151
|
Abstract
PURPOSE OF REVIEW Pediatric obese asthma is a complex disease that remains poorly understood. The increasing worldwide incidence of both asthma and obesity over the last few decades, their current high prevalence and the challenges in treating obese asthmatic patients all highlight the importance of a better understanding of the pathophysiological mechanisms in obese asthma. While it is well established that patients with obesity are at an increased risk of developing asthma, the mechanisms by which obesity drives the onset of asthma, and modifies existing asthma, remain unclear. Here, we will focus on mechanisms by which obesity alters immune function in asthma. RECENT FINDINGS Lung parenchyma has an altered structure in some pediatric obese asthmatics, known as dysanapsis. Central adiposity is linked to reduced pulmonary function and a better predictor of asthma risk in children than BMI. Obesity in young children is associated with an increased risk of developing asthma, as well as early puberty, and hormonal alterations are implicated in obese asthma. Obesity and asthma each yield immunometabolic dysregulation separately and we are learning more about alterations in these pathways in pediatric obese asthma and the potential impact of bariatric surgery on those processes. SUMMARY The recent progress in clarifying the connections between childhood obesity and asthma and their combined impacts on immune function moves us closer to the goals of improved understanding of the pathophysiological mechanisms underpinning obese asthma and improved therapeutic target selection. However, this common inflammatory disease remains understudied, especially in children, and much remains to be learned.
Collapse
Affiliation(s)
- Ceire Hay
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
152
|
Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol Immunol 2021; 18:866-877. [PMID: 33707689 PMCID: PMC8115644 DOI: 10.1038/s41423-021-00661-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota has a critical role in the maintenance of immune homeostasis. Alterations in the intestinal microbiota and gut microbiota-derived metabolites have been recognized in many immune-related inflammatory disorders. These metabolites can be produced by gut microbiota from dietary components or by the host and can be modified by gut bacteria or synthesized de novo by gut bacteria. Gut microbiota-derived metabolites influence a plethora of immune cell responses, including T cells, B cells, dendritic cells, and macrophages. Some of these metabolites are involved in the pathogenesis of immune-related inflammatory diseases, such as inflammatory bowel diseases, diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Here, we review the role of microbiota-derived metabolites in regulating the functions of different immune cells and the pathogenesis of chronic immune-related inflammatory diseases.
Collapse
|
153
|
Roy DG, Kaymak I, Williams KS, Ma EH, Jones RG. Immunometabolism in the Tumor Microenvironment. ANNUAL REVIEW OF CANCER BIOLOGY 2021; 5:137-159. [DOI: 10.1146/annurev-cancerbio-030518-055817] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Advances in immunotherapy have underscored the importance of antitumor immune responses in controlling cancer. However, the tumor microenvironment (TME) imposes several obstacles to the proper function of immune cells, including a metabolically challenging and immunosuppressive microenvironment. The increased metabolic activity of tumor cells can lead to the depletion of key nutrients required by immune cells and the accumulation of byproducts that hamper antitumor immunity. Furthermore, the presence of suppressive immune cells, such as regulatory T cells and myeloid-derived suppressor cells, and the expression of immune inhibitory receptors can negatively impact immune cell metabolism and function. This review summarizes the metabolic reprogramming that is characteristic of various immune cell subsets, discusses how the metabolism and function of immune cells are shaped by the TME, and highlights how therapeutic interventions aimed at improving the metabolic fitness of immune cells and alleviating the metabolic constraints in the TME can boost antitumor immunity.
Collapse
Affiliation(s)
- Dominic G. Roy
- Goodman Cancer Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - Irem Kaymak
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Kelsey S. Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Eric H. Ma
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | - Russell G. Jones
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| |
Collapse
|
154
|
Zhang W, Liu Z, Xu X. Navigating immune cell immunometabolism after liver transplantation. Crit Rev Oncol Hematol 2021; 160:103227. [PMID: 33675906 DOI: 10.1016/j.critrevonc.2021.103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 11/15/2022] Open
Abstract
Liver transplantation (LT) is the most effective treatment for end-stage liver diseases. The immunometabolism microenvironment undergoes massive changes at the interface of immune functionalities and metabolic regulations after LT. These changes considerably modify post-transplant complications, and immune cells play an influential role in the hepatic immunometabolism microenvironment after LT. Therefore, adequate studies on the complex pathobiology of immune cells are critical to prevent post-transplant complications, and the interplay between cellular metabolism and immune function is evident. Furthermore, immune cells perform their specified functions, such as activation or differentiation, accompanied by alterations in metabolic pathways, such as metabolic reprogramming. This transformation remarkably affects post-transplant complications like rejection. By targeting different metabolic pathways, regulations of metabolism are employed to shape immune responses. These differences of metabolic pathways allow for selective regulation of immune responses to further develop effective therapies that prevent graft loss after LT. This review examines immune cells in the hepatic immunometabolism microenvironment after LT, summarizes possible mechanisms and potential prevention on rejection to acquire immune tolerance, and offers some insight into references for scientific research along with clinical treatment.
Collapse
Affiliation(s)
- Wenhui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Zhikun Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Zhejiang University Cancer Center, Hangzhou 310058, China.
| |
Collapse
|
155
|
Tan J, Ni D, Ribeiro RV, Pinget GV, Macia L. How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients 2021; 13:823. [PMID: 33801480 PMCID: PMC7999246 DOI: 10.3390/nu13030823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.
Collapse
Affiliation(s)
- Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rosilene V. Ribeiro
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriela V. Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
156
|
Sepahi A, Liu Q, Friesen L, Kim CH. Dietary fiber metabolites regulate innate lymphoid cell responses. Mucosal Immunol 2021; 14:317-330. [PMID: 32541842 PMCID: PMC7736174 DOI: 10.1038/s41385-020-0312-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023]
Abstract
Innate lymphoid cells (ILCs) rapidly undergo expansion in population size and functional maturation in response to cytokines that signal infection, tissue damage, or changes in physiology. Optimal ILC responses are shaped, in part, by the microbiota but the mechanisms remain unclear. We report that short-chain fatty acids (SCFAs), produced by the commensal microbiota from dietary fibers, support optimal expansion of ILCs, including ILC1, ILC2, and ILC3 in the intestines through their G-protein-coupled receptors (GPCRs). While this function is primarily important for intestinal ILC populations, it can also boost ILC responses in other tissues depending on host condition. ILCs express multiple GPCRs that detect SCFAs. Interestingly, we found that the expression of SCFA receptors, such as Ffar2 and Ffar3, by ILCs is induced by SCFAs. GPCR triggering by SCFAs co-stimulates the activation of phosphoinositide 3-kinase (PI3K), Stat3, Stat5, and mammalian target of rapamycin (mTOR), which is important for ILC proliferation. While Ffar2 signaling promotes ILC2 proliferation, SCFAs can suppress ILC2 proliferation through a non-Ffar2-mediated mechanism. In conclusion, our findings indicate that SCFAs, as the major mediator of healthy microbiota and nutritional status, function to maintain optimal numbers of ILCs in peripheral tissues during infection and inflammatory responses.
Collapse
Affiliation(s)
- Ali Sepahi
- Laboratory of Immunology and Hematopoiesis, Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - QingYang Liu
- Laboratory of Immunology and Hematopoiesis, Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Leon Friesen
- Laboratory of Immunology and Hematopoiesis, Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Chang H. Kim
- Laboratory of Immunology and Hematopoiesis, Mary H. Weiser Food Allergy Center, University of Michigan School of Medicine, Ann Arbor, MI 48109,Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109,Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
157
|
Dominguez M, Brüne B, Namgaladze D. Exploring the Role of ATP-Citrate Lyase in the Immune System. Front Immunol 2021; 12:632526. [PMID: 33679780 PMCID: PMC7930476 DOI: 10.3389/fimmu.2021.632526] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Studies over the past decade have revealed that metabolism profoundly influences immune responses. In particular, metabolism causes epigenetic regulation of gene expression, as a growing number of metabolic intermediates are substrates for histone post-translational modifications altering chromatin structure. One of these substrates is acetyl-coenzyme A (CoA), which donates an acetyl group for histone acetylation. Cytosolic acetyl-CoA is also a critical substrate for de novo synthesis of fatty acids and sterols necessary for rapid cellular growth. One of the main enzymes catalyzing cytosolic acetyl-CoA formation is ATP-citrate lyase (ACLY). In addition to its classical function in the provision of acetyl-CoA for de novo lipogenesis, ACLY contributes to epigenetic regulation through histone acetylation, which is increasingly appreciated. In this review we explore the current knowledge of ACLY and acetyl-CoA in mediating innate and adaptive immune responses. We focus on the role of ACLY in supporting de novo lipogenesis in immune cells as well as on its impact on epigenetic alterations. Moreover, we summarize alternative sources of acetyl-CoA and their contribution to metabolic and epigenetic regulation in cells of the immune system.
Collapse
Affiliation(s)
- Monica Dominguez
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
| | - Dmitry Namgaladze
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
158
|
Calmeiro J, Mendes L, Duarte IF, Leitão C, Tavares AR, Ferreira DA, Gomes C, Serra J, Falcão A, Cruz MT, Carrascal MA, Neves BM. In-Depth Analysis of the Impact of Different Serum-Free Media on the Production of Clinical Grade Dendritic Cells for Cancer Immunotherapy. Front Immunol 2021; 11:593363. [PMID: 33613517 PMCID: PMC7893095 DOI: 10.3389/fimmu.2020.593363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Dendritic cell (DC)-based antitumor vaccines have proven to be a safe approach, but often fail to generate robust results between trials. Translation to the clinic has been hindered in part by the lack of standard operation procedures for vaccines production, namely the definition of optimal culture conditions during ex-vivo DC differentiation. Here we sought to compare the ability of three clinical grade serum-free media, DendriMACS, AIM-V, and X-VIVO 15, alongside with fetal bovine serum-supplemented Roswell Park Memorial Institute Medium (RPMI), to support the differentiation of monocyte-derived DCs (Mo-DCs). Under these different culture conditions, phenotype, cell metabolomic profiles, response to maturation stimuli, cytokines production, allogenic T cell stimulatory capacity, as well as priming of antigen-specific CD8+ T cells and activation of autologous natural killer (NK) cells were analyzed. Immature Mo-DCs differentiated in AIM-V or X-VIVO 15 presented lower levels of CD1c, CD1a, and higher expression of CD11c, when compared to cells obtained with DendriMACS. Upon stimulation, only AIM-V or X-VIVO 15 DCs acquired a full mature phenotype, which supports their enhanced capacity to polarize T helper cell type 1 subset, to prime antigen-specific CD8+ T cells and to activate NK cells. CD8+ T cells and NK cells resulting from co-culture with AIM-V or X-VIVO 15 DCs also showed superior cytolytic activity. 1H nuclear magnetic resonance-based metabolomic analysis revealed that superior DC immunostimulatory capacities correlate with an enhanced catabolism of amino acids and glucose. Overall, our data highlight the impact of critically defining the culture medium used in the production of DCs for clinical application in cancer immunotherapy. Moreover, the manipulation of metabolic state during differentiation could be envisaged as a strategy to enhance desired cell characteristics.
Collapse
Affiliation(s)
- João Calmeiro
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Luís Mendes
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Iola F Duarte
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Catarina Leitão
- Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Adriana R Tavares
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Daniel Alexandre Ferreira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | | | - Amílcar Falcão
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | | | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
159
|
Bertero E, Dudek J, Cochain C, Delgobo M, Ramos G, Gerull B, Higuchi T, Vaeth M, Zernecke A, Frantz S, Hofmann U, Maack C. Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 2021; 118:37-52. [PMID: 33537710 DOI: 10.1093/cvr/cvab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/01/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.
Collapse
Affiliation(s)
- Edoardo Bertero
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany
| | - Clement Cochain
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany.,Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Murilo Delgobo
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Gustavo Ramos
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Brenda Gerull
- Department of Internal Medicine I, University Hospital Würzburg, Germany.,Department of Cardiovascular Genetics, CHFC, University Hospital Würzburg, Germany
| | - Takahiro Higuchi
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Nuclear Medicine, University Hospital Würzburg, Germany
| | - Martin Vaeth
- Institute of Systems Immunology, Julius-Maximilians University Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Germany
| | - Stefan Frantz
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Ulrich Hofmann
- Comprehensive Heart Failure Center (CHFC), Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Hospital Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Germany
| |
Collapse
|
160
|
Zhang Z, Wang M, Zhang Y, Zhang Y, Bartkuhn M, Markmann M, Hossain H, Chakraborty T, Hake SB, Jia Z, Meinhardt A, Bhushan S. Uropathogenic Escherichia coli Virulence Factor α-Hemolysin Reduces Histone Acetylation to Inhibit Expression of Proinflammatory Cytokine Genes. J Infect Dis 2021; 223:1040-1051. [PMID: 33453118 DOI: 10.1093/infdis/jiab018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022] Open
Abstract
Urinary tract infections are common and costly diseases affecting millions of people. Uropathogenic Escherichia coli (UPEC) is a primary cause of these infections and has developed multiple strategies to avoid the host immune response. Here, we dissected the molecular mechanisms underpinning UPEC inhibition of inflammatory cytokine in vitro and in vivo. We found that UPEC infection simulates nuclear factor-κB activation but does not result in transcription of cytokine genes. Instead, UPEC-mediated suppression of the metabolic enzyme ATP citrate lyase results in decreased acetyl-CoA levels, leading to reduced H3K9 histone acetylation in the promotor region of CXCL8. These effects were dependent on the UPEC virulence factor α-hemolysin and were reversed by exogenous acetate. In a murine cystitis model, prior acetate supplementation rapidly resolved UPEC-elicited immune responses and improved tissue recovery. Thus, upon infection, UPEC rearranges host cell metabolism to induce chromatin remodeling processes that subvert expression of host innate immune response genes.
Collapse
Affiliation(s)
- Zhengguo Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Ming Wang
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany.,Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiming Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Melanie Markmann
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Hamid Hossain
- Klinikum St Marien Amberg, Amberg and Kliniken Nordoberpfalz AG, Weiden, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sandra B Hake
- Institute for Genetics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Zhankui Jia
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Andreas Meinhardt
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute of Anatomy and Cell Biology, Unit of Reproductive Biology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
161
|
Kaymak I, Williams KS, Cantor JR, Jones RG. Immunometabolic Interplay in the Tumor Microenvironment. Cancer Cell 2021; 39:28-37. [PMID: 33125860 PMCID: PMC7837268 DOI: 10.1016/j.ccell.2020.09.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/22/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022]
Abstract
Immune cells' metabolism influences their differentiation and function. Given that a complex interplay of environmental factors within the tumor microenvironment (TME) can have a profound impact on the metabolic activities of immune, stromal, and tumor cell types, there is emerging interest to advance understanding of these diverse metabolic phenotypes in the TME. Here, we discuss cell-extrinsic contributions to the metabolic activities of immune cells. Then, considering recent technical advances in experimental systems and metabolic profiling technologies, we propose future directions to better understand how immune cells meet their metabolic demands in the TME, which can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
- Irem Kaymak
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kelsey S Williams
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jason R Cantor
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Russell G Jones
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
162
|
Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, Jiang X. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res 2021; 165:105420. [PMID: 33434620 DOI: 10.1016/j.phrs.2021.105420] [Citation(s) in RCA: 387] [Impact Index Per Article: 96.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Short-chain fatty acids (SCFAs), mainly including acetate, propionate, and butyrate, are metabolites produced during the bacterial fermentation of dietary fiber in the intestinal tract. They are believed to be essential factors affecting host health. Most in vitro and ex vivo studies have shown that SCFAs affect the regulation of inflammation, carcinogenesis, intestinal barrier function, and oxidative stress, but convincing evidence in humans is still lacking. Two major SCFA signaling mechanisms have been identified: promotion of histone acetylation and activation of G-protein-coupled receptors. In this review, we introduce the production and metabolic characteristics of SCFAs, summarize the potential effects of SCFAs on the four aspects mentioned above and the possible mechanisms. SCFAs have been reported to exert a wide spectrum of positive effects and have a high potential for therapeutic use in human-related diseases.
Collapse
Affiliation(s)
- Pinyi Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| | - Yanbing Wang
- Department of Orthopedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Qihe Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
163
|
Kim D, Wu Y, Li Q, Oh YK. Nanoparticle-Mediated Lipid Metabolic Reprogramming of T Cells in Tumor Microenvironments for Immunometabolic Therapy. NANO-MICRO LETTERS 2021; 13:31. [PMID: 34138236 PMCID: PMC8006499 DOI: 10.1007/s40820-020-00555-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/28/2020] [Indexed: 05/05/2023]
Abstract
aCD3/F/AN, anti-CD3e f(ab')2 fragment-modified and fenofibrate-encapsulated amphiphilic nanoparticle, reprogrammed mitochondrial lipid metabolism of T cells. aCD3/F/AN specifically activated T cells in glucose-deficient conditions mimicking tumor microenvironment, and exerted an effector killing effect against tumor cells. In vivo treatment with aCD3/F/AN increased T cell infiltration, cytokine production, and prevented tumor growth. We report the activation of anticancer effector functions of T cells through nanoparticle-induced lipid metabolic reprogramming. Fenofibrate was encapsulated in amphiphilic polygamma glutamic acid-based nanoparticles (F/ANs), and the surfaces of F/ANs were modified with an anti-CD3e f(ab')2 fragment, yielding aCD3/F/ANs. An in vitro study reveals enhanced delivery of aCD3/F/ANs to T cells compared with plain F/ANs. aCD3/F/AN-treated T cells exhibited clear mitochondrial cristae, a higher membrane potential, and a greater mitochondrial oxygen consumption rate under glucose-deficient conditions compared with T cells treated with other nanoparticle preparations. Peroxisome proliferator-activated receptor-α and downstream fatty acid metabolism-related genes are expressed to a greater extent in aCD3/F/AN-treated T cells. Activation of fatty acid metabolism by aCD3/F/ANs supports the proliferation of T cells in a glucose-deficient environment mimicking the tumor microenvironment. Real-time video recordings show that aCD3/F/AN-treated T cells exerted an effector killing effect against B16F10 melanoma cells. In vivo administration of aCD3/F/ANs can increase infiltration of T cells into tumor tissues. The treatment of tumor-bearing mice with aCD3/F/ANs enhances production of various cytokines in tumor tissues and prevented tumor growth. Our findings suggest the potential of nanotechnology-enabled reprogramming of lipid metabolism in T cells as a new modality of immunometabolic therapy.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
164
|
Wang C, Zhu X, Cui Y, Miao H, Xu Y, Xiong X, Tang X, Shao L, Zhang Y. Serum proteome-wide identified ATP citrate lyase as a novel informative diagnostic and prognostic biomarker in pediatric sepsis: A pilot study. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:389-397. [PMID: 33378581 PMCID: PMC8127565 DOI: 10.1002/iid3.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/29/2022]
Abstract
Introduction ATP citrate lyase (ACLY) is involved in lipid metabolism and inflammatory response in immune cells. However, the serum level of ACLY and its clinical relevance in sepsis is totally unknown. Methods We conducted a prospective pilot study in patients with sepsis admitted to pediatric intensive care unit (PICU) from January 2018 to December 2018. Results Higher levels of ACLY were detected in sera of pediatric patients with sepsis than that of healthy children. The area under the receiver operating characteristic curve (AUC) of ACLY for diagnosis of sepsis was 0.855 (95% confidence interval [CI]: 0757–0.952), and an AUC of ACLY for predicting PICU mortality was 0.770 (95% CI: 0.626–0.915). ACLY levels ≤21 ng/ml on PICU admission predicted an unfavorable prognosis among patients with sepsis with a sensitivity of 87.5% and a specificity of 67.6%. Moreover, serum ACLY levels were correlated to platelet count, IL‐18 levels, and monocyte counts in pediatric patients with sepsis, implying the potential roles of ACLY in immunometabolic regulation in sepsis. Conclusions ACLY is firstly identified in sera of patients with sepsis. Serum ACLY level is an additional diagnostic and prognostic biomarker in pediatric patients with sepsis.
Collapse
Affiliation(s)
- Chunxia Wang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Clinical Research Unit, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huijie Miao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yaya Xu
- Department of Pediatric Critical Care Medicine, Xinhua Hospital Affiliated to the Medical School of Shanghai Jiao Tong University, Shanghai, China
| | - Xi Xiong
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaomeng Tang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Lujing Shao
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China
| | - Yucai Zhang
- Department of Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Critical Care, Shanghai Jiao Tong University, Shanghai, China.,Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
165
|
Vaughn N, Haviland DL. Acly promotes metabolic reprogramming and induction of IRF4 during early CD8 + T cell activation. Cytometry A 2020; 99:825-831. [PMID: 33325591 DOI: 10.1002/cyto.a.24294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/10/2022]
Abstract
CD8+ T cells, a fundamental part of the adaptive immune system, employ cytotoxic responses important for targeting pathogenic bacteria, viruses, and tumor cells. During early activation, CD8+ T cells undergo many changes in metabolism and gene expression. The bridge between epigenetic and metabolic influences on gene expression and cell fate has yet to be fully understood. Here, we investigated the importance of ATP citrate lyase (Acly), an enzyme involved in both metabolism and histone acetylation, for early stages of CD8+ T cell activation. We performed polyclonal activation of murine CD8+ T cells in vitro in the presence or absence of the Acly inhibitor BMS303141. We found that inhibiting Acly during early activation results in decreased expression of early activation markers. Consistent with impaired early activation, we found that inhibition also resulted in increased uptake of fatty acids and decreased glucose uptake without changing mitochondrial ATP levels. On an epigenetic and transcriptional level, early stage Acly inhibition specifically downregulated promoter histone H3 acetylation (H3ac) and expression of the key transcription factor IRF4; however, global levels of H3ac remained similar. Most importantly, the study was able to highlight the importance of Acly in early stages of CD8+ T cell activation and histone regulation.
Collapse
Affiliation(s)
- Nicole Vaughn
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, Texas, USA
| | - David L Haviland
- Flow Cytometry Core, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
166
|
Wu B, Qiu J, Zhao TV, Wang Y, Maeda T, Goronzy IN, Akiyama M, Ohtsuki S, Jin K, Tian L, Goronzy JJ, Weyand CM. Succinyl-CoA Ligase Deficiency in Pro-inflammatory and Tissue-Invasive T Cells. Cell Metab 2020; 32:967-980.e5. [PMID: 33264602 PMCID: PMC7755381 DOI: 10.1016/j.cmet.2020.10.025] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/09/2020] [Accepted: 10/30/2020] [Indexed: 12/22/2022]
Abstract
Autoimmune T cells in rheumatoid arthritis (RA) have a defect in mitochondrial oxygen consumption and ATP production. Here, we identified suppression of the GDP-forming β subunit of succinate-CoA ligase (SUCLG2) as an underlying abnormality. SUCLG2-deficient T cells reverted the tricarboxylic acid (TCA) cycle from the oxidative to the reductive direction, accumulated α-ketoglutarate, citrate, and acetyl-CoA (AcCoA), and differentiated into pro-inflammatory effector cells. In AcCoAhi RA T cells, tubulin acetylation stabilized the microtubule cytoskeleton and positioned mitochondria in a perinuclear location, resulting in cellular polarization, uropod formation, T cell migration, and tissue invasion. In the tissue, SUCLG2-deficient T cells functioned as cytokine-producing effector cells and were hyperinflammatory, a defect correctable by replenishing the enzyme. Preventing T cell tubulin acetylation by tubulin acetyltransferase knockdown was sufficient to inhibit synovitis. These data link mitochondrial failure and AcCoA oversupply to autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jingtao Qiu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tuantuan V Zhao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanan Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Toshihisa Maeda
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Mitsuhiro Akiyama
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shozo Ohtsuki
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ke Jin
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lu Tian
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Jörg J Goronzy
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cornelia M Weyand
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
167
|
Diskin C, Ryan TAJ, O'Neill LAJ. Modification of Proteins by Metabolites in Immunity. Immunity 2020; 54:19-31. [PMID: 33220233 DOI: 10.1016/j.immuni.2020.09.014] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022]
Abstract
Immunometabolism has emerged as a key focus for immunologists, with metabolic change in immune cells becoming as important a determinant for specific immune effector responses as discrete signaling pathways. A key output for these changes involves post-translational modification (PTM) of proteins by metabolites. Products of glycolysis and Krebs cycle pathways can mediate these events, as can lipids, amino acids, and polyamines. A rich and diverse set of PTMs in macrophages and T cells has been uncovered, altering phenotype and modulating immunity and inflammation in different contexts. We review the recent findings in this area and speculate whether they could be of use in the effort to develop therapeutics for immune-related diseases.
Collapse
Affiliation(s)
- C Diskin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - T A J Ryan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
168
|
Sun Y, Preiss NK, Valenteros KB, Kamal Y, Usherwood YK, Frost HR, Usherwood EJ. Zbtb20 Restrains CD8 T Cell Immunometabolism and Restricts Memory Differentiation and Antitumor Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2649-2666. [PMID: 32998985 PMCID: PMC7931848 DOI: 10.4049/jimmunol.2000459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
CD8 T cell differentiation is orchestrated by dynamic metabolic changes that direct activation, proliferation, cytotoxic function, and epigenetic changes. We report that the BTB-ZF family transcriptional repressor Zbtb20 negatively regulates CD8 T cell metabolism and memory differentiation in mice. Effector and memory CD8 T cells with conditional Zbtb20 deficiency displayed enhanced mitochondrial and glycolytic metabolism, and memory CD8 T cells had enhanced spare respiratory capacity. Furthermore, Zbtb20-deficient CD8 T cells displayed increased flexibility in the use of mitochondrial fuel sources. Phenotypic and transcriptional skewing toward the memory fate was observed during the CD8 T cell response to Listeria monocytogenes Memory cells mounted larger secondary responses and conferred better protection following tumor challenge. These data suggest that inactivation of Zbtb20 may offer an approach to enhance metabolic activity and flexibility and improve memory CD8 T cell differentiation, useful attributes for T cells used in adoptive immunotherapy.
Collapse
Affiliation(s)
- Yanbo Sun
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - Nicholas K Preiss
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - Kristine B Valenteros
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - Yasmin Kamal
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Young-Kwang Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| | - H Robert Frost
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03755; and
| |
Collapse
|
169
|
Houston R, Sekine S, Calderon MJ, Seifuddin F, Wang G, Kawagishi H, Malide DA, Li Y, Gucek M, Pirooznia M, Nelson AJ, Stokes MP, Stewart-Ornstein J, Mullett SJ, Wendell SG, Watkins SC, Finkel T, Sekine Y. Acetylation-mediated remodeling of the nucleolus regulates cellular acetyl-CoA responses. PLoS Biol 2020; 18:e3000981. [PMID: 33253182 PMCID: PMC7728262 DOI: 10.1371/journal.pbio.3000981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 12/10/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.
Collapse
Affiliation(s)
- Ryan Houston
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Shiori Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michael J. Calderon
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fayaz Seifuddin
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Guanghui Wang
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Hiroyuki Kawagishi
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Daniela A. Malide
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yuesheng Li
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Marjan Gucek
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Mehdi Pirooznia
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Alissa J. Nelson
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Matthew P. Stokes
- Cell Signaling Technology, INC., Danvers, Massachusetts, United States of America
| | - Jacob Stewart-Ornstein
- Department of Computational and Systems Biology, University of Pittsburgh and Hillman Cancer Center, Pittsburgh, Pennsylvania, United States of America
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, the Health Sciences Metabolomics and Lipidomics Core, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Toren Finkel
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
| | - Yusuke Sekine
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, United States of America
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
170
|
Weiss HJ, Angiari S. Metabolite Transporters as Regulators of Immunity. Metabolites 2020; 10:E418. [PMID: 33086598 PMCID: PMC7603148 DOI: 10.3390/metabo10100418] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022] Open
Abstract
In the past decade, the rise of immunometabolism has fundamentally reshaped the face of immunology. As the functions and properties of many (immuno)metabolites have now been well described, their exchange among cells and their environment have only recently sparked the interest of immunologists. While many metabolites bind specific receptors to induce signaling cascades, some are actively exchanged between cells to communicate, or induce metabolic reprograming. In this review, we give an overview about how active metabolite transport impacts immune cell function and shapes immunological responses. We present some examples of how specific transporters feed into metabolic pathways and initiate intracellular signaling events in immune cells. In particular, we focus on the role of metabolite transporters in the activation and effector functions of T cells and macrophages, as prototype adaptive and innate immune cell populations.
Collapse
Affiliation(s)
- Hauke J. Weiss
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland;
| | | |
Collapse
|
171
|
Michaudel C, Sokol H. The Gut Microbiota at the Service of Immunometabolism. Cell Metab 2020; 32:514-523. [PMID: 32946809 DOI: 10.1016/j.cmet.2020.09.004] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/10/2020] [Accepted: 08/27/2020] [Indexed: 01/10/2023]
Abstract
The gut microbiota is implicated in immune system functions. Regulation of the metabolic processes occurring in immune cells is crucial for the maintenance of homeostasis and immunopathogenesis. Emerging data demonstrate that the gut microbiota is an actor in immunometabolism, notably through the effect of metabolites such as short-chain fatty acids, bile acids, and tryptophan metabolites. In this Perspective, we discuss the impact of the gut microbiota on the intracellular metabolism of the different subtypes of immune cells, including intestinal epithelial cells. Besides the effects on health, we discuss the potential consequences in infection context and inflammatory bowel diseases.
Collapse
Affiliation(s)
- Chloé Michaudel
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis and AgroParisTech, Jouy en Josas, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France; Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, 75012 Paris, France.
| |
Collapse
|
172
|
Høgh RI, Møller SH, Jepsen SD, Mellergaard M, Lund A, Pejtersen M, Fitzner E, Andresen L, Skov S. Metabolism of short-chain fatty acid propionate induces surface expression of NKG2D ligands on cancer cells. FASEB J 2020; 34:15531-15546. [PMID: 32996653 DOI: 10.1096/fj.202000162r] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/30/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
SCFAs are primarily produced in the colon by bacterial fermentation of nondigestible carbohydrates. Besides providing energy, SCFAs can suppress development of colon cancer. The mechanism, however, remains elusive. Here, we demonstrate that the SCFA propionate upregulates surface expression of the immune stimulatory NKG2D ligands, MICA/B by imposing metabolic changes in dividing cells. Propionate-mediated MICA/B expression did not rely on GPR41/GPR43 receptors but depended on functional mitochondria. By siRNA-directed knockdown, we could further link phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis to propionate regulation of MICA/B expression. Moreover, knockdown of Rictor and specific mTOR inhibitors implicated mTORC2 activity with metabolic changes that control MICA/B expression. SCFAs are precursors to short-chain acyl-CoAs that are used for histone acylation thereby linking the metabolic state to chromatin structure and gene expression. Propionate increased the overall acetylation and propionylation and inhibition of lysine acetyltransferases (KATs) that are responsible for adding acyl-CoAs to histones reduced propionate-mediated MICA/B expression, suggesting that propionate-induced acylation increases MICA/B expression. Notably, propionate upregulated MICA/B surface expression on colon cancer cells in an acylation-dependent manner; however, the impact of mitochondrial metabolism on MICA/B expression was different in colon cancer cells compared with Jurkat cells, suggesting that continuous exposure to propionate in the colon may provide an enhanced capacity to metabolize propionate. Together, our findings support that propionate causes metabolic changes resulting in NKG2D ligand surface expression, which holds potential as an immune activating anticancer therapy.
Collapse
Affiliation(s)
- Rikke Illum Høgh
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Hedlund Møller
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Dam Jepsen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Mellergaard
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Astrid Lund
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikala Pejtersen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emil Fitzner
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Andresen
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Skov
- Laboratory of Immunology, Section for Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
173
|
Pereira M, Chen TD, Buang N, Olona A, Ko JH, Prendecki M, Costa ASH, Nikitopoulou E, Tronci L, Pusey CD, Cook HT, McAdoo SP, Frezza C, Behmoaras J. Acute Iron Deprivation Reprograms Human Macrophage Metabolism and Reduces Inflammation In Vivo. Cell Rep 2020; 28:498-511.e5. [PMID: 31291584 PMCID: PMC6635384 DOI: 10.1016/j.celrep.2019.06.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Iron is an essential metal that fine-tunes the innate immune response by regulating macrophage function, but an integrative view of transcriptional and metabolic responses to iron perturbation in macrophages is lacking. Here, we induced acute iron chelation in primary human macrophages and measured their transcriptional and metabolic responses. Acute iron deprivation causes an anti-proliferative Warburg transcriptome, characterized by an ATF4-dependent signature. Iron-deprived human macrophages show an inhibition of oxidative phosphorylation and a concomitant increase in glycolysis, a large increase in glucose-derived citrate pools associated with lipid droplet accumulation, and modest levels of itaconate production. LPS polarization increases the itaconate:succinate ratio and decreases pro-inflammatory cytokine production. In rats, acute iron deprivation reduces the severity of macrophage-dependent crescentic glomerulonephritis by limiting glomerular cell proliferation and inducing lipid accumulation in the renal cortex. These results suggest that acute iron deprivation has in vivo protective effects mediated by an anti-inflammatory immunometabolic switch in macrophages.
Collapse
Affiliation(s)
- Marie Pereira
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Tai-Di Chen
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK; Department of Anatomic Pathology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Norzawani Buang
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Antoni Olona
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Jeong-Hun Ko
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Maria Prendecki
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - H Terence Cook
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Stephen P McAdoo
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Imperial College London, London W12 0NN, UK.
| |
Collapse
|
174
|
Lercher A, Baazim H, Bergthaler A. Systemic Immunometabolism: Challenges and Opportunities. Immunity 2020; 53:496-509. [PMID: 32937151 PMCID: PMC7491485 DOI: 10.1016/j.immuni.2020.08.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Over the past 10 years, the field of immunometabolism made great strides to unveil the crucial role of intracellular metabolism in regulating immune cell function. Emerging insights into how systemic inflammation and metabolism influence each other provide a critical additional dimension on the organismal level. Here, we discuss the concept of systemic immunometabolism and review the current understanding of the communication circuits that underlie the reciprocal impact of systemic inflammation and metabolism across organs in inflammatory and infectious diseases, as well as how these mechanisms apply to homeostasis. We present current challenges of systemic immunometabolic research, and in this context, highlight opportunities and put forward ideas to effectively explore organismal physiological complexity in both health and disease.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
175
|
Turroni S, Magnani M, KC P, Lesnik P, Vidal H, Heer M. Gut Microbiome and Space Travelers' Health: State of the Art and Possible Pro/Prebiotic Strategies for Long-Term Space Missions. Front Physiol 2020; 11:553929. [PMID: 33013480 PMCID: PMC7505921 DOI: 10.3389/fphys.2020.553929] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/14/2020] [Indexed: 12/20/2022] Open
Abstract
The upcoming exploration missions will imply a much longer duration than any of the missions flown so far. In these missions, physiological adaptation to the new environment leads to changes in different body systems, such as the cardiovascular and musculoskeletal systems, metabolic and neurobehavioral health and immune function. To keep space travelers healthy on their trip to Moon, Mars and beyond and their return to Earth, a variety of countermeasures need to be provided to maintain body functionality. From research on the International Space Station (ISS) we know today, that for instance prescribing an adequate training regime for each individual with the devices available in the respective spacecraft is still a challenge. Nutrient supply is not yet optimal and must be optimized in exploration missions. Food intake is intrinsically linked to changes in the gut microbiome composition. Most of the microbes that inhabit our body supply ecosystem benefit to the host-microbe system, including production of important resources, bioconversion of nutrients, and protection against pathogenic microbes. The gut microbiome has also the ability to signal the host, regulating the processes of energy storage and appetite perception, and influencing immune and neurobehavioral function. The composition and functionality of the microbiome most likely changes during spaceflight. Supporting a healthy microbiome by respective measures in space travelers might maintain their health during the mission but also support rehabilitation when being back on Earth. In this review we are summarizing the changes in the gut microbiome observed in spaceflight and analog models, focusing particularly on the effects on metabolism, the musculoskeletal and immune systems and neurobehavioral disorders. Since space travelers are healthy volunteers, we focus on the potential of countermeasures based on pre- and probiotics supplements.
Collapse
Affiliation(s)
- Silvia Turroni
- Unit of Microbial Ecology of Health, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Federal University of Paraíba, João Pessoa, Brazil
| | - Pukar KC
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Philippe Lesnik
- Institut National de la Santé et de la Recherche Médicale (Inserm, UMR_S 1166), Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Hubert Vidal
- CarMeN Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, Pierre-Benite, France
| | - Martina Heer
- International University of Applied Sciences, Bad Reichenhall, Germany
- Institute of Nutritional and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
176
|
Hamaidi I, Zhang L, Kim N, Wang MH, Iclozan C, Fang B, Liu M, Koomen JM, Berglund AE, Yoder SJ, Yao J, Engelman RW, Creelan BC, Conejo-Garcia JR, Antonia SJ, Mulé JJ, Kim S. Sirt2 Inhibition Enhances Metabolic Fitness and Effector Functions of Tumor-Reactive T Cells. Cell Metab 2020; 32:420-436.e12. [PMID: 32768387 PMCID: PMC7484212 DOI: 10.1016/j.cmet.2020.07.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/21/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Dysregulated metabolism is a key driver of maladaptive tumor-reactive T lymphocytes within the tumor microenvironment. Actionable targets that rescue the effector activity of antitumor T cells remain elusive. Here, we report that the Sirtuin-2 (Sirt2) NAD+-dependent deacetylase inhibits T cell metabolism and impairs T cell effector functions. Remarkably, upregulation of Sirt2 in human tumor-infiltrating lymphocytes (TILs) negatively correlates with response to TIL therapy in advanced non-small-cell lung cancer. Mechanistically, Sirt2 suppresses T cell metabolism by targeting key enzymes involved in glycolysis, tricarboxylic acid-cycle, fatty acid oxidation, and glutaminolysis. Accordingly, Sirt2-deficient murine T cells exhibit increased glycolysis and oxidative phosphorylation, resulting in enhanced proliferation and effector functions and subsequently exhibiting superior antitumor activity. Importantly, pharmacologic inhibition of Sirt2 endows human TILs with these superior metabolic fitness and effector functions. Our findings unveil Sirt2 as an unexpected actionable target for reprogramming T cell metabolism to augment a broad spectrum of cancer immunotherapies.
Collapse
Affiliation(s)
- Imene Hamaidi
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lin Zhang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Nayoung Kim
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Min-Hsuan Wang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Cristina Iclozan
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; Department of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Anders E Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sean J Yoder
- Molecular Genomics Core, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jiqiang Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Robert W Engelman
- Pediatrics, Pathology & Cell Biology, University of South of Florida, Tampa, FL 33612, USA
| | - Ben C Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Scott J Antonia
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - James J Mulé
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Sungjune Kim
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; Department of Radiation Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
177
|
A Complex Acetate-ment: Timing of Exposure Determines Memory T Cell Fate. Cell Metab 2020; 32:325-327. [PMID: 32877687 DOI: 10.1016/j.cmet.2020.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue of Cell Metabolism, Balmer et al. show that the timing and concentration of acetate exposure is critical to how it is metabolized by and affects the function of CD8 T cells. When abundantly present at the time of reactivation, acetate rewires CD8 T cell metabolism to suppress their reactivation and limit inflammation.
Collapse
|
178
|
Balmer ML, Ma EH, Thompson AJ, Epple R, Unterstab G, Lötscher J, Dehio P, Schürch CM, Warncke JD, Perrin G, Woischnig AK, Grählert J, Löliger J, Assmann N, Bantug GR, Schären OP, Khanna N, Egli A, Bubendorf L, Rentsch K, Hapfelmeier S, Jones RG, Hess C. Memory CD8 + T Cells Balance Pro- and Anti-inflammatory Activity by Reprogramming Cellular Acetate Handling at Sites of Infection. Cell Metab 2020; 32:457-467.e5. [PMID: 32738204 DOI: 10.1016/j.cmet.2020.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/21/2020] [Accepted: 07/12/2020] [Indexed: 12/31/2022]
Abstract
Serum acetate increases upon systemic infection. Acutely, assimilation of acetate expands the capacity of memory CD8+ T cells to produce IFN-γ. Whether acetate modulates memory CD8+ T cell metabolism and function during pathogen re-encounter remains unexplored. Here we show that at sites of infection, high acetate concentrations are being reached, yet memory CD8+ T cells shut down the acetate assimilating enzymes ACSS1 and ACSS2. Acetate, being thus largely excluded from incorporation into cellular metabolic pathways, now had different effects, namely (1) directly activating glutaminase, thereby augmenting glutaminolysis, cellular respiration, and survival, and (2) suppressing TCR-triggered calcium flux, and consequently cell activation and effector cell function. In vivo, high acetate abundance at sites of infection improved pathogen clearance while reducing immunopathology. This indicates that, during different stages of the immune response, the same metabolite-acetate-induces distinct immunometabolic programs within the same cell type.
Collapse
Affiliation(s)
- Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland.
| | - Eric H Ma
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA; Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada
| | - Andrew J Thompson
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
| | - Raja Epple
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Gunhild Unterstab
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Christian M Schürch
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, 269 Campus Drive, Stanford, CA 94305, USA
| | - Jan D Warncke
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Gaëlle Perrin
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Anne-Kathrin Woischnig
- Department of Biomedicine, Laboratory of Infection Biology, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Jasmin Grählert
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Nadine Assmann
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Glenn R Bantug
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, 3010 Bern, Switzerland
| | - Nina Khanna
- Department of Biomedicine, Laboratory of Infection Biology, University of Basel and University Hospital Basel, 4031 Basel, Switzerland
| | - Adrian Egli
- Clinical Microbiology, University Hospital Basel, 4031 Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Lukas Bubendorf
- Institute for Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Katharina Rentsch
- Department of Laboratory Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | | | - Russell G Jones
- Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA; Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada; Department of Physiology, McGill University, Montreal, QC, Canada
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel, 4031 Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
179
|
Abstract
Through the successes of checkpoint blockade and adoptive cellular therapy, immunotherapy has become an established treatment modality for cancer. Cellular metabolism has emerged as a critical determinant of the viability and function of both cancer cells and immune cells. In order to sustain prodigious anabolic needs, tumours employ a specialized metabolism that differs from untransformed somatic cells. This metabolism leads to a tumour microenvironment that is commonly acidic, hypoxic and/or depleted of critical nutrients required by immune cells. In this context, tumour metabolism itself is a checkpoint that can limit immune-mediated tumour destruction. Because our understanding of immune cell metabolism and cancer metabolism has grown significantly in the past decade, we are on the cusp of being able to unravel the interaction of cancer cell metabolism and immune metabolism in therapeutically meaningful ways. Although there are metabolic processes that are seemingly fundamental to both cancer and responding immune cells, metabolic heterogeneity and plasticity may serve to distinguish the two. As such, understanding the differential metabolic requirements of the diverse cells that comprise an immune response to cancer offers an opportunity to selectively regulate immune cell function. Such a nuanced evaluation of cancer and immune metabolism can uncover metabolic vulnerabilities and therapeutic windows upon which to intervene for enhanced immunotherapy.
Collapse
Affiliation(s)
- Robert D Leone
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jonathan D Powell
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Research Center, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
180
|
Li W, Zhang L. Rewiring Mitochondrial Metabolism for CD8 + T Cell Memory Formation and Effective Cancer Immunotherapy. Front Immunol 2020; 11:1834. [PMID: 32983095 PMCID: PMC7481383 DOI: 10.3389/fimmu.2020.01834] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/08/2020] [Indexed: 11/13/2022] Open
Abstract
Memory T cells persist for long term to mediate robust recall response upon rechallenging with previous encountered pathogens. The memory T cell pool is highly heterogeneous based on distinct phenotypic, functional, and locational properties, and contains discrete subsets, which contribute to diverse immune responses. In this mini-review, we will briefly discuss the distinct subsets of memory T cells and then focus on mitochondria-related metabolic and epigenetic regulations of CD8+ T cell memory formation. In particular, we discuss many aspects of mitochondrial quality control systems (biogenesis, dynamics, etc.) in regulating CD8+ T cell fate decision and antitumor immunity. Importantly, targeting mitochondrial metabolism to boost T cell memory formation and metabolic fitness might represent an attractive strategy to improve cancer immunotherapy including CAR-T therapy.
Collapse
Affiliation(s)
- Wenhui Li
- Suzhou Institute of Systems Medicine, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianjun Zhang
- Suzhou Institute of Systems Medicine, Suzhou, China.,Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
181
|
Hossain MA, Liu G, Dai B, Si Y, Yang Q, Wazir J, Birnbaumer L, Yang Y. Reinvigorating exhausted CD8 + cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Med Res Rev 2020; 41:156-201. [PMID: 32844499 DOI: 10.1002/med.21727] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/26/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Immunotherapy has revolutionized the treatment of cancer in recent years and achieved overall success and long-term clinical benefit in patients with a wide variety of cancer types. However, there is still a large proportion of patients exhibiting limited or no responses to immunotherapeutic strategy, some of which were even observed with hyperprogressive disease. One major obstacle restricting the efficacy is that tumor-reactive CD8+ T cells, which are central for tumor control, undergo exhaustion, and lose their ability to eliminate cancer cells after infiltrating into the strongly immunosuppressive tumor microenvironment. Thus, as a potential therapeutic rationale in the development of cancer immunotherapy, targeting or reinvigorating exhausted CD8+ T cells has been attracting much interest. Hitherto, both intrinsic and extrinsic mechanisms that govern CD8+ T-cell exhaustion have been explored. Specifically, the transcriptional and epigenetic landscapes have been depicted utilizing single-cell RNA sequencing or mass cytometry (CyTOF). In addition, cellular metabolism dictating the tumor-infiltrating CD8+ T-cell fate is currently under investigation. A series of clinical trials are being carried out to further establish the current strategies targeting CD8+ T-cell exhaustion. Taken together, despite the proven benefit of immunotherapy in cancer patients, additional efforts are still needed to fully circumvent limitations of exhausted T cells in the treatment. In this review, we will focus on the current cellular and molecular understanding of metabolic changes, epigenetic remodeling, and transcriptional regulation in CD8+ T-cell exhaustion and describe hypothetical treatment approaches based on immunotherapy aiming at reinvigorating exhausted CD8+ T cells.
Collapse
Affiliation(s)
- Md Amir Hossain
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guilai Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Beiying Dai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxuan Si
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qitao Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina, USA.,Institute of Biomedical Research (BIOMED), Catholic University of Argentina, Buenos Aires, Argentina
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
182
|
Mhaidly R, Krug A, Gaulard P, Lemonnier F, Ricci JE, Verhoeyen E. New preclinical models for angioimmunoblastic T-cell lymphoma: filling the GAP. Oncogenesis 2020; 9:73. [PMID: 32796826 PMCID: PMC7427806 DOI: 10.1038/s41389-020-00259-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Mouse models are essential to study and comprehend normal and malignant hematopoiesis. The ideal preclinical model should mimic closely the human malignancy. This means that these mice should recapitulate the clinical behavior of the human diseases such as cancer and therapeutic responses with high reproducibility. In addition, the genetic mutational status, the cell phenotype, the microenvironment of the tumor and the time until tumor development occurs, should be mimicked in a preclinical model. This has been particularly challenging for human angioimmunoblastic lymphoma (AITL), one of the most prominent forms of peripheral T-cell lymphomas. A complex network of interactions between AITL tumor cells and the various cells of the tumor microenvironment has impeded the study of AITL pathogenesis in vitro. Very recently, new mouse models that recapitulate faithfully the major features of human AITL disease have been developed. Here, we provide a summary of the pathology, the transcriptional profile and genetic and immune-phenotypic features of human AITL. In addition, we give an overview of preclinical models that recapitulate more or less faithfully human AITL characteristics and pathology. These recently engineered mouse models were essential in the evaluation of novel therapeutic agents for possible treatment of AITL, a malignancy in urgent need of new treatment options.
Collapse
Affiliation(s)
- Rana Mhaidly
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
- Institut Curie, Stress and Cancer Laboratory, Equipe Labellisée par la Ligue Nationale contre le Cancer, PSL Research University, 26, rue d'ULM, F-75248, Paris, France
- Inserm, U830, 26, rue d'ULM, Paris, F-75005, France
| | - Adrien Krug
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France
| | - Philippe Gaulard
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, Assistance publique des Hôpitaux de Paris, Créteil, France
| | - François Lemonnier
- Université Paris-Est Créteil; Institut Mondor de Recherche Biomédicale, INSERMU955; Institut Mondor de Recherche Biomédicale, INSERMU955, Université Paris Est Créteil, Créteil, France
- Unité Hémopathies Lymphoïdes, Hôpitaux Universitaires Henri Mondor, Assistance Publique des Hôpitaux de Paris, Créteil, France
| | | | - Els Verhoeyen
- Université Côte d'Azur, INSERM, C3M, 06204, Nice, France.
- CIRI, Université de Lyon, INSERM U1111, ENS de Lyon, Université Lyon1, CNRS, UMR 5308, 69007, Lyon, France.
| |
Collapse
|
183
|
Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res 2020; 69:1087-1101. [DOI: 10.1007/s00011-020-01391-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
|
184
|
Møller SH, Mellergaard M, Madsen M, Bermejo AV, Jepsen SD, Hansen MH, Høgh RI, Aldana BI, Desler C, Rasmussen LJ, Sustarsic EG, Gerhart-Hines Z, Daskalaki E, Wheelock CE, Hiron TK, Lin D, O'Callaghan CA, Wandall HH, Andresen L, Skov S. Cytoplasmic Citrate Flux Modulates the Immune Stimulatory NKG2D Ligand MICA in Cancer Cells. Front Immunol 2020; 11:1968. [PMID: 32849657 PMCID: PMC7431954 DOI: 10.3389/fimmu.2020.01968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Immune surveillance of cancer cells is facilitated by the Natural Killer Group 2D (NKG2D) receptor expressed by different lymphocyte subsets. It recognizes NKG2D ligands that are rarely expressed on healthy cells, but upregulated by tumorigenesis, presenting a target for immunological clearance. The molecular mechanisms responsible for NKG2D ligand regulation remain complex. Here we report that cancer cell metabolism supports constitutive surface expression of the NKG2D ligand MHC class I chain-related proteins A (MICA). Knockout of the N-glycosylation gene N-acetylglucosaminyltransferase V (MGAT5) in HEK293 cells induced altered metabolism and continuous high MICA surface expression. MGAT5 knockout cells were used to examine the association of cell metabolism and MICA expression through genetic, pharmacological and metabolic assays. Findings were verified in cancer cell lines. Cells with constitutive high MICA expression showed enhanced spare respiratory capacity and elevated mitochondrial efflux of citrate, determined by extracellular flux analysis and metabolomics. MICA expression was reduced by inhibitors of mitochondrial function, FCCP and etomoxir e.g., and depended on conversion of citrate to acetyl-CoA and oxaloacetate by ATP citrate lyase, which was also observed in several cancer cell types. Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq) analysis revealed that upregulated MICA transcription was associated with an open chromatin structure at the MICA transcription start site. We identify mitochondria and cytoplasmic citrate as key regulators of constitutive MICA expression and we propose that metabolic reprogramming of certain cancer cells facilitates MICA expression and NKG2D-mediated immune recognition.
Collapse
Affiliation(s)
- Sofie H Møller
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Maiken Mellergaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Amaia V Bermejo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stine D Jepsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Marie H Hansen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rikke I Høgh
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Blanca I Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Claus Desler
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elahu G Sustarsic
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Evangelia Daskalaki
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Thomas K Hiron
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Da Lin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lars Andresen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Skov
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
185
|
Kelly B, Pearce EL. Amino Assets: How Amino Acids Support Immunity. Cell Metab 2020; 32:154-175. [PMID: 32649859 DOI: 10.1016/j.cmet.2020.06.010] [Citation(s) in RCA: 325] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Amino acids are fundamental building blocks supporting life. Their role in protein synthesis is well defined, but they contribute to a host of other intracellular metabolic pathways, including ATP generation, nucleotide synthesis, and redox balance, to support cellular and organismal function. Immune cells critically depend on such pathways to acquire energy and biomass and to reprogram their metabolism upon activation to support growth, proliferation, and effector functions. Amino acid metabolism plays a key role in this metabolic rewiring, and it supports various immune cell functions beyond increased protein synthesis. Here, we review the mechanisms by which amino acid metabolism promotes immune cell function, and how these processes could be targeted to improve immunity in pathological conditions.
Collapse
Affiliation(s)
- Beth Kelly
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Erika L Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
186
|
Soto‐Heredero G, Gómez de las Heras MM, Gabandé‐Rodríguez E, Oller J, Mittelbrunn M. Glycolysis - a key player in the inflammatory response. FEBS J 2020; 287:3350-3369. [PMID: 32255251 PMCID: PMC7496292 DOI: 10.1111/febs.15327] [Citation(s) in RCA: 342] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
The inflammatory response involves the activation of several cell types to fight insults caused by a plethora of agents, and to maintain the tissue homoeostasis. On the one hand, cells involved in the pro-inflammatory response, such as inflammatory M1 macrophages, Th1 and Th17 lymphocytes or activated microglia, must rapidly provide energy to fuel inflammation, which is essentially accomplished by glycolysis and high lactate production. On the other hand, regulatory T cells or M2 macrophages, which are involved in immune regulation and resolution of inflammation, preferentially use fatty acid oxidation through the TCA cycle as a main source for energy production. Here, we discuss the impact of glycolytic metabolism at the different steps of the inflammatory response. Finally, we review a wide variety of molecular mechanisms which could explain the relationship between glycolytic metabolites and the pro-inflammatory phenotype, including signalling events, epigenetic remodelling, post-transcriptional regulation and post-translational modifications. Inflammatory processes are a common feature of many age-associated diseases, such as cardiovascular and neurodegenerative disorders. The finding that immunometabolism could be a master regulator of inflammation broadens the avenue for treating inflammation-related pathologies through the manipulation of the vascular and immune cell metabolism.
Collapse
Affiliation(s)
- Gonzalo Soto‐Heredero
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Manuel M. Gómez de las Heras
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
| | - Enrique Gabandé‐Rodríguez
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - Jorge Oller
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| | - María Mittelbrunn
- Immunometabolism and Inflammation LaboratoryCellular Communication & Inflammation UnitCentro de Biología Molecular Severo OchoaMadridSpain
- Department of Molecular BiologyFaculty of SciencesUniversidad Autónoma de Madrid (UAM)Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12)MadridSpain
| |
Collapse
|
187
|
Qiu J, Villa M, Sanin DE, Buck MD, O'Sullivan D, Ching R, Matsushita M, Grzes KM, Winkler F, Chang CH, Curtis JD, Kyle RL, Van Teijlingen Bakker N, Corrado M, Haessler F, Alfei F, Edwards-Hicks J, Maggi LB, Zehn D, Egawa T, Bengsch B, Klein Geltink RI, Jenuwein T, Pearce EJ, Pearce EL. Acetate Promotes T Cell Effector Function during Glucose Restriction. Cell Rep 2020; 27:2063-2074.e5. [PMID: 31091446 DOI: 10.1016/j.celrep.2019.04.022] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 04/02/2019] [Indexed: 12/26/2022] Open
Abstract
Competition for nutrients like glucose can metabolically restrict T cells and contribute to their hyporesponsiveness during cancer. Metabolic adaptation to the surrounding microenvironment is therefore key for maintaining appropriate cell function. For instance, cancer cells use acetate as a substrate alternative to glucose to fuel metabolism and growth. Here, we show that acetate rescues effector function in glucose-restricted CD8+ T cells. Mechanistically, acetate promotes histone acetylation and chromatin accessibility and enhances IFN-γ gene transcription and cytokine production in an acetyl-CoA synthetase (ACSS)-dependent manner. Ex vivo acetate treatment increases IFN-γ production by exhausted T cells, whereas reducing ACSS expression in T cells impairs IFN-γ production by tumor-infiltrating lymphocytes and tumor clearance. Thus, hyporesponsive T cells can be epigenetically remodeled and reactivated by acetate, suggesting that pathways regulating the use of substrates alternative to glucose could be therapeutically targeted to promote T cell function during cancer.
Collapse
Affiliation(s)
- Jing Qiu
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Matteo Villa
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Michael D Buck
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Reagan Ching
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Mai Matsushita
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Katarzyna M Grzes
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Frances Winkler
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | - Jonathan D Curtis
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Ryan L Kyle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Mauro Corrado
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Fabian Haessler
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Francesca Alfei
- School of Life Science, Technical University of Munich, 80333 Munich, Germany
| | - Joy Edwards-Hicks
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Leonard B Maggi
- ICCE Institute and Department of Medicine, Division of Molecular Oncology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dietmar Zehn
- School of Life Science, Technical University of Munich, 80333 Munich, Germany
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bertram Bengsch
- BIOSS Center for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Thomas Jenuwein
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany.
| |
Collapse
|
188
|
Tricarboxylic Acid Cycle Activity and Remodeling of Glycerophosphocholine Lipids Support Cytokine Induction in Response to Fungal Patterns. Cell Rep 2020; 27:525-536.e4. [PMID: 30970255 DOI: 10.1016/j.celrep.2019.03.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/30/2019] [Accepted: 03/08/2019] [Indexed: 01/28/2023] Open
Abstract
Increased glycolysis parallels immune cell activation, but the role of pyruvate remains largely unexplored. We found that stimulation of dendritic cells with the fungal surrogate zymosan causes decreases of pyruvate, citrate, itaconate, and α-ketoglutarate, while increasing oxaloacetate, succinate, lactate, oxygen consumption, and pyruvate dehydrogenase activity. Expression of IL10 and IL23A (the gene encoding the p19 chain of IL-23) depended on pyruvate dehydrogenase activity. Mechanistically, pyruvate reinforced histone H3 acetylation, and acetate rescued the effect of mitochondrial pyruvate carrier inhibition, most likely because it is a substrate of the acetyl-CoA producing enzyme ACSS2. Mice lacking the receptor of the lipid mediator platelet-activating factor (PAF; 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) showed reduced production of IL-10 and IL-23 that is explained by the requirement of acetyl-CoA for PAF biosynthesis and its ensuing autocrine function. Acetyl-CoA therefore intertwines fatty acid remodeling of glycerophospholipids and energetic metabolism during cytokine induction.
Collapse
|
189
|
Lang F, Singh Y, Salker MS, Ma K, Pandyra AA, Lang PA, Lang KS. Glucose transport in lymphocytes. Pflugers Arch 2020; 472:1401-1406. [PMID: 32529300 DOI: 10.1007/s00424-020-02416-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
Glucose uptake into lymphocytes is accomplished by non-concentrative glucose carriers of the GLUT family (GLUT1, GLUT3, GLUT4, GLUT6) and/or by the Na+-coupled glucose carrier SGLT1. The latter accumulates glucose against glucose gradients and is still effective at very low extracellular glucose concentrations. Signaling involved in SGLT1 expression and activity includes protein kinase A (PKA), protein kinase C (PKC), serum- and glucocorticoid-inducible kinase (SGK1), AMP-activated kinase (AMPK), and Janus kinases (JAK2 and JAK3). Glucose taken up is partially stored as glycogen. In hypoxic environments, such as in tumors as well as infected and inflamed tissues, lymphocytes depend on energy production from glycogen-dependent glycolysis. The lack of SGLT1 may compromise glycogen storage and thus lymphocyte survival and function in hypoxic tissues. Accordingly, in mice, genetic knockout of sglt1 compromised bacterial clearance following Listeria monocytogenes infection leading to an invariably lethal course of the disease. Whether the effect was due to the lack of sglt1 in lymphocytes or in other cell types still remains to be determined. Clearly, additional experimental effort is required to define the role of glucose transport by GLUTs and particularly by SGLT1 for lymphocyte survival and function, as well as orchestration of the host defense against tumors and bacterial infections.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, Eberhard Karl University, Tubingen, Germany.
- Department of Physiology, University of Tübingen, Wilhelmstr. 56, 72076, Tubingen, Germany.
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karl University, Tubingen, Germany
| | - Madhuri S Salker
- Research Institute of Women's Health, Eberhard Karl University, Tubingen, Germany
| | - Ke Ma
- Department of Physiology, Eberhard Karl University, Tubingen, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Dusseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| |
Collapse
|
190
|
Ramalho R, Rao M, Zhang C, Agrati C, Ippolito G, Wang FS, Zumla A, Maeurer M. Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Semin Immunopathol 2020; 42:279-313. [PMID: 32519148 PMCID: PMC7282544 DOI: 10.1007/s00281-020-00798-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/06/2023]
Abstract
Modulation of immune responses by nutrients is an important area of study in cellular biology and clinical sciences in the context of cancer therapies and anti-pathogen-directed immune responses in health and disease. We review metabolic pathways that influence immune cell function and cellular persistence in chronic infections. We also highlight the role of nutrients in altering the tissue microenvironment with lessons from the tumor microenvironment that shapes the quality and quantity of cellular immune responses. Multiple layers of biological networks, including the nature of nutritional supplements, the genetic background, previous exposures, and gut microbiota status have impact on cellular performance and immune competence against molecularly defined targets. We discuss how immune metabolism determines the differentiation pathway of antigen-specific immune cells and how these insights can be explored to devise better strategies to strengthen anti-pathogen-directed immune responses, while curbing unwanted, non-productive inflammation.
Collapse
Affiliation(s)
- Renata Ramalho
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM, U4585 FCT), Applied Nutrition Studies Group G.E.N.A.-IUEM), Instituto Universitário Egas Moniz, Egas Moniz Higher Education School, Monte de Caparica, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Chao Zhang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | | | | | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London and NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, UK
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.
- I Medizinische Klinik, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
191
|
Abstract
The years since 2009 have seen tremendous progress in unlocking the curative potential of the immune system for the treatment of cancer. Much of that revolution in immuno-oncology has been fueled by the clinical success of immune checkpoint inhibitors, particularly those targeting the PD-1 axis. Unfortunately, many patients still fail to benefit from checkpoint blockade or other immunotherapies. An inability to fully activate antitumour T cells contributes in part to the failure of those therapies. Here, we review the basic biology of T cell activation, with particular emphasis on the essential role of the dendritic cell and the innate immune system in T cell activation. The current understanding of the multiple factors that govern T cell activation and how they impinge on tumour immunotherapy are also discussed. Lastly, treatment strategies to potentially overcome barriers to T cell activation and to enhance the efficacy of immunotherapy are addressed.
Collapse
Affiliation(s)
- S D Saibil
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON.,Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON
| | - P S Ohashi
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON.,Department of Immunology, University of Toronto, Toronto, ON
| |
Collapse
|
192
|
McGuire PJ. Chemical individuality in T cells: A Garrodian view of immunometabolism. Immunol Rev 2020; 295:82-100. [PMID: 32236968 DOI: 10.1111/imr.12854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023]
Abstract
Metabolically quiescent T cells circulate throughout the body in search of antigen. Following engagement of their cognate receptors, T cells undergo metabolic reprogramming to support their activation, differentiation, and ultimately function. In the spirit of Sir Archibald Garrod, this metabolic reprogramming actually imparts a chemical individuality which confers advantage, while in others confers vulnerability, depending upon the milieu. Studying T cell immunometabolism in the context of inborn errors of metabolism allows one to define essential pathways of intermediary metabolism as well metabolic vulnerabilities and plasticity. Inborn errors of metabolism, a class of diseases first named by Garrod, have a long history of being informative for common physiologic and pathologic processes. This endeavor may be accomplished through the study of patients, animal models, and in vitro models of inborn errors of metabolism. In this review, the basics of intermediary metabolism and core metabolic pathways will be discussed, along with their relationship to T cell immunometabolism. Due to their pleiotropic nature, the reader will be specifically directed toward various inborn errors of metabolism which may be helpful for answering important questions about the role of metabolism in T cells.
Collapse
Affiliation(s)
- Peter J McGuire
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
193
|
Saravia J, Raynor JL, Chapman NM, Lim SA, Chi H. Signaling networks in immunometabolism. Cell Res 2020; 30:328-342. [PMID: 32203134 PMCID: PMC7118125 DOI: 10.1038/s41422-020-0301-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Adaptive immunity is essential for pathogen and tumor eradication, but may also trigger uncontrolled or pathological inflammation. T cell receptor, co-stimulatory and cytokine signals coordinately dictate specific signaling networks that trigger the activation and functional programming of T cells. In addition, cellular metabolism promotes T cell responses and is dynamically regulated through the interplay of serine/threonine kinases, immunological cues and nutrient signaling networks. In this review, we summarize the upstream regulators and signaling effectors of key serine/threonine kinase-mediated signaling networks, including PI3K–AGC kinases, mTOR and LKB1–AMPK pathways that regulate metabolism, especially in T cells. We also provide our perspectives about the pending questions and clinical applicability of immunometabolic signaling. Understanding the regulators and effectors of immunometabolic signaling networks may uncover therapeutic targets to modulate metabolic programming and T cell responses in human disease.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jana L Raynor
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Nicole M Chapman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Seon Ah Lim
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Hongbo Chi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
194
|
Liu JY, Wellen KE. Advances into understanding metabolites as signaling molecules in cancer progression. Curr Opin Cell Biol 2020; 63:144-153. [PMID: 32097832 DOI: 10.1016/j.ceb.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Recent years have seen a great expansion in our knowledge of the roles that metabolites play in cellular signaling. Structural data have provided crucial insights into mechanisms through which amino acids are sensed. New nutrient-coupled protein and RNA modifications have been identified and characterized. A growing list of functions has been ascribed to metabolic regulation of modifications such as acetylation, methylation, and glycosylation. A current challenge lies in developing an integrated understanding of the roles that metabolic signaling mechanisms play in physiology and disease, which will inform the design of strategies to target such mechanisms. In this brief article, we review recent advances in metabolic signaling through post-translational modification during cancer progression, to provide a framework for understanding signaling roles of metabolites in the context of cancer biology and illuminate areas for future investigation.
Collapse
Affiliation(s)
- Joyce Y Liu
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA; Biochemistry & Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104 PA, USA.
| |
Collapse
|
195
|
T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy. Nat Rev Rheumatol 2020; 16:100-112. [PMID: 31949287 DOI: 10.1038/s41584-019-0356-x] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2019] [Indexed: 12/12/2022]
Abstract
T cell subsets are critically involved in the development of systemic autoimmunity and organ inflammation in systemic lupus erythematosus (SLE). Each T cell subset function (such as effector, helper, memory or regulatory function) is dictated by distinct metabolic pathways requiring the availability of specific nutrients and intracellular enzymes. The activity of these enzymes or nutrient transporters influences the differentiation and function of T cells in autoimmune responses. Data are increasingly emerging on how metabolic processes control the function of various T cell subsets and how these metabolic processes are altered in SLE. Specifically, aberrant glycolysis, glutaminolysis, fatty acid and glycosphingolipid metabolism, mitochondrial hyperpolarization, oxidative stress and mTOR signalling underwrite the known function of T cell subsets in patients with SLE. A number of medications that are used in the care of patients with SLE affect cell metabolism, and the development of novel therapeutic approaches to control the activity of metabolic enzymes in T cell subsets represents a promising endeavour in the search for effective treatment of systemic autoimmune diseases.
Collapse
|
196
|
Britt EC, John SV, Locasale JW, Fan J. Metabolic regulation of epigenetic remodeling in immune cells. Curr Opin Biotechnol 2020; 63:111-117. [PMID: 31954223 DOI: 10.1016/j.copbio.2019.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/01/2019] [Accepted: 12/08/2019] [Indexed: 02/06/2023]
Abstract
Immune cells are capable of sensing various signals in the microenvironment and turning on specific immune functions in response. The appropriate transition of immune cells into diverse functional states, which is crucial for immunity, involves complex and well-regulated changes in transcriptional program. Accumulating evidence shows that epigenetic remodeling plays a central role in mediating the transcriptional program for immune cell activation and immunological memory. Concurrently, immune cells undergo significant metabolic reprogramming during immune response. Here we review recent studies that demonstrate shifts in metabolic state can orchestrate immune cell functions through its impact on epigenetic remodeling, and the microenvironment can exert its influence on immune cells through the metabolic regulation of epigenetics. We also discuss the systems biology approaches that enabled these discoveries.
Collapse
Affiliation(s)
- Emily C Britt
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Steven V John
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27705, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
197
|
Abstract
Our knowledge of T cell metabolism relies primarily on studies performed in vitro that may not fully recapitulate physiological conditions in vivo. In this issue of Immunity, Ma et al. find that the in vivo environment dictates the metabolic phenotype of effector CD8+ T cells-particularly their glucose utilization.
Collapse
Affiliation(s)
- Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Shixin Ma
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| |
Collapse
|
198
|
Sheppard AD, Lysaght J. Immunometabolism and Its Potential to Improve the Current Limitations of Immunotherapy. Methods Mol Biol 2020; 2184:233-263. [PMID: 32808230 DOI: 10.1007/978-1-0716-0802-9_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The last century of research in tumor immunology has culminated in the advent of immunotherapy, most notably immune checkpoint inhibitors. These drugs have shown encouraging results across a multitude of malignancies and have shifted the paradigm of cancer treatment. However, no more than 40% of patients treated with these immune checkpoint blockade inhibitors respond. Thus, resistance is a barrier to therapy that remains poorly understood. All cells require energy and biosynthetic precursors for survival, growth, and functioning, where multiple metabolic pathways allow for flexibility in how nutrients are utilized. A defining hallmark of many cancers is altered cellular metabolism, creating an imbalanced demand for nutrients within the tumor microenvironment. Immunometabolism is increasingly understood to be vital to the functions and phenotypes of a myriad of immune cell subsets. In tumors, the high demand for nutrients by the tumor drives competition between tumor cells and infiltrating immune cells, culminating in dysfunctional immune responses. This chapter discusses the recent successes in cancer immunotherapy and highlights challenges to therapy. We also outline the major metabolic processes involved in the generation of an immune response, how this can become dysregulated in the context of the tumor microenvironment, and how this contributes to resistance to immunotherapy. Finally, we explore the potential for targeting immunometabolic pathways to improve immunotherapy, and examine current trials targeting various aspects of metabolism in an attempt to improve the outcomes from immunotherapy.
Collapse
Affiliation(s)
- Andrew D Sheppard
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland
| | - Joanne Lysaght
- Cancer Immunology and Immunotherapy Group, Trinity Translational Medicine Institute, St. James's Hospital, Dublin, Ireland.
| |
Collapse
|
199
|
O'Sullivan D, Sanin DE, Pearce EJ, Pearce EL. Metabolic interventions in the immune response to cancer. Nat Rev Immunol 2019; 19:324-335. [PMID: 30820043 DOI: 10.1038/s41577-019-0140-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
At the centre of the therapeutic dilemma posed by cancer is the question of how to develop more effective treatments that discriminate between normal and cancerous tissues. Decades of research have shown us that universally applicable principles are rare, but two well-accepted concepts have emerged: first, that malignant transformation goes hand in hand with distinct changes in cellular metabolism; second, that the immune system is critical for tumour control and clearance. Unifying our understanding of tumour metabolism with immune cell function may prove to be a powerful approach in the development of more effective cancer therapies. Here, we explore how nutrient availability in the tumour microenvironment shapes immune responses and identify areas of intervention to modulate the metabolic constraints placed on immune cells in this setting.
Collapse
Affiliation(s)
- David O'Sullivan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - David E Sanin
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,University of Freiburg, Freiburg, Germany
| | - Edward J Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany. .,University of Freiburg, Freiburg, Germany.
| | - Erika L Pearce
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
200
|
Leone RD, Zhao L, Englert JM, Sun IM, Oh MH, Sun IH, Arwood ML, Bettencourt IA, Patel CH, Wen J, Tam A, Blosser RL, Prchalova E, Alt J, Rais R, Slusher BS, Powell JD. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 2019; 366:1013-1021. [PMID: 31699883 PMCID: PMC7023461 DOI: 10.1126/science.aav2588] [Citation(s) in RCA: 764] [Impact Index Per Article: 127.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 07/21/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
The metabolic characteristics of tumors present considerable hurdles to immune cell function and cancer immunotherapy. Using a glutamine antagonist, we metabolically dismantled the immunosuppressive microenvironment of tumors. We demonstrate that glutamine blockade in tumor-bearing mice suppresses oxidative and glycolytic metabolism of cancer cells, leading to decreased hypoxia, acidosis, and nutrient depletion. By contrast, effector T cells responded to glutamine antagonism by markedly up-regulating oxidative metabolism and adopting a long-lived, highly activated phenotype. These divergent changes in cellular metabolism and programming form the basis for potent antitumor responses. Glutamine antagonism therefore exposes a previously undefined difference in metabolic plasticity between cancer cells and effector T cells that can be exploited as a "metabolic checkpoint" for tumor immunotherapy.
Collapse
Affiliation(s)
- Robert D Leone
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Liang Zhao
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Judson M Englert
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Im-Meng Sun
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Min-Hee Oh
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Im-Hong Sun
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Matthew L Arwood
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Ian A Bettencourt
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Chirag H Patel
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Jiayu Wen
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Ada Tam
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Richard L Blosser
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA
| | - Eva Prchalova
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jesse Alt
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Jonathan D Powell
- The Bloomberg-Kimmel Institute for Cancer Immunotherapy at Johns Hopkins, Baltimore, MD 21287, USA.
| |
Collapse
|