151
|
Zheng B, Bai Q, Wu L, Liu H, Liu Y, Xu W, Li G, Ren H, She X, Wu G. EMS1 and BRI1 control separate biological processes via extracellular domain diversity and intracellular domain conservation. Nat Commun 2019; 10:4165. [PMID: 31519884 PMCID: PMC6744412 DOI: 10.1038/s41467-019-12112-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/22/2019] [Indexed: 11/23/2022] Open
Abstract
In flowering plants, EMS1 (Excess Microsporocytes 1) perceives TPD1 (Tapetum Determinant 1) to specify tapeta, the last somatic cell layer nurturing pollen development. However, the signaling components downstream of EMS1 are relatively unknown. Here, we use a molecular complementation approach to investigate the downstream components in EMS1 signaling. We show that the EMS1 intracellular domain is functionally interchangeable with that of the brassinosteroid receptor BRI1 (Brassinosteroid Insensitive 1). Furthermore, expressing EMS1 together with TPD1 in the BRI1 expression domain could partially rescue bri1 phenotypes, and led to the dephosphorylation of BES1, a hallmark of active BRI1 signaling. Conversely, expressing BRI1 in the EMS1 expression domain could partially rescue ems1 phenotypes. We further show that PpEMS1 and PpTPD1 from the early land plant Physcomitrella patens could completely rescue ems1 and tpd1 phenotypes, respectively. We propose that EMS1 and BRI1 have evolved distinct extracellular domains to control different biological processes but can act via a common intracellular signaling pathway. EMS1 is a receptor-like kinase that recognizes the peptide ligand TPD1 to specify tapeta in Arabidopsis. Here, via a reciprocal complementation approach, the authors provide evidence that intracellular signaling by EMS1 is interchangeable with that of the brassinosteroid receptor BRI1.
Collapse
Affiliation(s)
- Bowen Zheng
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Qunwei Bai
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Lei Wu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Huan Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Yuping Liu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Weijun Xu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Guishuang Li
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Hongyan Ren
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China
| | - Xiaoping She
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China.
| | - Guang Wu
- College of Life Sciences, Shaanxi Normal University, 710119, Xi'an, Shaanxi Province, China.
| |
Collapse
|
152
|
Wen K, Chen Y, Zhou X, Chang S, Feng H, Zhang J, Chu Z, Han X, Li J, Liu J, Xi C, Zhao H, Han S, Wang Y. OsCPK21 is required for pollen late-stage development in rice. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153000. [PMID: 31220626 DOI: 10.1016/j.jplph.2019.153000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
In flowering plants, pollen development is a critical step for reproductive success and necessarily involves complex genetic regulatory networks. Calcium-dependent protein kinases (CPKs) are plant-specific calcium sensors involved in the regulation of plant development and adaption to the environment; however, whether they play a role in regulating male reproduction remains elusive. Here, we found that the knockdown of spikelet-specific OsCPK21 causes pollen abortion in OsCPK21-RNAi transgenic plants. Severe defects in pollen development initiated at stage 10 of anther development and simultaneous cell death occurred in the pollen cells of OsCPK21-RNAi plants. Microarray analysis and qRT-PCR revealed that the transcription of OsCPK21 is coordinated with that of MIKC*-type MADS box transcription factors OsMADS62, OsMADS63, and OsMADS68 during rice anther development. We further showed that OsCPK21 indirectly up-regulates the transcription of OsMADS62, OsMADS63, and OsMADS68 through the potential MYB binding site, DRE/CRT element, and/or new ERF binding motif localised in the promoter region of these three MADS genes. These findings suggest that OsCPK21 plays an essential role in pollengenesis, possibly via indirectly regulating the transcription of MIKC*-type MADS box proteins.
Collapse
Affiliation(s)
- Kexin Wen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yixing Chen
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaojin Zhou
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China; Department of Crop Genomic & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Shu Chang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hao Feng
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jing Zhang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Zhilin Chu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Xiaogang Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jie Li
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Jin Liu
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Chao Xi
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Heping Zhao
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Shengcheng Han
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yingdian Wang
- Beijing Key Laboratory of Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
153
|
Yang Z, Sun L, Zhang P, Zhang Y, Yu P, Liu L, Abbas A, Xiang X, Wu W, Zhan X, Cao L, Cheng S. TDR INTERACTING PROTEIN 3, encoding a PHD-finger transcription factor, regulates Ubisch bodies and pollen wall formation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:844-861. [PMID: 31021015 PMCID: PMC6852570 DOI: 10.1111/tpj.14365] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 05/04/2023]
Abstract
Male reproductive development involves a complex series of biological events and precise transcriptional regulation is essential for this biological process in flowering plants. Several transcriptional factors have been reported to regulate tapetum and pollen development, however the transcriptional mechanism underlying Ubisch bodies and pollen wall formation remains less understood. Here, we characterized and isolated a male sterility mutant of TDR INTERACTING PROTEIN 3 (TIP3) in rice. The tip3 mutant displayed smaller and pale yellow anthers without mature pollen grains, abnormal Ubisch body morphology, no pollen wall formation, as well as delayed tapetum degeneration. Map-based cloning demonstrated that TIP3 encodes a conserved PHD-finger protein and further study confirmed that TIP3 functioned as a transcription factor with transcriptional activation activity. TIP3 is preferentially expressed in the tapetum and microspores during anther development. Moreover, TIP3 can physically interact with TDR, which is a key component of the transcriptional cascade in regulating tapetum development and pollen wall formation. Furthermore, disruption of TIP3 changed the expression of several genes involved in tapetum development and degradation, biosynthesis and transport of lipid monomers of sporopollenin in tip3 mutant. Taken together, our results revealed an unprecedented role for TIP3 in regulating Ubisch bodies and pollen exine formation, and presents a potential tool to manipulate male fertility for hybrid rice breeding.
Collapse
Affiliation(s)
- Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhan430070China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Xiaodeng Zhan
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhou310006China
| |
Collapse
|
154
|
Basnet R, Hussain N, Shu Q. OsDGD2β is the Sole Digalactosyldiacylglycerol Synthase Gene Highly Expressed in Anther, and its Mutation Confers Male Sterility in Rice. RICE (NEW YORK, N.Y.) 2019; 12:66. [PMID: 31414258 PMCID: PMC6694320 DOI: 10.1186/s12284-019-0320-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Digalactosyldiacylglycerol (DGDG) is one of the major lipids found predominantly in the photosynthetic membrane of cyanobacteria, eukaryotic algae and higher plants. DGDG, along with MGDG (Monogalactosyldiacylglycerol), forms the matrix in thylakoid membrane of chloroplast, providing the site for photochemical and electron transport reactions of oxygenic photosynthesis. RESULTS In silico analysis reveals that rice (Oryza sativa L.) genome has 5 genes encoding DGDG synthase, which are differentially expressed in different tissues, and OsDGD2β was identified to be the sole DGDG synthase gene expressed in anther. We then developed osdgd2β mutants by using the CRISPR/Cas9 system and elucidate its role, especially in the development of anther and pollen. The loss of function of OsDGD2β resulted in male sterility in rice characterized by pale yellow and shrunken anther, devoid of starch granules in pollen, and delayed degeneration of tapetal cells. The total fatty acid and DGDG content in the anther was reduced by 18.66% and 22.72% in osdgd2β, affirming the importance of DGDG in the development of anther. The mutants had no notable differences in the vegetative phenotype, as corroborated by relative gene expression of DGDG synthase genes in leaves, chlorophyll measurements, and analysis of photosynthetic parameters, implying the specificity of OsDGD2β in anther. CONCLUSION Overall, we showed the importance of DGDG in pollen development and loss of function of OsDGD2β results in male sterility. Here, we have also proposed the use of OsDGD2β in hybrid rice breeding using the nuclear male sterility system.
Collapse
Affiliation(s)
- Rasbin Basnet
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, 434025 Hubei China
| | - Nazim Hussain
- Zhejiang Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
- Hubei Collaborative Innovation Center for the Grain Industry, Yangtze University, Jingzhou, 434025 Hubei China
- Zhejiang Key Laboratory of Crop Germplasm Resources, Institute of Crop Sciences, Zhejiang University, Hangzhou, Zhejiang China
| |
Collapse
|
155
|
Tao Y, Chen D, Zou T, Zeng J, Gao F, He Z, Zhou D, He Z, Yuan G, Liu M, Zhao H, Deng Q, Wang S, Zheng A, Zhu J, Liang Y, Wang L, Li P, Li S. Defective Leptotene Chromosome 1 (DLC1) encodes a type-B response regulator and is required for rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:556-570. [PMID: 31004552 DOI: 10.1111/tpj.14344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Meiosis is critical for sexual reproduction and the generation of new allelic variations in most eukaryotes. In this study, we report the isolation of a meiotic gene, DLC1, using a map-based cloning strategy. The dlc1 mutant is sterile in both male and female gametophytes due to an earlier defect in the leptotene chromosome and subsequent abnormalities at later stages. DLC1 is strongly expressed in the pollen mother cells (PMCs) and tapetum and encodes a nucleus-located rice type-B response regulator (RR) with transcriptional activity. Further investigations showed that DLC1 interacts with all five putative rice histidine phosphotransfer proteins (HPs) in yeast and planta cells, suggesting a possible participation of the two-component signalling systems (TCS) in rice meiosis. Our results demonstrated that DLC1 is required for rice meiosis and fertility, providing useful information for the role of TCS in rice meiosis.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Jing Zeng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fengyan Gao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongshan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Miaomiao Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongfeng Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of crop gene exploitation and utilization in southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
156
|
Chang CL, Serapion JC, Hung HH, Lin YC, Tsai YC, Jane WN, Chang MC, Lai MH, Hsing YIC. Studies of a rice sterile mutant sstl from the TRIM collection. BOTANICAL STUDIES 2019; 60:12. [PMID: 31292815 PMCID: PMC6620220 DOI: 10.1186/s40529-019-0260-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rice (Oryza sativa) is one of the main crops in the world, and more than 3.9 billion people will consume rice by 2025. Sterility significantly affects rice production and leads to yield defects. The undeveloped anthers or abnormal pollen represent serious defects in rice male sterility. Therefore, understanding the mechanism of male sterility is an important task. Here, we investigated a rice sterile mutant according to its developmental morphology and transcriptional profiles. RESULTS An untagged T-DNA insertional mutant showed defective pollen and abnormal anthers as compared with its semi-sterile mutant (sstl) progeny segregates. Transcriptomic analysis of sterile sstl-s revealed several biosynthesis pathways, such as downregulated cell wall, lipids, secondary metabolism, and starch synthesis. This downregulation is consistent with the morphological characterization of sstl-s anthers with irregular exine, absence of intine, no starch accumulation in pollen grains and no accumulated flavonoids in anthers. Moreover, defective microsporangia development led to abnormal anther locule and aborted microspores. The downregulated lipids, starch, and cell wall synthesis-related genes resulted in loss of fertility. CONCLUSIONS We illustrate the importance of microsporangia in the development of anthers and functional microspores. Abnormal development of pollen grains, pollen wall, anther locule, etc. result in severe yield reduction.
Collapse
Affiliation(s)
- Chia-Ling Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Jerry C. Serapion
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Han-Hui Hung
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yan-Cheng Lin
- Department of Life Science, National Taiwan University, Taipei, 106 Taiwan
| | - Yuan-Ching Tsai
- Department of Agronomy, National Chiayi University, Chiayi, 600 Taiwan
| | - Wann-Neng Jane
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| | - Men-Chi Chang
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Taichung, 413 Taiwan
| | - Yue-ie C. Hsing
- Department of Agronomy, National Taiwan University, Taipei, 106 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei, 115 Taiwan
| |
Collapse
|
157
|
Zhu T, Wu S, Zhang D, Li Z, Xie K, An X, Ma B, Hou Q, Dong Z, Tian Y, Li J, Wan X. Genome-wide analysis of maize GPAT gene family and cytological characterization and breeding application of ZmMs33/ZmGPAT6 gene. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2137-2154. [PMID: 31016347 DOI: 10.1007/s00122-019-03343-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/09/2019] [Indexed: 05/16/2023]
Abstract
Genome-wide analysis of maize GPAT gene family, cytological characterization of ZmMs33/ZmGPAT6 gene encoding an ER-localized protein with four conserved motifs, and its molecular breeding application in maize. Glycerol-3-phosphate acyltransferase (GPAT) mediates the initial step of glycerolipid biosynthesis and plays pivotal roles in plant growth and development. Compared with GPAT genes in Arabidopsis, our understanding to maize GPAT gene family is very limited. Recently, ZmMs33 gene has been identified to encode a sn-2 GPAT protein and control maize male fertility in our laboratory (Xie et al. in Theor Appl Genet 131:1363-1378, 2018). However, the functional mechanism of ZmMs33 remains elusive. Here, we reported the genome-wide analysis of maize GPAT gene family and found that 20 maize GPAT genes (ZmGPAT1-20) could be classified into three distinct clades similar to those of ten GPAT genes in Arabidopsis. Expression analyses of these ZmGPAT genes in six tissues and in anther during six developmental stages suggested that some of ZmGPATs may play crucial roles in maize growth and anther development. Among them, ZmGPAT6 corresponds to the ZmMs33 gene. Systemic cytological observations indicated that loss function of ZmMs33/ZmGPAT6 led to defective anther cuticle, arrested degeneration of anther wall layers, abnormal formation of Ubisch bodies and exine and ultimately complete male sterility in maize. The endoplasmic reticulum-localized ZmMs33/ZmGPAT6 possessed four conserved amino acid motifs essential for acyltransferase activity, while ZmMs33/ZmGPAT6 locus and its surrounding genomic region have greatly diversified during evolution of gramineous species. Finally, a multi-control sterility system was developed to produce ms33 male-sterile lines by using a combination strategy of transgene and marker-assisted selection. This work will provide useful information for further deciphering functional mechanism of ZmGPAT genes and facilitate molecular breeding application of ZmMs33/ZmGPAT6 gene in maize.
Collapse
Affiliation(s)
- Taotao Zhu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Ke Xie
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Quancan Hou
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China
| | - Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing, 100024, China.
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing, 100192, China.
| |
Collapse
|
158
|
Yu J, Zhang D. Molecular Control of Redox Homoeostasis in Specifying the Cell Identity of Tapetal and Microsporocyte Cells in Rice. RICE (NEW YORK, N.Y.) 2019; 12:42. [PMID: 31214893 PMCID: PMC6582093 DOI: 10.1186/s12284-019-0300-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 05/18/2023]
Abstract
In flowering plants, male reproduction occurs within the male organ anther with a series of complex biological events including de novo specification of germinal cells and somatic cells, male meiosis, and pollen development and maturation. Particularly, unlike other tissue, anther lacks a meristem, therefore, both germinal and somatic cell types are derived from floral stem cells within anther lobes. Here, we review the molecular mechanism specifying the identity of somatic cells and reproductive microsporocytes by redox homoeostasis during rice anther development. Factors such as glutaredoxins (GRXs), TGA transcription factors, receptor-like protein kinase signaling pathway, and glutamyl-tRNA synthetase maintaining the redox status are discussed. We also conceive the conserved and divergent aspect of cell identity specification of anther cells in plants via changing redox status.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
159
|
Zhang F, Zhang YC, Liao JY, Yu Y, Zhou YF, Feng YZ, Yang YW, Lei MQ, Bai M, Wu H, Chen YQ. The subunit of RNA N6-methyladenosine methyltransferase OsFIP regulates early degeneration of microspores in rice. PLoS Genet 2019; 15:e1008120. [PMID: 31116744 PMCID: PMC6548400 DOI: 10.1371/journal.pgen.1008120] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/04/2019] [Accepted: 04/02/2019] [Indexed: 11/21/2022] Open
Abstract
N6-Methyladenosine (m6A) RNA methylation plays important roles during development in different species. However, knowledge of m6A RNA methylation in monocots remains limited. In this study, we reported that OsFIP and OsMTA2 are the components of m6A RNA methyltransferase complex in rice and uncovered a previously unknown function of m6A RNA methylation in regulation of plant sporogenesis. Importantly, OsFIP is essential for rice male gametogenesis. Knocking out of OsFIP results in early degeneration of microspores at the vacuolated pollen stage and simultaneously causes abnormal meiosis in prophase I. We further analyzed the profile of rice m6A modification during sporogenesis in both WT and OsFIP loss-of-function plants, and identified a rice panicle specific m6A modification motif “UGWAMH”. Interestingly, we found that OsFIP directly mediates the m6A methylation of a set of threonine protease and NTPase mRNAs and is essential for their expression and/or splicing, which in turn regulates the progress of sporogenesis. Our findings revealed for the first time that OsFIP plays an indispensable role in plant early sporogenesis. This study also provides evidence for the different functions of the m6A RNA methyltransferase complex between rice and Arabidopsis. N6-Methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA, and m6A mRNA methylation affects almost every stage of mRNA metabolism. However, the components of the m6A methyltransferase complex and their functions in monocots are completely unknown. In this study, we identified the components of the m6A RNA methyltransferase complex in rice, and uncovered a hitherto unknown function of m6A RNA methylation in regulating early microspore apoptosis. We also systematically analyzed the characteristics of m6A modification during sporogenesis for the first time, and revealed the sporogenesis stage-specific distribution of m6A peaks along genes and the specific modification motif in rice, which are different from that of other species and other developmental stages. The target genes of m6A methyltransferase complex member OsFIP were also identified in this study. Given the important roles of posttranscriptional mRNA regulation in gene expression and sporogenesis in plants, the findings of this study should stimulate more studies exploring the role of plant m6A methyltransferase and other components.
Collapse
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yu-Chan Zhang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
- * E-mail: (YCZ); (YQC)
| | - Jian-You Liao
- Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Yu
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yan-Fei Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yan-Zhao Feng
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yu-Wei Yang
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Meng-Qi Lei
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, P. R. China
| | - Yue-Qin Chen
- Guangdong Provincial Key Laboratory of Plant Resources, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
- * E-mail: (YCZ); (YQC)
| |
Collapse
|
160
|
OsAGO2 controls ROS production and the initiation of tapetal PCD by epigenetically regulating OsHXK1 expression in rice anthers. Proc Natl Acad Sci U S A 2019; 116:7549-7558. [PMID: 30902896 PMCID: PMC6462063 DOI: 10.1073/pnas.1817675116] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Understanding the development of anthers, the male reproductive organs of plants, has key implications for crop yield. Epigenetic mechanisms modulate gene expression by altering modifications of DNA or histones and via noncoding RNAs. Many studies have examined anther development, but the involvement of epigenetic mechanisms remains to be explored. Here, we investigated the role of an ARGONAUTE (AGO) family protein, OsAGO2. We find that OsAGO2 epigenetically regulates anther development by modulating DNA methylation modifications in the Hexokinase (OsHXK) promoter region. OsHXK1, in turn, affects anther development by regulating the production of reactive oxygen and the initiation of cell death in key anther structures. Identification of this epigenetic regulatory mechanism has implications for the production of hybrid crop varieties. Proteins of the ARGONAUTE (AGO) family function in the epigenetic regulation of gene expression. Although the rice (Oryza sativa) genome encodes 19 predicted AGO proteins, few of their functions have thus far been characterized. Here, we show that the AGO protein OsAGO2 regulates anther development in rice. OsAGO2 was highly expressed in anthers. Knockdown of OsAGO2 led to the overaccumulation of reactive oxygen species (ROS) and abnormal anther development, causing premature initiation of tapetal programmed cell death (PCD) and pollen abortion. The expression level of Hexokinase 1 (OsHXK1) increased significantly, and the methylation levels of its promoter decreased, in plants with knocked-down OsAGO2 expression. Overexpression of OsHXK1 also resulted in the overaccumulation of ROS, premature initiation of PCD, and pollen abortion. Moreover, knockdown of OsHXK1 restored pollen fertility in OsAGO2 knockdown plants. Chromatin immunoprecipitation assays demonstrated that OsAGO2 binds directly to the OsHXK1 promoter region, suggesting that OsHXK1 is a target gene of OsAGO2. These results indicate that OsHXK1 controls the appropriate production of ROS and the proper timing of tapetal PCD and is directly regulated by OsAGO2 through epigenetic regulation.
Collapse
|
161
|
Xu D, Qu S, Tucker MR, Zhang D, Liang W, Shi J. Ostkpr1 functions in anther cuticle development and pollen wall formation in rice. BMC PLANT BIOLOGY 2019; 19:104. [PMID: 30885140 PMCID: PMC6421701 DOI: 10.1186/s12870-019-1711-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND During pollen wall formation in flowering plants, a conserved metabolon consisting of acyl-CoA synthetase (ACOS), polyketide synthase (PKS) and tetraketide α-pyrone reductase (TKPR), is required for sporopollenin synthesis. Despite this, the precise function of each of these components in different species remains unclear. RESULTS In this study, we characterized the function of OsTKPR1, a rice orthologue of Arabidopsis TKPR1. Loss of function of OsTKPR1 delayed tapetum degradation, reduced the levels of anther cuticular lipids, and impaired Ubisch body and pollen exine formation, resulting in complete male sterility. In addition, the phenylpropanoid pathway in mutant anthers was remarkably altered. Localization studies suggest that OsTKPR1 accumulates in the endoplasmic reticulum, while specific accumulation of OsTKPR1 mRNA in the anther tapetum and microspores is consistent with its function in anther and pollen wall development. CONCLUSIONS Our results show that OsTKPR1 is indispensable for anther cuticle development and pollen wall formation in rice, providing new insights into the biochemical mechanisms of the conserved sporopollenin metabolon in flowering plants.
Collapse
Affiliation(s)
- Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Flow Station of Post-doctoral Scientific Research, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Shuying Qu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Matthew R. Tucker
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064 Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- School of Agriculture, Food and Wine, University of Adelaide, Adelaide, SA 5064 Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
162
|
Wan X, Wu S, Li Z, Dong Z, An X, Ma B, Tian Y, Li J. Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives. MOLECULAR PLANT 2019; 12:321-342. [PMID: 30690174 DOI: 10.1016/j.molp.2019.01.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 05/06/2023]
Abstract
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and construct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
163
|
Hanamata S, Sawada J, Toh B, Ono S, Ogawa K, Fukunaga T, Nonomura KI, Kurusu T, Kuchitsu K. Monitoring autophagy in rice tapetal cells during pollen maturation. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:99-105. [PMID: 31768110 PMCID: PMC6847784 DOI: 10.5511/plantbiotechnology.19.0417a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/17/2019] [Indexed: 05/18/2023]
Abstract
We have previously shown that autophagy is required for post meiotic anther development including programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. However, the spatiotemporal dynamics of autophagy in the tapetum remain poorly understood. We here established an in vivo imaging technique to analyze the dynamics of autophagy in rice tapetum cells by expressing green fluorescent protein-tagged AtATG8, a marker for autophagosomes. 3D-imaging analysis revealed that the number of autophagosomes/autophagy-related structures is extremely low at the tetrad stage (stage 8), and autophagy is dramatically induced at the uninucleate stages (stage 9-10) throughout the tapetal cells during anther development. The present monitoring system for autophagy offers a powerful tool to analyze the regulation of autophagy in rice tapetal cells during pollen maturation.
Collapse
Affiliation(s)
- Shigeru Hanamata
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Graduate School of Science and Technology, Niigata University, University, 2-8050 Ikarashi, Niigata 950-2181, Japan
| | - Jumpei Sawada
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Bunki Toh
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Seijiro Ono
- Plant Cytogenetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kazunori Ogawa
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Togo Fukunaga
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Takamitsu Kurusu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Department of Mechanical and Electrical Engineering, Suwa University of Science, 5000-1 Toyohira, Chino, Nagano 391-0292, Japan
- E-mail: Tel: +81-266-73-9826 Fax: +81-266-73-1230
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Imaging Frontier Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- E-mail: Tel: +81-4-7122-9404 Fax: +81-4-7123-9767
| |
Collapse
|
164
|
Yang Z, Liu L, Sun L, Yu P, Zhang P, Abbas A, Xiang X, Wu W, Zhang Y, Cao L, Cheng S. OsMS1 functions as a transcriptional activator to regulate programmed tapetum development and pollen exine formation in rice. PLANT MOLECULAR BIOLOGY 2019; 99:175-191. [PMID: 30610522 DOI: 10.1007/s11103-018-0811-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/10/2018] [Indexed: 05/25/2023]
Abstract
OsMS1 functions as a transcriptional activator and interacts with known tapetal regulatory factors through its plant homeodomain (PHD) regulating tapetal programmed cell death (PCD) and pollen exine formation in rice. The tapetum, a hallmark tissue in the stamen, undergoes degradation triggered by PCD during post-meiotic anther development. This degradation process is indispensable for anther cuticle and pollen exine formation. Previous study has shown that PTC1 plays a critical role in the regulation of tapetal PCD. However, it remained unclear how this occurs. To further investigate the role of this gene in rice, we used CRISPR/Cas9 system to generate the homozygous mutant named as osms1, which showed complete male sterility with slightly yellow and small anthers, as well as invisible pollen grains. In addition, cytological observation revealed delayed tapetal PCD, defective pollen exine formation and a lack of DNA fragmentation according to a TUNEL analysis in the anthers of osms1 mutant. OsMS1, which encodes a PHD finger protein, was located in the nucleus of rice protoplasts and functioned as a transcription factor with transcriptional activation activity. Y2H and BiFC assays demonstrated that OsMS1 can interact with OsMADS15 and TDR INTERACTING PROTEIN2 (TIP2). It has been reported that TIP2 coordinated with TDR to modulate the expression of EAT1 and further regulated tapetal PCD in rice. Results of qPCR suggested that the expression of the genes associated with tapetal PCD and pollen wall biosynthesis, such as EAT1, AP37, AP25, OsC6 and OsC4, were significantly reduced in osms1 mutant. Taken together, our results demonstrate that the interaction of OsMS1 with known tapetal regulatory factors through its PHD finger regulates tapetal PCD and pollen exine formation in rice.
Collapse
Affiliation(s)
- Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
165
|
Sun L, Xiang X, Yang Z, Yu P, Wen X, Wang H, Abbas A, Muhammad Khan R, Zhang Y, Cheng S, Cao L. OsGPAT3 Plays a Critical Role in Anther Wall Programmed Cell Death and Pollen Development in Rice. Int J Mol Sci 2018; 19:ijms19124017. [PMID: 30545137 PMCID: PMC6321289 DOI: 10.3390/ijms19124017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/30/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022] Open
Abstract
In flowering plants, ideal male reproductive development requires the systematic coordination of various processes, in which timely differentiation and degradation of the anther wall, especially the tapetum, is essential for both pollen formation and anther dehiscence. Here, we show that OsGPAT3, a conserved glycerol-3-phosphate acyltransferase gene, plays a critical role in regulating anther wall degradation and pollen exine formation. The gpat3-2 mutant had defective synthesis of Ubisch bodies, delayed programmed cell death (PCD) of the inner three anther layers, and abnormal degradation of micropores/pollen grains, resulting in failure of pollen maturation and complete male sterility. Complementation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) experiments demonstrated that OsGPAT3 is responsible for the male sterility phenotype. Furthermore, the expression level of tapetal PCD-related and nutrient metabolism-related genes changed significantly in the gpat3-2 anthers. Based on these genetic and cytological analyses, OsGPAT3 is proposed to coordinate the differentiation and degradation of the anther wall and pollen grains in addition to regulating lipid biosynthesis. This study provides insights for understanding the function of GPATs in regulating rice male reproductive development, and also lays a theoretical basis for hybrid rice breeding.
Collapse
Affiliation(s)
- Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Xiaoxia Wen
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Hong Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Adil Abbas
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Riaz Muhammad Khan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
166
|
Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC PLANT BIOLOGY 2018. [PMID: 30509161 DOI: 10.1186/s12870-018-1543-1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear. RESULTS Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type. CONCLUSIONS Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
Collapse
Affiliation(s)
- Lei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Yue Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yumin Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Suxing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Meishan Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
167
|
Zhang L, Luo H, Zhao Y, Chen X, Huang Y, Yan S, Li S, Liu M, Huang W, Zhang X, Jin W. Maize male sterile 33 encodes a putative glycerol-3-phosphate acyltransferase that mediates anther cuticle formation and microspore development. BMC PLANT BIOLOGY 2018; 18:318. [PMID: 30509161 PMCID: PMC6276174 DOI: 10.1186/s12870-018-1543-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 11/20/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The anther cuticle, which is primarily composed of lipid polymers, is crucial for pollen development and plays important roles in sexual reproduction in higher plants. However, the mechanism underlying the biosynthesis of lipid polymers in maize (Zea mays. L.) remains unclear. RESULTS Here, we report that the maize male-sterile mutant shrinking anther 1 (sa1), which is allelic to the classic mutant male sterile 33 (ms33), displays defective anther cuticle development and premature microspore degradation. We isolated MS33 via map-based cloning. MS33 encodes a putative glycerol-3-phosphate acyltransferase and is preferentially expressed in tapetal cells during anther development. Gas chromatography-mass spectrometry revealed a substantial reduction in wax and cutin in ms33 anthers compared to wild type. Accordingly, RNA-sequencing analysis showed that many genes involved in wax and cutin biosynthesis are differentially expressed in ms33 compared to wild type. CONCLUSIONS Our findings suggest that MS33 may contribute to anther cuticle and microspore development by affecting lipid polyester biosynthesis in maize.
Collapse
Affiliation(s)
- Lei Zhang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Hongbing Luo
- College of Agronomy, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128 China
| | - Yue Zhao
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Xiaoyang Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Yumin Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Shuangshuang Yan
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193 China
| | - Suxing Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Meishan Liu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Wei Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Xiaolan Zhang
- Department of Vegetable Sciences, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193 China
| | - Weiwei Jin
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Key Laboratory of Crop Heterosis and Utilization, Ministry of Education (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
168
|
Shi QS, Wang KQ, Li YL, Zhou L, Xiong SX, Han Y, Zhang YF, Yang NY, Yang ZN, Zhu J. OsPKS1 is required for sexine layer formation, which shows functional conservation between rice and Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:145-154. [PMID: 30466580 DOI: 10.1016/j.plantsci.2018.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 05/22/2023]
Abstract
The sporopollenin precursors, as a general constituent of sexine, are synthesized in the tapetum and deposited on the pollen surface after transportation and processing. The polyketide synthase condenses the acyl-CoA into a hydroxyalkyl α-pyrone, which is predicted to be a component of the sporopollenin precursors. In this study, we found that the rice POLYKETIDE SYNTHASE 1 (OsPKS1) was the orthologue of Arabidopsis POLYKETIDE SYNTHASE A/LESS ADHESIVE POLLEN 6 (PKSA/LAP6) through sequence alignment. The OsPKS1 knockout mutants obtained by Crispr-Cas9-mediated editing exhibited a complete male sterile phenotype. Cytological observations revealed that abnormal bacula deposition and ubisch body structures for sexine formation led to pollen rupture in ospks1. The expression analysis showed that the OsPKS1 was highly expressed in tapetal cells and anther locules from stage 9 to stage 11 during anther development in rice. Subcellular localization demonstrated that the OsPKS1 protein was preferentially localized to the ER. The genomic sequence of OsPKS1 driven by the PKSA/LAP6 promoter restored the sexine pattern of Arabidopsis pksa/lap6. These results indicated that OsPKS1 is required for sexine layer formation in rice and functionally conserved in the sporopollenin synthesis pathway.
Collapse
Affiliation(s)
- Qiang-Sheng Shi
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Kai-Qi Wang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yue-Ling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation, Taizhou University, Taizhou, China
| | - Lei Zhou
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Shuang-Xi Xiong
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yu Han
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yan-Fei Zhang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Nai-Ying Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jun Zhu
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China.
| |
Collapse
|
169
|
Tabara M, Ohtani M, Kanekatsu M, Moriyama H, Fukuhara T. Size Distribution of Small Interfering RNAs in Various Organs at Different Developmental Stages is Primarily Determined by the Dicing Activity of Dicer-Like Proteins in Plants. PLANT & CELL PHYSIOLOGY 2018; 59:2228-2238. [PMID: 30032266 DOI: 10.1093/pcp/pcy144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
RNA silencing is a fundamental mechanism to maintain plant growth and development, and regulation of the size distribution of small interfering RNAs (siRNAs) is critical in the control of normal gene expression throughout a plant's life cycle. However, the cause of organ- and developmental stage-specific accumulation of siRNAs has never been reported. Whereas 24 nt siRNAs accumulated about 5.3-fold more than 21 nt siRNAs in Arabidopsis rosette leaves, 21 and 24 nt siRNAs accumulated to similar levels in Arabidopsis pollen grains, rice spikelets and maize anthers. We successfully detected two distinct double-stranded RNA (dsRNA)-cleaving activities that produced 21 and 24 nt RNAs in cell-free extracts prepared from various organs at different developmental stages of A. thaliana, Brassica rapa, rice and maize. Although DCL4 transcript was expressed more than DCL3 transcript in most organs, the 21 nt RNA-producing activity of DCL4 or its orthologs was very low and was 5- to 10-fold lower than the 24 nt RNA-producing activity of DCL3 or its orthologs particularly in leaves, indicating that DCL4 activity is negatively regulated translationally or post-translationally in leaves. High dicing activity of DCL3 and DCL4 was detected in immature inflorescences, developing seeds, germinating embryos and callus, all of which contain actively dividing cells. In various organs at different developmental stages, the size distribution of siRNAs was positively correlated with the dicing activity of two Dicers, DCL3 and DCL4, or their orthologs. Taken together, the size distribution of siRNAs in most organs is primarily determined by the dicing activity of DCL3 and DCL4.
Collapse
Affiliation(s)
- Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, Japan
| | - Misato Ohtani
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Japan
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Japan
| | - Motoki Kanekatsu
- Department of Biological Production Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, Japan
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo, Japan
| |
Collapse
|
170
|
Chang Z, Jin M, Yan W, Chen H, Qiu S, Fu S, Xia J, Liu Y, Chen Z, Wu J, Tang X. The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. RICE (NEW YORK, N.Y.) 2018; 11:58. [PMID: 30311098 PMCID: PMC6181869 DOI: 10.1186/s12284-018-0248-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/14/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND The pollen wall, which protects male gametophyte against various stresses and facilitates pollination, is essential for successful reproduction in flowering plants. The pollen wall consists of gametophyte-derived intine and sporophyte-derived exine. From outside to inside of exine are tectum, bacula, nexine I and nexine II layers. How these structural layers are formed has been under extensive studies, but the molecular mechanisms remain obscure. RESULTS Here we identified two osabcg3 allelic mutants and demonstrated that OsABCG3 was required for pollen development in rice. OsABCG3 encodes a half-size ABCG transporter localized on the plasma membrane. It was mainly expressed in anther when exine started to form. Loss-function of OsABCG3 caused abnormal degradation of the tapetum. The mutant pollen lacked the nexine II and intine layers, and shriveled without cytoplasm. The expression of some genes required for pollen wall formation was examined in osabcg3 mutants. The mutation did not alter the expression of the regulatory genes and lipid metabolism genes, but altered the expression of lipid transport genes. CONCLUSIONS Base on the genetic and cytological analyses, OsABCG3 was proposed to transport the tapetum-produced materials essential for pollen wall formation. This study provided a new perspective to the genetic regulation of pollen wall development.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Mingna Jin
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
- School of Life Sciences, Capital Normal University, Beijing, 10048 China
| | - Hui Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Shijun Qiu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Shan Fu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 53004 China
| | - Jixing Xia
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 53004 China
| | - Yuchen Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631 China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107 China
| |
Collapse
|
171
|
Wang F, Zhong X, Huang L, Fang W, Chen F, Teng N. Cellular and molecular characteristics of pollen abortion in chrysanthemum cv. Kingfisher. PLANT MOLECULAR BIOLOGY 2018; 98:233-247. [PMID: 30203234 DOI: 10.1007/s11103-018-0777-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 05/21/2023]
Abstract
Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.
Collapse
Affiliation(s)
- Fan Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Xinghua Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Lulu Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Weimin Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Fadi Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China
| | - Nianjun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture, Nanjing, 210095, China.
| |
Collapse
|
172
|
Yao M, Ai TB, Mao Q, Chen F, Li FS, Tang L. Downregulation of OsAGO17 by artificial microRNA causes pollen abortion resulting in the reduction of grain yield in rice. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
173
|
Chen J, Su P, Chen P, Li Q, Yuan X, Liu Z. Insights into the cotton anther development through association analysis of transcriptomic and small RNA sequencing. BMC PLANT BIOLOGY 2018; 18:154. [PMID: 30075747 PMCID: PMC6091077 DOI: 10.1186/s12870-018-1376-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Plant anther development is a systematic and complex process precisely controlled by genes. Regulation genes and their regulatory mechanisms for this process remain elusive. In contrast to numerous researches on anther development with respect to mRNAs or miRNAs in many crops, the association analysis combining both omics has not been reported on cotton anther. RESULTS In this study, the molecular mechanism of cotton anther development was investigated with the employment of association analysis of transcriptome and small RNA sequencing during the predefined four stages of cotton anther development, sporogenuous cell proliferation (SCP), meiotic phase (MP), microspore release period (MRP) and pollen maturity (PM). Analysis revealed that the differentially expressed genes are increasingly recruited along with the developmental progress. Expression of functional genes differed significantly among developmental stages. The genes related with cell cycle, progesterone-mediated oocyte maturation, and meiosis are predominantly expressed at the early stage of anther development (SCP and MP), and the expression of genes involved in energy metabolism, flavonoid biosynthesis, axon guidance and phospholipase D signaling pathways is mainly enriched at the late stage of anther development (MRP and PM). Analysis of expression patterns revealed that there was the largest number of differentially expressed genes in the MP and the expression profiles of differentially expressed genes were significantly increased, which implied the importance of MP in the entire anther development cycle. In addition, prediction and analysis of miRNA targeted genes suggested that miRNAs play important roles in anther development. The miRNAs ghr-miR393, Dt_chr12_6065 and At_chr9_3080 participated in cell cycle, carbohydrate metabolism and auxin anabolism through the target genes, respectively, to achieve the regulation of anther development. CONCLUSIONS Through the association analysis of mRNA and miRNA, our work gives a better understanding of the preferentially expressed genes and regulation in different developmental stages of cotton anther and the importance of meiotic phase, and also the involvement of miRNAs in precise regulation for this process, which would be valuable for clarifying the mechanism of plant anther development in response to internal and external environments.
Collapse
Affiliation(s)
- Jin Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Pin Su
- Hunan Academy of Agricultural Sciences, Institute of Plant Protection, Changsha, 410125 China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000 China
| | - Qiong Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Xiaoling Yuan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| | - Zhi Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
174
|
Song S, Chen Y, Liu L, See YHB, Mao C, Gan Y, Yu H. OsFTIP7 determines auxin-mediated anther dehiscence in rice. NATURE PLANTS 2018; 4:495-504. [PMID: 29915329 DOI: 10.1038/s41477-018-0175-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/11/2018] [Indexed: 05/06/2023]
Abstract
Anther dehiscence determines successful sexual reproduction of flowering plants through timely release of pollen grains for pollination and fertilization. Downregulation of auxin levels during pollen mitosis is essential for promoting anther dehiscence along with pollen maturation. How this key transition of auxin levels is regulated in male organs remains elusive. Here, we report that the rice FT-INTERACTING PROTEIN 7 is highly expressed in anthers before pollen mitotic divisions and facilitates nuclear translocation of a homeodomain transcription factor, Oryza sativa homeobox 1, which directly suppresses a predominant auxin biosynthetic gene, OsYUCCA4, during the late development of anthers. This confers a key switch of auxin levels between meiosis of microspore mother cells and pollen mitotic divisions, thus controlling the timing of anther dehiscence during rice anthesis. Our findings shed light on the mechanism of hormonal control of anther dehiscence, and provide a new avenue for creating hormone-sensitive male sterile lines for hybrid plant breeding.
Collapse
Affiliation(s)
- Shiyong Song
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Ying Chen
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Lu Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yen How Benjamin See
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Chuanzao Mao
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Yinbo Gan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
175
|
Zou T, Liu M, Xiao Q, Wang T, Chen D, Luo T, Yuan G, Li Q, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P, Li S. OsPKS2 is required for rice male fertility by participating in pollen wall formation. PLANT CELL REPORTS 2018; 37:759-773. [PMID: 29411094 DOI: 10.1007/s00299-018-2265-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 01/30/2018] [Indexed: 05/07/2023]
Abstract
OsPKS2, the rice orthologous gene of Arabidopsis PKSB/LAP5, encodes a polyketide synthase that is involved in pollen wall formation in rice. In flowering plants, the pollen wall protects male gametes from various environmental stresses and pathogen attacks, as well as promotes pollen germination. The biosynthesis of sporopollenin in tapetal cell is critical for pollen wall formation. Recently, progress has been made in understanding sporopollenin metabolism during pollen wall development in Arabidopsis. However, little is known about the molecular mechanism that underlies the sporopollenin synthesis in pollen wall formation in rice (Oryza sativa). In this study, we identified that a point mutation in OsPKS2, a plant-specific type III polyketide synthase gene, caused male sterility in rice by affecting the normal progress of pollen wall formation. Two other allelic mutants of OsPKS2 were generated using the CRISPR/Cas9 system and are also completely male sterile. This result thus further confirmed that OsPKS2 controls rice male fertility. We also showed that OsPKS2 is an orthologous gene of Arabidopsis PKSB/LAP5 and has a tapetum-specific expression pattern. In addition, its product localizes in the endoplasmic reticulum. Results suggested that OsPKS2 is critical for pollen wall formation, and plays a conserved but differentiated role in sporopollenin biosynthesis from Arabidopsis.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Mingxing Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiao Xiao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Tao Luo
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, 611130, Sichuan, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| |
Collapse
|
176
|
Bhatnagar-Mathur P, Gupta R, Reddy PS, Reddy BP, Reddy DS, Sameerkumar CV, Saxena RK, Sharma KK. A novel mitochondrial orf147 causes cytoplasmic male sterility in pigeonpea by modulating aberrant anther dehiscence. PLANT MOLECULAR BIOLOGY 2018; 97:131-147. [PMID: 29667000 DOI: 10.1007/s11103-018-0728-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
KEY MESSAGE A novel open reading frame (ORF) identified and cloned from the A4 cytoplasm of Cajanus cajanifolius induced partial to complete male sterility when introduced into Arabidopsis and tobacco. Pigeonpea (Cajanus cajan L. Millsp.) is the only legume known to have commercial hybrid seed technology based on cytoplasmic male sterility (CMS). We identified a novel ORF (orf147) from the A4 cytoplasm of C. cajanifolius that was created via rearrangements in the CMS line and co-transcribes with the known and unknown sequences. The bi/poly-cistronic transcripts cause gain-of-function variants in the mitochondrial genome of CMS pigeonpea lines having distinct processing mechanisms and transcription start sites. In presence of orf147, significant repression of Escherichia coli growth indicated its toxicity to the host cells and induced partial to complete male sterility in transgenic progenies of Arabidopsis thaliana and Nicotiana tabacum where phenotype co-segregated with the transgene. The male sterile plants showed aberrant floral development and reduced lignin content in the anthers. Gene expression studies in male sterile pigeonpea, Arabidopsis and tobacco plants confirmed down-regulation of several anther biogenesis genes and key genes involved in monolignol biosynthesis, indicative of regulation of retrograde signaling. Besides providing evidence for the involvement of orf147 in pigeonpea CMS, this study provides valuable insights into its function. Cytotoxicity and aberrant programmed cell death induced by orf147 could be important for mechanism underlying male sterility that offers opportunities for possible translation for these findings for exploiting hybrid vigor in other recalcitrant crops as well.
Collapse
Affiliation(s)
- Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| | - Ranadheer Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Bommineni Pradeep Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Dumbala Srinivas Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - C V Sameerkumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Rachit Kumar Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Kiran K Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
177
|
Moon S, Oo MM, Kim B, Koh HJ, Oh SA, Yi G, An G, Park SK, Jung KH. Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development. RICE (NEW YORK, N.Y.) 2018; 11:28. [PMID: 29687350 PMCID: PMC5913055 DOI: 10.1186/s12284-018-0219-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 04/04/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding late pollen development, including the maturation and pollination process, is a key component in maintaining crop yields. Transcriptome data obtained through microarray or RNA-seq technologies can provide useful insight into those developmental processes. Six series of microarray data from a public transcriptome database, the Gene Expression Omnibus of the National Center for Biotechnology Information, are related to anther and pollen development. RESULTS We performed a systematic and functional study across the rice genome of genes that are preferentially expressed in the late stages of pollen development, including maturation and germination. By comparing the transcriptomes of sporophytes and male gametes over time, we identified 627 late pollen-preferred genes that are conserved among japonica and indica rice cultivars. Functional classification analysis with a MapMan tool kit revealed a significant association between cell wall organization/metabolism and mature pollen grains. Comparative analysis of rice and Arabidopsis demonstrated that genes involved in cell wall modifications and the metabolism of major carbohydrates are unique to rice. We used the GUS reporter system to monitor the expression of eight of those genes. In addition, we evaluated the significance of our candidate genes, using T-DNA insertional mutant population and the CRISPR/Cas9 system. Mutants from T-DNA insertion and CRISPR/Cas9 systems of a rice gene encoding glycerophosphoryl diester phosphodiesterase are defective in their male gamete transfer. CONCLUSION Through the global analyses of the late pollen-preferred genes from rice, we found several biological features of these genes. First, biological process related to cell wall organization and modification is over-represented in these genes to support rapid tube growth. Second, comparative analysis of late pollen preferred genes between rice and Arabidopsis provide a significant insight on the evolutional disparateness in cell wall biogenesis and storage reserves of pollen. In addition, these candidates might be useful targets for future examinations of late pollen development, and will be a valuable resource for accelerating the understanding of molecular mechanisms for pollen maturation and germination processes in rice.
Collapse
Affiliation(s)
- Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Backki Kim
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, South Korea
| | - Hee-Jong Koh
- Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, South Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea
| | - Gihwan Yi
- College of Agriculture and Life Science, Daegu, 702-701, South Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, South Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, South Korea.
| |
Collapse
|
178
|
Identification of Wheat Inflorescence Development-Related Genes Using a Comparative Transcriptomics Approach. Int J Genomics 2018; 2018:6897032. [PMID: 29581960 PMCID: PMC5822904 DOI: 10.1155/2018/6897032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 12/14/2022] Open
Abstract
Inflorescence represents the highly specialized plant tissue producing the grains. Although key genes regulating flower initiation and development are conserved, the mechanism regulating fertility is still not well explained. To identify genes and gene network underlying inflorescence morphology and fertility of bread wheat, expressed sequence tags (ESTs) from different tissues were analyzed using a comparative transcriptomics approach. Based on statistical comparison of EST frequencies of individual genes in EST pools representing different tissues and verification with RT-PCR and RNA-seq data, 170 genes of 59 gene sets predominantly expressed in the inflorescence were obtained. Nearly one-third of the gene sets displayed differentiated expression profiles in terms of their subgenome orthologs. The identified genes, most of which were predominantly expressed in anthers, encode proteins involved in wheat floral identity determination, anther and pollen development, pollen-pistil interaction, and others. Particularly, 25 annotated gene sets are associated with pollen wall formation, of which 18 encode enzymes or proteins participating in lipid metabolic pathway, including fatty acid ω-hydroxylation, alkane and fatty alcohol biosynthesis, and glycerophospholipid metabolism. We showed that the comparative transcriptomics approach was effective in identifying genes for reproductive development and found that lipid metabolism was particularly active in wheat anthers.
Collapse
|
179
|
Cai W, Zhang D. The role of receptor-like kinases in regulating plant male reproduction. PLANT REPRODUCTION 2018; 31:77-87. [PMID: 29508076 DOI: 10.1007/s00497-018-0332-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/19/2018] [Indexed: 05/21/2023]
Abstract
RLKs in anther development. The cell-to-cell communication is essential for specifying different cell types during plant growth, development and adaption to the ever-changing environment. Plant male reproduction, in particular, requires the exquisitely synchronized development of different cell layers within the male tissue, the anther. Receptor-like kinases (RLKs) belong to a large group of kinases localized on the cell surfaces, perceiving extracellular signals and thereafter regulating intracellular processes. Here we update the role of RLKs in early anther development by defining the cell fate and anther patterning, responding to the changing environment and controlling anther carbohydrate metabolism. We provide speculation of the poorly characterized ligands and substrates of these RLKs. The conserved and diversified aspects underlying the function of RLKs in anther development are discussed.
Collapse
Affiliation(s)
- Wenguo Cai
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, 5064, Australia.
| |
Collapse
|
180
|
Xue Z, Xu X, Zhou Y, Wang X, Zhang Y, Liu D, Zhao B, Duan L, Qi X. Deficiency of a triterpene pathway results in humidity-sensitive genic male sterility in rice. Nat Commun 2018; 9:604. [PMID: 29426861 PMCID: PMC5807508 DOI: 10.1038/s41467-018-03048-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/16/2018] [Indexed: 11/26/2022] Open
Abstract
In flowering plants, the pollen coat protects the released male germ cells from desiccation and damage during pollination. However, we know little about the mechanism by which the chemical composition of the pollen coat prevents dehydration of pollen grains. Here we report that deficiency of a grass conserved triterpene synthase, OsOSC12/OsPTS1, in rice leads to failure of pollen coat formation. The mutant plants are male sterile at low relative humidity (RH < 60%), but fully male fertile at high relative humidity (>80%). The lack of three major fatty acids in the pollen coat results in rapid dehydration of pollen grains. We show that applying mixtures of linolenic acid and palmitic acid or stearic acid are able to prevent over-dehydration of mutant pollen grains. We propose that humidity-sensitive genic male sterility (HGMS) could be a desirable trait for hybrid breeding in rice, wheat, maize, and other crops. In flowering plants, the pollen coat surrounds the male germ cells and protects against dehydration, damage and pathogen attack. Here, the authors show that a deficiency in terpenoid synthesis results in rice pollen over-dehydration and leads to a humidity-sensitive conditional male sterile phenotype.
Collapse
Affiliation(s)
- Zheyong Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Xia Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Yuan Zhou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Xiaoning Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Yingchun Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Dan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,University of Chinese Academy of Sciences, Yuquan Road 19, Beijing, 100049, China
| | - Binbin Zhao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China
| | - Lixin Duan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.,International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing, 100093, China.
| |
Collapse
|
181
|
Yang Z, Zhang Y, Sun L, Zhang P, Liu L, Yu P, Xuan D, Xiang X, Wu W, Cao L, Cheng S. Identification of cyp703a3-3 and analysis of regulatory role of CYP703A3 in rice anther cuticle and pollen exine development. Gene 2018; 649:63-73. [PMID: 29355682 DOI: 10.1016/j.gene.2018.01.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/10/2018] [Accepted: 01/16/2018] [Indexed: 11/30/2022]
Abstract
Anther cuticle and pollen exine are two elaborated lipid-soluble barriers protecting pollen grains from environmental and biological stresses. However, less is known about the mechanisms underlying the synthesis of these lipidic polymers. Here, we identified a no-pollen male-sterility mutant cyp703a3-3 from the indica restorer line Zhonghui 8015 (Zh8015) mutant library treated with 60Coγ-ray radiation. Histological analysis indicated that cyp703a3-3 underwent abnormal tapetal cells development, produced few orbicules and secreted less sporopollenin precursors to anther locule, as well as cutin monomers on anther. Genetic analysis revealed that cyp703a3-3 was controlled by a single recessive gene. Map-based cloning was performed to narrow down the mutant gene to a 47.78-kb interval on the chromosome 8 between two markers S15-29 and S15-30. Sequence analysis detected three bases (GAA) deletion in the first exon of LOC_Os08g03682, annotated as CYP703A3 with homologous sequences related to male sterility in Arabidopsis, causing the Asparagine deletion in the mutant site. Moreover, we transformed genomic fragment of CYP703A3 into cyp703a3-3, which male-sterility phenotype was recovered. Both the wild-type and cyp703a3-3 mutant 3D structure of CYP703A3 protein were modeled. Results of qPCR suggested CYP703A3 mainly expressed in anthers with greatest abundance at microspore stage, and genes involved in sporopollenin precursors formation and transportation, such as GAMYB, TDR, CYP704B2, DPW2, OsABCG26 and OsABCG15, were significantly reduced in cyp703a3-3. Collectively, our results further elaborated CYP703A3 plays vital role in anther cuticle and pollen exine development in rice (Oryza sativa L.).
Collapse
Affiliation(s)
- Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Liu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Dandan Xuan
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaojiao Xiang
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research & State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
182
|
Zhang Z, Hu M, Feng X, Gong A, Cheng L, Yuan H. Proteomes and Phosphoproteomes of Anther and Pollen: Availability and Progress. Proteomics 2018; 17. [PMID: 28665021 DOI: 10.1002/pmic.201600458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 06/02/2017] [Indexed: 12/24/2022]
Abstract
In flowering plants, anther development plays crucial role in sexual reproduction. Within the anther, microspore mother cells meiosis produces microspores, which further develop into pollen grains that play decisive role in plant reproduction. Previous studies on anther biology mainly focused on single gene functions relying on genetic and molecular methods. Recently, anther development has been expanded from multiple OMICS approaches like transcriptomics, proteomics/phosphoproteomics, and metabolomics. The development of proteomics techniques allowing increased proteome coverage and quantitative measurements of proteins which can characterize proteomes and their modulation during normal development, biotic and abiotic stresses in anther development. In this review, we summarize the achievements of proteomics and phosphoproteomics with anther and pollen organs from model plant and crop species (i.e. Arabidopsis, rice, tobacco). The increased proteomic information facilitated translation of information from the models to crops and thus aid in agricultural improvement.
Collapse
Affiliation(s)
- Zaibao Zhang
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Menghui Hu
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Xiaobing Feng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Andong Gong
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Lin Cheng
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| | - Hongyu Yuan
- Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang, Henan, P. R. China.,College of Life Science, Xinyang Normal College, Xinyang, Henan, P. R. China
| |
Collapse
|
183
|
Li X, Ye J, Ma H, Lu P. Proteomic analysis of lysine acetylation provides strong evidence for involvement of acetylated proteins in plant meiosis and tapetum function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:142-154. [PMID: 29124795 DOI: 10.1111/tpj.13766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 05/18/2023]
Abstract
Protein lysine acetylation (KAC) is a dynamic and reversible post-translational modification that has important biological roles in many organisms. Although KAC has been shown to affect reproductive development and meiosis in yeast and animals, similar studies are largely lacking in flowering plants, especially proteome-scale investigations for particular reproductive stages. Here, we report results from a proteomic investigation to detect the KAC status of the developing rice anthers near the time of meiosis (RAM), providing strong biochemical evidence for roles of many KAC-affected proteins during anther development and meiosis in rice. We identified a total of 1354 KAC sites in 676 proteins. Among these, 421 acetylated proteins with 629 KAC sites are novel, greatly enriching our knowledge on KAC in flowering plants. Gene Ontology enrichment analysis showed chromatin silencing, protein folding, fatty acid biosynthetic process and response to stress to be over-represented. In addition, certain potentially specific KAC motifs in RAM were detected. Importantly, 357 rice meiocyte proteins were acetylated; and four proteins genetically identified to be important for rice tapetum and pollen development were acetylated on 14 KAC sites in total. Furthermore, 47 putative secretory proteins were detected to exhibit acetylated status in RAM. Moreover, by comparing our lysine acetylome with the RAM phosphoproteome we obtained previously, we proposed a correlation between KAC and phosphorylation as a potential modulatory mechanism in rice RAM. This study provides the first global survey of KAC in plant reproductive development, making a promising starting point for further functional analysis of KAC during rice anther development and meiosis.
Collapse
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
184
|
Ni E, Zhou L, Li J, Jiang D, Wang Z, Zheng S, Qi H, Zhou Y, Wang C, Xiao S, Liu Z, Zhou H, Zhuang C. OsCER1 Plays a Pivotal Role in Very-Long-Chain Alkane Biosynthesis and Affects Plastid Development and Programmed Cell Death of Tapetum in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1217. [PMID: 30237804 PMCID: PMC6136457 DOI: 10.3389/fpls.2018.01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 05/07/2023]
Abstract
Cuticle waxes, which are primarily comprised of very-long-chain (VLC) alkanes, play an important role in plant reproductive development. ECERIFERUM1 (CER1) is recognized as the core element for VLC alkane biosynthesis in Arabidopsis (Arabidopsis thaliana). However, genes involved in the VLC alkane biosynthesis in rice remain unclear, and the alkane-form pathway in rice has still to be further explored. Here, we show that OsCER1, a homology of CER1, functions in VLC alkanes biosynthesis, which also could regulate anther development and plastids differentiation in rice. OsCER1 was highly expressed in the tapetum (stage 10) and bicellular pollen cells (stage 11). The decreased content of VLC alkanes (C25 and C27) in the OsCER1 knocked down plants as well as the increased content of C27 alkanes in the OsCER1 overexpression plants indicates that OsCER1 participates in VLC alkane biosynthesis. Downregulation of OsCER1 in rice led to sterility, and fewer amyloplasts within the mature pollen grains. In addition, the downregulation of OsCER1 in rice caused delayed tapetal programmed cell death and abnormal development of plastids in the tapetal cells. Furthermore, significantly altered levels of expression of genes involved in the pollen development were exhibited in the OsCER1 knocked down plants. These results indicate that OsCER1 is critical for VLC alkanes biosynthesis, plastids differentiation, and pollen development. This work provides insights into the VLC alkanes biosynthesis in anther development in rice.
Collapse
Affiliation(s)
- Erdong Ni
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Lingyan Zhou
- Laboratory Center of Basic Biology and Biotechnology, Education Department of Guangdong Province, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zhonghua Wang
- Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hua Qi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cimei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Hai Zhou, Chuxiong Zhuang,
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources – Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, College of Life Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Hai Zhou, Chuxiong Zhuang,
| |
Collapse
|
185
|
Zou T, Xiao Q, Li W, Luo T, Yuan G, He Z, Liu M, Li Q, Xu P, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P, Li S. OsLAP6/OsPKS1, an orthologue of Arabidopsis PKSA/LAP6, is critical for proper pollen exine formation. RICE (NEW YORK, N.Y.) 2017; 10:53. [PMID: 29282604 PMCID: PMC5745217 DOI: 10.1186/s12284-017-0191-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/06/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Male fertility is crucial for rice yield, and the improvement of rice yield requires hybrid production that depends on male sterile lines. Although recent studies have revealed several important genes in male reproductive development, our understanding of the mechanisms of rice pollen development remains unclear. RESULTS We identified a rice mutant oslap6 with complete male sterile phenotype caused by defects in pollen exine formation. By using the MutMap method, we found that a single nucleotide polymorphism (SNP) variation located in the second exon of OsLAP6/OsPKS1 was responsible for the mutant phenotype. OsLAP6/OsPKS1 is an orthologous gene of Arabidopsis PKSA/LAP6, which functions in sporopollenin metabolism. Several other loss-of-function mutants of OsLAP6/OsPKS1 generated by the CRISPR/Cas9 genomic editing tool also exhibited the same phenotype of male sterility. Our cellular analysis suggested that OsLAP6/OsPKS1 might regulate pollen exine formation by affecting bacula elongation. Expression examination indicated that OsLAP6/OsPKS1 is specifically expressed in tapetum, and its product is localized to the endoplasmic reticulum (ER). Protein sequence analysis indicated that OsLAP6/OsPKS1 is conserved in land plants. CONCLUSIONS OsLAP6/OsPKS1 is a critical molecular switch for rice male fertility by participating in a conserved sporopollenin precursor biosynthetic pathway in land plants. Manipulation of OsLAP6/OsPKS1 has potential for application in hybrid rice breeding.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Qiao Xiao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenjie Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Luo
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingxing Liu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402160, China
| | - Peizhou Xu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| |
Collapse
|
186
|
Lin H, Yu J, Pearce SP, Zhang D, Wilson ZA. RiceAntherNet: a gene co-expression network for identifying anther and pollen development genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1076-1091. [PMID: 29031031 DOI: 10.1111/tpj.13744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
In plants, normal anther and pollen development involves many important biological events and complex molecular regulatory coordination. Understanding gene regulatory relationships during male reproductive development is essential for fundamental biology and crop breeding. In this work, we developed a rice gene co-expression network for anther development (RiceAntherNet) that allows prediction of gene regulatory relationships during pollen development. RiceAntherNet was generated from 57 rice anther tissue microarrays across all developmental stages. The microarray datasets from nine rice male sterile mutants, including msp1-4, ostdl1a, gamyb-2, tip2, udt1-1, tdr, eat1-1, ptc1 and mads3-4, were used to explore and test the network. Among the changed genes, three clades showing differential expression patterns were constructed to identify genes associated with pollen formation. Many of these have known roles in pollen development, for example, seven genes in Clade 1 (OsABCG15, OsLAP5, OsLAP6, DPW, CYP703A3, OsNP1 and OsCP1) are involved in rice pollen wall formation. Furthermore, Clade 1 contained 12 genes whose predicted orthologs in Arabidopsis have been reported as key during pollen development and may play similar roles in rice. Genes in Clade 2 are expressed earlier than Clade 1 (anther stages 2-9), while genes in Clade 3 are expressed later (stages 10-12). RiceAntherNet serves as a valuable tool for identifying novel genes during plant anther and pollen development. A website is provided (https://www.cpib.ac.uk/anther/riceindex.html) to present the expression profiles for gene characterization. This will assist in determining the key relationships between genes, thus enabling characterization of critical genes associated with anther and pollen regulatory networks.
Collapse
Affiliation(s)
- Hong Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Jing Yu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Simon P Pearce
- School of Mathematics, University of Manchester, Manchester, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zoe A Wilson
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, UK
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
187
|
Two rice receptor-like kinases maintain male fertility under changing temperatures. Proc Natl Acad Sci U S A 2017; 114:12327-12332. [PMID: 29087306 DOI: 10.1073/pnas.1705189114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plants employ dynamic molecular networks to control development in response to environmental changes, yet the underlying mechanisms are largely unknown. Here we report the identification of two rice leucine-rich repeat receptor-like kinases, Thermo-Sensitive Genic Male Sterile 10 (TMS10) and its close homolog TMS10-Like (TMS10L), which redundantly function in the maintenance of the tapetal cell layer and microspore/pollen viability under normal temperature conditions with TMS10 playing an essential role in higher temperatures (namely, 28 °C). tms10 displays male sterility under high temperatures but male fertility under low temperatures, and the tms10 tms10l double mutant shows complete male sterility under both high and low temperatures. Biochemical and genetic assays indicate that the kinase activity conferred by the intracellular domain of TMS10 is essential for tapetal degeneration and male fertility under high temperatures. Furthermore, indica or japonica rice varieties that contain mutations in TMS10, created by genetic crosses or genome editing, also exhibit thermo-sensitive genic male sterility. These findings demonstrate that TMS10 and TMS10L act as a key switch in postmeiotic tapetal development and pollen development by buffering environmental temperature changes, providing insights into the molecular mechanisms by which plants develop phenotypic plasticity via genotype-environment temperature interaction. TMS10 may be used as a genetic resource for the development of hybrid seed production systems in crops.
Collapse
|
188
|
Analysis of the meiotic transcriptome reveals the genes related to the regulation of pollen abortion in cytoplasmic male-sterile pepper (Capsicum annuum L.). Gene 2017; 641:8-17. [PMID: 29031775 DOI: 10.1016/j.gene.2017.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 01/23/2023]
Abstract
CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper.
Collapse
|
189
|
Liu YJ, Liu X, Chen H, Zheng P, Wang W, Wang L, Zhang J, Tu J. A Plastid-Localized Pentatricopeptide Repeat Protein is Required for Both Pollen Development and Plant Growth in Rice. Sci Rep 2017; 7:11484. [PMID: 28904339 PMCID: PMC5597598 DOI: 10.1038/s41598-017-10727-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022] Open
Abstract
Several mitochondrial-targeted pentatricopeptide repeat (PPR) proteins involved in pollen development have been reported to be fertility restorer (Rf) proteins. However, the roles of plastid-localized PPR proteins in plant male reproduction are poorly defined. Here, we described a plastid-localized PPR-SMR protein, OsPPR676, which is required for plant growth and pollen development in rice. In this study, OsPPR676 was confirmed to be an interacted protein with Osj10gBTF3, β-subunit of nascent polypeptide-associated complex (β-NAC), by bimolecular fluorescence complementation assays, indicating that both proteins are probably involved in the same regulatory pathway of pollen development. Compared with other chloroplast-rich tissues, OsPPR676 was only weakly expressed in anther, but in the Mei and YM stages of pollen development, its expression was relatively strong in the tapetum. Disruption of OsPPR676 resulted in growth retardation of plants and partial sterility of pollens. Phenotypic analysis of different osppr676 mutant lines implied that the SMR domain was not essential for the function of OsPPR676. We further demonstrated that OsPPR676 is essential for production of plastid atpB subunit, and then plays crucial roles in biosynthesis of fatty acids, carbohydrates, and other organic matters via affecting activity of ATP synthase.
Collapse
Affiliation(s)
- Yu-Jun Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.,State Key Lab of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T., Hong Kong, P. R. China
| | - Xuejiao Liu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hao Chen
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peng Zheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenyi Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Liangchao Wang
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianhua Zhang
- State Key Lab of Agrobiotechnology, School of Life Science, The Chinese University of Hong Kong, N.T., Hong Kong, P. R. China.
| | - Jumin Tu
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
190
|
Zhu X, Yu J, Shi J, Tohge T, Fernie AR, Meir S, Aharoni A, Xu D, Zhang D, Liang W. The polyketide synthase OsPKS2 is essential for pollen exine and Ubisch body patterning in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:612-628. [PMID: 28783252 DOI: 10.1111/jipb.12574] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/03/2017] [Indexed: 05/07/2023]
Abstract
Lipid and phenolic metabolism are important for pollen exine formation. In Arabidopsis, polyketide synthases (PKSs) are essential for both sporopollenin biosynthesis and exine formation. Here, we characterized the role of a polyketide synthase (OsPKS2) in male reproduction of rice (Oryza sativa). Recombinant OsPKS2 catalyzed the condensation of fatty acyl-CoA with malonyl-CoA to generate triketide and tetraketide α-pyrones, the main components of pollen exine. Indeed, the ospks2 mutant had defective exine patterning and was male sterile. However, the mutant showed no significant reduction in sporopollenin accumulation. Compared with the WT (wild type), ospks2 displayed unconfined and amorphous tectum and nexine layers in the exine, and less organized Ubisch bodies. Like the pksb/lap5 mutant of the Arabidopsis ortholog, ospks2 showed broad alterations in the profiles of anther-related phenolic compounds. However, unlike pksb/lap5, in which most detected phenolics were substantially decreased, ospks2 accumulated higher levels of phenolics. Based on these results and our observation that OsPKS2 is unable to fully restore the exine defects in the pksb/lap5, we propose that PKS proteins have functionally diversified during evolution. Collectively, our results suggest that PKSs represent a conserved and diversified biochemical pathway for anther and pollen development in higher plants.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Takayuki Tohge
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, SA 5005, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
191
|
Zou T, Li S, Liu M, Wang T, Xiao Q, Chen D, Li Q, Liang Y, Zhu J, Liang Y, Deng Q, Wang S, Zheng A, Wang L, Li P. An atypical strictosidine synthase, OsSTRL2, plays key roles in anther development and pollen wall formation in rice. Sci Rep 2017; 7:6863. [PMID: 28761138 PMCID: PMC5537339 DOI: 10.1038/s41598-017-07064-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/21/2017] [Indexed: 11/25/2022] Open
Abstract
Strictosidine synthase (STR) plays an important role in the biosynthesis of terpenoid indole alkaloids (TIAs) and is expressed in a range of active meristematic tissues of higher plants. STR proteins are involved in different physiological and biochemical pathways. However, the function of STR proteins in rice development remains poorly understood. In this study, we identified 21 possible STR-like (OsSTRL) family members in rice genome and found that only one gene, OsSTRL2, exhibited a pre-emergency specific florescence expression pattern. Tissue-specific expression profile analysis, β-glucuronidase histochemical (GUS) staining and RNA in situ hybridization confirmed that OsSTRL2 was highly expressed in tapetal cells and microspores. Comparative protein sequence analysis indicated that OsSTRL2 lacked the key catalytic residue found in a typical STR (STR1), although it possessed conserved β-propellers and α-helices formed the basic structure of STR1. OsSTRL2 knockout mutant resulted to male sterility because of the defects in anther development and pollen wall formation. Subcellular localization of OsSTRL2-YFP revealed that the OsSTRL2 protein was primarily localized in the endoplasmic reticulum (ER). Therefore, OsSTRL2 is an atypical strictosidine synthase that plays crucial roles in regulating anther development and pollen wall formation in rice.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China.
| | - Mingxing Liu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Xiao
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Chen
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Yueyang Liang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Shiquan Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Aiping Zheng
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Sichuan Agricultural University, Chengdu, 611130, China.
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Crop Genetic Resources and Improvement, Sichuan Agricultural University, Ministry of Education, Ya'an, 625014, China.
| |
Collapse
|
192
|
Xu Y, Liu S, Liu Y, Ling S, Chen C, Yao J. HOTHEAD-Like HTH1 is Involved in Anther Cutin Biosynthesis and is Required for Pollen Fertility in Rice. PLANT & CELL PHYSIOLOGY 2017; 58:1238-1248. [PMID: 28838125 DOI: 10.1093/pcp/pcx063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 04/22/2017] [Indexed: 05/26/2023]
Abstract
The cuticle covering the outer surface of anthers is essential for male reproductive development in plants. However, the mechanism underlying the synthesis of these lipidic polymers remains unclear. HOTHEAD (HTH) in Arabidopsis thaliana is a presumptive glucose-methanol-choline (GMC) oxidoreductase involved in the biosynthesis of long-chain α-,ω-dicarboxylic fatty acids. In this study, we characterized the function of an anther-specific gene HTH1 in rice. HTH1 contains a conserved GMC oxidoreductase-like domain, and the sequence of HTH1 was highly similar to that of HTH in A. thaliana. Quantitative real-time PCR (qRT-PCR) and in situ hybridization analyses showed that HTH1 was highly expressed in epidermal cells of anthers. Rice plants with HTH1 suppression through CRISPR (clustered regularly interspaced short palindromic repeats) and RNA interference (RNAi) displayed defective anther wall and aborted pollen. Disorganized cuticle layers in anthers and shriveled pollen grains were observed in HTH1-RNAi lines. The total amounts of long-chain fatty acids and cutin monomers in anthers of HTH1-RNAi lines were significantly reduced compared with the wild type. Our results suggested that HTH1 is involved in cutin biosynthesis and is required for anther development and pollen fertility in rice.
Collapse
Affiliation(s)
- Ya Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shasha Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaqin Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheng Ling
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Caisheng Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jialing Yao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
193
|
Yang X, Liang W, Chen M, Zhang D, Zhao X, Shi J. Rice fatty acyl-CoA synthetase OsACOS12 is required for tapetum programmed cell death and male fertility. PLANTA 2017; 246:105-122. [PMID: 28382520 DOI: 10.1007/s00425-017-2691-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/02/2017] [Indexed: 05/18/2023]
Abstract
Loss of function mutation of rice OsACOS12 impairs lipid metabolism-mediated anther cuticle and pollen wall formation, and interferes with tapetum programmed cell death, leading to male sterility. Acyl-CoA Synthetase (ACOS) is one of the enzymes activating fatty acids for various metabolic functions in plants. Here, we show that OsACOS12, an orthologue of Arabidopsis ACOS5 in rice, is crucial for rice fertility. Similar to acos5, osaocs12 mutant had no mature pollen. But unlike acos5, osaocs12 produced defective anthers lacking cutin and Ubisch bodies on the epidermal and inner surfaces, respectively, and delayed programmed cell death (PCD)-induced tapetum degradation. Those phenotypic changes were evident at stage 10, during which OsACOS12 had its maximum expression in tapetal cells and microspores. Chemical analysis revealed that the levels of anther cuticular lipid components (wax and cutin monomers) were significantly reduced in osaocs12, while the expression levels of three known lipid biosynthetic genes were unchanged. Recombinant OsACOS12 enzyme was shown to catalyze the conversion of C18:1 fatty acid to C18:1 CoA in vitro. Phylogenetic analysis indicated that OsACOS12 is an ancient and conserved enzyme associated with the plant's colonization to earth. Collectively, our study suggests that OsACOS12 is an ancient enzyme participating in a conserved metabolic pathway for diversified biochemical functions to secure male reproduction in plants.
Collapse
Affiliation(s)
- Xijia Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Minjiao Chen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Plant Genomics Center, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA, 5064, Australia
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| | - Xiangxiang Zhao
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian, 223300, China.
| |
Collapse
|
194
|
Liu Z, Lin S, Shi J, Yu J, Zhu L, Yang X, Zhang D, Liang W. Rice No Pollen 1 (NP1) is required for anther cuticle formation and pollen exine patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:263-277. [PMID: 28378445 DOI: 10.1111/tpj.13561] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 05/28/2023]
Abstract
Angiosperm male reproductive organs (anthers and pollen grains) have complex and interesting morphological features, but mechanisms that underlie their patterning are poorly understood. Here we report the isolation and characterization of a male sterile mutant of No Pollen 1 (NP1) in rice (Oryza sativa). The np1-4 mutant exhibited smaller anthers with a smooth cuticle surface, abnormal Ubisch bodies, and aborted pollen grains covered with irregular exine. Wild-type exine has two continuous layers; but np1-4 exine showed a discontinuous structure with large granules of varying size. Chemical analysis revealed reduction in most of the cutin monomers in np1-4 anthers, and less cuticular wax. Map-based cloning suggested that NP1 encodes a putative glucose-methanol-choline oxidoreductase; and expression analyses found NP1 preferentially expressed in the tapetal layer from stage 8 to stage 10 of anther development. Additionally, the expression of several genes involved in biosynthesis and in the transport of lipid monomers of sporopollenin and cutin was decreased in np1-4 mutant anthers. Taken together, these observations suggest that NP1 is required for anther cuticle formation, and for patterning of Ubisch bodies and the exine. We propose that products of NP1 are likely important metabolites in the development of Ubisch bodies and pollen exine, necessary for polymerization, assembly, or both.
Collapse
Affiliation(s)
- Ze Liu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sen Lin
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiujuan Yang
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
195
|
Hao X, Chen C, Chen G, Cao B, Lei J. Cloning and expression analysis of a new anther-specific gene CaMF4 in Capsicum annuum. J Genet 2017; 96:25-31. [PMID: 28360386 DOI: 10.1007/s12041-016-0735-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our previous study on the genic male sterile-fertile line 114AB of Capsicum annuum indicated a diversity of differentially expressed cDNA fragments in fertile and sterile lines. In this study, a transcript-derived fragment (TDF), male fertile 4 (CaMF4) was chosen for further investigation to observe that this specific fragment accumulates in the flower buds of the fertile line. The full genomic DNA sequence of CaMF4 was 894 bp in length, containing two exons and one intron, and the complete coding sequence encoded a putative 11.53 kDa protein of 109 amino acids. The derived protein of CaMF4 shared similarity with the members of PGPS/D3 protein family. The expression of CaMF4 was detected in both the flower buds at stage 8 and open flowers of the male fertile line. In contrast to this observation, expression of CaMF4 was not detected in any organs of the male sterile line. Further analysis revealed that CaMF4 was expressed particularly in anthers of the fertile line. Our results suggest that CaMF4 is an anther-specific gene and might be indispensable for anther or pollen development in C. annuum.
Collapse
Affiliation(s)
- Xuefeng Hao
- Department of Biology, Taiyuan Normal University, Taiyuan 030012, Shanxi Province, People's Republic of China.
| | | | | | | | | |
Collapse
|
196
|
Ranjan R, Khurana R, Malik N, Badoni S, Parida SK, Kapoor S, Tyagi AK. bHLH142 regulates various metabolic pathway-related genes to affect pollen development and anther dehiscence in rice. Sci Rep 2017; 7:43397. [PMID: 28262713 PMCID: PMC5338287 DOI: 10.1038/srep43397] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/20/2017] [Indexed: 01/14/2023] Open
Abstract
Apposite development of anther and its dehiscence are important for the reproductive success of the flowering plants. Recently, bHLH142, a bHLH transcription factor encoding gene of rice has been found to show anther-specific expression and mutant analyses suggest its functions in regulating tapetum differentiation and degeneration during anther development. However, our study on protein level expression and gain-of-function phenotype revealed novel aspects of its regulation and function during anther development. Temporally dissimilar pattern of bHLH142 transcript and polypeptide accumulation suggested regulation of its expression beyond transcriptional level. Overexpression of bHLH142 in transgenic rice resulted in indehiscent anthers and aborted pollen grains. Defects in septum and stomium rupture caused anther indehiscence while pollen abortion phenotype attributed to abnormal degeneration of the tapetum. Furthermore, RNA-Seq-based transcriptome analysis of tetrad and mature pollen stage anthers of wild type and bHLH142OEplants suggested that it might regulate carbohydrate and lipid metabolism, cell wall modification, reactive oxygen species (ROS) homeostasis and cell death-related genes during rice anther development. Thus, bHLH142 is an anther-specific gene whose expression is regulated at transcriptional and post-transcriptional/translational levels. It plays a role in pollen maturation and anther dehiscence by regulating expression of various metabolic pathways-related genes.
Collapse
Affiliation(s)
- Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Reema Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Naveen Malik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Marg, New Delhi 110021, India
| |
Collapse
|
197
|
Escamez S, Tuominen H. Contribution of cellular autolysis to tissular functions during plant development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:124-130. [PMID: 27936412 DOI: 10.1016/j.pbi.2016.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 05/26/2023]
Abstract
Plant development requires specific cells to be eliminated in a predictable and genetically regulated manner referred to as programmed cell death (PCD). However, the target cells do not merely die but they also undergo autolysis to degrade their cellular corpses. Recent progress in understanding developmental cell elimination suggests that distinct proteins execute PCD sensu stricto and autolysis. In addition, cell death alone and cell dismantlement can fulfill different functions. Hence, it appears biologically meaningful to distinguish between the modules of PCD and autolysis during plant development.
Collapse
Affiliation(s)
- Sacha Escamez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
198
|
Yue L, Twell D, Kuang Y, Liao J, Zhou X. Transcriptome Analysis of Hamelia patens (Rubiaceae) Anthers Reveals Candidate Genes for Tapetum and Pollen Wall Development. FRONTIERS IN PLANT SCIENCE 2017; 7:1991. [PMID: 28119704 PMCID: PMC5220384 DOI: 10.3389/fpls.2016.01991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
Studies of the anther transcriptome on non-model plants without a known genome are surprisingly scarce. RNA-Seq and digital gene expression (DGE) profiling provides a comprehensive approach to identify candidate genes contributing to developmental processes in non-model species. Here we built a transcriptome library of developing anthers of Hamelia patens and analyzed DGE profiles from each stage to identify genes that regulate tapetum and pollen development. In total 7,720 putative differentially expressed genes across four anther stages were identified. The number of putative stage-specific genes was: 776 at microspore mother cell stage, 807 at tetrad stage, 322 at uninucleate microspore stage, and the highest number (1,864) at bicellular pollen stage. GO enrichment analysis revealed 243 differentially expressed and 108 stage-specific genes that are potentially related to tapetum development, sporopollenin synthesis, and pollen wall. The number of expressed genes, their function and expression profiles were all significantly correlated with anther developmental processes. Overall comparisons of anther and pollen transcriptomes with those of rice and Arabidopsis together with the expression profiles of homologs of known anther-expressed genes, revealed conserved patterns and also divergence. The divergence may reflect taxon-specific differences in gene expression, the use RNA-seq as a more sensitive methodology, variation in tissue composition and sampling strategies. Given the lack of genomic sequence, this study succeeded in assigning putative identity to a significant proportion of anther-expressed genes and genes relevant to tapetum and pollen development in H. patens. The anther transcriptome revealed a molecular distinction between developmental stages, serving as a resource to unravel the functions of genes involved in anther development in H. patens and informing the analysis of other members of the Rubiaceae.
Collapse
Affiliation(s)
- Lin Yue
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - David Twell
- Department of Genetics, University of LeicesterLeicester, UK
| | - Yanfeng Kuang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Jingping Liao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | | |
Collapse
|
199
|
Zhang P, Zhang Y, Sun L, Sinumporn S, Yang Z, Sun B, Xuan D, Li Z, Yu P, Wu W, Wang K, Cao L, Cheng S. The Rice AAA-ATPase OsFIGNL1 Is Essential for Male Meiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:1639. [PMID: 29021797 PMCID: PMC5624289 DOI: 10.3389/fpls.2017.01639] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/06/2017] [Indexed: 05/18/2023]
Abstract
Meiosis is crucial in reproduction of plants and ensuring genetic diversity. Although several genes involved in homologous recombination and DNA repair have been reported, their functions in rice (Oryza sativa) male meiosis remain poorly understood. Here, we isolated and characterized the rice OsFIGNL1 (OsFidgetin-like 1) gene, encoding a conserved AAA-ATPase, and explored its function and importance in male meiosis and pollen formation. The rice Osfignl1 mutant exhibited normal vegetative growth, but failed to produce seeds and displayed pollen abortion phenotype. Phenotypic comparisons between the wild-type and Osfignl1 mutant demonstrated that OsFIGNL1 is required for anther development, and that the recessive mutation of this gene causes male sterility in rice. Complementation and CRISPR/Cas9 experiments demonstrated that wild-type OsFIGNL1 is responsible for the male sterility phenotype. Subcellular localization showed that OsFIGNL1-green fluorescent protein was exclusively localized in the nucleus of rice protoplasts. Male meiosis in the Osfignl1 mutant exhibited abnormal chromosome behavior, including chromosome bridges and multivalent chromosomes at diakinesis, lagging chromosomes, and chromosome fragments during meiosis. Yeast two-hybrid assays demonstrated OsFIGNL1 could interact with RAD51A1, RAD51A2, DMC1A, DMC1B, and these physical interactions were further confirmed by BiFC assay. Taken together, our results suggest that OsFIGNL1 plays an important role in regulation of male meiosis and anther development.
Collapse
Affiliation(s)
- Peipei Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yingxin Zhang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Lianping Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Sittipun Sinumporn
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhengfu Yang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Bin Sun
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Dandan Xuan
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zihe Li
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Ping Yu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Weixun Wu
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Kejian Wang
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liyong Cao
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| | - Shihua Cheng
- Key Laboratory for Zhejiang Super Rice Research and State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
- *Correspondence: Liyong Cao, Shihua Cheng,
| |
Collapse
|
200
|
Men X, Shi J, Liang W, Zhang Q, Lian G, Quan S, Zhu L, Luo Z, Chen M, Zhang D. Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3) is required for anther development and male fertility in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:513-526. [PMID: 28082511 PMCID: PMC6055571 DOI: 10.1093/jxb/erw445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/09/2016] [Indexed: 05/20/2023]
Abstract
Lipid molecules are key structural components of plant male reproductive organs, such as the anther and pollen. Although advances have been made in the understanding of acyl lipids in plant reproduction, the metabolic pathways of other lipid compounds, particularly glycerolipids, are not fully understood. Here we report that an endoplasmic reticulum-localized enzyme, Glycerol-3-Phosphate Acyltransferase 3 (OsGPAT3), plays an indispensable role in anther development and pollen formation in rice. OsGPAT3 is preferentially expressed in the tapetum and microspores of the anther. Compared with wild-type plants, the osgpat3 mutant displays smaller, pale yellow anthers with defective anther cuticle, degenerated pollen with defective exine, and abnormal tapetum development and degeneration. Anthers of the osgpat3 mutant have dramatic reductions of all aliphatic lipid contents. The defective cuticle and pollen phenotype coincide well with the down-regulation of sets of genes involved in lipid metabolism and regulation of anther development. Taking these findings together, this work reveals the indispensable role of a monocot-specific glycerol-3-phosphate acyltransferase in male reproduction in rice.
Collapse
Affiliation(s)
- Xiao Men
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qianfei Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gaibin Lian
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Quan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia, Australia
- Correspondence:
| |
Collapse
|