151
|
Lira MCB, Siqueira-Moura MP, Rolim-Santos HML, Galetti FCS, Simioni AR, Santos NP, Tabosa Do Egito ES, Silva CL, Tedesco AC, Santos-Magalhães NS. In vitrouptake and antimycobacterial activity of liposomal usnic acid formulation. J Liposome Res 2009; 19:49-58. [PMID: 19515007 DOI: 10.1080/08982100802564628] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/-0.60) and 12.5 (+/-0.26) microg/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 microg/mL, respectively. The MBC of UA-LIPO was twice as low (16 microg/mL) as that of UA (32 microg/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.
Collapse
Affiliation(s)
- Mariane C B Lira
- Universidade Federal de Pernambuco, Laboratório de Imunopatologia Keizo-Asami, Recife-PE, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Arsonoliposomes for the Potential Treatment of Medulloblastoma. Pharm Res 2009; 26:2237-46. [DOI: 10.1007/s11095-009-9940-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
|
153
|
Mustata RC, Grigorescu A, Petrescu SM. Encapsulated cargo internalized by fusogenic liposomes partially overlaps the endoplasmic reticulum. J Cell Mol Med 2009; 13:3110-21. [PMID: 19438814 PMCID: PMC4516470 DOI: 10.1111/j.1582-4934.2009.00724.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Few endocytosed ligands, including bacterial toxins and simian virus 40 (SV40) have been shown to reach the endoplasmic reticulum (ER) in mammalian cells. Using calcein and fluorescently labelled lactoferrin encapsulated in fusogenic liposomes we found that the cargo uses a microtubule-based pathway with ER delivery. Endocytic uptake of the lipid vesicles was cholesterol dependent in all cell lines tested, including the caveolin-1-deficient human hepatoma 7 cell line. The ligand was transported in non-caveosome organelles requiring acidic pH for maturation, but able to escape the lysosomal route. These organelles were not recycling endosomes either, as shown by the lack of co-localization with recycling transferrin. Co-localization with the ER-tracker, orange fluorescent protein with KDEL signal retention and cholera toxin in live microscopy revealed an ER distribution of the fluorescent ligand. Brefeldin A, which prevents Golgi-dependent retrograde trafficking, does not disrupt the cargo delivery to the ER. This new endocytic pathway making use of acidic endosome-like organelles is an alternative to the reported SV40 caveolae pathways. Exploiting a cellular route linking the cell surface to the ER, fusogenic liposomes may become efficient drug delivery vehicles for ER stress and diseases.
Collapse
Affiliation(s)
- Roxana C Mustata
- Department of Molecular Cell Biology, Institute of Biochemistry of Romanian Academy, Splaiul Independentei, Bucharest, Romania
| | | | | |
Collapse
|
154
|
Hamelers IHL, Staffhorst RWHM, Voortman J, de Kruijff B, Reedijk J, van Bergen en Henegouwen PMP, de Kroon AIPM. High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis. Clin Cancer Res 2009; 15:1259-68. [PMID: 19228729 DOI: 10.1158/1078-0432.ccr-08-1702] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Cisplatin nanocapsules, nanoprecipitates of cisplatin encapsulated in phospholipid bilayers, exhibit increased in vitro toxicity compared with the free drug toward a panel of human ovarian carcinoma cell lines. To elucidate the mechanism of cell killing by nanocapsules and to understand the cell line dependence of nanocapsule efficacy, the route of uptake and the intracellular fate of the nanocapsules were investigated. EXPERIMENTAL DESIGN Intracellular platinum accumulation and cisplatin-DNA-adduct formation were measured in cell lines that differ in sensitivity to cisplatin nanocapsules. Confocal fluorescence microscopy in combination with down-regulation with small interfering RNA was used to map the route of cellular uptake of nanocapsules containing fluorescein-labeled cisplatin. RESULTS In sensitive cell lines, cisplatin from nanocapsules is taken up much more efficiently than the free compound. In IGROV-1 cells, the increased platinum accumulation results in augmented cisplatin-DNA-adduct formation. Confocal fluorescence microscopy revealed that the uptake of nanocapsules is energy dependent. Colocalization with markers of early and late endosomes indicated uptake via endocytosis. Down-regulation of caveolin-1 with small interfering RNA inhibited the uptake and cytotoxic effect of nanocapsules in IGROV-1 cells. Ovarian carcinoma cells, in which the nanocapsules are less effective than in IGROV-1 cells, do not internalize the nanocapsules (OVCAR-3) or accumulate them in an endocytic compartment after clathrin-mediated endocytosis (A2780). CONCLUSIONS The high cytotoxicity of cisplatin nanocapsules requires caveolin-1-dependent endocytosis that is followed by release of the drug from a late endosomal/lysosomal compartment and cisplatin-DNA-adduct formation. The findings may be applied in predicting the efficacy of nanoparticulate anticancer drug delivery systems in treating different tumor types.
Collapse
Affiliation(s)
- Irene H L Hamelers
- Biochemistry of Membranes, Bijvoet Institute, Department of Cellular Architecture and Dynamics, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
155
|
Wilson KD, de Jong SD, Tam YK. Lipid-based delivery of CpG oligonucleotides enhances immunotherapeutic efficacy. Adv Drug Deliv Rev 2009; 61:233-42. [PMID: 19232375 DOI: 10.1016/j.addr.2008.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 12/15/2008] [Indexed: 11/26/2022]
Abstract
There has been significant interest in the potential of cytosine-guanine (CpG) containing oligodeoxynucleotides (ODN) as an immunotherapy for malignant, infectious and allergic diseases. While human trials have yielded promising results, clinical use of free CpG ODN still faces several challenges which limit their effectiveness. These include suboptimal in vivo stability, toxicity, unfavorable pharmacokinetic/biodistribution characteristics, lack of specificity for target cells and the requirement for intracellular uptake. To overcome these challenges, optimized lipid-based delivery systems have been developed to protect the CpG ODN payload, modify their circulation/distribution so as to enhance immune cell targeting and facilitate intracellular uptake. Ultimately, lipid-mediated delivery has the capacity to increase the immunopotency of CpG ODN and enhance their prophylactic or therapeutic efficacy in a range of diseases. Lipid-encapsulation provides a feasible strategy to optimize the immunostimulatory activity and immunotherapeutic efficacy of CpG ODN, thereby allowing their full clinical potential to be realized.
Collapse
|
156
|
Saovapakhiran A, D’Emanuele A, Attwood D, Penny J. Surface Modification of PAMAM Dendrimers Modulates the Mechanism of Cellular Internalization. Bioconjug Chem 2009; 20:693-701. [DOI: 10.1021/bc8002343] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Angkana Saovapakhiran
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Antony D’Emanuele
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - David Attwood
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| | - Jeffrey Penny
- School of Pharmacy and Pharmaceutical Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, and School of Pharmacy and Pharmaceutical Sciences, University of Central Lancashire, Preston, Lancashire PR1 2HE, United Kingdom
| |
Collapse
|
157
|
Sun P, Zhong M, Shi X, Li Z. Anionic LPD complexes for gene delivery to macrophage: preparation, characterization and transfection in vitro. J Drug Target 2009; 16:668-78. [PMID: 18982515 DOI: 10.1080/10611860802201381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the present study, anionic lipid/peptide/DNA (LPD) complexes consisting of pH-sensitive liposome and protamine were introduced as the carriers targeting RAW 264.7 cell line, which had been reported to be difficult for transfection. The LPD complexes were physically characterized. The pH sensitivities and sizes of liposomes were investigated. The zeta potentials of LPD complexes altered significantly with the addition of protamine sulfate and anionic liposomes. It was demonstrated that the carriers produced an increase in the stability of plasmid DNA against DNase I. The TEM showed that the size distribution of LPD complexes was irregular. In the in vitro transfection, the efficiency of LPD complexes was higher than that of Lipofectamine 2000 and protamine/DNA complexes, but lower than that of electroporation. A possible mechanism for the internalization of plasmid DNA mediated by the anionic LPD complexes was also proposed. With a high safety certificated by MTT assay, LPD complexes prepared in this study might be potentially employed as a macrophage gene therapy.
Collapse
Affiliation(s)
- Peinan Sun
- Huashan Hospital, Fudan University, Shanghai, P.R. China.
| | | | | | | |
Collapse
|
158
|
Morris MJ, Craig SJ, Sutherland TM, Board PG, Casarotto MG. Transport of glutathione transferase-fold structured proteins into living cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:676-85. [PMID: 19038230 DOI: 10.1016/j.bbamem.2008.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 10/21/2008] [Accepted: 10/27/2008] [Indexed: 10/21/2022]
Abstract
Glutathione transferases are a family of enzymes that are traditionally known to contribute to the phase II class of detoxification reactions. However, a novel property of the Schistosoma japonicum glutathione transferase (Sj.GST26) involves its translocation from the external medium into a variety of different cell types. Here we explore the efficiency and mechanism of cell entry for this class of protein. Using flow cytometry and confocal microscopy, we have examined the internalisation of Sj.GST26 into live cells under a variety of conditions designed to shed light on the mode of cellular uptake. Our results show that Sj.GST26 can effectively enter cells through an energy-dependent event involving endocytosis. More specifically, Sj.GST26 was found to colocalise with transferrin within the cell indicating that the endocytosis process involves clathrin-coated pits. A comprehensive study into the cellular internalisation of proteins from other classes within the GST structural superfamily has also been conducted. These experiments suggest that the 'GST-fold' structural motif influences cellular uptake, which presents a novel glimpse into an unknown aspect of GST function.
Collapse
Affiliation(s)
- Melanie J Morris
- The John Curtin School of Medical Research, Australian National University, Canberra, A.C.T. 0200, Australia
| | | | | | | | | |
Collapse
|
159
|
del Pozo-Rodríguez A, Pujals S, Delgado D, Solinís MA, Gascón AR, Giralt E, Pedraz JL. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release 2008; 133:52-9. [PMID: 18854203 DOI: 10.1016/j.jconrel.2008.09.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 12/16/2022]
Abstract
The aim of this work was to improve the transfection efficacy of solid lipid nanoparticle (SLN)-based non-viral vectors into ARPE-19 cells through the addition of Sweet Arrow Peptide (SAP). First, we prepared SAP-DNA complexes at ratios of at least 50:1, and then incorporated them into the SLNs. All formulations were able to protect DNA, and the peptide favoured the most bioactive form (supercoiled) of open circular DNA turns. In vitro transfection studies of the vectors containing the pCMS-EGFP plasmid in HEK293 and ARPE-19 cell lines revealed that incorporation of SAP led to greater transfection in both cell lines, although via different mechanisms. The presence of SAP in the formulations did not affect the viability of HEK293 or ARPE-19 cells. In HEK293 cells, SAP enabled greater uptake of the vectors, and an SAP to DNA ratio of 50:1 was sufficient for enhancing transfection. In contrast, in ARPE-19 cells, SAP induced a change in the dominant entrance mechanism, from clathrin endocytosis to caveolae/raft-dependent endocytosis, thereby decreasing use of the lysosomal pathway and consequently, reducing vector degradation. The extent to which SAP uses one mechanism or the other largely depends on its concentration in the formulation.
Collapse
Affiliation(s)
- A del Pozo-Rodríguez
- Pharmacy and Pharmaceutical Technology Laboratory, Pharmacy Faculty, University of the Basque Country (UPV-EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | | | | | | | | | | | | |
Collapse
|
160
|
Yoo SM, Ahn AK, Seo T, Hong HB, Chung MA, Jung SD, Cho H, Lee MS. Centrifugal enhancement of Kaposi's sarcoma-associated virus infection of human endothelial cells in vitro. J Virol Methods 2008; 154:160-6. [PMID: 18755221 DOI: 10.1016/j.jviromet.2008.07.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 07/23/2008] [Accepted: 07/29/2008] [Indexed: 11/28/2022]
Abstract
In order to improve the efficiency of infection of primary human endothelial cells in vitro of Kaposi's sarcoma-associated herpesvirus (KSHV), the effect of low speed centrifugation was investigated. The recombinant KSHV, BAC36, was used to examine the centrifugal enhancement of KSHV. Infectivity was estimated by green fluorescent protein (GFP) expression and real-time RT-PCR. The enhancement of infectivity was dependent upon the time and force of centrifugation in human umbilical vein endothelial cells (HUVECs). Centrifugation enhanced the infectivity of KSHV by up to 70 fold compared to non-centrifugal control infection for the same period of time; viral mRNA expression was also enhanced by centrifugation. HUVECs that were centrifuged before infection with KSHV displayed no enhancement in infectivity; therefore, enhancement is believed to occur during centrifugation. In addition, the mechanisms of infection including the initial viral attachment to cells, lipid rafts, and clathrin-mediated and caveolae endocytosis appear to be similar in KSHV infection with and without centrifugal enhancement. These results show that low speed centrifugation could be a useful tool for improving the efficiency of KSHV infection in vitro.
Collapse
Affiliation(s)
- Seung-Min Yoo
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
This article provides an overview of principles and barriers relevant to intracellular drug and gene transport, accumulation and retention (collectively called as drug delivery) by means of nanovehicles (NV). The aim is to deliver a cargo to a particular intracellular site, if possible, to exert a local action. Some of the principles discussed in this article apply to noncolloidal drugs that are not permeable to the plasma membrane or to the blood-brain barrier. NV are defined as a wide range of nanosized particles leading to colloidal objects which are capable of entering cells and tissues and delivering a cargo intracelullarly. Different localization and targeting means are discussed. Limited discussion on pharmacokinetics and pharmacodynamics is also presented. NVs are contrasted to micro-delivery and current nanotechnologies which are already in commercial use. Newer developments in NV technologies are outlined and future applications are stressed. We also briefly review the existing modeling tools and approaches to quantitatively describe the behavior of targeted NV within the vascular and tumor compartments, an area of particular importance. While we list "elementary" phenomena related to different level of complexity of delivery to cancer, we also stress importance of multi-scale modeling and bottom-up systems biology approach.
Collapse
Affiliation(s)
- Ales Prokop
- Department of Chemical Engineering, 24th Avenue & Garland Avenues, 107 Olin Hall, Vanderbilt University, Nashville, Tennessee 37235, USA.
| | | |
Collapse
|
162
|
Kamimura M, Miyamoto D, Saito Y, Soga K, Nagasaki Y. Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion nanophosphors and their application to fluorescence biolabeling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:8864-70. [PMID: 18652424 DOI: 10.1021/la801056c] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Infrared-to-visible upconversion phosphors (i.e., rare earth ion-doped Y2O3 nanoparticles (UNPs)) were synthesized by the homogeneous precipitation method. Because the charge on the erbium (Er) ion-doped Y2O3 (Y2O3:Er) NP (UNP1) surface is positive under neutral conditions, the UNP1 surface was electrostatically PEGylated using negatively charged poly(ethylene glycol)- b-poly(acrylic acid) (PEG- b-PAAc). The adsorption of PEG- b-PAAc was confirmed by Fourier transform infrared (FT-IR) measurements and thermal gravimetric analysis (TGA). The surface charge of the PEGylated UNP1s (PEG-UNP1s) was effectively shielded by the PEGylation. The dispersion stability of the UNP1s was also significantly improved by the PEGylation. The PEG-UNP1s were dispersed over 1 week under physiological conditions as a result of the steric repulsion between the PEG chains on the UNP1 surface. The upconversion emission spectrum of PEG-UNP1s was observed under physiological conditions and was confirmed by near-infrared excited fluorescence microscope observation. Streptavidin (SA)-installed ytterbium (Yb) and Er ion-codoped Y2O3 (Y2O3:Yb,Er) NPs (UNP2s) were prepared by the coimmobilization of PEG- b-PAAc and streptavidin. The PEG/SA coimmobilized UNP2s (PEG/SA-UNP2s) specifically recognized biotinylated antibodies and emitted strong upconversion luminescence upon near-infrared excitation. The obtained PEG/streptavidin coimmobilized UNPs are promising as high-performance near-infrared biolabeling materials.
Collapse
Affiliation(s)
- Masao Kamimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
163
|
Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect. Colloids Surf B Biointerfaces 2008; 67:54-8. [PMID: 18775654 DOI: 10.1016/j.colsurfb.2008.07.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 07/24/2008] [Accepted: 07/25/2008] [Indexed: 11/20/2022]
Abstract
We prepared an anticancer drug based on a pH-sensitive liposome retaining Fe-porphyrin as an SOD mimic. The liposomes contained cationic/anionic lipid combinations and were composed of Fe-porphyrin, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine, dimethylditetradecylammonium bromide, sodium oleate, and Tween-80. The Fe-porphyrin was released from the liposome at low pH, and the cytotoxicity for cancer cells by the liposome depended on the acidic environments of the endosomes in the cells. Furthermore, although the liposome exhibited an excellent anticancer effect on a gastric cancer cell line, the SOD activity of Fe-porphyrin was shown to have a significant influence on the cytotoxicity toward cancer cells. These findings suggest that the pH-sensitive liposome retaining the Fe-porphyrin as an SOD mimic promises to be a novel anticancer drug for endosomal escape.
Collapse
|
164
|
Study on cellular internalization of poly(vinyldiaminotriazine)-based hydrogen bonding type non-viral transgene vector. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0291-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
165
|
The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 2008; 29:3469-76. [DOI: 10.1016/j.biomaterials.2008.04.038] [Citation(s) in RCA: 300] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 04/21/2008] [Indexed: 12/27/2022]
|
166
|
Partlow KC, Lanza GM, Wickline SA. Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery. Biomaterials 2008; 29:3367-75. [PMID: 18485474 PMCID: PMC2688337 DOI: 10.1016/j.biomaterials.2008.04.030] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/10/2008] [Indexed: 01/27/2023]
Abstract
The ability to specifically deliver therapeutic agents to selected cell types while minimizing systemic toxicity is a principal goal of nanoparticle-based drug delivery approaches. Numerous cellular portals exist for cargo uptake and transport, but after targeting, intact nanoparticles typically are internalized via endocytosis prior to drug release. However, in this work, we show that certain classes of nanoparticles, namely lipid-coated liquid perfluorocarbon emulsions, undergo unique interactions with cells to deliver lipophilic substances to target cells without the need for entire nanoparticle internalization. To define the delivery mechanisms, fluorescently-labeled nanoparticles complexed with alphav beta 3-integrin targeting ligands were incubated with alphav beta 3-integrin expressing cells (C32 melanoma) under selected inhibitory conditions that revealed specific nanoparticle-to-cell interactions. We observed that the predominant mechanism of lipophilic delivery entailed direct delivery of lipophilic substances to the target cell plasma membrane via lipid mixing and subsequent intracellular trafficking through lipid raft-dependent processes. We suggest that local drug delivery to selected cell types could be facilitated by employing targeted nanoparticles designed specifically to utilize alternative membrane transport mechanisms.
Collapse
Affiliation(s)
- Kathryn C. Partlow
- Department of Medicine, Washington University in St. Louis, School of Medicine, Campus Box 8215, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Gregory M. Lanza
- Department of Medicine, Washington University in St. Louis, School of Medicine, Campus Box 8215, 660 S. Euclid, St. Louis, MO 63110, USA
| | - Samuel A. Wickline
- Department of Medicine, Washington University in St. Louis, School of Medicine, Campus Box 8215, 660 S. Euclid, St. Louis, MO 63110, USA
| |
Collapse
|
167
|
Mishra D, Mishra PK, Dubey V, Nahar M, Dabadghao S, Jain NK. Systemic and mucosal immune response induced by transcutaneous immunization using Hepatitis B surface antigen-loaded modified liposomes. Eur J Pharm Sci 2008; 33:424-433. [PMID: 18359615 DOI: 10.1016/j.ejps.2008.01.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/14/2007] [Accepted: 01/27/2008] [Indexed: 10/22/2022]
Abstract
We have evaluated the efficiency of novel modified liposomes (ethosomes) for transcutaneous immunization (TCI) against Hepatitis B. Antigen-loaded ethosomes were prepared and characterized for shape, lamellarity, fluidity, size distribution, and entrapment efficiency. Spectral bio-imaging and flow cytometric studies showed efficient uptake of Hepatitis B surface antigen (HBsAg)-loaded ethosomes by murine dendritic cells (DCs) in vitro, reaching a peak by 180 min. Transcutaneous delivery potential of the antigen-loaded system using human cadaver skin demonstrated a much higher skin permeation of the antigen in comparison to conventional liposomes and soluble antigen preparation. Topically applied HBsAg-loaded ethosomes in experimental mice showed a robust systemic and mucosal humoral immune response compared to intramuscularly administered alum-adsorbed HBsAg suspension, topically applied plain HBsAg solution and hydroethanolic (25%) HBsAg solution. The ability of the antigen-pulsed DCs to stimulate autologous peripheral blood lymphocytes was demonstrated by BrdU assay and a predominantly TH1 type of immune response was observed by multiplex cytometric bead array analysis. HBsAg-loaded ethosomes are able to generate a protective immune response and their ability to traverse and target the immunological milieu of the skin may find a potential application in the development of a transcutaneous vaccine against Hepatitis B virus (HBV).
Collapse
Affiliation(s)
- Dinesh Mishra
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. Hari Singh Gour University, Sagar 470003, India.
| | | | | | | | | | | |
Collapse
|
168
|
Matthäus C, Kale A, Chernenko T, Torchilin V, Diem M. New ways of imaging uptake and intracellular fate of liposomal drug carrier systems inside individual cells, based on Raman microscopy. Mol Pharm 2008; 5:287-93. [PMID: 18197626 PMCID: PMC2715828 DOI: 10.1021/mp7001158] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent developments, combining Raman spectroscopy with optical microscopy, provide a new noninvasive technique to assess and image cellular processes. Of particular interest are the uptake mechanisms of various cytologically active compounds. In order to distinguish the species of interest from their cellular environment spectroscopically, compounds may be labeled with deuterium. Here, we apply Raman microspectroscopy to follow the uptake of liposomal drug carrier systems that have been introduced to deliver biologically active compounds to their site of action within human breast adenocarcinoma MCF-7 cells. The distribution patterns of liposomes and liposomes surface-modified with a cell-penetrating peptide (TAT-peptide, TATp) have been imaged over time. The spectroscopic information obtained provides a clear evidence for variable rates, as well as different efficiencies of liposome uptake depending on their surface properties. Depending on the experimental setup, the technique may be applied to fixed or living cell organisms.
Collapse
Affiliation(s)
- Christian Matthäus
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massacusetts 02115
| | - Amit Kale
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massacusetts 02115
| | - Tatyana Chernenko
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massacusetts 02115
| | - Vladimir Torchilin
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, Massacusetts 02115
| | - Max Diem
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massacusetts 02115
| |
Collapse
|
169
|
Gamazo C, Prior S, Concepción Lecároz M, Vitas AI, Campanero MA, Pérez G, Gonzalez D, Blanco-Prieto MJ. Biodegradable gentamicin delivery systems for parenteral use for the treatment of intracellular bacterial infections. Expert Opin Drug Deliv 2007; 4:677-88. [DOI: 10.1517/17425247.4.6.677] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
170
|
Lai SK, Hida K, Chen C, Hanes J. Characterization of the intracellular dynamics of a non-degradative pathway accessed by polymer nanoparticles. J Control Release 2007; 125:107-11. [PMID: 18053606 DOI: 10.1016/j.jconrel.2007.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/05/2007] [Accepted: 10/12/2007] [Indexed: 10/25/2022]
Abstract
Recently, 24 nm polymer nanoparticles were found to access a privileged non-degradative intracellular pathway that leads to perinuclear accumulation. Here, we report the intracellular dynamics of vesicles containing polymer nanoparticles within this non-degradative pathway, characterized by clathrin- and caveolae-independent endocytosis, as compared to endosomes originating from classical clathrin-mediated endocytosis. Similar to transport of acidic endosomes and lysosomes, the dynamic movements of non-degradative vesicles exhibit substantial heterogeneity, including caged diffusion and pearls-on-a-string trajectories, a reflection of microtubule-dependent active transport that leads to rapid accumulation near the cell nucleus. However, the ensemble-averaged intracellular transport rate of vesicles in the non-degradative pathway is 4-fold slower than that of the acidic vesicles of late endosomes and lysosomes, highlighted by a 3-fold smaller fraction of actively transported vesicles. The distinct intracellular dynamics further confirms that small nanoparticles are capable of entering cells via a distinct privileged pathway that does not lead to lysosomal processing. This non-degradative pathway may prove beneficial for the delivery of therapeutics and nucleic acids to the nucleus or nearby organelles.
Collapse
Affiliation(s)
- Samuel K Lai
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
171
|
Hartig SM, Greene RR, Dikov MM, Prokop A, Davidson JM. Multifunctional Nanoparticulate Polyelectrolyte Complexes. Pharm Res 2007; 24:2353-69. [DOI: 10.1007/s11095-007-9459-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 09/10/2007] [Indexed: 11/24/2022]
|
172
|
Tang N, Du G, Wang N, Liu C, Hang H, Liang W. Improving Penetration in Tumors With Nanoassemblies of Phospholipids and Doxorubicin. J Natl Cancer Inst 2007; 99:1004-15. [PMID: 17596572 DOI: 10.1093/jnci/djm027] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Drug delivery and penetration into neoplastic cells distant from tumor vessels is critical for the effectiveness of solid tumor chemotherapy. We hypothesized that 10- to 20-nm nanoassemblies of phospholipids containing doxorubicin would improve the drug's penetration, accumulation, and antitumor activity. METHODS Doxorubicin was incorporated into polyethylene glycol-phosphatidylethanolamine (PEG-PE) block copolymer micelles by a self-assembly procedure to form nanoassemblies of doxorubicin and PEG-PE. In vitro cytotoxicity of micelle-encapsulated doxorubicin (M-Dox) against A549 human non-small-cell lung carcinoma cells was examined using the methylthiazoletetrazolium assay, and confocal microscopy, total internal reflection fluorescence microscopy, and flow cytometry were used to examine intracellular distribution and the cellular uptake mechanism. C57Bl/6 mice (n = 10-40 per group) bearing subcutaneous or pulmonary Lewis lung carcinoma (LLC) tumors were treated with M-Dox or free doxorubicin, and tumor growth, doxorubicin pharmacokinetics, and mortality were compared. Toxicity was analyzed in tumor-free mice. All statistical tests were two-sided. RESULTS Encapsulation of doxorubicin in PEG-PE micelles increased its internalization by A549 cells into lysosomes and enhanced cytotoxicity. Drug-encapsulated doxorubicin was more effective in inhibiting tumor growth in the subcutaneous LLC tumor model (mean tumor volumes in mice treated with 5 mg/kg M-Dox = 1126 mm3 and in control mice = 3693 mm3, difference = 2567 mm3, 95% confidence interval [CI] = 2190 to 2943 mm3, P<.001) than free doxorubicin (mean tumor volumes in doxorubicin-treated mice = 3021 mm3 and in control mice = 3693 mm3, difference = 672 mm3, 95% CI = 296 to 1049 mm3, P = .0332, Wilcoxon signed rank test). M-Dox treatment prolonged survival in both mouse models and reduced metastases in the pulmonary model; it also reduced toxicity. CONCLUSIONS We have developed a novel PEG-PE-based nanocarrier of doxorubicin that increased cytotoxicity in vitro and enhanced antitumor activity in vivo with low systemic toxicity. This drug packaging technology may provide a new strategy for design of cancer therapies.
Collapse
Affiliation(s)
- Ning Tang
- Protein & Peptide Pharmaceutical Laboratory, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
173
|
Hartig SM, Greene R, Carlesso G, Higginbotham JN, Khan WN, Prokop A, Davidson JM. Kinetic analysis of nanoparticulate polyelectrolyte complex interactions with endothelial cells. Biomaterials 2007; 28:3843-55. [PMID: 17560645 PMCID: PMC2000344 DOI: 10.1016/j.biomaterials.2007.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
A non-toxic, nanoparticulate polyelectrolyte complex (PEC) drug delivery system was formulated to maintain suitable physicochemical properties at physiological pH. Toxicity, binding, and internalization were evaluated in relevant microvascular endothelial cells. PEC were non-toxic, as indicated by cell proliferation studies and propidium iodide staining. Inhibitor studies revealed that PEC were bound, in part, via heparan sulfate proteoglycans and internalized through macropinocytosis. A novel, flow cytometric, Scatchard protocol was established and showed that PEC, in the absence of surface modification, bind cells non-specifically with positive cooperativity, as seen by graphical transformations.
Collapse
Affiliation(s)
- Sean M. Hartig
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604
| | - Rachel Greene
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604
| | - Gianluca Carlesso
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
| | - James N. Higginbotham
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
| | - Ales Prokop
- Department of Chemical Engineering, Vanderbilt University, Nashville, TN 37235-1604
| | - Jeffrey M. Davidson
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, TN 37232-2562
- Research Service, Tennessee Valley Healthcare System, Nashville, TN 37212-2637
- *To whom correspondence should be addressed.
| |
Collapse
|
174
|
van der Aa MAEM, Huth US, Häfele SY, Schubert R, Oosting RS, Mastrobattista E, Hennink WE, Peschka-Süss R, Koning GA, Crommelin DJA. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm Res 2007; 24:1590-8. [PMID: 17385010 PMCID: PMC1915651 DOI: 10.1007/s11095-007-9287-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 02/27/2007] [Indexed: 12/18/2022]
Abstract
PURPOSE Knowledge about the uptake mechanism and subsequent intracellular routing of non-viral gene delivery systems is important for the development of more efficient carriers. In this study we compared two established cationic polymers pDMAEMA and PEI with regard to their transfection efficiency and mechanism of cellular uptake. MATERIALS AND METHODS The effects of several inhibitors of particular cellular uptake routes on the uptake of polyplexes and subsequent gene expression in COS-7 cells were investigated using FACS and transfection. Moreover, cellular localization of fluorescently labeled polyplexes was assessed by spectral fluorescence microscopy. RESULTS Both pDMAEMA- and PEI-complexed DNA showed colocalization with fluorescently-labeled transferrin and cholera toxin after internalization by COS-7 cells, which indicates uptake via the clathrin- and caveolae-dependent pathways. Blocking either routes of uptake with specific inhibitors only resulted in a marginal decrease in polyplex uptake, which may suggest that uptake routes of polyplexes are interchangeable. Despite the marginal effect of inhibitors on polyplex internalization, blocking the caveolae-mediated uptake route resulted in an almost complete loss of polyplex-mediated gene expression, whereas gene expression was not negatively affected by blocking the clathrin-dependent route of uptake. CONCLUSIONS These results show the importance of caveolae-mediated uptake for successful gene expression and have implications for the rational design of non-viral gene delivery systems.
Collapse
Affiliation(s)
- M. A. E. M. van der Aa
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - U. S. Huth
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs University, Stefan-Meier-Str. 19, D-79104 Freiburg, Germany
| | - S. Y. Häfele
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs University, Stefan-Meier-Str. 19, D-79104 Freiburg, Germany
| | - R. Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs University, Stefan-Meier-Str. 19, D-79104 Freiburg, Germany
| | - R. S. Oosting
- Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - E. Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - W. E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - R. Peschka-Süss
- Department of Pharmaceutical Technology and Biopharmacy, Albert-Ludwigs University, Stefan-Meier-Str. 19, D-79104 Freiburg, Germany
| | - G. A. Koning
- Laboratory of Experimental Surgical Oncology, Department of Surgical Oncology, Erasmus MC, Erasmus University, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | - D. J. A. Crommelin
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
175
|
Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, Geisler C, Andersen P. The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 2007; 121:216-26. [PMID: 17302734 PMCID: PMC2265938 DOI: 10.1111/j.1365-2567.2007.02560.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cationic liposomes are being used increasingly as efficient adjuvants for subunit vaccines but their precise mechanism of action is still unknown. Here, we investigated the adjuvant mechanism of cationic liposomes based on the synthetic amphiphile dimethyldioctadecylammonium (DDA). The liposomes did not have an effect on the maturation of murine bone-marrow-derived dendritic cells (BM-DCs) related to the surface expression of major histocompatibility complex (MHC) class II, CD40, CD80 and CD86. We found that ovalbumin (OVA) readily associated with the liposomes (> 90%) when mixed in equal concentrations. This efficient adsorption onto the liposomes led to an enhanced uptake of OVA by BM-DCs as assessed by flow cytometry and confocal fluorescence laser-scanning microscopy. This was an active process, which was arrested at 4 degrees and by an inhibitor of actin-dependent endocytosis, cytochalasin D. In vivo studies confirmed the observed effect because adsorption of OVA onto DDA liposomes enhanced the uptake of the antigen by peritoneal exudate cells after intraperitoneal injection. The liposomes targeted antigen preferentially to antigen-presenting cells because we only observed a minimal uptake by T cells in mixed splenocyte cultures. The adsorption of antigen onto the liposomes increased the efficiency of antigen presentation more than 100 times in a responder assay with MHC class II-restricted OVA-specific T-cell receptor transgenic DO11.10 T cells. Our data therefore suggest that the primary adjuvant mechanism of cationic DDA liposomes is to target the cell membrane of antigen-presenting cells, which subsequently leads to enhanced uptake and presentation of antigen.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Schwendener RA. Liposomes in Biology and Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 620:117-28. [DOI: 10.1007/978-0-387-76713-0_9] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
177
|
Guiducci C, Ott G, Chan JH, Damon E, Calacsan C, Matray T, Lee KD, Coffman RL, Barrat FJ. Properties regulating the nature of the plasmacytoid dendritic cell response to Toll-like receptor 9 activation. ACTA ACUST UNITED AC 2006; 203:1999-2008. [PMID: 16864658 PMCID: PMC2118381 DOI: 10.1084/jem.20060401] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human plasmacytoid dendritic cells (PDCs) can produce interferon (IFN)-α and/or mature and participate in the adaptive immune response. Three classes of CpG oligonucleotide ligands for Toll-like receptor (TLR)9 can be distinguished by different sequence motifs and different abilities to stimulate IFN-α production and maturation of PDCs. We show that the nature of the PDC response is determined by the higher order structure and endosomal location of the CpG oligonucleotide. Activation of TLR9 by the multimeric CpG-A occurs in transferrin receptor (TfR)-positive endosomes and leads exclusively to IFN-α production, whereas monomeric CpG-B oligonucleotides localize to lysosome-associated membrane protein (LAMP)-1–positive endosomes and promote maturation of PDCs. However, CpG-B, when complexed into microparticles, localizes in TfR-positive endosomes and induces IFN-α from PDCs, whereas monomeric forms of CpG-A localize to LAMP-1–positive endosomes accompanied by the loss of IFN-α production and a gain in PDC maturation activity. CpG-C sequences, which induce both IFN-α and maturation of PDCs, are distributed in both type of endosomes. Encapsulation of CpG-C in liposomes stable above pH 5.75 completely abrogated the IFN-α response while increasing PDC maturation. This establishes that the primary determinant of TLR9 signaling is not valency but endosomal location and demonstrates a strict compartmentalization of the biological response to TLR9 activation in PDCs.
Collapse
|