can restore insulin secretion and are established therapies for subgroups of T1D patients. Long-term insulin-independence is, however, hampered by recurrent autoimmunity and rejection. Accurate monitoring of these immune events is therefore of critical relevance for the timely detection of deleterious immune responses. The identification of relevant immune biomarkers of allo- and autoreactivity has allowed a more accurate monitoring of disease progression and responses to therapy at early stages, allowing proper therapeutic intervention, and possibly improvements in the success rate of islet and pancreas transplantation. This review describes the tools established and validated to monitor immune correlates of auto- and alloreactivity that associate with clinical outcome and identifies challenges that current immunosuppression strategies trying to preserve islet graft function face.
Collapse
Affiliation(s)
- J R F Abreu
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, E3-Q, P.O. Box 9600, NL-2300Rc, Leiden, The Netherlands
| | | |
Collapse
|
164
|
Vernon RB, Preisinger A, Gooden MD, D'Amico LA, Yue BB, Bollyky PL, Kuhr CS, Hefty TR, Nepom GT, Gebe JA. Reversal of diabetes in mice with a bioengineered islet implant incorporating a type I collagen hydrogel and sustained release of vascular endothelial growth factor. Cell Transplant 2013; 21:2099-110. [PMID: 23231959 DOI: 10.3727/096368912x636786] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have developed a bioengineered implant (BI) to evaluate strategies to promote graft survival and function in models of islet transplantation in mice. The BI, sized for implantation within a fold of intestinal mesentery, consists of a disk-shaped, polyvinyl alcohol sponge infused with a type I collagen hydrogel that contains dispersed donor islets. To promote islet vascularization, the BI incorporates a spherical alginate hydrogel for sustained release of vascular endothelial growth factor (VEGF). BIs that contained 450-500 islets from syngeneic (C57Bl/6) donors and 20 ng of VEGF reversed streptozotocin (STZ)-induced diabetes in 100% of mice (8/8), whereas BIs that contained an equivalent number of islets, but which lacked VEGF, reversed STZ-induced diabetes in only 62.5% of mice (5/8). Between these "+VEGF" and "-VEGF" groups, the time to achieve normoglycemia (8-18 days after implantation) did not differ statistically; however, transitory, postoperative hypoglycemia was markedly reduced in the +VEGF group relative to the -VEGF group. Notably, none of the mice that achieved normoglycemia in these two groups required exogenous insulin therapy once the BIs began to fully regulate levels of blood glucose. Moreover, the transplanted mice responded to glucose challenge in a near-normal manner, as compared to the responses of healthy, nondiabetic (control) mice that had not received STZ. In future studies, the BIs described here will serve as platforms to evaluate the capability of immunomodulatory compounds, delivered locally within the BI, to prevent or reverse diabetes in the setting of autoimmune (type 1) diabetes.
Collapse
Affiliation(s)
- Robert B Vernon
- Benaroya Research Institute at Virginia Mason, Seattle, WA 98101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Luce S, Briet C, Bécourt C, Lemonnier F, Boitard C. The targeting of β-cells by T lymphocytes in human type 1 diabetes: clinical perspectives. Diabetes Obes Metab 2013; 15 Suppl 3:89-97. [PMID: 24003925 DOI: 10.1111/dom.12159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/08/2013] [Indexed: 12/31/2022]
Abstract
This review focuses on genes that control β-cell targeting in autoimmune, type 1-dependent, diabetes (T1D) and on insulin as the major autoantigen recognized by T lymphocytes throughout the disease process. T1D associates with multiple gene variants. Beyond genes that predispose to general failure of immune tolerance to self, loci identified by the analysis of crosses between non-obese diabetic (NOD) and conventional mouse strains harbour genes that control β-cell targeting or the deviation of autoimmunity towards other tissues. We report here the role of genes encoding co-activation molecules involved in the activation of T lymphocytes, ICOS and ICOS ligand (B7RP1). NOD mice which are deficient in either of these two molecules are protected from diabetes, but instead develop a neuromuscular autoimmune disease. We also report the characterization in humans of T lymphocytes that are specific for major β-cell autoantigens, especially insulin. This opens the way towards new bioassays in the diagnosis of autoimmunity and towards autoantigen-specific immunotherapy in T1D. In order to develop a new preclinical model of T1D that would allow testing insulin epitopes to induce immune tolerance in vivo, we developed a mouse that is deficient in endogenous major histocompatibility complex class I and class II genes and deficient for the two murine insulin genes and that express human class I, class II and insulin genes.
Collapse
Affiliation(s)
- S Luce
- INSERM, UMR1016, Paris, France
| | | | | | | | | |
Collapse
|
166
|
Lee HS, Briese T, Winkler C, Rewers M, Bonifacio E, Hyoty H, Pflueger M, Simell O, She JX, Hagopian W, Lernmark Å, Akolkar B, Krischer J, Ziegler AG, the TEDDY study group. Next-generation sequencing for viruses in children with rapid-onset type 1 diabetes. Diabetologia 2013; 56:1705-1711. [PMID: 23657799 PMCID: PMC4019381 DOI: 10.1007/s00125-013-2924-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/05/2013] [Indexed: 02/02/2023]
Abstract
AIMS/HYPOTHESIS Viruses are candidate causative agents in the pathogenesis of autoimmune (type 1) diabetes. We hypothesised that children with a rapid onset of type 1 diabetes may have been exposed to such agents shortly before the initiation of islet autoimmunity, possibly at high dose, and thus study of these children could help identify viruses involved in the development of autoimmune diabetes. METHODS We used next-generation sequencing to search for viruses in plasma samples and examined the history of infection and fever in children enrolled in The Environmental Determinants of Diabetes in the Young (TEDDY) study who progressed to type 1 diabetes within 6 months from the appearance of islet autoimmunity, and in matched islet-autoantibody-negative controls. RESULTS Viruses were not detected more frequently in plasma from rapid-onset patients than in controls during the period surrounding seroconversion. In addition, infection histories were found to be similar between children with rapid-onset diabetes and control children, although episodes of fever were reported less frequently in children with rapid-onset diabetes. CONCLUSIONS/INTERPRETATION These findings do not support the presence of viraemia around the time of seroconversion in young children with rapid-onset type 1 diabetes.
Collapse
Affiliation(s)
- H-S. Lee
- Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - T. Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - C. Winkler
- Forschergruppe Diabetes e.V., Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - M. Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - E. Bonifacio
- Center for Regenerative Therapies-Dresden, Dresden University of Technology, Dresden, Germany
| | - H. Hyoty
- Department of Virology, University of Tampere, Finland
| | - M. Pflueger
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - O. Simell
- Department of Pediatrics, Turku University Central Hospital, Turku, Finland
| | - J. X. She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - W. Hagopian
- Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | - Å. Lernmark
- Department of Clinical Sciences, Lund University, Skåne University Hospital SUS, Malmö, Sweden
| | - B. Akolkar
- National Institute of Diabetes & Digestive & Kidney Disorders, Bethesda, MD, USA
| | - J. Krischer
- Pediatric Epidemiology Center, Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - A. G. Ziegler
- Forschergruppe Diabetes e.V., Neuherberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | | |
Collapse
|
167
|
Spagnuolo I, Patti A, Sebastiani G, Nigi L, Dotta F. The case for virus-induced type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2013; 20:292-8. [PMID: 23743646 DOI: 10.1097/med.0b013e328362a7d7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) results from the immune-mediated destruction of pancreatic insulin-producing cells because of the interaction among genetic susceptibility, the immune system and environmental factor(s). A possible role of viral infections in T1D pathogenesis has been hypothesized for some time; however, only in the most recent years, studies performed at the molecular and cellular level are starting to shed light on this issue. RECENT FINDINGS Studies in animal models and in man have shown that viruses can indeed infect pancreatic beta-cells, inducing islet inflammation and functional damage. In addition, recent in-situ investigations performed on pancreatic tissue samples have provided evidence that in addition to adaptive immune response, innate immunity is involved in T1D pathogenesis and the whole pancreas (not only its endocrine portion) is infiltrated by immune-mediated phenomena. SUMMARY The established role of inflammation in the insulitic process and the increasing evidence in support of the contribution of viral infections to a proinflammatory islet scenario are strongly suggestive that viruses may indeed contribute to beta-cell damage and dysfunction, thus setting the stage for the design of antiviral strategies (e.g. vaccines and antiviral drugs) aimed at protecting the beta-cells.
Collapse
Affiliation(s)
- Isabella Spagnuolo
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Toscana Life Science Park, Siena, Italy
| | | | | | | | | |
Collapse
|
168
|
Bour-Jordan H, Thompson HL, Giampaolo JR, Davini D, Rosenthal W, Bluestone JA. Distinct genetic control of autoimmune neuropathy and diabetes in the non-obese diabetic background. J Autoimmun 2013; 45:58-67. [PMID: 23850635 PMCID: PMC4156399 DOI: 10.1016/j.jaut.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 02/01/2023]
Abstract
The non-obese diabetic (NOD) mouse is susceptible to the development of autoimmune diabetes but also multiple other autoimmune diseases. Over twenty susceptibility loci linked to diabetes have been identified in NOD mice and progress has been made in the definition of candidate genes at many of these loci (termed Idd for insulin-dependent diabetes). The susceptibility to multiple autoimmune diseases in the NOD background is a unique opportunity to examine susceptibility genes that confer a general propensity for autoimmunity versus susceptibility genes that control individual autoimmune diseases. We previously showed that NOD mice deficient for the costimulatory molecule B7-2 (NOD-B7-2KO mice) were protected from diabetes but spontaneously developed an autoimmune peripheral neuropathy. Here, we took advantage of multiple NOD mouse strains congenic for Idd loci to test the role of these Idd loci the development of neuropathy and determine if B6 alleles at Idd loci that are protective for diabetes will also be for neuropathy. Thus, we generated NOD-B7-2KO strains congenic at Idd loci and examined the development of neuritis and clinical neuropathy. We found that the NOD-H-2(g7) MHC region is necessary for development of neuropathy in NOD-B7-2KO mice. In contrast, other Idd loci that significantly protect from diabetes did not affect neuropathy when considered individually. However, we found potent genetic interactions of some Idd loci that provided almost complete protection from neuritis and clinical neuropathy. In addition, defective immunoregulation by Tregs could supersede protection by some, but not other, Idd loci in a tissue-specific manner in a model where neuropathy and diabetes occurred concomitantly. Thus, our study helps identify Idd loci that control tissue-specific disease or confer general susceptibility to autoimmunity, and brings insight to the Treg-dependence of autoimmune processes influenced by given Idd region in the NOD background.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- University of California in San Francisco, 513 Parnassus Avenue, Box 0400, San Francisco, CA 94143-0400, USA
| | | | | | | | | | | |
Collapse
|
169
|
Therapeutic opportunities for manipulating T(Reg) cells in autoimmunity and cancer. Nat Rev Drug Discov 2013; 12:51-63. [PMID: 23274471 DOI: 10.1038/nrd3683] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Forkhead box P3 (FOXP3)-expressing regulatory T (T(Reg)) cells have a pivotal role in the regulation of immune responses and in the maintenance of immunological self-tolerance. These cells have emerged as attractive targets for strategies that allow the steering of immune responses in desired directions - arming the immune system to destroy infected cells and cancer cells or downregulating it to limit tissue destruction in autoimmunity. Efforts to understand the generation, activation and function of T(Reg) cells should permit the development of therapeutics for reprogramming the immune system. In this Review, we discuss insights into the generation of T(Reg) cells, their involvement in disease and the molecular basis of the dominant tolerance exerted by FOXP3(+) T(Reg) cells that could permit their safe and specific manipulation in humans.
Collapse
|
170
|
Miani M, Barthson J, Colli ML, Brozzi F, Cnop M, Eizirik DL. Endoplasmic reticulum stress sensitizes pancreatic beta cells to interleukin-1β-induced apoptosis via Bim/A1 imbalance. Cell Death Dis 2013; 4:e701. [PMID: 23828564 PMCID: PMC3730410 DOI: 10.1038/cddis.2013.236] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/10/2013] [Accepted: 05/29/2013] [Indexed: 02/07/2023]
Abstract
We have recently shown that the crosstalk between mild endoplasmic reticulum (ER) stress and low concentrations of the pro-inflammatory cytokine interleukin (IL)-1β exacerbates beta cell inflammatory responses via the IRE1α/XBP1 pathway. We presently investigated whether mild ER stress also sensitizes beta cells to cytokine-induced apoptosis. Cyclopiazonic acid (CPA)-induced ER stress enhanced the IL-1β apoptosis in INS-1E and primary rat beta cells. This was not prevented by XBP1 knockdown (KD), indicating the dissociation between the pathways leading to inflammation and cell death. Analysis of the role of pro- and anti-apoptotic proteins in cytokine-induced apoptosis indicated a central role for the pro-apoptotic BH3 (Bcl-2 homology 3)-only protein Bim (Bcl-2-interacting mediator of cell death), which was counteracted by four anti-apoptotic Bcl-2 (B-cell lymphoma-2) proteins, namely Bcl-2, Bcl-XL, Mcl-1 and A1. CPA+IL-1β-induced beta cell apoptosis was accompanied by increased expression of Bim, particularly the most pro-apoptotic variant, small isoform of Bim (BimS), and decreased expression of A1. Bim silencing protected against CPA+IL-1β-induced apoptosis, whereas A1 KD aggravated cell death. Bim inhibition protected against cell death caused by A1 silencing under all conditions studied. In conclusion, mild ER stress predisposes beta cells to the pro-apoptotic effects of IL-1β by disrupting the balance between pro- and anti-apoptotic Bcl-2 proteins. These findings link ER stress to exacerbated apoptosis during islet inflammation and provide potential mechanistic targets for beta cell protection, namely downregulation of Bim and upregulation of A1.
Collapse
Affiliation(s)
- M Miani
- Laboratory of Experimental Medicine, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
171
|
Kurien BT, Dsouza A, Igoe A, Lee YJ, Maier-Moore JS, Gordon T, Jackson M, Scofield RH. Immunization with 60 kD Ro peptide produces different stages of preclinical autoimmunity in a Sjögren's syndrome model among multiple strains of inbred mice. Clin Exp Immunol 2013; 173:67-75. [PMID: 23607771 PMCID: PMC3694536 DOI: 10.1111/cei.12094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 11/27/2022] Open
Abstract
Sjögren's syndrome is a chronic illness manifested characteristically by immune injury to the salivary and lacrimal glands, resulting in dry mouth/eyes. Anti-Ro [Sjögren's syndrome antigen A (SSA)] and anti-La [Sjögren's syndrome antigen B (SSB)] autoantibodies are found frequently in Sjögren's subjects as well as in individuals who will go on to develop the disease. Immunization of BALB/c mice with Ro60 peptides results in epitope spreading with anti-Ro and anti-La along with lymphocyte infiltration of salivary glands similar to human Sjögren's. In addition, these animals have poor salivary function/low saliva volume. In this study, we examined whether Ro-peptide immunization produces a Sjögren's-like illness in other strains of mice. BALB/c, DBA-2, PL/J, SJL/J and C57BL/6 mice were immunized with Ro60 peptide-274. Sera from these mice were studied by immunoblot and enzyme-linked immunosorbent assay for autoantibodies. Timed salivary flow was determined after pharmacological stimulation, and salivary glands were examined pathologically. We found that SJL/J mice had no immune response to the peptide from Ro60, while C57BL/6 mice produced antibodies that bound the peptide but had no epitope spreading. PL/J mice had epitope spreading to other structures of Ro60 as well as to La, but like C57BL/6 and SJL/J had no salivary gland lymphocytic infiltration and no decrement of salivary function. DBA-2 and BALB/c mice had infiltration but only BALB/c had decreased salivary function. The immunological processes leading to a Sjögren's-like illness after Ro-peptide immunization were interrupted in a stepwise fashion in these differing mice strains. These data suggest that this is a model of preclinical disease with genetic control for epitope spreading, lymphocytic infiltration and glandular dysfunction.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Antinuclear/immunology
- Autoantigens/immunology
- Autoimmunity/genetics
- Autoimmunity/immunology
- Carbachol/pharmacology
- Disease Models, Animal
- Epitopes/immunology
- Freund's Adjuvant
- H-2 Antigens/genetics
- H-2 Antigens/immunology
- Haplotypes
- Immunization
- Lymphocyte Subsets/immunology
- Lymphocyte Subsets/pathology
- Male
- Mice
- Mice, Inbred Strains/genetics
- Mice, Inbred Strains/immunology
- Molecular Sequence Data
- Muscle, Smooth/drug effects
- Muscle, Smooth/immunology
- Peptide Fragments/immunology
- Prodromal Symptoms
- RNA, Small Cytoplasmic/immunology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/immunology
- Ribonucleoproteins/immunology
- Salivary Glands/pathology
- Salivation
- Sjogren's Syndrome/etiology
- Sjogren's Syndrome/immunology
- Specific Pathogen-Free Organisms
- Urinary Bladder
- Xerostomia/etiology
- Xerostomia/immunology
- SS-B Antigen
Collapse
Affiliation(s)
- B T Kurien
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Insel RA. Delivering on George Eisenbarth's visionary pursuit of understanding pathogenesis and prevention of type 1 diabetes. Diabetes Technol Ther 2013; 15 Suppl 2:S2-4-S2-7. [PMID: 23786297 DOI: 10.1089/dia.2013.0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
George Eisenbarth's pioneering and visionary research has provided a critical foundation that will be built on in the years ahead as we progress toward prevention of type 1 diabetes. His almost 30-year old model that type 1 diabetes was a chronic and predictable autoimmune disease with multiple identifiable progressive stages with a potential for interventions to prevent progression to symptomatic diabetes has stood the test of time. To deliver on the Eisenbarth vision and his "unfinished journey," the field needs: (1) to improve detection of risk of type 1 diabetes, (2) to improve staging and prediction of progression, (3) to perform smaller, shorter, practical, and an increased number of prevention clinical trials, and (4) to increase awareness of the potential for risk detection, staging, and prevention of type 1 diabetes and benefit/risk of prevention.
Collapse
|
173
|
Long AE, Gillespie KM, Aitken RJ, Goode JC, Bingley PJ, Williams AJ. Humoral responses to islet antigen-2 and zinc transporter 8 are attenuated in patients carrying HLA-A*24 alleles at the onset of type 1 diabetes. Diabetes 2013; 62:2067-71. [PMID: 23396399 PMCID: PMC3661608 DOI: 10.2337/db12-1468] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/31/2013] [Indexed: 01/17/2023]
Abstract
The HLA-A*24 allele has shown negative associations with autoantibodies to islet antigen-2 (IA-2) and zinc transporter 8 (ZnT8) in patients with established type 1 diabetes. Understanding how this HLA class I allele affects humoral islet autoimmunity gives new insights into disease pathogenesis. We therefore investigated the epitope specificity of associations between HLA-A*24 and islet autoantibodies at disease onset. HLA-A*24 genotype and autoantibody responses to insulin (IAA), glutamate decarboxylase (GADA), IA-2, IA-2β, and ZnT8 were analyzed in samples collected from patients with recent-onset type 1 diabetes. After correction for age, sex, and HLA class II genotype, HLA-A*24 was shown to be a negative determinant of IA-2A and ZnT8A. These effects were epitope specific. Antibodies targeting the protein tyrosine phosphatase domains of IA-2 and IA-2β, but not the IA-2 juxtamembrane region, were less common in patients carrying HLA-A*24 alleles. The prevalence of ZnT8A specific or cross-reactive with the ZnT8 tryptophan-325 polymorphic residue, but not those specific to arginine-325, was reduced in HLA-A*24-positive patients. No associations were found between HLA-A*24 and IAA or GADA. Association of an HLA class I susceptibility allele with altered islet autoantibody phenotype at diagnosis suggests CD8 T-cell and/or natural killer cell-mediated killing modulates humoral autoimmune responses.
Collapse
Affiliation(s)
- Anna E. Long
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | | | - Rachel J. Aitken
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - Julia C. Goode
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | - Polly J. Bingley
- School of Clinical Sciences, University of Bristol, Bristol, U.K
| | | |
Collapse
|
174
|
Genetic control of murine invariant natural killer T cells maps to multiple type 1 diabetes regions. Genes Immun 2013; 14:380-6. [PMID: 23719031 PMCID: PMC3766462 DOI: 10.1038/gene.2013.32] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/25/2013] [Accepted: 04/29/2013] [Indexed: 02/06/2023]
Abstract
Reduced frequency of invariant natural killer T (iNKT)-cells has been indicated as a contributing factor to type 1 diabetes (T1D) development in NOD mice. To further understand the genetic basis of the defect, we generated (NOD X ICR)F2 mice to map genes that control iNKT-cell development. We determined frequencies of thymic and splenic iNKT-cells as well as the ratio of CD4-positive and -negative subsets in the spleens of 209 F2 males. Quantitative trait loci (QTL) analysis revealed 5 loci that exceed the significant threshold for the frequency of thymic and/or splenic iNKT-cells on Chromosomes (Chr) 1, 5, 6, 12, and 17. Three significant loci on Chr 1, 4, and 5 were found for the ratio of CD4-positive and -negative splenic iNKT-cells. Comparisons to previously known mouse T1D susceptibility (Idd) loci revealed two significant QTL peak locations respectively mapped to Idd regions on Chr 4 and 6. The peak marker location of the significant Chr 12 iNKT QTL maps to within 0.5Mb of a syntenic human T1D locus. Collectively, our results reveal several novel loci controlling iNKT-cell development and provide additional information for future T1D genetic studies.
Collapse
|
175
|
CHEN WENHAO, XIE AINI, CHAN LAWRENCE. Mechanistic basis of immunotherapies for type 1 diabetes mellitus. Transl Res 2013; 161:217-29. [PMID: 23348026 PMCID: PMC3602320 DOI: 10.1016/j.trsl.2012.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 12/28/2012] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease for which there is no cure. The pancreatic beta cells are the source of insulin that keeps blood glucose normal. When susceptible individuals develop T1D, their beta cells are destroyed by autoimmune T lymphocytes and no longer produce insulin. T1D patients therefore depend on daily insulin injections for survival. Gene therapy in T1D aims at the induction of new islets to replace those that have been destroyed by autoimmunity. A major goal of T1D research is to restore functional beta cell mass while eliminating diabetogenic T cells in the hope of achieving insulin independence. Multiple therapeutic strategies for the generation of new beta cells have been under intense investigations. However, newly formed beta cells would be immediately destroyed by diabetogenic T cells. Therefore, successful islet induction therapy must be supported by potent immunotherapy that will protect the newly formed beta cells. Herein, we will summarize the current information on immunotherapies that aim at modifying T cell response to beta cells. We will first outline the immune mechanisms that underlie T1D development and progression and review the scientific background and rationale for specific modes of immunotherapy. Numerous clinical trials using antigen-specific strategies and immune-modifying drugs have been published, though most have proved too toxic or have failed to provide long-term beta cell protection. To develop an effective immunotherapy, there must be a continued effort on defining the molecular basis that underlies T cell response to pancreatic islet antigens in T1D.
Collapse
Affiliation(s)
- WENHAO CHEN
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA 77030
| | - AINI XIE
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA 77030
| | - LAWRENCE CHAN
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
176
|
|
177
|
Green-Mitchell SM, Tersey SA, Cole BK, Ma K, Kuhn NS, Cunningham TD, Maybee NA, Chakrabarti SK, McDuffie M, Taylor-Fishwick DA, Mirmira RG, Nadler JL, Morris MA. Deletion of 12/15-lipoxygenase alters macrophage and islet function in NOD-Alox15(null) mice, leading to protection against type 1 diabetes development. PLoS One 2013; 8:e56763. [PMID: 23437231 PMCID: PMC3578926 DOI: 10.1371/journal.pone.0056763] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/16/2013] [Indexed: 11/19/2022] Open
Abstract
AIMS Type 1 diabetes (T1D) is characterized by autoimmune depletion of insulin-producing pancreatic beta cells. We showed previously that deletion of the 12/15-lipoxygenase enzyme (12/15-LO, Alox15 gene) in NOD mice leads to nearly 100 percent protection from T1D. In this study, we test the hypothesis that cytokines involved in the IL-12/12/15-LO axis affect both macrophage and islet function, which contributes to the development of T1D. METHODS 12/15-LO expression was clarified in immune cells by qRT-PCR, and timing of expression was tested in islets using qRT-PCR and Western blotting. Expression of key proinflammatory cytokines and pancreatic transcription factors was studied in NOD and NOD-Alox15(null) macrophages and islets using qRT-PCR. The two mouse strains were also assessed for the ability of splenocytes to transfer diabetes in an adoptive transfer model, and beta cell mass. RESULTS 12/15-LO is expressed in macrophages, but not B and T cells of NOD mice. In macrophages, 12/15-LO deletion leads to decreased proinflammatory cytokine mRNA and protein levels. Furthermore, splenocytes from NOD-Alox15(null) mice are unable to transfer diabetes in an adoptive transfer model. In islets, expression of 12/15-LO in NOD mice peaks at a crucial time during insulitis development. The absence of 12/15-LO results in maintenance of islet health with respect to measurements of islet-specific transcription factors, markers of islet health, proinflammatory cytokines, and beta cell mass. CONCLUSIONS These results suggest that 12/15-LO affects islet and macrophage function, causing inflammation, and leading to autoimmunity and reduced beta cell mass.
Collapse
Affiliation(s)
- Shamina M. Green-Mitchell
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Sarah A. Tersey
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Banumathi K. Cole
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Kaiwen Ma
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Norine S. Kuhn
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Tina Duong Cunningham
- Graduate Program in Public Health, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Nelly A. Maybee
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Swarup K. Chakrabarti
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Marcia McDuffie
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - David A. Taylor-Fishwick
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Raghavendra G. Mirmira
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Jerry L. Nadler
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Margaret A. Morris
- Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| |
Collapse
|
178
|
Erener S, Mojibian M, Fox JK, Denroche HC, Kieffer TJ. Circulating miR-375 as a biomarker of β-cell death and diabetes in mice. Endocrinology 2013; 154:603-8. [PMID: 23321698 DOI: 10.1210/en.2012-1744] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Type 1 diabetes is a progressive autoimmune disease that is largely silent in its initial stages. Yet, sensitive methods for detection of β-cell death and prediction and prevention of diabetes are lacking. Micro-RNAs (miRNAs) have been found at high concentrations in body fluids. Here in this study we sought to determine whether an islet enriched miRNA, miR-375, is a suitable blood marker to detect β-cell death and predict diabetes in mice. We measured miR-375 levels by quantitative RT-PCR in plasma samples of streptozotocin (STZ)-treated C57BL/6 mice and nonobese diabetic (NOD) mice. We also measured miR-375 levels in media samples of cytokine- or STZ-treated islets in the presence or absence of cell-death inhibitors. High-dose STZ administration dramatically increased circulating miR-375 levels, prior to the onset of hyperglycemia. Similarly, in the NOD mouse model of autoimmune diabetes, circulating miR-375 levels were significantly increased 2 weeks before diabetes onset. Moreover, cytokine- and STZ-induced cell death in isolated mouse islets produced a striking increase in extracellular miR-375 levels, which was reduced by cell death inhibitors. These data suggest that circulating miR-375 can be used as a marker of β-cell death and potential predictor of diabetes.
Collapse
Affiliation(s)
- Suheda Erener
- Department of Cellular and Physiological Sciences, 2350 Health Science Mall, University of British Columbia, V6T 1Z3 Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
179
|
Ghazarian L, Diana J, Simoni Y, Beaudoin L, Lehuen A. Prevention or acceleration of type 1 diabetes by viruses. Cell Mol Life Sci 2013; 70:239-55. [PMID: 22766971 PMCID: PMC11113684 DOI: 10.1007/s00018-012-1042-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/31/2022]
Abstract
Type 1 diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells. Even though extensive scientific research has yielded important insights into the immune mechanisms involved in pancreatic β-cell destruction, little is known about the events that trigger the autoimmune process. Recent epidemiological and experimental data suggest that environmental factors are involved in this process. In this review, we discuss the role of viruses as an environmental factor on the development of type 1 diabetes, and the immune mechanisms by which they can trigger or protect against this pathology.
Collapse
Affiliation(s)
- Liana Ghazarian
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Julien Diana
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Yannick Simoni
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Lucie Beaudoin
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| | - Agnès Lehuen
- Hôpital Saint Vincent de Paul/Cochin, Batiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France
| |
Collapse
|
180
|
Abstract
Biomarkers are useful tools for research into type 1 diabetes (T1D) for a number of purposes, including elucidation of disease pathogenesis, risk prediction, and therapeutic monitoring. Susceptibility genes and islet autoantibodies are currently the most useful biomarkers for T1D risk prediction. However, these markers do not fully meet the needs of scientists and physicians for several reasons. First, improvement of the specificity and sensitivity is still desirable to achieve better positive predictive values. Second, autoantibodies appear relatively late in the disease process, thus limiting their value in early disease prediction. Third, the currently available biomarkers are not useful for assessing therapeutic outcomes because some are not involved in the disease process (autoantibodies) and others do not change during disease progression (susceptibility genes). Therefore, considerable effort has been devoted to the discovery of novel T1D biomarkers in the last three decades. The advent of high-throughput technologies for genetic, transcriptomic, and proteomic studies has allowed genome-wide examinations of genetic polymorphisms, global gene changes, and protein expression changes in T1D patients and prediabetic subjects. These large-scale studies resulted in the discovery of a large number of susceptibility genes and changes in gene and protein expression. While these studies have provided a number of novel biomarker candidates, their clinical benefits remain to be evaluated in prospective studies, and no new "star biomarker" has been identified until now. Previous studies suggest that significant improvements in study design and analytical methodologies have to be made to identify clinically relevant biomarkers. In this review, we discuss progress, opportunities, challenges, and future directions in the development of T1D biomarkers, mainly by focusing on the genetic, transcriptomic, and proteomic aspects.
Collapse
Affiliation(s)
- Yulan Jin
- Center for Biotechnology and Genomic Medicine and Department of Pathology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA
| | | |
Collapse
|
181
|
Abstract
Type 1 diabetes (T1D) represents 10 to 15% of all forms of diabetes. Its incidence shows a consistent rise in all countries under survey. Evidence for autoimmunity in human T1D relies on the detection of insulitis, of islet cell antibodies, of activated β-cell-specific T lymphocytes and on the association of T1D with a restricted set of class II major histocompatibility complex (MHC) alleles. However, mechanisms that initiate the failure of immune tolerance to β-cell autoantigens remain elusive in common forms of T1D. T1D commonly develop as a multifactorial disease in which environmental factors concur with a highly multigenic background. The disease is driven by the activation of T-lymphocytes against pancreatic β-cells. Several years elapse between initial triggering of the autoimmune response to β cells, as evidenced by the appearance or islet cell autoantibodies, and the onset of clinical diabetes, defining a prediabetes stage. Active mechanisms hold back autoreactive effector T-cells in prediabetes, in particular a subset of CD4+ T-cells (T(reg)) and other regulatory T-cells, such as invariant NKT cells. There is evidence in experimental models that systemic or local infections can trigger autoimmune reactions to β-cells. However, epidemiological observations that have accumulated over years have failed to identify undisputable environmental factors that trigger T1D. Moreover, multiple environmental factors may intervene in the disease evolution and protective as weel as triggering environmental factors may be involved. Available models also indicate that local signals within the islets are required for full-blown diabetes to develop. Many autoantigens that are expressed by β-cells but also by the other endocrine islet cells and by neurons are recognized by lymphocytes along the development of T1D. The immune image of β-cells is that of native components of the β-cell membrane, as seen by B-lymphocytes, and of fragments of intracellular β-cell proteins in the form of peptides loaded onto class I MHC molecules on the β-cell surface and class I and class II molecules onto professional antigen presenting cells. Given the key role of T lymphocytes in T1D, the cartography of autoantigen-derived peptides that are presented to class I-restricted CD8(+) T-cells and class II-restricted CD4(+) T-cells is of outmost importance and is a necessary step in the development of diagnostic T-cell assays and of immunotherapy of T1D.
Collapse
|
182
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease affecting millions of people worldwide. The disease is characterized by the loss of self-tolerance to the insulin-producing β-cells in the pancreas, the destruction of β-cells, and finally the development of chronic hyperglycemia at diagnosis of T1D. Its incidence and prevalence are rising dramatically, highlighting the need for immunotherapeutic strategies able to prevent or treat the disease in a safe and specific manner. Immunotherapeutic strategies are being developed, and aim to restore immunological self-tolerance, thereby limiting unwanted immunity and β-cell destruction. Foxp3+ regulatory T (Treg) cells exert essential functions to maintain and restore immunological self-tolerance. The identification of the transcription factor Foxp3 as the specification factor for the Treg cell lineage facilitated our understanding in the biology of Treg generation and function. This review highlights the current understanding of immunotherapeutic approaches as preventative and curative measures for autoimmune T1D. It includes an overview on early immunointervention studies, which made use of general immunosuppressive agents such as cyclosporin A, followed by a discussion on newly emerging clinical trials. Besides non-antigen-specific therapies, particular attention is given to antigen-specific generation of Foxp3+ Treg cells and their potential use to limit autoimmunity such as T1D.
Collapse
Affiliation(s)
- Benno Weigmann
- Research Campus of the Friedrich-Alexander University Erlangen-Nuernberg, Medical Clinic I, 91052 Erlangen, Germany
| | | | | |
Collapse
|
183
|
Abstract
The purpose of this article is to provide an overview that summarizes much in the way of our current state of knowledge regarding the pathogenesis and natural history of type 1 diabetes in humans. This information is presented to the reader as a series of seminal historical discoveries that, when advanced through research, transformed our understanding of the roles for the immune system, genes, and environment in the formation of this disease. In addition, where longitudinal investigations of these three facets occurred, their roles within the development of type 1 diabetes, from birth to symptomatic onset and beyond, are discussed, including their most controversial elements. Having an understanding of this disorder's pathogenesis and natural history is key for attempts seeking to understand the issues of what causes type 1 diabetes, as well as to develop a means to prevent and cure the disorder.
Collapse
Affiliation(s)
- Mark A Atkinson
- College of Medicine, Departments of Pathology and Pediatrics, The University of Florida, Gainesville, 32610-0275, USA.
| |
Collapse
|
184
|
Weigmann B, Daniel C. Treg vaccination with a strong-agonistic insulin mimetope. Curr Diab Rep 2012; 12:463-70. [PMID: 22763731 DOI: 10.1007/s11892-012-0295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Foxp3(+) regulatory T (Treg) cells serve as a vital mechanism of negative regulation to maintain immunological self-tolerance thereby suppressing immune-mediated inflammation. The identification of the transcription factor Foxp3 as the specification factor for the Treg cell lineage facilitated our understanding in the biology of Treg generation and function. In the past, we carefully studied the extrathymic conversion of naive CD4(+) T cells into Foxp3(+) expressing Treg cells and found that this process is most efficient upon subimmunogenic supply of strong-agonistic T cell receptor (TCR) ligands avoiding activation of antigen-presenting and T cells. In contrast, weak-agonistic antigens fail to efficiently induce stable Foxp3(+) Treg cells irrespective of the applied dose. Here, we discuss the specific requirements for the establishment of Treg vaccination protocols to interfere with autoimmunity such as Type 1 diabetes.
Collapse
Affiliation(s)
- Benno Weigmann
- Research Campus of the Friedrich-Alexander University Erlangen-Nuernberg, Medical Clinic I, 91052, Erlangen, Germany.
| | | |
Collapse
|
185
|
Abstract
Type 1 diabetes mellitus (T1DM) is due, in part, to non-genetically determined factors including environmental factors. The nature of these environmental effects remains unclear but they are important to identify since they may be amenable to therapy. Recently, the gut microbiota, the trillions of microorganisms inhabiting the gut, as well as diet, have been implicated in T1DM pathogenesis. Since dietary changes can reshape this complex gut community, its co-evolution could have been altered by changes to our diet, agriculture, personal hygiene, and antibiotic usage, which coincide with the increased incidence of T1DM. Recent studies demonstrate an association between altered gut microbiota and T1DM in both T1DM patients and animal models of the disease. Further studies should provide new insight into those critical host-microbial interactions, potentially suggesting new diagnostic or therapeutic strategies for disease prevention.
Collapse
Affiliation(s)
- H Beyan
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | | | | |
Collapse
|
186
|
Levy H, Wang X, Kaldunski M, Jia S, Kramer J, Pavletich SJ, Reske M, Gessel T, Yassai M, Quasney MW, Dahmer MK, Gorski J, Hessner MJ. Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 2012; 13:593-604. [PMID: 22972474 PMCID: PMC4265236 DOI: 10.1038/gene.2012.41] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The complex milieu of inflammatory mediators associated with many diseases is often too dilute to directly measure in the periphery, necessitating development of more sensitive measurements suitable for mechanistic studies, earlier diagnosis, guiding therapeutic decisions and monitoring interventions. We previously demonstrated that plasma samples from recent-onset type 1 diabetes (RO T1D) patients induce a proinflammatory transcriptional signature in freshly drawn peripheral blood mononuclear cells (PBMCs) relative to that of unrelated healthy controls (HC). Here, using cryopreserved PBMC, we analyzed larger RO T1D and HC cohorts, examined T1D progression in pre-onset samples, and compared the RO T1D signature to those associated with three disorders characterized by airway infection and inflammation. The RO T1D signature, consisting of interleukin-1 cytokine family members, chemokines involved in immunocyte chemotaxis, immune receptors and signaling molecules, was detected during early pre-diabetes and found to resolve post-onset. The signatures associated with cystic fibrosis patients chronically infected with Pseudomonas aeruginosa, patients with confirmed bacterial pneumonia, and subjects with H1N1 influenza all reflected immunological activation, yet each were distinct from one another and negatively correlated with that of T1D. This study highlights the remarkable capacity of cells to serve as biosensors capable of sensitively and comprehensively differentiating immunological states.
Collapse
Affiliation(s)
- H Levy
- The Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Abstract
PURPOSE OF REVIEW It is the current opinion that pathogens, such as viruses, are contributing to the development of type 1 diabetes (T1D) in susceptible individuals. This opinion is based on epidemiological associations, direct isolation of pathogens from the islets of Langerhans, as well as a large amount of data from various experimental animal models. Human enteroviruses have dominated the literature associated with the etiology of T1D. However, virus infections have also been reported to protect from autoimmune disorders. RECENT FINDINGS Here we review the evidence for virus infections to be involved in the pathogenesis of T1D and discuss potential mechanisms of how such infections could accelerate the destruction of insulin-producing β-cells. In addition, we will review evidence from epidemiologic and experimental animal studies showing that virus infections could also have protective properties. SUMMARY Virus infections play an important role in the pathogenesis of T1D by inducing or accelerating the autodestructive process, but also by protecting from autoimmunity. Thus, multiple sequential infections might shape the autoreactive immune repertoire and the pathogenesis of T1D in a complex fashion.
Collapse
|
188
|
Ziegler AG, Meier-Stiegen F, Winkler C, Bonifacio E. Prospective evaluation of risk factors for the development of islet autoimmunity and type 1 diabetes during puberty--TEENDIAB: study design. Pediatr Diabetes 2012; 13:419-24. [PMID: 21446926 DOI: 10.1111/j.1399-5448.2011.00763.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Type 1 diabetes (T1D) has a peak incidence in childhood and adolescence. The TEENDIAB study investigates the period of puberty and adolescence in the natural course of T1D development. Evidence suggests that the immune phenotype of children developing autoimmunity during puberty and adolescence differs from that in childhood. We hypothesize that these differences reflect heterogeneity in the genetic and environmental factors that influence the development of autoimmunity in puberty versus early infancy. TEENDIAB is an observational cohort study that enrols and follows 1500 children aged 8-12 and who have a first degree relative with T1D to test this hypothesis. Data collection and analyses will focus on determining the phenotype of islet autoimmunity, genotypes of T1D- and type 2 diabetes-associated genes, insulin resistance, and β-cell function, growth, obesity, and physical exercise. The findings of this study will increase the understanding of pathogenetic mechanisms behind the increasing diabetes incidence in youth and the impact of obesity on diabetes development in this age period.
Collapse
Affiliation(s)
- Anette-Gabriele Ziegler
- Forschergruppe Diabetes, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| | | | | | | | | |
Collapse
|
189
|
Novak J, Novakova L. Prevention and treatment of type 1 diabetes mellitus by the manipulation of invariant natural killer T cells. Clin Exp Med 2012; 13:229-37. [PMID: 22825586 DOI: 10.1007/s10238-012-0199-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/04/2012] [Indexed: 01/11/2023]
Abstract
Invariant natural killer T (iNKT) cells are CD1d-restricted T cells with regulatory functions. iNKT cells are numerically and functionally deficient in experimental models of type 1 diabetes mellitus (T1DM). Moreover, various experimental strategies correcting the defect of or stimulating iNKT cells prevent T1DM. Here, we review the data on the role of iNKT cells in the development of T1DM and discuss indications, obstacles and prospects of the use of iNKT cell manipulations in the prevention and treatment of human T1DM.
Collapse
Affiliation(s)
- Jan Novak
- 3rd Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00, Prague 10, Czech Republic,
| | | |
Collapse
|
190
|
Abstract
The incidence of type 1 diabetes (T1D), as with several other autoimmune diseases and conditions, began to notably rise in the latter half of the last century. Most cases of T1D are not solely attributable to genetics and therefore, environmental influences are proposed to account for the difference. Humans live today in general under much more hygienic conditions than their ancestors. Although human enteroviruses (HEV) have been strongly implicated as causative environmental agents of T1D, recent work has shown that the bacterial genera in the gut of diabetics compared with non-diabetics, can vary significantly. Here, we consider these data in light of our non-hygienic human past in order to discuss a possible relationship between the resident bacterial biome and acute infectious events by HEV, suggesting how this may have influenced T1D incidences in the past and the risk for developing T1D today.
Collapse
Affiliation(s)
- Nora M Chapman
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA.
| | | | | | | |
Collapse
|
191
|
Winkler C, Schober E, Ziegler AG, Holl RW. Markedly reduced rate of diabetic ketoacidosis at onset of type 1 diabetes in relatives screened for islet autoantibodies. Pediatr Diabetes 2012; 13:308-13. [PMID: 22060727 DOI: 10.1111/j.1399-5448.2011.00829.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To determine whether screening for islet autoantibodies in children prevents ketoacidosis and other metabolic complications at diabetes onset and improves the clinical course after diagnosis. SUBJECTS AND METHODS The German BABYDIAB and the Munich Family Study follow children with a first-degree family history of type 1 diabetes for the development of islet autoantibodies and type 1 diabetes. The Diabetes Prospective Documentation (DPV) Initiative registers and collects information on pediatric patients with type 1 diabetes throughout Germany. Here, clinical characteristics at diabetes onset [ketoacidosis, mean hemoglobin A1c (HbA1c), and length of hospitalization] and the 5-yr clinical course (HbA1c and insulin dose) of screened and followed islet autoantibody-positive children (n = 101) and 49 883 non-screened children within the DPV registry were compared. RESULTS At diabetes onset, children who were followed after screening and were positive for islet autoantibodies had lower HbA1c (8.6 vs. 11%, p < 0.001) and a lower prevalence of diabetic ketoacidosis (3.3 vs. 29.1%, p < 0.001). Screened children also had a shorter hospitalization period at onset (11.4 vs. 14.9 d, p = 0.005). Similar results were observed when the analysis was restricted to 759 non-screened DPV children with a first-degree family history of type 1 diabetes. No differences between screened and non-screened children were observed with respect to HbA1c and insulin dose during the first 5 yr after diagnosis. CONCLUSIONS Screening for islet autoantibodies in children likely leads to earlier diabetes diagnosis resulting in less complications at diagnosis. However, no substantial benefit in the clinical outcome during the first 5 yr after diagnosis was observed.
Collapse
Affiliation(s)
- Christiane Winkler
- Institute of Diabetes Research, Helmholtz Center Munich, Neuherberg, Germany
| | | | | | | |
Collapse
|
192
|
Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. J Autoimmun 2012; 39:347-53. [PMID: 22647732 DOI: 10.1016/j.jaut.2012.04.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 04/16/2012] [Accepted: 04/25/2012] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is mediated by destruction of pancreatic β-cells by CD4 and CD8 T cells specific for epitopes on numerous diabetogenic autoantigens resulting in loss of glucose homeostasis. Employing antigen-specific tolerance induced by i.v. administration of syngeneic splenocytes ECDI cross-linked to various diabetogenic antigens/epitopes (Ag-SP), we show that epitope spreading plays a functional role in the pathogenesis of T1D in NOD mice. Specifically, Ag-SP coupled with intact insulin, Ins B(9-23) or Ins B(15-23), but not GAD65(509-528), GAD65(524-543) or IGRP(206-214), protected 4-6 week old NOD mice from the eventual development of clinical disease; infiltration of immune cells to the pancreatic islets; and blocked the induction of DTH responses in a Treg-dependent, antigen-specific manner. However, tolerance induction in 19-21 week old NOD mice was effectively accomplished only by Ins-SP, suggesting Ins B(9-23) is a dominant initiating epitope, but autoimmune responses to insulin epitope(s) distinct from Ins B(9-23) emerge during disease progression.
Collapse
|
193
|
Beyan H, Riese H, Hawa MI, Beretta G, Davidson HW, Hutton JC, Burger H, Schlosser M, Snieder H, Boehm BO, Leslie RD. Glycotoxin and autoantibodies are additive environmentally determined predictors of type 1 diabetes: a twin and population study. Diabetes 2012; 61:1192-8. [PMID: 22396204 PMCID: PMC3331747 DOI: 10.2337/db11-0971] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In type 1 diabetes, diabetes-associated autoantibodies, including islet cell antibodies (ICAs), reflect adaptive immunity, while increased serum N(ε)-carboxymethyl-lysine (CML), an advanced glycation end product, is associated with proinflammation. We assessed whether serum CML and autoantibodies predicted type 1 diabetes and to what extent they were determined by genetic or environmental factors. Of 7,287 unselected schoolchildren screened, 115 were ICA(+) and were tested for baseline CML and diabetes autoantibodies and followed (for median 7 years), whereas a random selection (n = 2,102) had CML tested. CML and diabetes autoantibodies were determined in a classic twin study of twin pairs discordant for type 1 diabetes (32 monozygotic, 32 dizygotic pairs). CML was determined by enzyme-linked immunosorbent assay, autoantibodies were determined by radioimmunoprecipitation, ICA was determined by indirect immunofluorescence, and HLA class II genotyping was determined by sequence-specific oligonucleotides. CML was increased in ICA(+) and prediabetic schoolchildren and in diabetic and nondiabetic twins (all P < 0.001). Elevated levels of CML in ICA(+) children were a persistent, independent predictor of diabetes progression, in addition to autoantibodies and HLA risk. In twins model fitting, familial environment explained 75% of CML variance, and nonshared environment explained all autoantibody variance. Serum CML, a glycotoxin, emerged as an environmentally determined diabetes risk factor, in addition to autoimmunity and HLA genetic risk, and a potential therapeutic target.
Collapse
Affiliation(s)
- Huriya Beyan
- Centre for Diabetes and Metabolic Medicine, Blizard Institute, Queen Mary, University of London, London, U.K
| | - Harriette Riese
- Unit of Genetic Epidemiology & Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Interdisciplinary Center for Psychiatric Epidemiology, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mohammed I. Hawa
- Centre for Diabetes and Metabolic Medicine, Blizard Institute, Queen Mary, University of London, London, U.K
| | - Guisi Beretta
- Centre for Diabetes and Metabolic Medicine, Blizard Institute, Queen Mary, University of London, London, U.K
| | | | - John C. Hutton
- Barbara Davis Center, University of Colorado Denver, Aurora, Colorado
| | - Huibert Burger
- Interdisciplinary Center for Psychiatric Epidemiology, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Michael Schlosser
- Institute of Pathophysiology, Ernst Moritz Arndt University of Greifswald, Greifswald, Germany
- Division of Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - Harold Snieder
- Unit of Genetic Epidemiology & Bioinformatics, Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bernhard O. Boehm
- Division of Endocrinology and Diabetes, University Medical Center Ulm, Ulm, Germany
| | - R. David Leslie
- Centre for Diabetes and Metabolic Medicine, Blizard Institute, Queen Mary, University of London, London, U.K
- Corresponding author: R. David Leslie,
| |
Collapse
|
194
|
Adler K, Krause S, Fuchs YF, Foertsch K, Ziegler AG, Bonifacio E. The effect of gestation and fetal mismatching on the development of autoimmune diabetes in non-obese diabetic mice. Clin Exp Immunol 2012; 168:274-8. [PMID: 22519589 DOI: 10.1111/j.1365-2249.2012.04579.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The impact of gestation and fetal-maternal interactions on pre-existent autoimmune beta cell destruction is widely unknown. The aim of this study was to investigate the influence of gestation per se and fetal mismatching on the onset of autoimmune diabetes in female non-obese diabetic (NOD) mice. We examined cumulative diabetes frequencies of NOD dams mated to syngeneic NOD, haploidentical CByB6F1/J and fully mismatched C57BL/6J male mice. Pregnancy from NOD males neither increased nor accelerated the diabetes onset of NOD dams (71% by age 28 weeks) compared to unmated female NOD mice (81% by age 28 weeks; P = 0·38). In contrast, delayed diabetes onset was observed when NOD dams were mated at 10 weeks of age with major histocompatibility complex (MHC) haploidentical CByB6F1/J male mice (38% at age 28 weeks; P = 0·01). Mating with fully MHC mismatched C57BL/6J male mice (72% diabetes by age 28 weeks; P = 0·22) or mating with the haploidentical males at the later time-point of age 13 weeks (64% versus 91% in unmated litter-matched controls; P = 0·13) did not delay diabetes significantly in NOD females. Because infusion of haploidentical male mouse splenocytes was found previously to prevent diabetes in NOD mice we looked for, but found no evidence of, persistent chimeric lymphocytes from haploidentical paternal origin within the dams' splenocytes. Gestation per se appears to have no aggravating or ameliorating effects on pre-existent autoimmune beta cell destruction, but pregnancy from MHC partially mismatched males delays diabetes onset in female NOD mice.
Collapse
Affiliation(s)
- K Adler
- Diabetes Research Institute, Forschergruppe Diabetes e.V, Munich, Germany
| | | | | | | | | | | |
Collapse
|
195
|
Goris A, Liston A. The immunogenetic architecture of autoimmune disease. Cold Spring Harb Perspect Biol 2012; 4:4/3/a007260. [PMID: 22383754 DOI: 10.1101/cshperspect.a007260] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The development of most autoimmune diseases includes a strong heritable component. This genetic contribution to disease ranges from simple Mendelian inheritance of causative alleles to the complex interactions of multiple weak loci influencing risk. The genetic variants responsible for disease are being discovered through a range of strategies from linkage studies to genome-wide association studies. Despite the rapid advances in genetic analysis, substantial components of the heritable risk remain unexplained, either owing to the contribution of an as-yet unidentified, "hidden," component of risk, or through the underappreciated effects of known risk loci. Surprisingly, despite the variation in genetic control, a great deal of conservation appears in the biological processes influenced by risk alleles, with several key immunological pathways being modified in autoimmune diseases covering a broad spectrum of clinical manifestations. The primary translational potential of this knowledge is in the rational design of new therapeutics to exploit the role of these key pathways in influencing disease. With significant further advances in understanding the genetic risk factors and their biological mechanisms, the possibility of genetically tailored (or "personalized") therapy may be realized.
Collapse
Affiliation(s)
- An Goris
- Division of Experimental Neurology, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
196
|
Long AE, Gillespie KM, Rokni S, Bingley PJ, Williams AJ. Rising incidence of type 1 diabetes is associated with altered immunophenotype at diagnosis. Diabetes 2012; 61:683-6. [PMID: 22315309 PMCID: PMC3282823 DOI: 10.2337/db11-0962] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The incidence of type 1 diabetes has increased rapidly over recent decades, particularly in young children. We aimed to determine whether this rise was associated with changes in patterns of humoral islet autoimmunity at diagnosis. Autoantibodies to insulin (IAA), GAD (GADA), islet antigen-2 (IA-2A), and zinc transporter 8 (ZnT8A) were measured by radioimmunoassay in sera collected from children and young adults with newly diagnosed type 1 diabetes between 1985 and 2002. The influence of date of diagnosis on prevalence and level of autoantibodies was investigated by logistic regression with adjustment for age and HLA class II genetic risk. Prevalence of IA-2A and ZnT8A increased significantly over the period studied, and this was mirrored by raised levels of IA-2A, ZnT8A, and IA-2β autoantibodies (IA-2βA). IAA and GADA prevalence and levels did not change. Increases in IA-2A, ZnT8A, and IA-2βA at diagnosis during a period of rising incidence suggest that the process leading to type 1 diabetes is now characterized by a more intense humoral autoimmune response. Understanding how changes in environment or lifestyle alter the humoral autoimmune response to islet antigens should help explain why the incidence of type 1 diabetes is increasing and may suggest new strategies for preventing disease.
Collapse
|
197
|
Renz H, Autenrieth IB, Brandtzæg P, Cookson WO, Holgate S, von Mutius E, Valenta R, Haller D. Gene-environment interaction in chronic disease: a European Science Foundation Forward Look. J Allergy Clin Immunol 2012; 128:S27-49. [PMID: 22118218 DOI: 10.1016/j.jaci.2011.09.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/13/2022]
Abstract
Over the last half century, a dramatic increase in the incidence of chronic inflammatory diseases, such as asthma, allergy, and irritable bowel syndrome, has rightfully led to concern about how the modern lifestyle might inappropriately trigger innate physiologic defense mechanisms. Health care research in the Western world is faced with a significant challenge if it is to meet the needs of its populations in the decades ahead. The tools with which we hope to advance our understanding of the intrinsic and extrinsic mechanisms of chronic inflammatory diseases must therefore be adequately exploited and further developed to identify treatment and prevention strategies. There is an urgent need to prioritize resources and identify the most efficient scientific and societal initiatives to be adopted within this area. In this context national collaboration within Europe and beyond to establish state-of-the-art practices with an interdisciplinary perspective and promote an efficient exchange of best practices is essential. Such an approach likely represents the most efficient manner in which strategies for amelioration of the increase of chronic inflammatory diseases in the Western world can be achieved. The present report is based on a Forward Look initiative conducted by the European Medical Research Councils under the European Science Foundation. Experts from industry and academia, as well as relevant interest organizations, have been consulted in the process of conducting this initiative and have, based on this work, developed a set of final recommendations that target academic research, science funders, and policy makers.
Collapse
Affiliation(s)
- Harald Renz
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps University Marburg, Marburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Messaaoui A, Tenoutasse S, Van der Auwera B, Mélot C, Dorchy H. Autoimmune Thyroid, Celiac and Addison’s Diseases Related to HLA-DQ Types in Young Patients with Type 1 Diabetes in Belgium. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojemd.2012.24011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
199
|
Abstract
The non-obese diabetic (NOD) mouse spontaneously develops type 1 diabetes (T1D) and has thus served as a model for understanding the genetic and immunological basis, and treatment, of T1D. Since its initial description in 1980, however, the field has matured and recognized that prevention of diabetes in NOD mice (i.e., preventing the disease from occurring by an intervention prior to frank diabetes) is relatively easy to achieve and does not correlate well with curing the disease (after the onset of frank hyperglycemia). Hundreds of papers have described the prevention of diabetes in NOD mice but only a handful have described its actual reversal. The paradoxical conclusion is that preventing the disease in NOD mice does not necessarily tell us what caused the disease nor how to reverse it. The NOD mouse model is therefore best used now, with respect to human disease, as a way to understand the genetic and immunologic causes of and as a model for trying to reverse disease once hyperglycemia occurs. We describe how genetic approaches to identifying causative gene variants can be adapted to identify novel therapeutic agents for reversing new-onset T1D.
Collapse
|
200
|
Affiliation(s)
- Richard A Insel
- Juvenile Diabetes Research Foundation, New York, New York, USA.
| | | | | |
Collapse
|