151
|
Inflammation-induced CD69 + Kupffer cell feedback inhibits T cell proliferation via membrane-bound TGF-β1. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1259-1269. [PMID: 27933593 DOI: 10.1007/s11427-016-0357-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
Abstract
Kupffer cells, tissue-resident macrophage lineage cell, are enriched in vertebrate liver. The mouse F4/80+ Kupffer cells have been subclassified into two subpopulations according to their phenotype and function: CD68+ subpopulation with potent reactive oxygen species (ROS) production and phagocytic capacities, and CD11b+ subpopulation with a potent capacity to produce T helper 1 cytokines. In addition, CD11b+ Kupffer cells/macrophages may be migrated from the bone marrow or spleen, especially in inflammatory conditions of the liver. For analyzing diverse Kupffer cell subsets, we infected mice with Listeria monocytogenes and analyzed the phenotype variations of hepatic Kupffer cells. During L. monocytogenes infection, hepatic CD69+ Kupffer cells were significantly induced and expanded, and CD69+ Kupffer cells expressed higher level of CD11b, and particularly high level of membrane-bound TGF-β1 (mTGF-β1) but lower level of F4/80. We also found that clodronate liposome administration did not eliminate hepatic CD69+ Kupffer cell subset. We consider the hepatic CD69+ Kupffer cell population corresponds to CD11b+ Kupffer cells, the bone marrow-derived population. Hepatic CD69+ Kupffer cells suppressed Ag-nonspecific and OVA-specific CD4 T cell proliferation through mTGF-β1 both in vitro and in vivo, meanwhile, they did not interfere with activation of CD4 T cells. Thus, we have identified a new subset of inflammation-induced CD69+ Kupffer cells which can feedback inhibit CD4 T cell response via cell surface TGF-β1 at the late stage of immune response against infection. CD69+ Kupffer cells may contribute to protect host from pathological injure by preventing overactivation of immune response.
Collapse
|
152
|
Zeng T, Zhang CL, Xiao M, Yang R, Xie KQ. Critical Roles of Kupffer Cells in the Pathogenesis of Alcoholic Liver Disease: From Basic Science to Clinical Trials. Front Immunol 2016; 7:538. [PMID: 27965666 PMCID: PMC5126119 DOI: 10.3389/fimmu.2016.00538] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Alcoholic liver disease (ALD) encompasses a spectrum of liver injury ranging from steatosis to steatohepatitis, fibrosis, and finally cirrhosis. Accumulating evidences have demonstrated that Kupffer cells (KCs) play critical roles in the pathogenesis of both chronic and acute ALD. It has become clear that alcohol exposure can result in increased hepatic translocation of gut-sourced endotoxin/lipopolysaccharide, which is a strong M1 polarization inducer of KCs. The activated KCs then produce a large amount of reactive oxygen species (ROS), pro-inflammatory cytokines, and chemokines, which finally lead to liver injury. The critical roles of KCs and related inflammatory cascade in the pathogenesis of ALD make it a promising target in pharmaceutical drug developments for ALD treatment. Several drugs (such as rifaximin, pentoxifylline, and infliximab) have been evaluated or are under evaluation for ALD treatment in randomized clinical trials. Furthermore, screening pharmacological regulators for KCs toward M2 polarization may provide additional therapeutic agents. The combination of these potentially therapeutic drugs with hepatoprotective agents (such as zinc, melatonin, and silymarin) may bring encouraging results.
Collapse
Affiliation(s)
- Tao Zeng
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Cui-Li Zhang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Mo Xiao
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Rui Yang
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| | - Ke-Qin Xie
- Institute of Toxicology, School of Public Health, Shandong University , Jinan , China
| |
Collapse
|
153
|
Activation and increase of radio-sensitive CD11b+ recruited Kupffer cells/macrophages in diet-induced steatohepatitis in FGF5 deficient mice. Sci Rep 2016; 6:34466. [PMID: 27708340 PMCID: PMC5052649 DOI: 10.1038/srep34466] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/13/2016] [Indexed: 02/07/2023] Open
Abstract
We have recently reported that Kupffer cells consist of two subsets, radio-resistant resident CD68+ Kupffer cells and radio-sensitive recruited CD11b+ Kupffer cells/macrophages (Mφs). Non-alcoholic steatohepatitis (NASH) is characterized not only by hepatic steatosis but also chronic inflammation and fibrosis. In the present study, we investigated the immunological mechanism of diet-induced steatohepatitis in fibroblast growth factor 5 (FGF5) deficient mice. After consumption of a high fat diet (HFD) for 8 weeks, FGF5 null mice developed severe steatohepatitis and fibrosis resembling human NASH. F4/80+ Mφs which were both CD11b and CD68 positive accumulated in the liver. The production of TNF and FasL indicated that they are the pivotal effectors in this hepatitis. The weak phagocytic activity and lack of CRIg mRNA suggested that they were recruited Mφs. Intermittent exposure to 1 Gy irradiation markedly decreased these Mφs and dramatically inhibited liver inflammation without attenuating steatosis. However, depletion of the resident subset by clodronate liposome (c-lipo) treatment increased the Mφs and tended to exacerbate disease progression. Recruited CD11b+ CD68+ Kupffer cells/Mφs may play an essential role in steatohepatitis and fibrosis in FGF5 null mice fed with a HFD. Recruitment and activation of bone marrow derived Mφs is the key factor to develop steatohepatitis from simple steatosis.
Collapse
|
154
|
Lacotte S, Slits F, Orci LA, Meyer J, Oldani G, Delaune V, Gonelle-Gispert C, Morel P, Toso C. Impact of myeloid-derived suppressor cell on Kupffer cells from mouse livers with hepatocellular carcinoma. Oncoimmunology 2016; 5:e1234565. [PMID: 27999748 PMCID: PMC5139644 DOI: 10.1080/2162402x.2016.1234565] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/27/2022] Open
Abstract
Kupffer cells represent the first line of defense against tumor cells in the liver. Myeloid-derived suppressor cells (MDSC) have recently been observed in the liver parenchyma of tumor-bearing animals. The present study investigates the function of the MDSC subsets, and their impact on Kupffer cell phenotype and function. RIL-175 mouse hepatocellular carcinoma (HCC) cells were injected into the median liver lobe of C57BL/6 mice. Three weeks later, the median lobe hosting the tumor nodule was removed, and Kupffer cells and MDSCs were sorted from the remaining liver. Mouse livers devoid of HCC served as control. Kupffer cells expressed less co-stimulatory CD86 and MHCII and more co-inhibitory CD274 molecules in HCC-bearing livers than in control livers. Corresponding to this phenotype, Kupffer cells from HCC-bearing mice were less efficient in their function as antigen-presenting cells. Three CD11b+ cell populations were identified and sorted from HCC-bearing mice. These cells had various phenotypes with different levels of MDSC-specific surface markers (Ly6Ghigh cells, Gr1high cells, and Ly6Clow cells), and may be considered as bonafide MDSCs given their suppression of antigen-specific T cell proliferation. Primary isolated Kupffer cells in co-culture with the three MDSC subsets showed a decrease in CCL2 and IL-18 secretion, and an increase in IL-10 and IL-1β secretion, and an increased expression of CD86, CD274, and MHCII. In conclusion, these data demonstrated the existence of three MDSC subsets in HCC-bearing animals. These cells altered Kupffer cell function and may decrease the migration and activation of anticancer effector cells in the liver.
Collapse
Affiliation(s)
- Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Lorenzo A. Orci
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Jeremy Meyer
- Surgical Research Unit, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Philippe Morel
- Surgical Research Unit, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Hepato-pancreato-biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- Hepato-pancreato-biliary Centre, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
155
|
Histopathological Analysis of Rat Hepatotoxicity Based on Macrophage Functions: in Particular, an Analysis for Thioacetamide-induced Hepatic Lesions. Food Saf (Tokyo) 2016; 4:61-73. [PMID: 32231908 DOI: 10.14252/foodsafetyfscj.2016012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Hepatic macrophages play an important role in homeostasis. The functional abnormalities of hepatic macrophages primarily or secondarily influence chemically induced hepatotoxicity. However, the evaluation system based on their functions has not yet been established. Recently, a new concept (M1-/M2-macrophage polarization) was proposed; M1-macropahges are induced by INF-γ, and show high phagocytosis/tissue damage, whereas M2-macropahges are induced by IL-4 and play roles in reparative fibrosis by releasing IL-10 and TGF-β1. In hepatogenesis, CD68-expressing M1-macrophages predominantly exist in embryos; in neonates, in contrast, CD163-/CD204-expressing M2-macrophages appear along the sinusoids and mature as Kupffer cells. Activated Kupffer cells by liposome decrease AST and ALT values, whereas AST and ALT values are increased under Kupffer cells depleted with clodronate treatment. Since Kupffer cells may be involved in clearance of liver enzymes, macrophage condition should be taken into consideration when hepatotoxicity is analyzed. In TAA-induced acute hepatic lesions, INF-γ, TNF-α and IL-6 for M1-factors and IL-4 for M2-factors are already increased before histopathological change; the appearance of CD68-expressing M1-macrophages and CD163-expressing M2-macrophages follows in injured centrilobular lesions, and TGF-β1 and IL-10 are increased for reparative fibrosis. CD68-expressing M1-macrophages co-express MHC class II and Iba-1, whereas CD163-expressing M2-macrophages also express CD204 and Galectin-3. Under macrophage depletion by clodoronate, TAA-treated rat livers show prolonged coagulation necrosis of hepatocytes, and then develop dystrophic calcification without reparative fibrosis. The depletion of hepatic macrophages influences hepatic lesion development. Collectively, a histopathological analysis method for hepatotoxicity according to M1-/M2-macrophage polarization would lead to the refinement of hazard characterization of chemicals in food and feed.
Collapse
|
156
|
Cha SJ, Kim MS, Pandey A, Jacobs-Lorena M. Identification of GAPDH on the surface of Plasmodium sporozoites as a new candidate for targeting malaria liver invasion. J Exp Med 2016; 213:2099-112. [PMID: 27551151 PMCID: PMC5030802 DOI: 10.1084/jem.20160059] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/19/2016] [Indexed: 11/15/2022] Open
Abstract
Cha et al. show that Plasmodium GAPDH on the sporozoite surface acts as a ligand for binding Kupffer cell CD68, an interaction that is critical for parasite liver invasion. Thus, Plasmodium GAPDH is a candidate antigen for a prehepatic malaria vaccine. Malaria transmission begins when an infected mosquito delivers Plasmodium sporozoites into the skin. The sporozoite subsequently enters the circulation and infects the liver by preferentially traversing Kupffer cells, a macrophage-like component of the liver sinusoidal lining. By screening a phage display library, we previously identified a peptide designated P39 that binds to CD68 on the surface of Kupffer cells and blocks sporozoite traversal. In this study, we show that the P39 peptide is a structural mimic of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) on the sporozoite surface and that GAPDH directly interacts with CD68 on the Kupffer cell surface. Importantly, an anti-P39 antibody significantly inhibits sporozoite liver invasion without cross-reacting with mammalian GAPDH. Therefore, Plasmodium-specific GAPDH epitopes may provide novel antigens for the development of a prehepatic vaccine.
Collapse
Affiliation(s)
- Sung-Jae Cha
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| | - Min-Sik Kim
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205
| |
Collapse
|
157
|
Coppo M, Chinenov Y, Sacta MA, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun 2016; 7:12254. [PMID: 27464507 PMCID: PMC4974480 DOI: 10.1038/ncomms12254] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/14/2016] [Indexed: 12/27/2022] Open
Abstract
Diet-induced obesity causes chronic macrophage-driven inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT macrophages, however, differ in their origin, gene expression and activities: unlike infiltrating monocyte-derived inflammatory macrophages, WAT-resident macrophages counteract inflammation and insulin resistance, yet, the mechanisms underlying their transcriptional programming remain poorly understood. We recently reported that a nuclear receptor cofactor—glucocorticoid receptor (GR)-interacting protein (GRIP)1—cooperates with GR to repress inflammatory genes. Here, we show that GRIP1 facilitates macrophage programming in response to IL4 via a GR-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4—a driver of tissue-resident macrophage differentiation. Moreover, obese mice conditionally lacking GRIP1 in macrophages develop massive macrophage infiltration and inflammation in metabolic tissues, fatty livers, hyperglycaemia and insulin resistance recapitulating metabolic disease. Thus, GRIP1 is a critical regulator of immunometabolism, which engages distinct transcriptional mechanisms to coordinate the balance between macrophage populations and ultimately promote metabolic homeostasis. GRIP1 cooperates with the glucocorticoid receptor to repress inflammatory genes. Here the authors show that GRIP1 also controls macrophage polarization, by promoting KLF4-driven activation in response to IL-4, and that mice lacking GRIP1 in macrophages develop severe metabolic dysfunction on a high-fat diet.
Collapse
Affiliation(s)
- Maddalena Coppo
- The David Rosensweig Genomics Center, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA
| | - Yurii Chinenov
- The David Rosensweig Genomics Center, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA
| | - Maria A Sacta
- Weill Cornell/Rockefeller/Sloan-Kettering Tri-Institutional MD-PhD Program, 1300 York Avenue, New York, New York 10021, USA
| | - Inez Rogatsky
- The David Rosensweig Genomics Center, Hospital for Special Surgery, 535 East 70th Street, New York, New York 10021, USA.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, 1300 York Avenue, New York, New York 10021, USA.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA
| |
Collapse
|
158
|
Sato K, Hall C, Glaser S, Francis H, Meng F, Alpini G. Pathogenesis of Kupffer Cells in Cholestatic Liver Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2238-47. [PMID: 27452297 DOI: 10.1016/j.ajpath.2016.06.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 02/08/2023]
Abstract
Kupffer cells are the resident macrophages in the liver. They are located in hepatic sinusoid, which allows them to remove foreign materials, pathogens, and apoptotic cells efficiently. Activated Kupffer cells secrete various mediators, including cytokines and chemokines, to initiate immune responses, inflammation, or recruitment of other liver cells. Bile duct ligation (BDL) surgery in rodents is often studied as an animal model of cholestatic liver disease, characterized by obstruction of bile flow. BDL mice show altered functional activities of Kupffer cells compared with sham-operated mice, including elevated cytokine secretion and impaired bacterial clearance. Various mediators produced by other liver cells can regulate Kupffer cell activation, which suggest that Kupffer cells orchestrate with other liver cells to relay inflammatory signals and to maintain liver homeostasis during BDL-induced liver injury. Blocking or depletion of Kupffer cells, an approach for the treatment of liver diseases, has shown controversial implications. Procedures in Kupffer cell research have limitations and may produce various results in Kupffer cell research. It is important, however, to reveal underlying mechanisms of activation and functions of Kupffer cells, followed by hepatic inflammation and fibrosis. This review summarizes present Kupffer cell studies in cholestatic liver injury.
Collapse
Affiliation(s)
- Keisaku Sato
- Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas
| | - Chad Hall
- Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Academic Research Integration, Department Surgery, Baylor Scott & White Healthcare, Temple, Texas
| | - Shannon Glaser
- Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Department of Medicine, Texas A&M Health Science Center, College of Medicine, Temple, Texas; Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas.
| |
Collapse
|
159
|
Surewaard BGJ, Deniset JF, Zemp FJ, Amrein M, Otto M, Conly J, Omri A, Yates RM, Kubes P. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med 2016; 213:1141-51. [PMID: 27325887 PMCID: PMC4925027 DOI: 10.1084/jem.20160334] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023] Open
Abstract
Kubes et al. show that methicillin-resistant Staphylococcus aureus (MRSA) survive and proliferate inside Kupffer cells. Intracellular MRSA is resistant to neutrophil-killing and antibiotics treatment and, when released into the circulation, can infect other organs. Methicillin-resistant Staphylococcus aureus (MRSA) bacteremia is reaching epidemic proportions causing morbidity, mortality, and chronic disease due to relapses, suggesting an intracellular reservoir. Using spinning-disk confocal intravital microscopy to track MRSA-GFP in vivo, we identified that within minutes after intravenous infection MRSA is primarily sequestered and killed by intravascular Kupffer cells (KCs) in the liver. However, a minority of the Staphylococci overcome the KC’s antimicrobial defenses. These bacteria survive and proliferate for many days within this intracellular niche, where they remain undetected by recruited neutrophils. Over time, the KCs lyse, releasing bacteria into the circulation, enabling dissemination to other organs such as the kidneys. Vancomycin, the antibiotic of choice to treat MRSA bacteremia, could not penetrate the KCs to eradicate intracellular MRSA. However, based on the intravascular location of these specific macrophages, we designed a liposomal formulation of vancomycin that is efficiently taken up by KCs and diminished the intracellular MRSA. Targeting the source of the reservoir dramatically protected the liver but also dissemination to other organs, and prevented mortality. This vancomycin formulation strategy could help treat patients with Staphylococcal bacteremia without a need for novel antibiotics by targeting the previously inaccessible intracellular reservoir in KCs.
Collapse
Affiliation(s)
- Bas G J Surewaard
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Medical Microbiology, University Medical Centre, 3584 CX Utrecht, the Netherlands
| | - Justin F Deniset
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Franz J Zemp
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Matthias Amrein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - John Conly
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Pathology and Laboratory Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Microbiology, Infectious Diseases and Immunology, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Abdelwahab Omri
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury ON P3E 2C6, Ontario, Canada
| | - Robin M Yates
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| | - Paul Kubes
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada Department of Physiology and Pharmacology, University of Calgary, Calgary AB T2N 1N4, Alberta, Canada
| |
Collapse
|
160
|
Okada T, Kimura A, Kanki K, Nakatani S, Nagahara Y, Hiraga M, Watanabe Y. Liver Resident Macrophages (Kupffer Cells) Share Several Functional Antigens in Common with Endothelial Cells. Scand J Immunol 2016; 83:139-50. [PMID: 26678711 DOI: 10.1111/sji.12402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/05/2015] [Indexed: 12/21/2022]
Abstract
The identification and specific functions of Kupffer cells (KCs), a liver resident macrophage subpopulation, are still unclear. We compared KCs with peritoneal macrophages using cDNA microarray analysis and found that these cells share some antigens with endothelial cells. KCs highly express VCAM-1 and VEGF receptors (VEGF-Rs) at transcriptional and protein levels. VCAM-1 mediates the functional binding of KCs with lymphocytes and induces KC activation. Among the VEGF receptors, VEGF-R2 and VEGF-R3 were expressed on the KCs, while VEGF-R1 was expressed on other tissue macrophage subsets. VEGF120, a ligand of both VEGF-R1 and VEGF-R2, transduced strong survival and chemotactic signals through the KCs, when compared to PIGF, a VEGF-R1 ligand, indicating that VEGF-R2 plays significant roles in regulating KC activities. Expression of the VEGF-Rs was regulated by TLR4 signalling. These results suggest that the function of KCs is partly regulated by the common antigens shared with endothelial cells.
Collapse
Affiliation(s)
- T Okada
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - A Kimura
- Denka Seiken Co. Ltd., Niigata, Japan
| | - K Kanki
- Tottori University Faculty of Medicine, Institute of Regenerative Medicine and Biofunction, Yonago, Japan
| | - S Nakatani
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - Y Nagahara
- Department of Biotechnology, College of Science and Engineering, Tokyo Denki University, Saitama, Japan
| | - M Hiraga
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Y Watanabe
- Department of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| |
Collapse
|
161
|
Schlegel M, Köhler D, Körner A, Granja T, Straub A, Giera M, Mirakaj V. The neuroimmune guidance cue netrin-1 controls resolution programs and promotes liver regeneration. Hepatology 2016; 63:1689-705. [PMID: 26573873 DOI: 10.1002/hep.28347] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Hepatic ischemia/reperfusion (I/R) is a major adverse reaction to liver transplantation, hemorrhagic shock, or resection. Recently, the anti-inflammatory properties of the axonal guidance cue netrin-1 were reported. Here, we demonstrate that netrin-1 also impacts the resolution of inflammation and promotes hepatic repair and regeneration during liver I/R injury. In initial studies, we investigated the induction of netrin-1 and its receptors in murine liver tissues after I/R injury. Hepatic I/R injury was performed in mice with a partial genetic netrin-1 deficiency (Ntn1(+/-) ) or wild-type C57BL/6 treated with exogenous netrin-1 to examine the endogenous and therapeutically administered impact of netrin-1. These investigations were corroborated by studies determining the characteristics of intravascular leukocyte flow, clearance of apoptotic neutrophils (polymorphonuclear cells [PMNs]), production of specialized proresolving lipid mediators (SPMs), generation of specific growth factors contributing to the resolution of inflammation, and liver repair. Hepatic I/R was associated with a significant reduction of netrin-1 transcript and protein in murine liver tissue. Subsequent studies in netrin-1-deficient mice revealed lower efficacies in reducing PMN infiltration, proinflammatory cytokine levels, and hepatic-specific injury enzymes. Conversely, mice treated with exogenous netrin-1 exhibited increased liver protection and repair, reducing neutrophil influx into the injury site, decreasing proinflammatory mediators, increasing efferocytosis of apoptotic PMNs, and stimulating local endogenous biosynthesis of SPMs and the generation of specific growth factors. Finally, genetic studies implicated the A2B adenosine receptor in netrin-1-mediated protection during hepatic I/R injury. CONCLUSION The present study indicates a previously unrecognized role for netrin-1 in liver protection and its contribution to tissue homeostasis and regeneration.
Collapse
Affiliation(s)
- Martin Schlegel
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - David Köhler
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Körner
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Tiago Granja
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Andreas Straub
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Valbona Mirakaj
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Eberhard-Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
162
|
Woolbright BL, Jaeschke H. Neurologic cues modulate immune-mediated liver injury and regeneration. Hepatology 2016; 63:1427-9. [PMID: 26853091 PMCID: PMC4840026 DOI: 10.1002/hep.28490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/02/2016] [Indexed: 12/07/2022]
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
163
|
Wang T, Wang Z, Yang P, Xia L, Zhou M, Wang S, Du J, Zhang J. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice. Cell Death Dis 2016; 7:e2176. [PMID: 27054331 PMCID: PMC4855679 DOI: 10.1038/cddis.2016.9] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 01/20/2023]
Abstract
The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1−/− mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury.
Collapse
Affiliation(s)
- T Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China.,Cambridge Suda Genome Resource Center, Soochow University, Suzhou, China
| | - Z Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - P Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - L Xia
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - M Zhou
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - S Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jie Du
- Beijing An Zhen Hospital, Capital Medical University, Beijing, China
| | - J Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
164
|
Robert O, Boujedidi H, Bigorgne A, Ferrere G, Voican CS, Vettorazzi S, Tuckermann JP, Bouchet-Delbos L, Tran T, Hemon P, Puchois V, Dagher I, Douard R, Gaudin F, Gary-Gouy H, Capel F, Durand-Gasselin I, Prévot S, Rousset S, Naveau S, Godot V, Emilie D, Lombès M, Perlemuter G, Cassard AM. Decreased expression of the glucocorticoid receptor-GILZ pathway in Kupffer cells promotes liver inflammation in obese mice. J Hepatol 2016; 64:916-24. [PMID: 26639395 DOI: 10.1016/j.jhep.2015.11.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Kupffer cells (KC) play a key role in the onset of inflammation in non-alcoholic steatohepatitis (NASH). The glucocorticoid receptor (GR) induces glucocorticoid-induced leucine zipper (GILZ) expression in monocytes/macrophages and is involved in several inflammatory processes. We hypothesized that the GR-GILZ axis in KC may contribute to the pathophysiology of obesity-induced liver inflammation. METHODS By using a combination of primary cell culture, pharmacological experiments, mice deficient for the Gr specifically in macrophages and transgenic mice overexpressing Gilz in macrophages, we explored the involvement of the Gr-Gilz axis in KC in the pathophysiology of obesity-induced liver inflammation. RESULTS Obesity was associated with a downregulation of the Gr and Gilz, and an impairment of Gilz induction by lipopolysaccharide (LPS) and dexamethasone (DEX) in KC. Inhibition of Gilz expression in isolated KC transfected with Gilz siRNA demonstrated that Gilz downregulation was sufficient to sensitize KC to LPS. Conversely, liver inflammation was decreased in obese transgenic mice specifically overexpressing Gilz in macrophages. Pharmacological inhibition of the Gr showed that impairment of Gilz induction in KC by LPS and DEX in obesity was driven by a downregulation of the Gr. In mice specifically deficient for Gr in macrophages, Gilz expression was low, leading to an exacerbation of obesity-induced liver inflammation. CONCLUSIONS Obesity is associated with a downregulation of the Gr-Gilz axis in KC, which promotes liver inflammation. The Gr-Gilz axis in KC is an important target for the regulation of liver inflammation in obesity.
Collapse
Affiliation(s)
- Olivier Robert
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Hédia Boujedidi
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Amélie Bigorgne
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Gladys Ferrere
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | | | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany
| | - Jan Peter Tuckermann
- Institute of Comparative Molecular Endocrinology (CME), Ulm University, 89081 Ulm, Germany
| | | | - Thi Tran
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | - Patrice Hemon
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | - Virginie Puchois
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Ibrahim Dagher
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France; AP-HP, Hôpital Antoine-Béclère, Service de chirurgie minimale invasive, DHU Hépatinov, Clamart, France
| | - Richard Douard
- AP-HP, Hôpital Européen Georges Pompidou, Service de chirurgie, Paris, France; AP-HP, Hôpital Avicenne, Service de chirurgie, Bobigny, France
| | - Francoise Gaudin
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; IFR 141 Institut Paris-Sud d'Innovation Thérapeutique, Châtenay-Malabry, France
| | - Hélène Gary-Gouy
- IFR 141 Institut Paris-Sud d'Innovation Thérapeutique, Châtenay-Malabry, France
| | - Francis Capel
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | | | - Sophie Prévot
- AP-HP, Hôpital Antoine-Béclère, Service d'anatomie pathologique, Clamart, France
| | - Sophie Rousset
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France
| | - Sylvie Naveau
- AP-HP, Hôpital Antoine-Béclère, Service d'hépato-gastroentérologie, Clamart, France
| | - Véronique Godot
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Dominique Emilie
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France
| | - Marc Lombès
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France; INSERM, U693, Le Kremlin-Bicêtre, France; AP-HP, Hôpital Antoine-Béclère, Service d'anatomie pathologique, Clamart, France; AP-HP, Hôpital Bicêtre, Service d'Endocrinologie et Maladies de la Reproduction, Le Kremlin-Bicêtre, France
| | - Gabriel Perlemuter
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France; AP-HP, Hôpital Antoine-Béclère, Service d'hépato-gastroentérologie, Clamart, France.
| | - Anne-Marie Cassard
- INSERM UMR996 - Inflammation, Chemokines and Immunopathology, Clamart, France; Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, Kremlin-Bicêtre, France.
| |
Collapse
|
165
|
Maini MK, Gehring AJ. The role of innate immunity in the immunopathology and treatment of HBV infection. J Hepatol 2016; 64:S60-S70. [PMID: 27084038 DOI: 10.1016/j.jhep.2016.01.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
In this review we give a brief update on sensors recently determined to be capable of detecting HBV, and examine how the virus represses the induction of pro-inflammatory cytokines like type I interferons. We overview cellular components of innate immunity that are present at high frequencies in the liver, and discuss their roles in HBV control and/or pathogenesis. We argue that many innate effectors have adaptive-like features or can exert specific effects on HBV through immunoregulation of T cells. Finally we consider current and possible future strategies to manipulate innate immunity as novel approaches towards a functional cure for HBV.
Collapse
Affiliation(s)
- Mala K Maini
- Division of Infection and Immunity and Institute of Immunity and Transplantation, UCL, United Kingdom.
| | - Adam J Gehring
- Molecular Microbiology and Immunology Department, Saint Louis University School of Medicine, United States
| |
Collapse
|
166
|
Oldhafer F, Bock M, Falk CS, Vondran FWR. Immunological aspects of liver cell transplantation. World J Transplant 2016; 6:42-53. [PMID: 27011904 PMCID: PMC4801804 DOI: 10.5500/wjt.v6.i1.42] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/21/2015] [Accepted: 12/08/2015] [Indexed: 02/05/2023] Open
Abstract
Within the field of regenerative medicine, the liver is of major interest for adoption of regenerative strategies due to its well-known and unique regenerative capacity. Whereas therapeutic strategies such as liver resection and orthotopic liver transplantation (OLT) can be considered standards of care for the treatment of a variety of liver diseases, the concept of liver cell transplantation (LCTx) still awaits clinical breakthrough. Success of LCTx is hampered by insufficient engraftment/long-term acceptance of cellular allografts mainly due to rejection of transplanted cells. This is in contrast to the results achieved for OLT where long-term graft survival is observed on a regular basis and, hence, the liver has been deemed an immune-privileged organ. Immune responses induced by isolated hepatocytes apparently differ considerably from those observed following transplantation of solid organs and, thus, LCTx requires refined immunological strategies to improve its clinical outcome. In addition, clinical usage of LCTx but also related basic research efforts are hindered by the limited availability of high quality liver cells, strongly emphasizing the need for alternative cell sources. This review focuses on the various immunological aspects of LCTx summarizing data available not only for hepatocyte transplantation but also for transplantation of non-parenchymal liver cells and liver stem cells.
Collapse
|
167
|
Kakani P, Suman S, Gupta L, Kumar S. Ambivalent Outcomes of Cell Apoptosis: A Barrier or Blessing in Malaria Progression. Front Microbiol 2016; 7:302. [PMID: 27014225 PMCID: PMC4791532 DOI: 10.3389/fmicb.2016.00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
The life cycle of Plasmodium in two evolutionary distant hosts, mosquito, and human, is a complex process. It is regulated at various stages of developments by a number of diverged mechanisms that ultimately determine the outcome of the disease. During the development processes, Plasmodium invades a variety of cells in two hosts. The invaded cells tend to undergo apoptosis and are subsequently removed from the system. This process also eliminates numerous parasites along with these apoptotic cells as a part of innate defense against the invaders. Plasmodium should escape the invaded cell before it undergoes apoptosis or it should manipulate host cell apoptosis for its survival. Interestingly, both these phenomena are evident in Plasmodium at different stages of development. In addition, the parasite also exhibits altruistic behavior and triggers its own killing for the selection of the best ‘fit’ progeny, removal of the ‘unfit’ parasites to conserve the nutrients and to support the host survival. Thus, the outcomes of cell apoptosis are ambivalent, favorable as well as unfavorable during malaria progression. Here we discuss that the manipulation of host cell apoptosis might be helpful in the regulation of Plasmodium development and will open new frontiers in the field of malaria research.
Collapse
Affiliation(s)
- Parik Kakani
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sneha Suman
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science Pilani, India
| |
Collapse
|
168
|
Merlin S, Bhargava KK, Ranaldo G, Zanolini D, Palestro CJ, Santambrogio L, Prat M, Follenzi A, Gupta S. Kupffer Cell Transplantation in Mice for Elucidating Monocyte/Macrophage Biology and for Potential in Cell or Gene Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:539-51. [PMID: 26773351 DOI: 10.1016/j.ajpath.2015.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/16/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Kupffer cells (KC) play major roles in immunity and tissue injury or repair. Because recapitulation of KC biology and function within liver will allow superior insights into their functional repertoire, we studied the efficacy of the cell transplantation approach for this purpose. Mouse KC were isolated from donor livers, characterized, and transplanted into syngeneic recipients. To promote cell engraftment through impairments in native KC, recipients were preconditioned with gadolinium chloride. The targeting, fate, and functionality of transplanted cells were evaluated. The findings indicated that transplanted KC engrafted and survived in recipient livers throughout the study period of 3 months. Transplanted KC expressed macrophage functions, including phagocytosis and cytokine expression, with or without genetic modifications using lentiviral vectors. This permitted studies of whether transplanted KC could affect outcomes in the context of acetaminophen hepatotoxicity or hepatic ischemia-reperfusion injury. Transplanted KC exerted beneficial effects in these injury settings. The benefits resulted from cytoprotective factors including vascular endothelial growth factor. In conclusion, transplanted adult KC were successfully targeted and engrafted in the liver with retention of innate immune and tissue repair functions over the long term. This will provide excellent opportunities to address critical aspects in the biogenesis, fate, and function of KC within their native liver microenvironment and to develop the cell and gene therapy potential of KC transplantation.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Kuldeep K Bhargava
- Division of Nuclear Medicine and Molecular Imaging, North Shore - Long Island Jewish Health System, New Hyde Park, New York
| | - Gabriella Ranaldo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Diego Zanolini
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Christopher J Palestro
- Division of Nuclear Medicine and Molecular Imaging, North Shore - Long Island Jewish Health System, New Hyde Park, New York
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy; Department of Pathology, Albert Einstein College of Medicine, Bronx, New York.
| | - Sanjeev Gupta
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Marion Bessin Liver Research Center, Cancer Research Center, Diabetes Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
169
|
Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 2015; 34:1-7. [PMID: 27424223 DOI: 10.1016/j.jnutbio.2015.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Immune cell plasticity has extensive implications in the pathogenesis and resolution of metabolic disorders, cancers, autoimmune diseases and chronic inflammatory disorders. Over the past decade, nutritional status has been discovered to influence the immune response. In metabolic disorders such as obesity, immune cells interact with various classes of lipids, which are capable of controlling the plasticity of macrophages and T lymphocytes. The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on two areas: (1) the impact of altering lipid metabolism on immune cell activation, differentiation and function and (2) the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
170
|
Kumagai K, Tabu K, Sasaki F, Takami Y, Morinaga Y, Mawatari S, Hashimoto S, Tanoue S, Kanmura S, Tamai T, Moriuchi A, Uto H, Tsubouchi H, Ido A. Glycoprotein Nonmetastatic Melanoma B (Gpnmb)-Positive Macrophages Contribute to the Balance between Fibrosis and Fibrolysis during the Repair of Acute Liver Injury in Mice. PLoS One 2015; 10:e0143413. [PMID: 26599547 PMCID: PMC4657955 DOI: 10.1371/journal.pone.0143413] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/04/2015] [Indexed: 12/17/2022] Open
Abstract
Background and aims Glycoprotein nonmetastatic melanoma B (Gpnmb), a transmembrane glycoprotein that is expressed in macrophages, negatively regulates inflammation. We have reported that Gpnmb is strongly expressed in the livers of rats fed a choline-deficient, L-amino acid-defined (CDAA) diet. However, the role of macrophage-expressed Gpnmb in liver injury is still unknown. This study aimed to clarify the characteristics of infiltrating macrophages that express Gpnmb, and the involvement of Gpnmb in the repair process in response to liver injury. Methods C57BL/6J, DBA/2J [DBA] and DBA/2J-Gpnmb+ [DBA-g+] mice were treated with a single intraperitoneal injection of carbon tetrachloride (CCl4) at a dose of 1.0 mL/kg body weight. Mice were sacrificed at predetermined time points, followed by measurement of serum alanine aminotransferase (ALT) levels and histological examination. Expression of Gpnmb, pro-/anti-inflammatory cytokines, and profibrotic/antifibrotic factors were examined by quantitative RT-PCR and/or Western blotting. Immunohistochemistry, fluorescent immunostaining and flow cytometry were used to determine the expression of Gpnmb, CD68, CD11b and α-SMA, phagocytic activity, and the presence of apoptotic bodies. We used quantitative RT-PCR and ELISA to examine TGF-β and MMP-13 expression and the concentrations and supernatants of isolated infiltrating hepatic macrophages transfected with siGpnmb. Results In C57BL/6J mice, serum ALT levels increased at two days after CCl4 injection and decreased at four days. Gpnmb expression in the liver was stimulated four days after CCl4 injection. Histological examination and flow cytometry showed that Gpnmb-positive cells were almost positive for CD68-positive macrophages, contained engulfed apoptotic bodies and exhibited enhanced phagocytic activity. Isolated infiltrating hepatic macrophages transfected with siGpnmb showed high MMP-13 secretion. There was no significant difference in the magnitude of CCl4-induced liver injury between DBA-g+ and DBA mice. However, hepatic MMP-13 expression, as well as α-SMA expression and collagen production, increased significantly in DBA-g+ compared with DBA mice. Conclusions Gpnmb-positive macrophages infiltrate the liver during the recovery phase of CCl4–induced acute liver injury and contribute to the balance between fibrosis and fibrolysis in the repair process following acute liver injury.
Collapse
Affiliation(s)
- Kotaro Kumagai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- * E-mail:
| | - Kazuaki Tabu
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Fumisato Sasaki
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yoichiro Takami
- Pharmaceutical Care and Health Sciences, School of Pharmacy, Shujitsu University, Okayama, Japan
| | - Yuko Morinaga
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Seiichi Mawatari
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shinichi Hashimoto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shiroh Tanoue
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Kanmura
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Tsutomu Tamai
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiro Moriuchi
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hirofumi Uto
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Center for Digestive and Liver diseases, Miyazaki Medical Center Hospital, Miyazaki, Japan
| | | | - Akio Ido
- Digestive and Lifestyle Diseases, Department of Human and Environmental Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
171
|
Wang AJ, Yang Z, Grinchuk V, Smith A, Qin B, Lu N, Wang D, Wang H, Ramalingam TR, Wynn TA, Urban JF, Shea-Donohue T, Zhao A. IL-25 or IL-17E Protects against High-Fat Diet-Induced Hepatic Steatosis in Mice Dependent upon IL-13 Activation of STAT6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4771-80. [PMID: 26423151 PMCID: PMC4637252 DOI: 10.4049/jimmunol.1500337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/09/2015] [Indexed: 01/17/2023]
Abstract
IL-25 or IL-17E is a member of IL-17 cytokine family and has immune-modulating activities. The role of IL-25 in maintaining lipid metabolic homeostasis remains unknown. We investigated the effects of exogenous IL-25 or deficiency of IL-25 on hepatic lipid accumulation. IL-25 expression was examined in paraffin-embedded tissue sections of liver from patients or in the livers from mice. Mouse model of steatosis was induced by feeding a high-fat diet (HFD). Extent of steatosis as well as expression of cytokines, key enzymes for lipid metabolic pathways, markers for Kupffer cells/macrophages, and lipid droplet (LD) proteins, were analyzed. Our results show that hepatic steatosis in mice was accompanied by increased LD proteins, but decreased IL-25 in the liver. Decreased hepatic IL-25 was also observed in patients with fatty liver. Administration of IL-25 to HFD-fed wild-type mice led to a significant improvement in hepatic steatosis. This effect was associated with increased expression of IL-13, development of alternatively activated Kupffer cells/macrophages, and decreased expression of LD proteins in the liver. In contrast, administration of IL-25 to HFD-fed mice deficient in STAT6 or IL-13 had no effects. In addition, stimulation of primary hepatocytes with IL-13, but not IL-25, resulted in downregulation of LD proteins. Finally, mice deficient in IL-25 had exacerbated hepatic lipid accumulation when fed the HFD. These data demonstrate that dysregulated IL-25 expression contributes to lipid accumulation, whereas exogenous IL-25 protects against hepatic steatosis through IL-13 activation of STAT6. IL-25 and IL-13 are potential therapeutic agents for hepatic steatosis and associated pathologies.
Collapse
Affiliation(s)
- An-Jiang Wang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhonghan Yang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, Guangzhou 510080, China
| | - Viktoriya Grinchuk
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Allen Smith
- Diet, Genomics, and Immunology Laboratory, Agricultural Research Service, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Bolin Qin
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nonghua Lu
- Department of Gastroenterology and Hepatology, First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Duan Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201; and
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201; and
| | - Thirumalai R Ramalingam
- Division of Parasitology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Thomas A Wynn
- Division of Parasitology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Joseph F Urban
- Diet, Genomics, and Immunology Laboratory, Agricultural Research Service, Beltsville Human Nutrition Research Center, U.S. Department of Agriculture, Beltsville, MD 20705
| | - Terez Shea-Donohue
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aiping Zhao
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201; Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201;
| |
Collapse
|
172
|
Intereukin-10 and Kupffer cells protect steatotic mice livers from ischemia-reperfusion injury. Eur Cytokine Netw 2015; 25:69-76. [PMID: 25679269 DOI: 10.1684/ecn.2015.0359] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Steatotic livers are more sensitive to ischemia/reperfusion (I/R) and are thus routinely rejected for transplantation because of their increased rate of primary nonfunction (PNF). Lean livers have less I/R-induced damage and inflammation due to Kupffer cells (KC), which are protective after total, warm, hepatic I/R with associated bowel congestion. This protection has been linked to KC-dependent expression of the potent anti-inflammatory cytokine interleukin-10 (IL-10). We hypothesized that pretreatment with exogenous IL-10 would protect the steatotic livers of genetically obese (ob/ob) mice from inflammation and injury induced by I/R. Lean and ob/ob mice were pretreated with either IL-10 or liposomally-encapsulated bisphosphonate clodronate (shown to deplete KC) prior to total, warm, hepatic I/R. IL-10 pretreatment increased survival of ob/ob animals at 24 hrs post-I/R from 30% to 100%, and significantly decreased serum ALT levels. At six hrs post-I/R, IL-10 pretreatment increased IL-10 mRNA expression, but suppressed up-regulation of the pro-inflammatory cytokine IL-1β mRNA. However, ALT levels were elevated at six hrs post-I/R in KC-depleted animals. These data reveal that pretreatment with IL-10 protects steatotic livers undergoing I/R, and that phagocytically active KC retain a hepatoprotective role in the steatotic environment.
Collapse
|
173
|
Melgar-Lesmes P, Edelman ER. Monocyte-endothelial cell interactions in the regulation of vascular sprouting and liver regeneration in mouse. J Hepatol 2015; 63:917-25. [PMID: 26022689 PMCID: PMC4575901 DOI: 10.1016/j.jhep.2015.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Regeneration of the hepatic mass is crucial to liver repair. Proliferation of hepatic parenchyma is intimately dependent on angiogenesis and resident macrophage-derived cytokines. However the role of circulating monocyte interactions in vascular and hepatic regeneration is not well-defined. We investigated the role of these interactions in regeneration in the presence and absence of intact monocyte adhesion. METHODS Partial hepatectomy was performed in wild-type mice and those lacking the monocyte adhesion molecule CD11b. Vascular architecture, angiogenesis and macrophage location were analyzed in the whole livers using simultaneous angiography and macrophage staining with fluorescent multiphoton microscopy. Monocyte adhesion molecule expression and sprouting-related pathways were evaluated. RESULTS Resident macrophages (Kupffer cells) did not migrate to interact with vessels whereas infiltrating monocytes were found adjacent to sprouting points. Infiltrated monocytes colocalized with Wnt5a, angiopoietin 1 and Notch-1 in contact points and commensurate with phosphorylation and disruption of VE-cadherin. Mice deficient in CD11b showed a severe reduction in angiogenesis, liver mass regeneration and survival following partial hepatectomy, and developed unstable and leaky vessels that eventually produced an aberrant hepatic vascular network and Kupffer cell distribution. CONCLUSIONS Direct vascular interactions of infiltrating monocytes are required for an ordered vascular growth and liver regeneration. These outcomes provide insight into hepatic repair and new strategies for hepatic regeneration.
Collapse
Affiliation(s)
- Pedro Melgar-Lesmes
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Elazer R. Edelman
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, US,Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, US
| |
Collapse
|
174
|
Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun 2015; 66:60-75. [PMID: 26358406 DOI: 10.1016/j.jaut.2015.08.020] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
The hepatic immune system is constantly exposed to a massive load of harmless dietary and commensal antigens, to which it must remain tolerant. Immune tolerance in the liver is mediated by a number of specialized antigen-presenting cells, including dendritic cells, Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells. These cells are capable of presenting antigens to T cells leading to T cell apoptosis, anergy, or differentiation into regulatory T cells. However, the hepatic immune system must also be able to respond to pathogens and tumours and therefore must be equipped with mechanisms to override immune tolerance. The liver is a site of accumulation of a number of innate lymphocyte populations, including natural killer cells, CD56(+) T cells, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells. Innate lymphocytes recognize conserved metabolites derived from microorganisms and host cells and respond by killing target cells or promoting the differentiation and/or activation of other cells of the immune system. Innate lymphocytes can promote the maturation of antigen-presenting cells from their precursors and thereby contribute to the generation of immunogenic T cell responses. These cells may be responsible for overriding hepatic immune tolerance to autoantigens, resulting in the induction and maintenance of autoreactive T cells that mediate liver injury causing autoimmune liver disease. Some innate lymphocyte populations can also directly mediate liver injury by killing hepatocytes or bile duct cells in murine models of hepatitis, whilst other populations may protect against liver disease. It is likely that innate lymphocyte populations can promote or protect against autoimmune liver disease in humans and that these cells can be targeted therapeutically. Here I review the cellular mechanisms by which hepatic antigen-presenting cells and innate lymphocytes control the balance between immunity, tolerance and autoimmunity in the liver.
Collapse
Affiliation(s)
- Derek G Doherty
- Division of Immunology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
175
|
Mouse CD11b+Kupffer Cells Recruited from Bone Marrow Accelerate Liver Regeneration after Partial Hepatectomy. PLoS One 2015; 10:e0136774. [PMID: 26333171 PMCID: PMC4557907 DOI: 10.1371/journal.pone.0136774] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/08/2015] [Indexed: 01/11/2023] Open
Abstract
TNF and Fas/FasL are vital components, not only in hepatocyte injury, but are also required for hepatocyte regeneration. Liver F4/80+Kupffer cells are classified into two subsets; resident radio-resistant CD68+cells with phagocytic and bactericidal activity, and recruited radio-sensitive CD11b+cells with cytokine-producing capacity. The aim of this study was to investigate the role of these Kupffer cells in the liver regeneration after partial hepatectomy (PHx) in mice. The proportion of Kupffer cell subsets in the remnant liver was examined in C57BL/6 mice by flow cytometry after PHx. To examine the role of CD11b+Kupffer cells/Mφ, mice were depleted of these cells before PHx by non-lethal 5 Gy irradiation with or without bone marrow transplantation (BMT) or the injection of a CCR2 (MCP-1 receptor) antagonist, and liver regeneration was evaluated. Although the proportion of CD68+Kupffer cells did not significantly change after PHx, the proportion of CD11b+Kupffer cells/Mφ and their FasL expression was greatly increased at three days after PHx, when the hepatocytes vigorously proliferate. Serum TNF and MCP-1 levels peaked one day after PHx. Irradiation eliminated the CD11b+Kupffer cells/Mφ for approximately two weeks in the liver, while CD68+Kupffer cells, NK cells and NKT cells remained, and hepatocyte regeneration was retarded. However, BMT partially restored CD11b+Kupffer cells/Mφ and recovered the liver regeneration. Furthermore, CCR2 antagonist treatment decreased the CD11b+Kupffer cells/Mφ and significantly inhibited liver regeneration. The CD11b+Kupffer cells/Mφ recruited from bone marrow by the MCP-1 produced by CD68+Kupffer cells play a pivotal role in liver regeneration via the TNF/FasL/Fas pathway after PHx.
Collapse
|
176
|
Morita M, Joyce D, Miller C, Fung JJ, Lu L, Qian S. Rejection triggers liver transplant tolerance: Involvement of mesenchyme-mediated immune control mechanisms in mice. Hepatology 2015; 62:915-31. [PMID: 25998530 PMCID: PMC4549241 DOI: 10.1002/hep.27909] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/19/2015] [Indexed: 12/31/2022]
Abstract
UNLABELLED Liver tolerance was initially recognized by the spontaneous acceptance of liver allografts in many species. The underlying mechanisms are not completely understood. However, liver transplant (LT) tolerance absolutely requires interferon (IFN)-γ, a rejection-associated inflammatory cytokine. In this study, we investigated the rejection of liver allografts deficient in the IFN-γ receptor and reveal that the liver graft is equipped with machineries capable of counterattacking the host immune response through a mesenchyme-mediated immune control (MMIC) mechanism. MMIC is triggered by T effector (Tef) cell-derived IFN-γ that drives expression of B7-H1 on graft mesenchymal cells leading to Tef cell apoptosis. We describe the negative feedback loop between graft mesenchymal and Tef cells that ultimately results in LT tolerance. Comparable elevations of T-regulatory cells and myeloid-derived suppressor cells were observed in both rejection and tolerance groups and were not dependent on IFN-γ stimulation, suggesting a critical role of Tef cell elimination in tolerance induction. We identify potent MMIC activity in hepatic stellate cells and liver sinusoidal endothelial cells. MMIC is unlikely exclusive to the liver, given that spontaneous acceptance of kidney allografts has been reported, although less commonly, probably reflecting variance in MMIC activity. CONCLUSION MMIC may represent an important homeostatic mechanism that supports peripheral tolerance and could be a target for the prevention and treatment of transplant rejection. This study highlights that the graft is an active participant in the equipoise between tolerance and rejection and warrants more attention in the search for tolerance biomarkers.
Collapse
Affiliation(s)
- Miwa Morita
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Daniel Joyce
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Charles Miller
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - John J. Fung
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
- Department of General, Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland Ohio, 44195 USA
| |
Collapse
|
177
|
Taguchi K, Yamasaki K, Seo H, Otagiri M. Potential Use of Biological Proteins for Liver Failure Therapy. Pharmaceutics 2015; 7:255-74. [PMID: 26404356 PMCID: PMC4588199 DOI: 10.3390/pharmaceutics7030255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 01/11/2023] Open
Abstract
Biological proteins have unlimited potential for use as pharmaceutical products due to their various biological activities, which include non-toxicity, biocompatibility, and biodegradability. Recent scientific advances allow for the development of novel innovative protein-based products that draw on the quality of their innate biological activities. Some of them hold promising potential for novel therapeutic agents/devices for addressing hepatic diseases such as hepatitis, fibrosis, and hepatocarcinomas. This review attempts to provide an overview of the development of protein-based products that take advantage of their biological activity for medication, and discusses possibilities for the therapeutic potential of protein-based products produced through different approaches to specifically target the liver (or hepatic cells: hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells, and Kupffer cells) in the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Hakaru Seo
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan.
| |
Collapse
|
178
|
Nguyen-Lefebvre AT, Horuzsko A. Kupffer Cell Metabolism and Function. JOURNAL OF ENZYMOLOGY AND METABOLISM 2015; 1:101. [PMID: 26937490 PMCID: PMC4771376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Kupffer cells are resident liver macrophages and play a critical role in maintaining liver functions. Under physiological conditions, they are the first innate immune cells and protect the liver from bacterial infections. Under pathological conditions, they are activated by different components and can differentiate into M1-like (classical) or M2-like (alternative) macrophages. The metabolism of classical or alternative activated Kupffer cells will determine their functions in liver damage. Special functions and metabolism of Kupffer cells suggest that they are an attractive target for therapy of liver inflammation and related diseases, including cancer and infectious diseases. Here we review the different types of Kupffer cells and their metabolism and functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Cancer Center, Molecular Oncology Program, Georgia Regents University, Augusta, GA, 30912, USA
| | - Anatolij Horuzsko
- Cancer Center, Molecular Oncology Program, Georgia Regents University, Augusta, GA, 30912, USA
- Cancer Center, Molecular Oncology Program, Department of Medicine, Georgia Regents University, 1410 Laney Walker Blvd., Augusta, GA, 30912, USA
| |
Collapse
|
179
|
Cha SJ, Park K, Srinivasan P, Schindler CW, van Rooijen N, Stins M, Jacobs-Lorena M. CD68 acts as a major gateway for malaria sporozoite liver infection. ACTA ACUST UNITED AC 2015. [PMID: 26216124 PMCID: PMC4548058 DOI: 10.1084/jem.20110575] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Cha et al. use a phage display library screen to identify a peptide, P39, that binds to CD68 on the surface of Kupffer cells to inhibit malaria sporozoite cell entry. Thus, P39 may represent a therapeutic strategy for malaria by limiting hepatic infection. After being delivered by the bite from an infected mosquito, Plasmodium sporozoites enter the blood circulation and infect the liver. Previous evidence suggests that Kupffer cells, a macrophage-like component of the liver blood vessel lining, are traversed by sporozoites to initiate liver invasion. However, the molecular determinants of sporozoite–Kupffer cell interactions are unknown. Understanding the molecular basis for this specific recognition may lead to novel therapeutic strategies to control malaria. Using a phage display library screen, we identified a peptide, P39, that strongly binds to the Kupffer cell surface and, importantly, inhibits sporozoite Kupffer cell entry. Furthermore, we determined that P39 binds to CD68, a putative receptor for sporozoite invasion of Kupffer cells that acts as a gateway for malaria infection of the liver.
Collapse
Affiliation(s)
- Sung-Jae Cha
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Kiwon Park
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Prakash Srinivasan
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Christian W Schindler
- Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032 Department of Microbiology and Immunology and Department of Medicine, Columbia University, New York, NY 10032
| | - Nico van Rooijen
- Department of Molecular Cell Biology and Immunology, VUmc, 1081 BT Amsterdam, Netherlands
| | - Monique Stins
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Marcelo Jacobs-Lorena
- W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205 W. Harry Feinstone Department of Molecular Microbiology and Immunology and Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health; and Department of Neurology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
180
|
Luo YZ, Li TJ. Role of Kupffer cells in hepatitis B/C viral hepatitis. Shijie Huaren Xiaohua Zazhi 2015; 23:2397-2403. [DOI: 10.11569/wcjd.v23.i15.2397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Kupffer cells (KCs) are the largest group of tissue macrophages. KCs in the hepatic sinusoid contact with pathogens from circulation earliest. The quantity of KCs increases significantly in patients with viral hepatitis, suggesting that KCs play an important role in viral hepatitis related immunity. KCs can not only engulf virus particles, but also present antigens, secrete cytokines, and participate in a variety of inflammatory responses, immune tolerance and liver injury. In hepatitis B virus (HBV)/hepatitis C virus (HCV) infections, the diversity of KCs-related cytokines, the complexity of interactions of receptor signaling pathways as well as the duality of cytotoxic effect, indicate that KCs play a dual role in the immune response; the activation of KCs regulates the balance of inflammatory and anti-inflammatory mechanisms in viral hepatitis.
Collapse
|
181
|
Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, Thiruppathi S, Suzuki T, Hiroi S, Seki S, Sakamoto T. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res 2015; 59:1155-70. [PMID: 25677089 DOI: 10.1002/mnfr.201400564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Resveratrol reportedly improves fatty liver. This study purposed to elucidate the effect of resveratrol on fatty liver in mice fed a high-fat (HF) diet, and to investigate the role of liver macrophages (Kupffer cells). METHODS AND RESULTS C57BL/6 mice were divided into three groups, receiving either a control diet, HF diet (50% fat), or HF supplemented with 0.2% resveratrol (HF + res) diet, for 8 weeks. Compared with the HF group, the HF + res group exhibited markedly attenuated fatty liver, and reduced lipid droplets (LDs) in hepatocytes. Proteomic analysis demonstrated that the most downregulated protein in the livers of the HF + res group was adipose differentiation-related protein (ADFP), which is a major constituent of LDs and reflects lipid accumulation in cells. The HF + res group exhibited greatly increased numbers of CD68(+) Kupffer cells with phagocytic activity. Immunohistochemistry showed that several CD68(+) Kupffer cells were colocalized with ADFP immunoreaction in the HF + res group. Additionally, the HF + res group demonstrated markedly decreased TNF-alpha production, which confirmed by both liver mononuclear cells stimulated by LPS in vitro and in situ hybridization analysis, compared with the HF group. CONCLUSION Resveratrol ameliorated fatty liver and increased CD68-positive Kupffer cells with downregulating ADFP expression.
Collapse
Affiliation(s)
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Yoko Fujiwara
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mai Akao
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mariko Sonoda
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Sadayuki Hiroi
- Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Toshihisa Sakamoto
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
182
|
van der Flier A, Liu Z, Tan S, Chen K, Drager D, Liu T, Patarroyo-White S, Jiang H, Light DR. FcRn Rescues Recombinant Factor VIII Fc Fusion Protein from a VWF Independent FVIII Clearance Pathway in Mouse Hepatocytes. PLoS One 2015; 10:e0124930. [PMID: 25905473 PMCID: PMC4408089 DOI: 10.1371/journal.pone.0124930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/06/2015] [Indexed: 12/31/2022] Open
Abstract
We recently developed a longer lasting recombinant factor VIII-Fc fusion protein, rFVIIIFc, to extend the half-life of replacement FVIII for the treatment of people with hemophilia A. In order to elucidate the biological mechanism for the elongated half-life of rFVIIIFc at a cellular level we delineated the roles of VWF and the tissue-specific expression of the neonatal Fc receptor (FcRn) in the biodistribution, clearance and cycling of rFVIIIFc. We find the tissue biodistribution is similar for rFVIIIFc and rFVIII and that liver is the major clearance organ for both molecules. VWF reduces the clearance and the initial liver uptake of rFVIIIFc. Pharmacokinetic studies in FcRn chimeric mice show that FcRn expressed in somatic cells (hepatocytes or liver sinusoidal endothelial cells) mediates the decreased clearance of rFVIIIFc, but FcRn in hematopoietic cells (Kupffer cells) does not affect clearance. Immunohistochemical studies show that when rFVIII or rFVIIIFc is in dynamic equilibrium binding with VWF, they mostly co localize with VWF in Kupffer cells and macrophages, confirming a major role for liver macrophages in the internalization and clearance of the VWF-FVIII complex. In the absence of VWF a clear difference in cellular localization of VWF-free rFVIII and rFVIIIFc is observed and neither molecule is detected in Kupffer cells. Instead, rFVIII is observed in hepatocytes, indicating that free rFVIII is cleared by hepatocytes, while rFVIIIFc is observed as a diffuse liver sinusoidal staining, suggesting recycling of free-rFVIIIFc out of hepatocytes. These studies reveal two parallel linked clearance pathways, with a dominant pathway in which both rFVIIIFc and rFVIII complexed with VWF are cleared mainly by Kupffer cells without FcRn cycling. In contrast, the free fraction of rFVIII or rFVIIIFc unbound by VWF enters hepatocytes, where FcRn reduces the degradation and clearance of rFVIIIFc relative to rFVIII by cycling rFVIIIFc back to the liver sinusoid and into circulation, enabling the elongated half-life of rFVIIIFc.
Collapse
Affiliation(s)
- Arjan van der Flier
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Zhan Liu
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Siyuan Tan
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Kai Chen
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Douglas Drager
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - Tongyao Liu
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | | | - Haiyan Jiang
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
| | - David R. Light
- Hematology Research, Biogen, Cambridge, Massachussets, United States of America
- * E-mail:
| |
Collapse
|
183
|
Eckert C, Klein N, Kornek M, Lukacs-Kornek V. The complex myeloid network of the liver with diverse functional capacity at steady state and in inflammation. Front Immunol 2015; 6:179. [PMID: 25941527 PMCID: PMC4403526 DOI: 10.3389/fimmu.2015.00179] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/30/2015] [Indexed: 12/23/2022] Open
Abstract
In recent years, it has been an explosion of information regarding the role of various myeloid cells in liver pathology. Macrophages and dendritic cell (DC) play crucial roles in multiple chronic liver diseases such as fibrosis and non-alcoholic fatty liver disease (NAFLD). The complexity of myeloid cell populations and the missing exclusive marker combination make the interpretation of the data often extremely difficult. The current review aims to summarize the multiple roles of macrophages and DCs in chronic liver diseases, especially pointing out how these cells influence liver immune and parenchymal cells thereby altering liver function and pathology. Moreover, the review outlines the currently known marker combinations for the identification of these cell populations for the study of their role in liver immunology.
Collapse
Affiliation(s)
- Christoph Eckert
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Niklas Klein
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | - Miroslaw Kornek
- Department of Medicine II, Saarland University Medical Center , Homburg , Germany
| | | |
Collapse
|
184
|
Inflammatory monocytes recruited to the liver within 24 hours after virus-induced inflammation resemble Kupffer cells but are functionally distinct. J Virol 2015; 89:4809-17. [PMID: 25673700 DOI: 10.1128/jvi.03733-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80(high)-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens.
Collapse
|
185
|
Maeda H, Hirata K, Watanabe H, Ishima Y, Chuang VTG, Taguchi K, Inatsu A, Kinoshita M, Tanaka M, Sasaki Y, Otagiri M, Maruyama T. Polythiol-containing, recombinant mannosylated-albumin is a superior CD68+/CD206+ Kupffer cell-targeted nanoantioxidant for treatment of two acute hepatitis models. J Pharmacol Exp Ther 2015; 352:244-57. [PMID: 25398242 DOI: 10.1124/jpet.114.219493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Since reactive oxygen species (ROS) derived from Kupffer cells (KC), especially CD68(+) KC, play a key role in the induction of hepatic oxidative stress and injuries, we developed a polythiolated- and mannosylated human serum albumin (SH-Man-HSA), which functions as a novel nanoantioxidant for delivering thiol to CD68(+) KC. In vitro electron paramagnetic resonance coupled with pharmacokinetics and immunohistochemical studies showed that SH-Man-HSA possessed powerful radical-scavenging activity and rapidly and selectively delivered thiols to the liver via mannose receptor (CD206) on CD68(+) cells. SH-Man-HSA significantly improved the survival rate of concanavalin-A (Con-A)-treated mice. Moreover, SH-Man-HSA exhibited excellent hepatoprotective functions, not by decreasing tumor necrosis factor or interferon-γ production that is closely associated with Con-A-induced hepatitis, but by suppressing ROS production. Interestingly, the protective effect of SH-Man-HSA was superior to N-acetyl cysteine (NAC). This could be attributed to the difference in the inhibition of hepatic oxidative stress between the two antioxidants depending on their potential for thiol delivery to the liver. Similar results were also observed for acetaminophen (APAP)-induced hepatopathy models. Flow cytometric data further confirmed that an increase in F4/80(+)/ROS(+) cells was dramatically decreased by SH-Man-HSA. The administration of SH-Man-HSA at 4 hours following a Con-A or APAP injection also exhibited a profound hepatoprotective action against these hepatitis models, whereas this was not observed for NAC. It can be concluded therefore that SH-Man-HSA has great potential for use in a rescue therapy for hepatopathy as a nanoantioxidant because of its ability to efficiently and rapidly deliver thiols to CD68(+)/CD206(+) KC.
Collapse
Affiliation(s)
- Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Kenshiro Hirata
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Yu Ishima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Victor Tuan Giam Chuang
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Kazuaki Taguchi
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Akihito Inatsu
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Manabu Kinoshita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Motohiko Tanaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Yutaka Sasaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Masaki Otagiri
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences (H.M., K.H., H.W., Y.I., V.T.G.C., T.M.), Center for Clinical Pharmaceutical Sciences, School of Pharmacy (H.W., Y.I., T.M.), and Department of Gastroenterology and Hepatology, Graduate School of Medical Sciences (M.T., Y.S.), Kumamoto University, Kumamoto, Japan; School of Pharmacy, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia (V.T.G.C.); Faculty of Pharmaceutical Sciences (K.T., M.O.) and DDS Research Institute (M.O.), Sojo University, Kumamoto, Japan; and Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan (A.I., M.K.)
| |
Collapse
|
186
|
Liu J, Tan Y, Zhang J, Zou L, Deng G, Xu X, Wang F, Ma Z, Zhang J, Zhao T, Liu Y, Li Y, Zhu B, Guo B. C5aR, TNF-α, and FGL2 contribute to coagulation and complement activation in virus-induced fulminant hepatitis. J Hepatol 2015; 62:354-62. [PMID: 25200905 DOI: 10.1016/j.jhep.2014.08.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 08/29/2014] [Accepted: 08/31/2014] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Viral fulminant hepatitis (FH) is a disease with a high mortality rate. Activation of the complement system correlates with the development of FH. However, the key factors mediating complement activation in FH remain elusive. METHODS Liver tissues were isolated from FH patients infected by hepatitis B virus (HBV) and from mice infected with murine hepatitis virus strain 3 (MHV-3). Wild type mice were treated with or without antagonists of C5aR or TNF-α, and mice deficient for C5aR (C5aR(-/-)), Fgl2 (Fgl2(-/-)), and Tnfα (Tnfα(-/-)) mice were not treated with the antagonists. C5b-9, C5aR, FGL2, CD31, CD11b, fibrin, TNF-α, and complement C3 cleavage products were detected by immunohistochemistry, immunofluorescence, or ELISA. Sorted liver sinusoidal endothelial cells (LSECs) or myeloid-derived (CD11b(+)) cells were stimulated with C5a, TNF-α or MHV-3 in vitro. The mRNA expressions levels of Fgl2 and Tnfα were determined by qRT-PCR analyses. RESULTS We observed that complement activation, coagulation and pro-inflammatory cytokine production were upregulated in the HBV(+) patients with FH. Similar observations were made in the murine FH models. Complement activation and coagulation were significantly reduced in MHV-3 infected mice in the absence of C5aR, Tnfα or Fgl2. The MHV-3 infected C5aR(-/-) mice exhibited reduced numbers of infiltrated inflammatory CD11b(+) cells and a reduced expression of TNF-α and FGL2. Moreover, C5a administration stimulated TNF-α production by CD11b(+) cells, which in turn promoted the expression of FGL2 in CD31(+) LSEC-like cells in vitro. Administration of antagonists against C5aR or TNF-α ameliorated MHV-3-induced FH. CONCLUSIONS Our results demonstrate that C5aR, TNF-α, and FGL2 form an integral network that contributes to coagulation and complement activation, and suggest that those are potential therapeutic targets in viral FH intervention.
Collapse
Affiliation(s)
- Jianjun Liu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yulong Tan
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Liyun Zou
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Guohong Deng
- Institute of Infectious Diseases, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xueqing Xu
- Department of Medical Genetics, Third Military Medical University, Chongqing, China
| | - Feng Wang
- Department of Laboratory Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhengwei Ma
- Institute of Hepatobiliary Surgery & Southwest Hospital, Third Military Medical University, District Shapingba, Chongqing, China
| | - Jue Zhang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Tingting Zhao
- Department of Immunology, Third Military Medical University, Chongqing, China
| | - Yunlai Liu
- Department of Histology & Embryology, Third Military Medical University, Chongqing, China
| | - Yongsheng Li
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China.
| | - Bo Guo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China; Department of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
187
|
The food born mycotoxin deoxynivalenol induces low-grade inflammation in mice in the absence of observed-adverse effects. Toxicol Lett 2015; 232:601-11. [DOI: 10.1016/j.toxlet.2014.12.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022]
|
188
|
Negrin KA, Roth Flach RJ, DiStefano MT, Matevossian A, Friedline RH, Jung D, Kim JK, Czech MP. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PLoS One 2014; 9:e107265. [PMID: 25216251 PMCID: PMC4162604 DOI: 10.1371/journal.pone.0107265] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 08/14/2014] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease is prevalent in human obesity and type 2 diabetes, and is characterized by increases in both hepatic triglyceride accumulation (denoted as steatosis) and expression of pro-inflammatory cytokines such as IL-1β. We report here that the development of hepatic steatosis requires IL-1 signaling, which upregulates Fatty acid synthase to promote hepatic lipogenesis. Using clodronate liposomes to selectively deplete liver Kupffer cells in ob/ob mice, we observed remarkable amelioration of obesity-induced hepatic steatosis and reductions in liver weight, triglyceride content and lipogenic enzyme expressions. Similar results were obtained with diet-induced obese mice, although visceral adipose tissue macrophage depletion also occurred in response to clodronate liposomes in this model. There were no differences in the food intake, whole body metabolic parameters, serum β-hydroxybutyrate levels or lipid profiles due to clodronate-treatment, but hepatic cytokine gene expressions including IL-1β were decreased. Conversely, treatment of primary mouse hepatocytes with IL-1β significantly increased triglyceride accumulation and Fatty acid synthase expression. Furthermore, the administration of IL-1 receptor antagonist to obese mice markedly reduced obesity-induced steatosis and hepatic lipogenic gene expression. Collectively, our findings suggest that IL-1β signaling upregulates hepatic lipogenesis in obesity, and is essential for the induction of pathogenic hepatic steatosis in obese mice.
Collapse
Affiliation(s)
- Kimberly A. Negrin
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rachel J. Roth Flach
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Marina T. DiStefano
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Anouch Matevossian
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Randall H. Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - DaeYoung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jason K. Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael P. Czech
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
189
|
Marcos R. Depletion of hepatic stellate cells: have Kupffer cells lost their bad neighbor? J Hepatol 2014; 61:714-5. [PMID: 24893125 DOI: 10.1016/j.jhep.2014.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/28/2014] [Accepted: 05/05/2014] [Indexed: 12/26/2022]
Affiliation(s)
- Ricardo Marcos
- Institute of Biomedical Sciences Abel Salazar, University of Porto, ICBAS-UPorto, Portugal.
| |
Collapse
|
190
|
Boltjes A, Movita D, Boonstra A, Woltman AM. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 2014; 61:660-71. [PMID: 24798624 DOI: 10.1016/j.jhep.2014.04.026] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 12/12/2022]
Abstract
Globally, over 500 million people are chronically infected with the hepatitis B virus (HBV) or hepatitis C virus (HCV). These chronic infections cause liver inflammation, and may result in fibrosis/cirrhosis or hepatocellular carcinoma. Albeit that HBV and HCV differ in various aspects, clearance, persistence, and immunopathology of either infection depends on the interplay between the innate and adaptive responses in the liver. Kupffer cells, the liver-resident macrophages, are abundantly present in the sinusoids of the liver. These cells have been shown to be crucial players to maintain homeostasis, but also contribute to pathology. However, it is important to note that especially during pathology, Kupffer cells are difficult to distinguish from infiltrating monocytes/macrophages and other myeloid cells. In this review we discuss our current understanding of Kupffer cells, and assess their role in the regulation of anti-viral immunity and disease pathogenesis during HBV and HCV infection.
Collapse
Affiliation(s)
- Arjan Boltjes
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Dowty Movita
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - André Boonstra
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Andrea M Woltman
- Dept. of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
191
|
Dangi A, Gandhi CR. Reply to: "depletion of hepatic stellate cells: have Kupffer cells lost their bad neighbor?". J Hepatol 2014; 61:715-6. [PMID: 24965048 DOI: 10.1016/j.jhep.2014.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 05/26/2014] [Indexed: 12/04/2022]
Affiliation(s)
- Anil Dangi
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA; Cincinnati VA Medical Center, Cincinnati, OH, USA
| | - Chandrashekhar R Gandhi
- Department of Surgery, University of Cincinnati, Cincinnati, OH, USA; Cincinnati VA Medical Center, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
192
|
A high-protein diet is anti-steatotic and has no pro-inflammatory side effects in dyslipidaemic APOE2 knock-in mice. Br J Nutr 2014; 112:1251-65. [PMID: 25160499 DOI: 10.1017/s0007114514001986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-protein (HP) diets are effective anti-steatotic treatment options for patients with non-alcoholic fatty liver disease, but whether these diets also decrease steatosis in hyperlipidaemic conditions is not known. The aim of the present study was to determine the effects of a HP diet on hepatic steatosis and inflammation in hyperlipidaemic mice. Hyperlipidaemic male and female APOE2 knock-in (APOE2ki) mice were fed a semi-synthetic low-protein (LP) or HP diet in combination with a low-fat diet or a high-fat diet for 3 weeks. The HP diets reduced hepatic fat and cholesterol concentrations to 40-55 % of those induced by the corresponding LP diets and attenuated hepatic inflammation mildly. The VLDL-associated plasma cholesterol concentrations decreased to 60-80 %, but those of TAG increased 3-4-fold. APOE2-mediated restriction of fat import into the liver did not modify the effects of a HP diet previously observed in wild-type mice. Female APOE2ki mice exhibited a higher expression of lipogenic, cholesterol-synthesising, inflammatory and cell-stress genes than wild-type female or male APOE2ki mice, but a similar response to HP diets. Low Apob expression and unchanged plasma APOB100 concentrations suggest that HP diets increase the plasma concentrations of TAG by slowing their clearance. The decrease in plasma leptin and hepatic fat and glycogen concentrations and the increase in fatty acid-oxidising gene and phosphoenolpyruvate carboxykinase 1 protein expression suggest a HP diet-mediated increase in mitochondrial metabolism. In conclusion, a HP diet reduces hepatic lipid content in dyslipidaemic mice and lowers the activation status of inflammatory cells in the liver.
Collapse
|
193
|
Ohkubo H, Ito Y, Minamino T, Eshima K, Kojo K, Okizaki SI, Hirata M, Shibuya M, Watanabe M, Majima M. VEGFR1-positive macrophages facilitate liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion injury. PLoS One 2014; 9:e105533. [PMID: 25162491 PMCID: PMC4146544 DOI: 10.1371/journal.pone.0105533] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 07/22/2014] [Indexed: 01/19/2023] Open
Abstract
Liver repair after acute liver injury is characterized by hepatocyte proliferation, removal of necrotic tissue, and restoration of hepatocellular and hepatic microvascular architecture. Macrophage recruitment is essential for liver tissue repair and recovery from injury; however, the underlying mechanisms are unclear. Signaling through vascular endothelial growth factor receptor 1 (VEGFR1) is suggested to play a role in macrophage migration and angiogenesis. The aim of the present study was to examine the role of VEGFR1 in liver repair and sinusoidal reconstruction after hepatic ischemia/reperfusion (I/R). VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK-/- mice) and wild-type (WT) mice were subjected to hepatic warm I/R, and the processes of liver repair and sinusoidal reconstruction were examined. Compared with WT mice, VEGFR1 TK-/- mice exhibited delayed liver repair after hepatic I/R. VEGFR1-expressing macrophages recruited to the injured liver showed reduced expression of epidermal growth factor (EGF). VEGFR1 TK-/- mice also showed evidence of sustained sinusoidal functional and structural damage, and reduced expression of pro-angiogenic factors. Treatment of VEGFR1 TK-/- mice with EGF attenuated hepatoceullar and sinusoidal injury during hepatic I/R. VEGFR1 TK-/- bone marrow (BM) chimeric mice showed impaired liver repair and sinusoidal reconstruction, and reduced recruitment of VEGFR1-expressing macrophages to the injured liver. VEGFR1-macrophages recruited to the liver during hepatic I/R contribute to liver repair and sinusoidal reconstruction. VEGFR1 activation is a potential therapeutic strategy for promoting liver repair and sinusoidal restoration after acute liver injury.
Collapse
Affiliation(s)
- Hirotoki Ohkubo
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yoshiya Ito
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Tsutomu Minamino
- Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Koji Eshima
- Department of Immunology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Ken Kojo
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Shin-ichiro Okizaki
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Mitsuhiro Hirata
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masabumi Shibuya
- Gakubunkan Institute of Physiology and Medicine, Jobu University, Takasaki, Gunma, Japan
| | - Masahiko Watanabe
- Department of Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
194
|
Batchelder CA, Duru N, Lee CCI, Baker CA, Swainson L, McCune JM, Tarantal AF. Myeloid-lymphoid ontogeny in the rhesus monkey (Macaca mulatta). Anat Rec (Hoboken) 2014; 297:1392-406. [PMID: 24867874 PMCID: PMC4120262 DOI: 10.1002/ar.22943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 04/02/2014] [Indexed: 12/17/2022]
Abstract
Establishment of a functional immune system has important implications for health and disease, yet questions remain regarding the mechanism, location, and timing of development of myeloid and lymphoid cell compartments. The goal of this study was to characterize the ontogeny of the myeloid-lymphoid system in rhesus monkeys to enhance current knowledge of the developmental sequence of B-cell (CD20, CD79), T-cell (CD3, CD4, CD8, FoxP3), dendritic cell (CD205), and macrophage (CD68) lineages in the fetus and infant. Immunohistochemical assessments addressed the temporal and spatial expression of select phenotypic markers in the developing liver, thymus, spleen, lymph nodes, gut-associated lymphoid tissue (GALT), and bone marrow with antibodies known to cross-react with rhesus cells. CD3 was the earliest lymphoid marker identified in the first trimester thymus and, to a lesser extent, in the spleen. T-cell markers were also expressed midgestation on cells of the liver, spleen, thymus, and in Peyer's patches of the small and large intestine, and where CCR5 expression was noted. A myeloid marker, CD68, was found on hepatic cells near blood islands in the late first trimester. B-cell markers were observed mid-second trimester in the liver, spleen, thymus, lymph nodes, bone marrow spaces, and occasionally in GALT. By the late third trimester and postnatally, secondary follicles with germinal centers were present in the thymus, spleen, and lymph nodes. These results suggest that immune ontogeny in monkeys is similar in temporal and anatomical sequence when compared to humans, providing important insights for translational studies.
Collapse
Affiliation(s)
| | - Nadire Duru
- California National Primate Research Center, University of California, Davis, CA
| | - C. Chang I. Lee
- California National Primate Research Center, University of California, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA
| | - Chris A.R. Baker
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA
| | - Louise Swainson
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA
| | - Joseph M. McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, CA
| | - Alice F. Tarantal
- California National Primate Research Center, University of California, Davis, CA
- Department of Pediatrics, University of California, Davis, CA
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA
| |
Collapse
|
195
|
Subanesthetic isoflurane reduces zymosan-induced inflammation in murine Kupffer cells by inhibiting ROS-activated p38 MAPK/NF-κB signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:851692. [PMID: 25147596 PMCID: PMC4134815 DOI: 10.1155/2014/851692] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/30/2014] [Indexed: 01/23/2023]
Abstract
Volatile anesthetic isoflurane (ISO) has immunomodulatory effects. The fungal component zymosan (ZY) induces inflammation through toll-like receptor 2 or dectin-1 signaling. We investigated the molecular actions of subanesthetic (0.7%) ISO against ZY-induced inflammatory activation in murine Kupffer cells (KCs), which are known as the resident macrophages within the liver. We observed that ISO reduced ZY-induced cyclooxygenase 2 upregulation and prostaglandin E2 release, as determined by western blot and radioimmunoassay, respectively. ISO also reduced the production of tumor necrosis factor-α, interleukin-1β, IL-6, high-mobility group box-1, macrophage inflammatory protein-1α, macrophage inflammatory protein-2, and monocyte chemoattractant protein-1 as assessed by enzyme-linked immunosorbent assays. ISO blocked the ZY-induced nuclear translocation and DNA-binding activity of nuclear factor- (NF)-κB p65. Moreover, ISO attenuated ZY-induced p38 mitogen-activated protein kinase (MAPK) activation partly by scavenging reactive oxygen species (ROS); the interregulation that ROS activated p38 MAPK followed by NF-κB activation was crucial for the ZY-induced inflammatory responses in KCs. An in vivo study by peritoneal injection of ZY into BALB/C mice confirmed the anti-inflammatory properties of 0.7% ISO against ZY in KCs. These results suggest that ISO ameliorates ZY-induced inflammatory responses in murine KCs by inhibiting the interconnected ROS/p38 MAPK/NF-κB signaling pathways.
Collapse
|
196
|
Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146:1193-207. [PMID: 24412289 DOI: 10.1053/j.gastro.2013.12.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München and Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
197
|
Involvement of the TNF and FasL produced by CD11b Kupffer cells/macrophages in CCl4-induced acute hepatic injury. PLoS One 2014; 9:e92515. [PMID: 24667392 PMCID: PMC3965417 DOI: 10.1371/journal.pone.0092515] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 02/24/2014] [Indexed: 12/20/2022] Open
Abstract
We previously reported that F4/80+ Kupffer cells are subclassified into CD68+ Kupffer cells with phagocytic and ROS producing capacity, and CD11b+ Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4)-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo) treatment greatly decreased the spindle-shaped F4/80+ or CD68+ cells, while the oval-shaped F4/80+ CD11b+ cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b+ Kupffer cells/macrophages dramatically increased 24 hour (h) after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b+ Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL). Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b+ Kupffer cells), anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d−/− mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b+ Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68+ Kupffer cells may recruit CD11b+ macrophages from the periphery and bone marrow. The CD11b+ Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury.
Collapse
|
198
|
Sato A, Nakashima H, Kinoshita M, Nakashima M, Ogawa Y, Shono S, Ikarashi M, Seki S. The effect of synthetic C-reactive protein on the in vitro immune response of human PBMCs stimulated with bacterial reagents. Inflammation 2014; 36:781-92. [PMID: 23407995 PMCID: PMC3708291 DOI: 10.1007/s10753-013-9604-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Synthetic C-reactive protein (CRP) rescues mice from lethal endotoxin shock or bacterial infection by suppressing tumor necrosis factor (TNF-α), but in turn, enhances Kupffer cell phagocytic activity. We herein assessed the influence of CRP in human peripheral blood mononuclear cells (PBMCs). When human PBMCs were stimulated in vitro with penicillin-treated Streptococcus pyogenes, bacterial DNA motifs and lipopolysaccharide with or without synthetic CRP, CRP suppressed the production of TNF-α and IL-12, but not that of IFN-γ. This was also the case for the in vitro Shwartzman reaction induced in PBMCs. CRP also decreased high-mobility group box 1 production from macrophages, which is crucial in the later phase of endotoxin/septic shock. However, CRP upregulated the perforin expression by CD56+ NK cells and increased their antitumor cytotoxicity. CRP may thus be a potent immunomodulatory factor in the human immune system, suggesting its therapeutic potential for use against human septic shock.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Immunology and microbiology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Kong XY, Nesset CK, Damme M, Løberg EM, Lübke T, Mæhlen J, Andersson KB, Lorenzo PI, Roos N, Thoresen GH, Rustan AC, Kase ET, Eskild W. Loss of lysosomal membrane protein NCU-G1 in mice results in spontaneous liver fibrosis with accumulation of lipofuscin and iron in Kupffer cells. Dis Model Mech 2014; 7:351-62. [PMID: 24487409 PMCID: PMC3944495 DOI: 10.1242/dmm.014050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human kidney predominant protein, NCU-G1, is a highly conserved protein with an unknown biological function. Initially described as a nuclear protein, it was later shown to be a bona fide lysosomal integral membrane protein. To gain insight into the physiological function of NCU-G1, mice with no detectable expression of this gene were created using a gene-trap strategy, and Ncu-g1gt/gt mice were successfully characterized. Lysosomal disorders are mainly caused by lack of or malfunctioning of proteins in the endosomal-lysosomal pathway. The clinical symptoms vary, but often include liver dysfunction. Persistent liver damage activates fibrogenesis and, if unremedied, eventually leads to liver fibrosis/cirrhosis and death. We demonstrate that the disruption of Ncu-g1 results in spontaneous liver fibrosis in mice as the predominant phenotype. Evidence for an increased rate of hepatic cell death, oxidative stress and active fibrogenesis were detected in Ncu-g1gt/gt liver. In addition to collagen deposition, microscopic examination of liver sections revealed accumulation of autofluorescent lipofuscin and iron in Ncu-g1gt/gt Kupffer cells. Because only a few transgenic mouse models have been identified with chronic liver injury and spontaneous liver fibrosis development, we propose that the Ncu-g1gt/gt mouse could be a valuable new tool in the development of novel treatments for the attenuation of fibrosis due to chronic liver damage.
Collapse
Affiliation(s)
- Xiang Y Kong
- Department of Bioscience, University of Oslo, 0316 Oslo, Norway
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Kupffer Cells in Health and Disease. MACROPHAGES: BIOLOGY AND ROLE IN THE PATHOLOGY OF DISEASES 2014. [PMCID: PMC7121975 DOI: 10.1007/978-1-4939-1311-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Kupffer cells (KC), the resident macrophages of the liver, represent the largest population of mononuclear phagocytes in the body. Phenotypic, developmental, and functional aspects of these cells in steady state and in different diseases are the focus of this review. Recently it has become evident that KC precursors seed the liver already early in fetal development, and the population can be maintained independently from circulating monocytes. However, inflammatory conditions allow rapid differentiation of monocytes into mature cells that are indistinguishable from genuine KC. KC are located in the lumen of sinusoids that receive blood both from the portal vein, carrying nutrients and microbial products from the gut, and from the hepatic artery. This positions KC ideally for their prime function, namely surveillance and clearance of the circulation. As such, they are important in iron recycling by phagocytosing effete erythrocytes, for instance. The immunophenotype of KC, characterized by a wide variety of endocytic receptors, is indicative of this scavenger function. In maintaining homeostasis, KC have an ambivalent response to exogenous triggers. On the one hand, their surveillance function requires alert responses to potentially hazardous substances. On the other hand, continuous exposure of the cells to the trigger-rich content of blood originating from the gut dampens their responsiveness to further stimuli. This ambivalence is also reflected in their diverse roles in disease pathogenesis. For the latter, we sketch the contribution of KC by giving examples of their role in metabolic disease, infections, and liver injury.
Collapse
|