151
|
Dong J, Du C, Xu C, Wang Q, Wang Z, Zhu Q, Lv X, Zhang L, Li J, Huang C, Wang H, Ma T. Verbenalin attenuates hepatic damage and mitochondrial dysfunction in alcohol-associated steatohepatitis by regulating MDMX/PPARα-mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116227. [PMID: 36739928 DOI: 10.1016/j.jep.2023.116227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Verbenalin is a major compound in Verbena officinalis L. Verbena officinalis L was first recorded in the 'Supplementary Records of Famous Physicians.' Verbenalin (VE) is its active constituent and has been found to have many biological effects, including anti-obesity, anti-inflammatory, and antioxidant activities, removing jaundice, and treating malaria. It could treat lump accumulation, dysmenorrhea, throat obstruction, edema, jaundice, and malaria. Palmitic acid (PA), oleic acid (OA), ethanol, and acetaminophen liver injuries have been proven to benefit from verbenalin. AIM OF THE STUDY To study the effects of verbenalin on the prevention of alcoholic steatohepatitis (ASH) through the regulation of oxidative stress and mitochondrial dysfunction by regulating MDMX (Murine double minute X)/PPARα (Peroxisome proliferator-activated receptor alpha)-mediated ferroptosis. MATERIAL AND METHODS C57BL/6 mice treated with alcohol followed by the Gao-Binge protocol were administered verbenalin by gavage simultaneously. The mitochondrial mass and morphology were visualized using TEM. AML-12 cells were stimulated with ethanol to mimic ASH in vitro. Western blotting, co-immunoprecipitation, and kit determination were simultaneously performed. The target protein of verbenalin was identified by molecular docking, and cellular thermal shift assay (CETSA) further confirmed its interactions. RESULTS Verbenalin alleviates oxidative stress and ferroptosis in alcohol-associated steatohepatitis. To elucidate the molecular mechanism by which verbenalin inhibits abnormal mitochondrial dysfunction, molecular docking was performed, and MDMX was identified as the target protein of verbenalin. CETSA assays revealed a specific interaction between MDMX and verbenalin. Co-immunoprecipitation demonstrated that PPARα played a critical role in promoting the ability of MDMX to affect ferroptosis. Verbenalin regulates MDMX/PPARα-mediated ferroptosis in AML-12 cells. CONCLUSION Verbenalin regulates ferroptosis and highlights the therapeutic potential of verbenalin and ferroptosis inhibition in reducing alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Jiahui Dong
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Changlin Du
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Chuanting Xu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qi Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Zhonghao Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qian Zhu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230036, China.
| | - Taotao Ma
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, 230032, China; Center of Traditional Chinese Medicine Formula Granule, Anhui Medical University, China.
| |
Collapse
|
152
|
Chen C, Zhang Y, Fan Y, Ying Z, Su Q, Li X, Qin L. The change of non-alcoholic fatty liver disease is associated with risk of incident diabetes. Front Endocrinol (Lausanne) 2023; 14:1108442. [PMID: 37214244 PMCID: PMC10194027 DOI: 10.3389/fendo.2023.1108442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Background & aims The effect of change in non-alcoholic fatty liver disease (NAFLD) status on incident diabetes has not been well studied. We aimed to investigate the association of NAFLD development and remission with the risk of incident diabetes during a median of 3.5-year follow-up. Methods A total of 2690 participants without diabetes were recruited in 2011-2012 and assessed for incident diabetes in 2014. Abdominal ultrasonography was used to determine the change of NAFLD. 75 g oral glucose tolerance test (OGTT) was performed to determine diabetes. NAFLD severity was assessed using Gholam's model. The odds ratios (ORs) for incident diabetes were estimated by logistic regression models. Results NAFLD was developed in 580 (33.2%) participants and NAFLD remission occurred in 150 (15.9%) participants during a median of 3.5-year follow-up. A total of 484 participants developed diabetes during follow-up, including 170 (14.6%) in consistent non-NAFLD group, 111 (19.1%) in NAFLD developed group, 19 (12.7%) in NAFLD remission group, and 184 (23.2%) in sustained NAFLD group. The development of NAFLD increased the risk of incident diabetes by 43% (OR, 1.43; 95%CI, 1.10-1.86) after adjustment for multiple confounders. Compared with sustained NAFLD group, remission of NAFLD reduced the risk of incident diabetes by 52% (OR, 0.48; 95%CI, 0.29-0.80). The effect of NAFLD alteration on incident diabetes was not changed after adjustment for body mass index or waist circumference, change of body mass index or waist circumference. In NAFLD remission group, participants with non-alcoholic steatohepatitis (NASH) at baseline were more likely to develop diabetes (OR, 3.03; 95%CI, 1.01-9.12). Conclusions NAFLD development increases the risk of incident diabetes, whereas NAFLD remission reduces the risk of incident diabetes. Moreover, presence of NASH at baseline could attenuate the protective effect of NAFLD remission on incident diabetes. Our study suggests that early intervention of NAFLD and maintenance of non-NAFLD are important for prevention of diabetes.
Collapse
Affiliation(s)
- Congling Chen
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuecheng Zhang
- General Practice Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, China
| | - Yujuan Fan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Ying
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Su
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Qin
- Department of Endocrinology and Metabolism, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Chongming Hospital Affiliated to Shanghai University of Health & Medicine Sciences, Shanghai, China
| |
Collapse
|
153
|
Gao H, Li Z, Liu Y, Zhao YK, Cheng C, Qiu F, Gao Y, Lu YW, Song XH, Wang JB, Ma ZT. A clinical experience-based Chinese herbal formula improves ethanol-induced drunken behavior and hepatic steatohepatitis in mice models. Chin Med 2023; 18:47. [PMID: 37127639 PMCID: PMC10150545 DOI: 10.1186/s13020-023-00753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND Bao-Gan-Xing-Jiu-Wan (BGXJW) is a clinical experience-based Chinese herbal formula. Its efficacy, pharmacological safety, targeted function, process quality, and other aspects have met the evaluation standards and the latest requirements of preparations. It could prevent and alleviate the symptoms of drunkenness and alcoholic liver injury clinically. The present work aims to elucidate whether BGXJW could protect against drunkenness and alcoholic liver disease in mice and explore the associated mechanism. MATERIAL AND METHODS We used acute-on-chronic (NIAAA) mice model to induce alcoholic steatosis, and alcohol binge-drinking model to reappear the drunk condition. BGXJW at indicated doses were administered by oral gavage respectively to analyze its effects on alcoholic liver injury and the associated molecular mechanisms. RESULTS BGXJW had no cardiac, hepatic, renal, or intestinal toxicity in mice. Alcoholic liver injury and steatosis in the NIAAA mode were effectively prevented by BGXJW treatment. BGXJW increased the expression of alcohol metabolizing enzymes ADH, CYP2E1, and ALDH2 to enhance alcohol metabolism, inhibited steatosis through regulating lipid metabolism, counteracted alcohol-induced upregulation of lipid synthesis related proteins SREBP1, FASN, and SCD1, meanwhile it enhanced fatty acids β-oxidation related proteins PPAR-α and CPT1A. Alcohol taken enhanced pro-inflammatory TNF-α, IL-6 and down-regulated the anti-inflammatory IL-10 expression in the liver, which were also reversed by BGXJW administration. Moreover, BGXJW significantly decreased the blood ethanol concentration and alleviated drunkenness in the alcohol binge-drinking mice model. CONCLUSIONS BGXJW could effectively relieve drunkenness and prevent alcoholic liver disease by regulating lipid metabolism, inflammatory response, and alcohol metabolism.
Collapse
Affiliation(s)
- Han Gao
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Hepatology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Zhen Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Henan, 450046, Zhengzhou, China
| | - Yao Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Infectious Disease, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Yong-Kang Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Cheng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Department of Pharmacy, Jincheng General Hospital, Jincheng, 048006, Shanxi, China
| | - Feng Qiu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Ya-Wen Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Xin-Hua Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jia-Bo Wang
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| | - Zhi-Tao Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
154
|
Wang X, Chen D, Shi Y, Luo J, Zhang Y, Yuan X, Zhang C, Shu H, Yu W, Tian J. Copper and cuproptosis-related genes in hepatocellular carcinoma: therapeutic biomarkers targeting tumor immune microenvironment and immune checkpoints. Front Immunol 2023; 14:1123231. [PMID: 37153542 PMCID: PMC10157396 DOI: 10.3389/fimmu.2023.1123231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), one of the most common cancers worldwide, exhibits high immune heterogeneity and mortality. Emerging studies suggest that copper (Cu) plays a key role in cell survival. However, the relationship between Cu and tumor development remains unclear. Methods We investigated the effects of Cu and cuproptosis-related genes (CRGs) in patients with HCC in the TCGA-LIHC (The Cancer Genome Atlas-Liver cancer, n = 347) and ICGC-LIRI-JP (International Cancer Genome Consortium-Liver Cancer-Riken-Japan, n = 203) datasets. Prognostic genes were identified by survival analysis, and a least absolute shrinkage and selection operator (Lasso) regression model was constructed using the prognostic genes in the two datasets. Additionally, we analyzed differentially expressed genes and signal pathway enrichment. We also evaluated the effects of CRGs on tumor immune cell infiltration and their co-expression with immune checkpoint genes (ICGs) and performed validation in different tumor immune microenvironments (TIMs). Finally, we performed validation using clinical samples and predicted the prognosis of patients with HCC using a nomogram. Results A total of 59 CRGs were included for analysis, and 15 genes that significantly influenced the survival of patients in the two datasets were identified. Patients were grouped by risk scores, and pathway enrichment analysis suggested that immune-related pathways were substantially enriched in both datasets. Tumor immune cell infiltration analysis and clinical validation revealed that PRNP (Prion protein), SNCA (Synuclein alpha), and COX17 (Cytochrome c oxidase copper chaperone COX17) may be closely correlated with immune cell infiltration and ICG expression. A nomogram was constructed to predict the prognosis of patients with HCC using patients' characteristics and risk scores. Conclusion CRGs may regulate the development of HCC by targeting the TIM and ICGs. CRGs such as PRNP, SNCA, and COX17 could be promising targets for HCC immune therapy in the future.
Collapse
Affiliation(s)
- Xiaoqiang Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongfang Chen
- Department of Anesthesiology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yumiao Shi
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiamei Luo
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiqi Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohong Yuan
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Chaojin Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Huigang Shu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Tian
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
155
|
Niu W, Zhu M, Wang M, Zhang G, Zheng C, Bao Y, Li Y, Zhang N, Wang J, He H, Wang Y. Discovery and development of benzene sulfonamide derivatives as anti-hepatic fibrosis agents. Bioorg Med Chem Lett 2023; 88:129290. [PMID: 37080476 DOI: 10.1016/j.bmcl.2023.129290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
A novel benzene sulfonamide compound named IMB16-4 exhibits excellent anti-hepatic fibrosis activity in a recent study. To develop potential anti-hepatic fibrosis agents, a series of benzene sulfonamide derivatives were designed and synthesized based on the scaffold of the lead compound IMB16-4. As it turned out, most of the derivatives displayed potential anti-hepatic fibrosis activity, among which, compounds 11a, 11b, 11d, 13a, 36b, and 47b exhibited inhibition rates of 42.3%, 48.7%, 42.4%, 40.0%, 39.4%, and 49.3%, respectively, which were equivalent to the control IMB16-4 with an inhibition rate of 35.9%, Costunolide with an inhibition rate of 45.4%, and much more potent than that of Epigallocatechin gallate (EGCG) with an inhibition rate of 25.3%. Especially, compounds 46a, 46b, and 46c exhibited excellent anti-hepatic fibrosis activity with inhibition rates of 61.7%, 54.8%, and 60.7%, which were almost 1.5-fold inhibition rates of IMB16-4. In addition, compounds 46a, 46b, and 46c exhibited remarkable inhibitory activity in the gene expression of COL1A1, MMP-2, and the protein expression of COL1A1, FN, α-SMA, and TIMP-1 by inhibiting the JAK1-STAT1/3 pathway. These findings furnished valuable inspiration for the further development of anti-hepatic fibrosis agents.
Collapse
Affiliation(s)
- Weiping Niu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Mei Zhu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Minghua Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guoning Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Chenghong Zheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yunyang Bao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yiming Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Juxian Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hongwei He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
156
|
Su Y, Hou C, Wang M, Ren K, Zhou D, Liu X, Zhao S, Liu X. Metformin induces mitochondrial fission and reduces energy metabolism by targeting respiratory chain complex I in hepatic stellate cells to reverse liver fibrosis. Int J Biochem Cell Biol 2023; 157:106375. [PMID: 36716817 DOI: 10.1016/j.biocel.2023.106375] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The activation and proliferation of hepatic stellate cells (HSCs) are critical processes for the treatment of liver fibrosis. It is necessary to identify effective drugs for the treatment of liver fibrosis and elucidate their mechanisms of action. Metformin can inhibit HSCs; however, no systematic studies demonstrating the effects of metformin on mitochondria in HSCs have been reported. This study demonstrated that metformin induces mitochondrial fission by phosphorylating AMPK/DRP1 (S616) in HSCs to decrease the expression of α-SMA and collagen. Additionally, metformin repressed the total ATP production rate, especially the production rate of ATP produced through mitochondrial oxidative phosphorylation, by inhibiting the enzymatic activity of complex I. Further analysis revealed that metformin strongly constrained the transcription of mitochondrial genes (ND1-ND6 and ND4L) that encode the core subunits of respiratory chain I. Upregulation of the mRNA expression of HK2 and GLUT1 slightly enhanced glycolysis. Additionally, metformin increased mitochondrial DNA (mtDNA) copy number to suppress the proliferation and activation of HSCs, indicating that mtDNA copy number can alter the fate of HSCs. In conclusion, metformin can induce mitochondrial fragmentation and low-level energy metabolism in HSCs, thereby suppressing HSCs activation and proliferation to reverse liver fibrosis.
Collapse
Affiliation(s)
- Ying Su
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenjian Hou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Meili Wang
- Department of Pathology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Danmei Zhou
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaoli Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shanyu Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiuping Liu
- Department of Pathology, Shanghai Fifth People's Hospital, School of Basic Medical Sciences, Fudan University, Shanghai 200240, China.
| |
Collapse
|
157
|
Luo M, Li T, Sang H. The role of hypoxia-inducible factor 1α in hepatic lipid metabolism. J Mol Med (Berl) 2023; 101:487-500. [PMID: 36973503 DOI: 10.1007/s00109-023-02308-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/06/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Chronic liver disease is a major public health problem with a high and increasing prevalence worldwide. In the progression of chronic liver disease, steatosis drives the progression of the disease to cirrhosis or even liver cancer. Hypoxia-inducible factor 1α (HIF-1α) is central to the regulation of hepatic lipid metabolism. HIF-1α upregulates the expression of genes related to lipid uptake and synthesis in the liver and downregulates the expression of lipid oxidation genes. Thus, it promotes intrahepatic lipid deposition. In addition, HIF-1α is expressed in white adipose tissue, where lipolysis releases free fatty acids (FFAs) into the blood. These circulating FFAs are taken up by the liver and accumulate in the liver. The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. Contrary to the role of hepatic HIF-1α, intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier. Thus, it plays a protective role against hepatic steatosis. This article aims to provide an overview of the current understanding of the role of HIF-1α in hepatic steatosis and to encourage the development of therapeutic agents associated with HIF-1α pathways. KEY MESSAGES: • Hepatic HIF-1α expression promotes lipid uptake and synthesis and reduces lipid oxidation leading to hepatic steatosis. • The expression of HIF-1α in the liver condenses bile and makes it easier to form gallstones. • Intestinal HIF-1α expression can maintain a healthy microbiota and intestinal barrier.
Collapse
Affiliation(s)
- Mingxiao Luo
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Li
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Haiquan Sang
- Department of General Surgery, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
158
|
Chen H, Liu J, Peng S, Yang G, Cheng X, Chen L, Zhang H, Zhao Y, Yao P, Tang Y. Autophagy and exosomes coordinately mediate quercetin's protective effects on alcoholic liver disease. J Nutr Biochem 2023; 116:109332. [PMID: 36965782 DOI: 10.1016/j.jnutbio.2023.109332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/09/2022] [Accepted: 03/18/2023] [Indexed: 03/27/2023]
Abstract
Alcoholic liver disease (ALD), a spectrum of liver abnormalities induced by chronic alcohol abuse, continues to be the major cause of life-threatening liver disease in developed countries. Autophagy and exosomes were individually confirmed to be involved in the pathogenesis of ALD. Here, we sought to identify the role of autophagy and exosomes in the liver protective effects of quercetin. We observed decreased hepatic LC3II/LC3I and increased p62 level in ethanol-fed mice, and these changes were alleviated by quercetin. Meanwhile, nanoparticle tracking analysis (NTA) showed elevated serum exosomes numbers in ethanol-fed mice, which was combated by quercetin. Ethanol induced elevated LDH, ALT, and AST in HepG2 supernatant, which was alleviated by cytochalasin D (exosomes uptake inhibitor). Moreover, quercetin reduced ethanol-induced LDH and ALT elevation in vitro, and the effects of quercetin were reversed by Rab27a overexpression (induce exosomes release) or wortmannin treatment (autophagy inhibitor). Transcriptomic analysis supported that quercetin reversed the change of lysosome related genes disturbed by ethanol. Meanwhile, western blot analysis exhibited decreased hepatic expression of LAMP2 and ATPA6V1B2, and active Cathepsin B/Cathepsin B by quercetin treatment, indicating quercetin alleviated lysosome dysfunction in ethanol-fed mice. Baf A treatment or transfection of siTFEB offset quercetin's effects in ethanol-induced LDH and ALT elevation, exosomes release, and autophagy inhibition (LC3II/I and p62 accumulation). Taken together, quercetin coordinately activates autophagy and combats exosomes release by restoring lysosome function, and further mitigates ethanol-induced liver damage.
Collapse
Affiliation(s)
- Huimin Chen
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingjing Liu
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, 450000, Henan, China
| | - Shufen Peng
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Guang Yang
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xueer Cheng
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Li Chen
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Han Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ying Zhao
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ping Yao
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; State Key Laboratory of Environment Health (Incubation), Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Key Laboratory of Environment & Health, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yuhan Tang
- Hubei Key Laboratory of Food Nutrition and Safety, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; State Key Laboratory of Environment Health (Incubation), Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China; Key Laboratory of Environment & Health, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
159
|
Cao Y, Zhang H, Li S, Li S, Sun S, Chen J, Ye T, Zhang X, Yuan J. Correlation analysis between myocardial work indices and liver function classification in patients with hepatitis B cirrhosis: A study with non-invasive left ventricular pressure-strain loop. Front Cardiovasc Med 2023; 10:1126590. [PMID: 36970359 PMCID: PMC10030708 DOI: 10.3389/fcvm.2023.1126590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023] Open
Abstract
BackgroundLiver cirrhosis is closely associated with cardiac dysfunction. The aims of this study were to evaluate left ventricular systolic function in patients with hepatitis B cirrhosis by non-invasive left ventricular pressure-strain loop (LVPSL) technique, and to explore the correlation between myocardial work indices and liver function classification.MethodsAccording to the Child-Pugh classification, 90 patients with hepatitis B cirrhosis were further divided into three groups: Child-Pugh A group (n = 32), Child-Pugh B group (n = 31), and Child-Pugh C group (n = 27). During the same period, 30 healthy volunteers were recruited as the control (CON) group. Myocardial work parameters, which included global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE), were derived from the LVPSL and compared among the four groups. The correlation between myocardial work parameters and Child-Pugh liver function classification was evaluated, and the independent risk factors affecting left ventricular myocardial work in patients with cirrhosis were investigated by univariable and multivariable linear regression analysis.ResultsGWI, GCW and GWE of Child-Pugh B and C groups were lower than those of CON group, while GWW was higher than that of CON group, and the changes were more obvious in Child-Pugh C group (P < 0.05). Correlation analysis revealed that GWI, GCW, and GWE were negatively correlated with liver function classification to various degrees (r = −0.54, −0.57, and −0.83, respectively, all P < 0.001), while GWW was positively correlated with liver function classification (r = 0.76, P < 0.001). Multivariable linear regression analysis showed that GWE was positively correlated with ALB (β = 0.17, P < 0.001), and negatively correlated with GLS (β = −0.24, P < 0.001).ConclusionsThe changes in the left ventricular systolic function in patients with hepatitis B cirrhosis were identified using non-invasive LVPSL technology, and myocardial work parameters are significantly correlated with liver function classification. This technique may provide a new method for the evaluation of cardiac function in patients with cirrhosis.
Collapse
Affiliation(s)
- Yang Cao
- Department of Ultrasound, People’s Hospital of Zhengzhou University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Huihui Zhang
- Department of Ultrasound, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shuai Li
- Department of Ultrasound, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Siliang Li
- Department of Ultrasound, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shuowen Sun
- Department of Ultrasound, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Jinwen Chen
- Department of Ultrasound, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ting Ye
- Department of Ultrasound, People’s Hospital of Henan University, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Xijun Zhang
- Department of Ultrasound, Henan Provincial People’s Hospital, Zhengzhou, China
- Correspondence: Xijun Zhang Jianjun Yuan
| | - Jianjun Yuan
- Department of Ultrasound, Henan Provincial People’s Hospital, Zhengzhou, China
- Correspondence: Xijun Zhang Jianjun Yuan
| |
Collapse
|
160
|
Huang Z, Zhou PP, Li SS, Li K. CEUS LI-RADS for diagnosis of hepatocellular carcinoma in individuals without LI-RADS-defined hepatocellular carcinoma risk factors. Cancer Imaging 2023; 23:24. [PMID: 36879352 PMCID: PMC9987139 DOI: 10.1186/s40644-023-00541-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
PURPOSE This study evaluated the performance of the contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) in patients without LI-RADS-defined hepatocellular carcinoma (HCC) risk factors (RF-). METHODS Patients with LI-RADS-defined HCC risk factors (RF+) and RF- were enrolled in a retrospective study. Additionally, a prospective evaluation in the same centre was performed as a validation set. The diagnostic performances of the CEUS LI-RADS criteria in RF+ and RF- patients were compared. RESULTS Overall, we included 873 patients in the analyses. In the retrospective study, the LI-RADS category (LR)-5 specificities for diagnosing HCC did not differ between the RF+ and RF- groups (77.5% [158/204] vs 91.6% [196/214], P = 0.369, respectively). However, the positive predictive value (PPV) of CEUS LR-5 was 95.9% (162/169) and 89.8% (158/176) in the RF+ and RF- groups, respectively (P = 0.029). In the prospective study, the PPV of LR-5 for HCC lesions was significantly higher in the RF+ group than in the RF- group (P = 0.030). The sensitivity and specificity did not differ between the RF+ and RF- groups (P = 0.845 and P = 0.577, respectively). CONCLUSIONS The CEUS LR-5 criteria shows clinical value for diagnosis of HCC in patients with and without risks.
Collapse
Affiliation(s)
- Zhe Huang
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Postal address 430030, Qiaokou District, Wuhan, Hubei Province, China
| | - Ping Ping Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Postal address 430030, Qiaokou District, Wuhan, Hubei Province, China
| | - Shan Shan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Postal address 430030, Qiaokou District, Wuhan, Hubei Province, China
| | - Kaiyan Li
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Postal address 430030, Qiaokou District, Wuhan, Hubei Province, China.
| |
Collapse
|
161
|
Xue J, Zhao M, Liu Y, Jia X, Zhang X, Gu Q, Xie Y, Qin S, Liu B. Hydrogen inhalation ameliorates hepatic inflammation and modulates gut microbiota in rats with high-fat diet-induced non-alcoholic fatty liver disease. Eur J Pharmacol 2023; 947:175698. [PMID: 36997047 DOI: 10.1016/j.ejphar.2023.175698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a multisystem metabolic disease associated with gut microflora dysbiosis and inflammation. Hydrogen (H2) is a novel and effective antiinflammatory agent. The present study was aimed to clarify the effects of 4% hydrogen (H2) inhalation on NAFLD and its mechanism of action. Sprague-Dawley rats were fed a high-fat diet for 10 weeks to induce NAFLD. Rats in treatment group inhaled 4% H2 each day for 2 h. The protective effects on hepatic histopathology, glucose tolerance, inflammatory markers, and intestinal epithelial tight junctions were assessed. Transcriptome sequencing of liver and 16 S-seq of cecal contents were also performed to explore the related mechanisms of H2 inhalation. H2 improved the hepatic histological changes and glucose tolerance, decreased the liver function parameters of plasma alanine aminotransferase and aspartate aminotransferase, and relieved liver inflammation. Liver transcriptomic data suggested that H2 treatment significantly downregulated inflammatory response genes, and the lipopolysaccharide (LPS)/Toll-like receptor (TLR) 4/nuclear transcription factor kappa B (NF-κB) signaling pathway might be involved, and the expressions of critical proteins were further validated. Meanwhile, the plasma LPS level was significantly decreased by the H2 intervention. H2 also improved the intestinal tight junction barrier by enhancing the expressions of zonula occludens-1 and occluding. Based on 16 S rRNA sequencing, H2 altered the composition of gut microbiota, improving the relative abundance of Bacteroidetes-to-Firmicutes. Collectively, our data show that H2 could prevent NAFLD induced by high-fat diet, and the anti-NAFLD effect is associated with the modulation of gut microbiota and inhibition of LPS/TLR4/NF-κB inflammatory pathway.
Collapse
Affiliation(s)
- Junli Xue
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Min Zhao
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yunchao Liu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xiubin Jia
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xiaoyi Zhang
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Qianqian Gu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Yunbo Xie
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shucun Qin
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| | - Boyan Liu
- Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Key Laboratory of Hydrogen Biomedical Research of Health Commission of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| |
Collapse
|
162
|
Liu J, Lv H, Wang J, Zhu Q, Chen G, Jiang Y, Zhao K, Shao L, Shi J, Pan X. Blood pressure stratification for predicting liver fibrosis risk in metabolic dysfunction associated fatty liver disease. Ann Hepatol 2023; 28:100892. [PMID: 36577468 DOI: 10.1016/j.aohep.2022.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION AND OBJECTIVES The optimal blood pressure (BP) range for patients with metabolic dysfunction-associated fatty liver disease (MAFLD) is currently unknown. This study aimed to explore the relationship between stratified BP levels and MAFLD progression. PATIENTS AND METHODS The data of adults who underwent yearly health check-ups were screened to establish both a cross-sectional and a 6-year longitudinal cohort of individuals with MAFLD. BP was classified into the following categories optimal, normal, high-normal, and hypertension. Liver fibrosis was diagnosed with fibrosis-4 (FIB-4) score, nonalcoholic fatty liver disease fibrosis score (NFS), and aspartate aminotransferase-to-platelet ratio index (APRI). RESULTS A total of 10,232 individuals were included in the cross-sectional cohort. In the MAFLD population, individuals with liver fibrosis had significantly higher BP levels and hypertension prevalence (P < 0.001) than those without. Furthermore, liver fibrosis score was significantly associated with BP levels (P < 0.001). In the 6-year longitudinal cohort of 3661 individuals with MAFLD without liver fibrosis, the incidence rates of liver fibrosis increased with increasing BP levels as follows optimal=11.20%, normal=13.90%, high-normal=19.50%, hypertension=26.20% (log-rank 22.205; P < 0.001). Cox regression analysis showed that both baseline high-normal BP (hazard ratio [HR], 1.820; P=0.019) and hypertension (HR, 2.656; P < 0.001) were predictive of liver fibrosis. CONCLUSIONS BP stratification may be useful in predicting the progression of MAFLD. Individuals having MAFLD with concurrent hypertension or high-normal BP are at a higher risk of liver fibrosis. These findings may provide a criteria for early intervention of MAFLD to prevent liver fibrosis.
Collapse
Affiliation(s)
- Jing Liu
- Hangzhou Normal University, Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Haifeng Lv
- Department of Intensive Care Unit, The first affiliated hospital of zhejiang university school of medicine, Hangzhou 310015, Zhejiang Province, China
| | - Jie Wang
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Qianru Zhu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Gongying Chen
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Yanming Jiang
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Ke Zhao
- Hangzhou Key Laboratory of Inflammation and Immunoregulation, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li Shao
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Institute of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Junping Shi
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China; Institute of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Xiaoben Pan
- Hangzhou Normal University, Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang Province, China; Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Hangzhou Key Laboratory of Inflammation and Immunoregulation, Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
163
|
Soltani S, Sharifi-Zahabi E, Sangsefidi ZS, Ahmadi Vasmehjani A, Meshkini F, Clayton ZS, Abdollahi S. The effect of resveratrol supplementation on biomarkers of liver health: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2023; 37:1153-1166. [PMID: 36642444 DOI: 10.1002/ptr.7719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/25/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023]
Abstract
This study aimed to evaluate the effect of resveratrol on liver biomarkers in adult participants, using systematic review and meta-analysis of randomized controlled trials. PubMed, Scopus, Web of Science and Cochran Library was searched, up to October 2021. The pooled effects were calculated using a random-effects model and expressed as weighted mean difference and 95% confidence interval. The methodological quality of studies as well as certainty of evidence were assessed by standard tools. Thirty-seven relevant trials were found. Although overall analysis found no significant change, subgroup analysis showed a significant improvement in alanine aminotransferase (ALT; -7.79 U/L) and glutamyl transferase (-6.0 U/L) in patients with liver disorders, and ALT (-2.22 U/L) in younger adults; however, high-dose supplementation (>1,000 mg/day) appeared to increase alkaline phosphatase concentration (+5.07 U/L). ALT also increased in older adults (+2.33 U/L) following resveratrol supplementation. We found resveratrol did not have a significant effect on liver health in the general population. However, resveratrol could be effective in patients with liver disorders. Our findings also suggest that high-dose resveratrol administration and supplementation in older adults should be performed with caution. Further high-quality clinical trials are also needed to firmly establish the clinical efficacy of resveratrol.
Collapse
Affiliation(s)
- Sepideh Soltani
- Yazd Cardiovascular Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Sharifi-Zahabi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azam Ahmadi Vasmehjani
- Department of Nutrition, School of Public Health, Shahid Sadughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Meshkini
- Department of Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Student Research Committee, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zachary Stephen Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| |
Collapse
|
164
|
Fang X, Gao F, Yao Q, Xu H, Yu J, Cao H, Li S. Pooled Analysis of Mesenchymal Stromal Cell-Derived Extracellular Vesicle Therapy for Liver Disease in Preclinical Models. J Pers Med 2023; 13:441. [PMID: 36983624 PMCID: PMC10056150 DOI: 10.3390/jpm13030441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Although increasing preclinical studies have emphasized the benefits of exosome-related therapies, the efficacy of mesenchymal stromal cell (MSC)-derived extracellular vesicles (EV) for liver injury is unclear. In this work, a pooled analysis was conducted to explore the overall effect of MSC-EV in animal models. METHODS A systematic search of the PubMed, EMBASE, Web of Science, and Cochrane Library databases was performed, from initiation to February 2022, for preclinical studies with liver disease models. The treatment outcomes were evaluated based on liver function, histological analysis, and inflammatory cytokines. RESULTS After screening, 39 studies were included. Pooled analyses demonstrated that MSC-EV therapy significantly improved liver functions (ALB, ALT, AST, ALP, and γ-GT), promoted the repair of injured liver tissue (damaged area, Ishak's score), reduced inflammatory factors (TNF-α, IL-1β, IL-6, and IFN-γ), and increased an anti-inflammatory cytokine (IL-10) compared to the placebo control group. Subgroup analyses indicated that MSC-EV had therapeutic effects on liver fibrosis (n = 16), acute liver injury (n = 11), non-alcoholic fatty liver disease (n = 3), autoimmune hepatitis (n = 4), and hepatic ischemia-reperfusion injury (n = 6). Additionally, the therapeutic effect of EV was comparable to that of MSCs. CONCLUSION MSC-EV have therapeutic potential for acute and chronic liver diseases.
Collapse
Affiliation(s)
- Xinru Fang
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qigu Yao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haoying Xu
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Department of Laboratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250117, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou 310003, China
| | - Shibo Li
- Department of Infectious Disease, Zhoushan Hospital, Zhejiang University School of Medicine, Zhoushan 316021, China
| |
Collapse
|
165
|
Zhao C, Qian S, Tai Y, Guo Y, Tang C, Huang Z, Gao J. Proangiogenic role of circRNA-007371 in liver fibrosis. Cell Prolif 2023:e13432. [PMID: 36854930 DOI: 10.1111/cpr.13432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Circular RNAs (circRNAs) are crucially involved in cancers as competing endogenous RNA (ceRNA) or microRNA (miRNA) sponges. However, the function and mechanism of circRNAs in liver fibrosis remain unknown and are the focus of this study. Murine fibrotic models were induced by thioacetamide (TAA) or carbon tetrachloride (CCl4 ). Increased angiogenesis is accompanied by liver fibrosis in TAA- and CCl4 -induced murine fibrotic livers. circRNA microarray and argonaute 2 (AGO2)-RNA immunoprecipitation (RIP) sequencing (AGO2-RIP sequencing) were performed in murine livers to screen for functional circRNAs. Compared to control livers, 86 differentially expressed circRNAs were obtained in TAA-induced murine fibrotic livers using circRNA microarray. In addition, 551 circRNAs were explored by AGO2-RIP sequencing of murine fibrotic livers. The circRNA-007371 was then selected and verified for back-spliced junction, resistance to RNase R, and loop formation. In vitro, murine hemangioendothelioma endothelial (EOMA) cells were transfected with circRNA-007371 overexpressing plasmid or empty plasmid. circRNA-007371 overexpression promoted tube formation, migration, and cell proliferation of EOMA cells. RNA sequencing and miRNA sequencing were then performed to explore the mechanism of the proangiogenic effects of circRNA-007371. circRNA-007371 promotes liver fibrosis via miRNA sponges or ceRNA mechanisms. Stag1, the parent gene of circRNA-007371, may play a significant role in proangiogenic progression. In conclusion, circRNA-007371 enhances angiogenesis via a miRNA sponge mechanism in liver fibrosis. The antiangiogenic effect of circRNA-007371 inhibition may provide a new strategy for treating patients with liver cirrhosis.
Collapse
Affiliation(s)
- Chong Zhao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuaijie Qian
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tai
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yangkun Guo
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Lab of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
166
|
Association of MAFLD with end-stage kidney disease: a prospective study of 337,783 UK Biobank participants. Hepatol Int 2023; 17:595-605. [PMID: 36809487 DOI: 10.1007/s12072-023-10486-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Metabolic dysfunction-associated fatty liver (MAFLD) has been found to be associated with the prevalence of chronic kidney disease (CKD). However, it is unknown whether MAFLD is associated with CKD development and the incidence of end-stage kidney disease (ESKD). We aimed to clarify the association between MAFLD and incident ESKD in the prospective UK Biobank cohort. METHODS We analyzed the data of 337,783 UK Biobank participants and relative risks for the ESKD were calculated by using the Cox regression analysis. RESULTS Among 337,783 participants over a median duration of 12.8 years follow-up, a total of 618 ESKD cases were diagnosed. Participants with MAFLD were twice likely to develop ESKD (hazard ratio [HR] 2.03, 95% confidence interval [CI] 1.68-2.46, p < 0.001). The association of MAFLD with ESKD risk remained significant in both non-CKD and CKD participants. Our results also showed that there were graded associations between liver fibrosis scores and the risk of ESKD in MAFLD cases. Compared to non-MAFLD individuals, the adjusted HRs for incident ESKD in MAFLD patients with increasing levels of NAFLD fibrosis score were 1.23 (95% CI 0.96-1.58), 2.45 (1.98-3.03) and 7.67 (5.48-10.73), respectively. Furthermore, the risking alleles of PNPLA3 rs738409, TM6SF2 rs58542926, GCKR rs1260326 and MBOAT7 rs641738 amplified the MAFLD effect on ESKD risk. In conclusion, MAFLD is associated with incident ESKD. CONCLUSION MAFLD may help identify the subjects at high risk of ESKD development and MAFLD interventions should be encouraged to slow down CKD progression.
Collapse
|
167
|
Lu R, Liu Y, Hong T. Epidemiological characteristics and management of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis in China: A narrative review. Diabetes Obes Metab 2023; 25 Suppl 1:13-26. [PMID: 36775938 DOI: 10.1111/dom.15014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
AIM With industrialization and spread of the westernized lifestyle, the number of people affected by non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is growing rapidly in China; this has become a major public health concern. To better understand the burden and characteristics of NAFLD/NASH in China, we aim to perform a narrative review of the literature published in this field. MATERIALS AND METHODS We carried out a comprehensive electronic search of five English-language and three Chinese-language databases, to identify studies regarding NAFLD or NASH published from inception to November 30, 2022. Epidemiological studies of NAFLD/NASH in China were particularly noticed and summarized. We also searched the www. CLINICALTRIALS gov and www.chictr.org.cn websites for the registered trials on the treatment of the disease led by Chinese investigators or located in China. RESULTS The increasing rate of NAFLD prevalence in China is strikingly high, reaching more than twice that in western countries. The prevalence of NAFLD is nearly 30% of the general Chinese population, making it the leading cause of chronic liver diseases. The prevalence of NAFLD/NASH varies between provinces/regions, age groups, sexes, and individuals with different metabolic profiles. NAFLD co-exists in many Chinese patients with chronic hepatitis B. Since 2020, more Chinese studies have used the term metabolic-associated fatty liver disease (MAFLD), emphasizing the underlying metabolic disorders that occur concurrently with this disease. Several clinical trials involving lifestyle interventions, antidiabetic drugs, or traditional Chinese medicines, registered by Chinese investigators, have been completed or are ongoing. Moreover, several innovative targeted therapies developed in China are revolutionizing the treatment of NAFLD/NASH. CONCLUSIONS NAFLD has cast a heavy burden on the Chinese healthcare system. Chinese scholars are making efforts to achieve the optimal management of this disease.
Collapse
Affiliation(s)
- Ran Lu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Ye Liu
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| |
Collapse
|
168
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
169
|
Lin MW, Yu XR, Chen JY, Wei YS, Chen HY, Tsai YT, Lin LH, Liao EC, Kung HY, Young SS, Chan HL, Chou HC. Sediment pollutant exposures caused hepatotoxicity and disturbed glycogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114559. [PMID: 36669277 DOI: 10.1016/j.ecoenv.2023.114559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Liver metabolic syndrome, which involves impaired hepatic glycogen synthesis, is persistently increased by exposure to environmental pollutants. Most studies have investigated the pathogenesis of liver damage caused by single metal species or pure organics. However, under normal circumstances, the pollutants that we are exposed to are usually chemical mixtures that accumulate over time. Sediments are long-term repositories for environmental pollutants due to their environmental cycles, which make them good samples for evaluating the effect of environmental pollutants on the liver via bioaccumulation. This study aimed to clarify the effects of sediment pollutants on liver damage. Our results indicate that industrial wastewater sediment (downstream) is more cytotoxic than sediments from other zones. Downstream sediment extract (DSE) causes hepatotoxicity, stimulates reactive oxygen species (ROS) generation, triggers mitochondrial dysfunction, induces cell apoptosis, and results in the release of glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) proteins. Additionally, to elucidate the underlying mechanism by which sediment pollutants disturb hepatic glycogen synthesis, we investigated the effects of different sediment samples from different pollution situations on glycogen synthesis in liver cell lines. It was found that DSE induced multiple severe impairments in liver cells, and disturbed glycogen synthesis more than under other conditions. These impairments include decreased hepatic glycogen synthesis via inhibition and insulin receptor substrate 1 (IRS-1) /AKT /glycogen synthase kinase3β (GSK3β)-mediated glycogen synthase (GYS) inactivation. To our knowledge, this study provides the first detailed evidence of in vitro sediment-accumulated toxicity that interferes with liver glycogen synthesis, leading to hepatic cell damage through apoptosis.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Xin-Ru Yu
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jai-Yu Chen
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Wei
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsin-Yi Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Ting Tsai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Li-Hsun Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - En-Chi Liao
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiang-Yu Kung
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuh-Sen Young
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hong-Lin Chan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science and Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan.
| | - Hsiu-Chuan Chou
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
170
|
Abstract
Liver fibrosis has a high incidence worldwide and is the common pathological basis of many chronic liver diseases. Liver fibrosis is caused by the excessive deposition of extracellular matrix and concomitant collagen accumulation in livers and can lead to the development of liver cirrhosis and even liver cancer. A large number of studies have provided evidence that liver fibrosis can be blocked or even reversed by appropriate medical interventions. However, the antifibrosis drugs with ideal clinical efficacy are still insufficient. The edible plant-derived natural compounds have been reported to exert effective antifibrotic effects with few side-effects, representing a kind of promising source for the treatment of liver fibrosis. In this article, we reviewed the current progress of the natural compounds derived from dietary plants in the treatment of liver fibrosis, including phenolic compounds (capsaicin, chlorogenic acid, curcumin, ellagic acid, epigallocatechin-3-gallate, resveratrol, sinapic acid, syringic acid, vanillic acid and vitamin E), flavonoid compounds (genistein, hesperidin, hesperetin, naringenin, naringin and quercetin), sulfur-containing compounds (S-allylcysteine, ergothioneine, lipoic acid and sulforaphane) and other compounds (betaine, caffeine, cucurbitacin B, lycopene, α-mangostin, γ-mangostin, ursolic acid, vitamin C and yangonin). The pharmacological effects and related mechanisms of these compounds in in-vivo and in-vitro models of liver fibrosis are focused.
Collapse
|
171
|
Zhang G, Chen H, Ren W, Huang J. Efficacy of bile acid profiles in diagnosing and staging of alcoholic liver disease. Scand J Clin Lab Invest 2023; 83:8-17. [PMID: 36484775 DOI: 10.1080/00365513.2022.2151508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM The diagnosis of alcoholic liver disease (ALD) is still a great challenge. Therefore, the purpose of this study is to identify and characterize new metabolomic biomarkers for the diagnosis and staging of ALD. METHODS A total of 127 patients with early liver injury, 40 patients with alcoholic cirrhosis (ALC) and 40 healthy controls were included in this study. Patients with early liver injury included 45 patients with alcoholic liver disease (ALD), 40 patients with non-alcoholic fatty liver disease (NAFLD) and 40 patients with viral liver disease (VLD). The differential metabolites in serum samples were analyzed using ultra-high-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry, and partial metabolites in the differential metabolic pathway were identified by liquid chromatography- tandem mass spectrometry. RESULTS A total of 40 differential metabolites and five differential metabolic pathways in the four groups of patients with early liver disease and healthy controls were found, and the metabolic pathway of primary bile acid (BA) biosynthesis was the pathway that included the most differential metabolites. Therefore, 22 BA profiles were detected. The results revealed that the changes of BA profiles were most pronounced in patients with ALD compared with patients with NAFLD and VLD, in whom 12 differential BAs were diagnostic markers of ALD (AUC = 0.883). The 19 differential BAs in ALC and ALD were diagnostic markers of the stage of alcoholic hepatic fibrosis (AUC = 0.868). CONCLUSION BA profiles are potential indicators in the diagnosis of ALD and evaluation of different stages.
Collapse
Affiliation(s)
- Gaixia Zhang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Haizhen Chen
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Ren
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
172
|
Wei YY, Wang HR, Fan YM, Gu JH, Zhang XY, Gong XH, Hao ZH. Acute liver injury induced by carbon tetrachloride reversal by Gandankang aqueous extracts through nuclear factor erythroid 2-related factor 2 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114527. [PMID: 36628874 DOI: 10.1016/j.ecoenv.2023.114527] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The aims of this study were to evaluated the effect and underlying mechanism of Gandankang (GDK) aqueous extract in alleviating the acute liver injury induced by carbon tetrachloride (CCl4) in vivo and in vitro. Mice were divided into 5 groups (n = 8) for acute (Groups: control, 0.3 % CCl4, BD (Bifendate), 1.17, 2.34 and 4.68 mg/kg GDK) liver injury study. 10 µL/g CCl4 with corn oil were injected interperitoneally (i.p) expect the control group. HepG2 cells were used in vitro study. The results showed GDK can effectively inhibit liver damage and restore the structure and function of the liver. In mechanism, GDK inhibited CCl4-induced liver fibrosis and blocked the NF-κB pathway to effectively inhibit the hepatic inflammatory response; and inhibited CCl4-induced oxidative stress by upregulating the Keap1/Nrf2 pathway-related proteins and promoting the synthesis of several antioxidants. Additionally, it inhibited ferroptosis in the liver by regulating the expression of ACSl4 and GPX4. GDK reduced lipid peroxide generation in vitro by downregulating the production of reactive oxygen species and Fe2+ aggregation, thereby inhibiting ferroptosis and alleviating CCl4-induced hepatocyte injury. In conclusion, we describe the potential complex mechanism underlying the effect of GDK against acute liver injury.
Collapse
Affiliation(s)
- Yuan-Yuan Wei
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Hui-Ru Wang
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Yi-Meng Fan
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China
| | - Jin-Hua Gu
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xiu-Ying Zhang
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Xu-Hao Gong
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China; China Institute of Veterinary Drug Control, Beijing 100081, China
| | - Zhi-Hui Hao
- Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
173
|
Yuan X. Chinese expert consensus on managing thrombocytopenia in patients with cancer and liver injury. ONCOLOGY AND TRANSLATIONAL MEDICINE 2023; 9:1-14. [DOI: 10.1007/s10330-023-0628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/04/2025]
Abstract
Abstract
Thrombocytopenia and liver injury are serious clinical problems in patients with cancer. The etiology of thrombocytopenia in patients with cancer and liver injury (TCLI) is complicated. Managing cancer therapy-induced thrombocytopenia has gradually become standardized, and managing liver injury-associated thrombocytopenia has become more effective with the approval and marketing of relevant drugs. However, the optimal strategy for managing thrombocytopenia in patients with cancer and liver injury remains unclear, and the superposition of thrombocytopenia and liver injury further increases the difficulty of cancer treatment. Therefore, the Committee of Cancer Support Therapy of the Chinese Anti-Cancer Association has organized experts to analyze and discuss relevant literature to form a Chinese expert consensus on managing thrombocytopenia in patients with cancer and liver injury (2022 Edition) to guide clinical practice.
Collapse
Affiliation(s)
- Xianglin Yuan
- Committee of neoplastic supportive-care (CONS), China Anti-Cancer Association
| |
Collapse
|
174
|
Expression and functions of transient receptor potential channels in liver diseases. Acta Pharm Sin B 2023; 13:445-459. [PMID: 36873177 PMCID: PMC9978971 DOI: 10.1016/j.apsb.2022.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Liver diseases constitute a major healthcare burden globally, including acute hepatic injury resulted from acetaminophen overdose, ischemia-reperfusion or hepatotropic viral infection and chronic hepatitis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Attainable treatment strategies for most liver diseases remain inadequate, highlighting the importance of substantial pathogenesis. The transient receptor potential (TRP) channels represent a versatile signalling mechanism regulating fundamental physiological processes in the liver. It is not surprising that liver diseases become a newly explored field to enrich our knowledge of TRP channels. Here, we discuss recent findings revealing TRP functions across the fundamental pathological course from early hepatocellular injury caused by various insults, to inflammation, subsequent fibrosis and hepatoma. We also explore expression levels of TRPs in liver tissues of ALD, NAFLD and HCC patients from Gene Expression Omnibus (GEO) or The Cancer Genome Atlas (TCGA) database and survival analysis estimated by Kaplan-Meier Plotter. At last, we address the therapeutical potential and challenges by pharmacologically targeting TRPs to treat liver diseases. The aim is to provide a better understanding of the implications of TRP channels in liver diseases, contributing to the discovery of novel therapeutic targets and efficient drugs.
Collapse
|
175
|
Zhang J, Yang Z, Yan X, Duan J, Ruan B, Zhang X, Wen T, Zhang P, Liang L, Han H. RNA-binding protein SPEN controls hepatocyte maturation via regulating Hnf4α expression during liver development. Biochem Biophys Res Commun 2023; 642:128-136. [PMID: 36577249 DOI: 10.1016/j.bbrc.2022.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Liver organogenesis is a complex process. Although many signaling pathways and key factors have been identified during liver development, little is known about the regulation of late liver development, especially liver maturation. As a transcriptional repressor, SPEN has been demonstrated to interact with lncRNAs and transcription factors to participate in X chromosome inactivation, neural development, and lymphocyte differentiation. General disruption of SPEN results in embryonic lethality accompanied by hampered liver development in mice. However, the function of SPEN in embryonic liver development has not been reported. In this study, we demonstrate that SPEN is required for hepatocyte maturation using hepatocyte-specific disruption of SPEN with albumin-Cre-mediated knockout. SPEN expression was upregulated in hepatocytes along with liver development in mice. The deletion of the SPEN gene repressed hepatic maturation, mainly by a decrease in hepatic metabolic function and disruption of hepatocyte zonation. Additional experiments revealed that transcription factors which control hepatocyte maturation were strongly downregulated in SPEN-deficient hepatocytes, especially Hnf4α. Furthermore, restoration of Hnf4α levels partially rescued the immature state of hepatocytes caused by SPEN gene deletion. Taken together, these results reveal an unexpected role of SPEN in liver maturation.
Collapse
Affiliation(s)
- Jiayulin Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyan Yang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xianchun Yan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Bai Ruan
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoyan Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Wen
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Peiran Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Gastroenterology, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
176
|
Emerging Role of Protein O-GlcNAcylation in Liver Metabolism: Implications for Diabetes and NAFLD. Int J Mol Sci 2023; 24:ijms24032142. [PMID: 36768465 PMCID: PMC9916810 DOI: 10.3390/ijms24032142] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
O-linked b-N-acetyl-glucosaminylation (O-GlcNAcylation) is one of the most common post-translational modifications of proteins, and is established by modifying the serine or threonine residues of nuclear, cytoplasmic, and mitochondrial proteins. O-GlcNAc signaling is considered a critical nutrient sensor, and affects numerous proteins involved in cellular metabolic processes. O-GlcNAcylation modulates protein functions in different patterns, including protein stabilization, enzymatic activity, transcriptional activity, and protein interactions. Disrupted O-GlcNAcylation is associated with an abnormal metabolic state, and may result in metabolic disorders. As the liver is the center of nutrient metabolism, this review provides a brief description of the features of the O-GlcNAc signaling pathway, and summarizes the regulatory functions and underlying molecular mechanisms of O-GlcNAcylation in liver metabolism. Finally, this review highlights the role of O-GlcNAcylation in liver-associated diseases, such as diabetes and nonalcoholic fatty liver disease (NAFLD). We hope this review not only benefits the understanding of O-GlcNAc biology, but also provides new insights for treatments against liver-associated metabolic disorders.
Collapse
|
177
|
Nootkatone Supplementation Ameliorates Carbon Tetrachloride-Induced Acute Liver Injury via the Inhibition of Oxidative Stress, NF-κB Pathways, and the Activation of Nrf2/HO-1 Pathway. Antioxidants (Basel) 2023; 12:antiox12010194. [PMID: 36671056 PMCID: PMC9855146 DOI: 10.3390/antiox12010194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Acute liver injury is a type of liver diseases, and it has raised concerns worldwide due to the lack of effective therapies. The aim of this study is to investigate the protective effects of nootkatone (NOOT) on carbon tetrachloride (CCl4)-caused acute liver injury in mice. Mice were randomly divided into control, CCl4 model, NOOT, and NOOT (5, 10, and 20 mg/kg/day) plus CCl4 groups, respectively. Mice in the CCl4 plus NOOT groups were orally administrated with NOOT at 5, 10, and 20 mg/kg/days for seven days prior to 0.3% CCl4 injection at 10 mL/kg body weight, respectively. Our results showed that NOOT supplementation significantly ameliorated CCl4-induced increases of serum AST and ALT levels, hepatocyte necrosis, inflammatory response, oxidative stress, and caspases-9 and -3 activities in the livers of mice. Moreover, NOOT supplementation significantly upregulated the expression of Nrf2 and HO-1 mRNAs but downregulated the expression of NF-κB mRNAs and the levels of IL-1β, IL-6, and TNF-α proteins in the liver tissues, compared to those in the CCl4 model group. In conclusion, for the first time, our results reveal that NOOT could offer protective effects against CCl4-caused oxidative stress and inflammatory response via the opposite regulation of Nrf2/HO-1 pathway and NF-κB pathway.
Collapse
|
178
|
Yang L, Zhang H, Dong C, Yue W, Xue R, Liu F, Yang L, Li L. Neuron-Glial Antigen 2 Participates in Liver Fibrosis via Regulating the Differentiation of Bone Marrow Mesenchymal Stem Cell to Myofibroblast. Int J Mol Sci 2023; 24:ijms24021177. [PMID: 36674693 PMCID: PMC9864665 DOI: 10.3390/ijms24021177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Neuron-glial antigen 2 (NG2, gene name: Cspg4) has been characterized as an important factor in many diseases. However, the pathophysiological relevance of NG2 in liver disease specifically regarding bone marrow mesenchymal stem cell (BMSC) differentiation to myofibroblast (MF) and the molecular details remain unknown. Human liver tissues were obtained from patients with different chronic liver diseases, and mouse liver injury models were induced by feeding a methionine-choline-deficient and high-fat diet, carbon tetrachloride administration, or bile duct ligation operation. NG2 expression was increased in human and mouse fibrotic liver and positively correlated with MF markers α-smooth muscle actin (αSMA) and other fibrotic markers in the liver. There was a co-localization between NG2 and αSMA, NG2 and EGFP (BMSC-derived MF) in the fibrotic liver determined by immunofluorescence analysis. In vitro, TGFβ1-treated BMSC showed a progressive increase in NG2 levels, which were mainly expressed on the membrane surface. Interestingly, there was a translocation of NG2 from the cell membrane into cytoplasm after the transfection of Cspg4 siRNA in TGFβ1-treated BMSC. siRNA-mediated inhibition of Cspg4 abrogated the TGFβ1-induced BMSC differentiation to MF. Importantly, inhibition of NG2 in vivo significantly attenuated the extent of liver fibrosis in methionine-choline-deficient and high fat (MCDHF) mice, as demonstrated by the decreased mRNA expression of fibrotic parameters, collagen deposition, serum transaminase levels, liver steatosis and inflammation after the administration of Cspg4 siRNA in MCDHF mice. We identify the positive regulation of NG2 in BMSC differentiation to MF during liver fibrosis, which may provide a promising target for the treatment of liver disease.
Collapse
Affiliation(s)
- Le Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Hang Zhang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Chengbin Dong
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100069, China
| | - Wenhui Yue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Renmin Xue
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Fuquan Liu
- Department of Interventional Therapy, Beijing Shijitan Hospital, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
- Correspondence: ; Tel.: +86-10-83950468
| |
Collapse
|
179
|
Daucosterol Alleviates Alcohol-Induced Hepatic Injury and Inflammation through P38/NF-κB/NLRP3 Inflammasome Pathway. Nutrients 2023; 15:nu15010223. [PMID: 36615880 PMCID: PMC9823995 DOI: 10.3390/nu15010223] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Alcoholic liver disease (ALD) is caused by chronic excessive alcohol consumption, which leads to inflammation, oxidative stress, lipid accumulation, liver fibrosis/cirrhosis, and even liver cancer. However, there are currently no effective drugs for ALD. Herein, we report that a natural phytosterol Daucosterol (DAU) can effectively protect against liver injury caused by alcohol, which plays anti-inflammatory and antioxidative roles in many chronic inflammatory diseases. Our results demonstrate that DAU ameliorates liver inflammation induced by alcohol through p38/nuclear factor kappa B (NF-κB)/NOD-like receptor protein-3 (NLRP3) inflammasome pathway. Briefly, DAU decreases NF-κB nuclear translocation and inhibits NLRP3 activation by decreasing p38 phosphorylation. At the same time, DAU also protects against hepatic oxidative stress and lipid accumulation. In conclusion, our research provides a new clue about the protective effects of naturally active substances on ALD.
Collapse
|
180
|
Wang H, Zhang Y, Liu Y, Li H, Xu R, Fu H, Yan C, Qu B. Comparison between traditional and new obesity measurement index for screening metabolic associated fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1163682. [PMID: 37152940 PMCID: PMC10160459 DOI: 10.3389/fendo.2023.1163682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
Objectives Obesity measurement indexes have certain screening value for metabolic diseases. To investigate associations between metabolic associated fatty liver disease (MAFLD) and obesity measurement indexes, including traditional indexes (BMI, WC, WHtR) and new indexes (ABSI, BRI, VAI, LAP), and assess their screening ability. Methods 12,658 subjects aged 18-75 at the Health Center of a Class III Grade A Hospital were included, who were divided into MAFLD and non-MAFLD groups. Spearman's rank correlation was used to study the correlation between MAFLD and obesity measurement indexes. Receiver operating characteristic (ROC) curves were used to calculate the area under the curve (AUC) to evaluate their screening accuracy. Results MAFLD had strong correlation with traditional BMI and new index LAP. ROC analysis showed that BMI had the highest AUC (0.89), followed by LAP (0.87). Stratification by BMI, LAP had the highest AUC (0.90) for MAFLD in population without obesity (BMI< 23kg/m2), and its optimal cutoff value was 20.75, with a sensitivity and specificity of 85.9% and 79.0%, respectively. Conclusions We proposed a two-step screening strategy for MAFLD, combining BMI and LAP, and defined a high-risk population for MAFLD as follows: 1) BMI ≥ 23 kg/m2; and 2) BMI< 23 kg/m2 and LAP ≥ 20.75.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of International Physical Examination and Health Center, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuxue Zhang
- Department of Hygiene Microbiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yupeng Liu
- Department of Epidemiology and Health Statistics, Institute for Public Health and Management of Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruiling Xu
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongmei Fu
- Department of International Physical Examination and Health Center, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqi Yan
- Department of International Physical Examination and Health Center, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Bo Qu, ; Chaoqi Yan,
| | - Bo Qu
- Department of Gastroenterology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Bo Qu, ; Chaoqi Yan,
| |
Collapse
|
181
|
Zhu L, Gong P, Liu Y, Shi Y, Wang W, Zhang W, Hu Z, Li X. A retrospective case-series of influence of chronic hepatitis B on synchronous liver metastasis of colorectal cancer. Front Oncol 2023; 13:1109464. [PMID: 36910607 PMCID: PMC9995980 DOI: 10.3389/fonc.2023.1109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Main point Our retrospective analysis of a large number of cases found in patients with primary colorectal cancer (CRC) carrying positive HBsAg inhibited the occurrence of synchronous liver metastases (SLM). However, liver cirrhosis caused by non-HBV factors promoted the occurrence of SLM. Objectives This study aimed to investigate the effect of HBV on the occurrence of synchronous liver metastases (SLM) of colorectal cancer (CRC). Methods Univariate and multivariate analyses were used to analyze the influence of clinical parameters on the occurrence of SLM. Results A total of 6, 020 patients with primary CRC were included in our study, of which 449 patients carrying HBsAg(+) accounted for 7.46%. 44 cases of SLM occurred in the HBsAg(+) group, accounting for 9.80%, which was much lower than 13.6% (758/5571) in the HBsAg(-) group (X=5.214, P=0.022). Among CRC patients with HBsAg(-), the incidence of SLM was 24.9% and 14.9% in the group with high APRI and FIB-4 levels, respectively, which were significantly higher than that in the compared groups (12.3% and 12.5%, all P<0.05). Compared with the control group, female patients, late-onset patients, and HBV-infective patients had lower risks of SLM (HR=0.737, 95%CI: 0.614-0.883, P<0.001; HR=0.752, 95%CI: 0.603-0.943, P=0.013; HR=0.682, 95%CI: 0.473-0.961, P=0.034). Conclusions The carriage of HBsAg(+) status inhibited the occurrence of SLM from CRC. HBV-causing liver cirrhosis did not further influence the occurrence of SLM, whereas non-HBV-factor cirrhosis promoted the occurrence of SLM. Nevertheless, this still required prospective data validation.
Collapse
Affiliation(s)
- Lin Zhu
- Department of General Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, China
| | - Piqing Gong
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ye Liu
- Department of Blood Transfusion, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yunjie Shi
- Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenqiang Wang
- Department of General Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, China
| | - Wei Zhang
- Department of General Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, China
| | - Zhiqian Hu
- Department of General Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, China.,Department of Anorectal Surgery, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinxing Li
- Department of General Surgery, Tongji Hospital, Medical College of Tongji University, Shanghai, China
| |
Collapse
|
182
|
Che Z, Song Y, Xu C, Li W, Dong Z, Wang C, Ren Y, So KF, Tipoe GL, Wang F, Xiao J. Melatonin alleviates alcoholic liver disease via EGFR-BRG1-TERT axis regulation. Acta Pharm Sin B 2023; 13:100-112. [PMID: 36815038 PMCID: PMC9939303 DOI: 10.1016/j.apsb.2022.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/24/2022] [Accepted: 05/12/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic alcohol consumption causes liver steatosis, cell death, and inflammation. Melatonin (MLT) is reported to alleviate alcoholic liver disease (ALD)-induced injury. However, its direct regulating targets in hepatocytes are not fully understood. In the current study, a cell-based screening model and a chronic ethanol-fed mice ALD model were used to test the protective mechanisms of MLT. MLT ameliorated ethanol-induced hepatocyte injury in both cell and animal models (optimal doses of 10 μmol/L and 5 mg/kg, respectively), including lowered liver steatosis, cell death, and inflammation. RNA-seq analysis and loss-of-function studies in AML-12 cells revealed that telomerase reverse transcriptase (TERT) was a key downstream effector of MLT. Biophysical assay found that epidermal growth factor receptor (EGFR) on the hepatocyte surface was a direct binding and regulating target of MLT. Liver specific knock-down of Tert or Egfr in the ALD mice model impaired MLT-mediated liver protection, partly through the regulation of nuclear brahma-related gene-1 (BRG1). Long-term administration (90 days) of MLT in healthy mice did not cause evident adverse effect. In conclusion, MLT is an efficacious and safe agent for ALD alleviation. Its direct regulating target in hepatocytes is EGFR and downstream BRG1-TERT axis. MLT might be used as a complimentary agent for alcoholics.
Collapse
Affiliation(s)
- Zhaodi Che
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yali Song
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chengfang Xu
- Department of Obstetrics, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 2748510, Japan
| | - Zhiyong Dong
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Cunchuan Wang
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yixing Ren
- Department of General Surgery, and Institute of Hepato-Biliary-Pancreas and Intestinal Disease, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Kwok-Fai So
- GMH Institute of CNS Regeneration, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou 510632, China
| | - George L. Tipoe
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
- School of Biomedical Sciences, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| |
Collapse
|
183
|
Zhang H, Xiao Y, Dai T, Li Q, Huang L, Huang X, Liu D, Yu Y, Guo J. A cross-sectional study on burnout and its individual and environmental correlates among hepatological surgery nurses in Hunan Province, China. PLoS One 2023; 18:e0283373. [PMID: 36952501 PMCID: PMC10035911 DOI: 10.1371/journal.pone.0283373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Burnout is a widespread occupational phenomenon among nurses with significant adverse outcomes for nurses, patients, and society. It is thus important and urgent to understand burnout and its risk factors to guide interventions. This study aimed to examine the level of burnout and explore its individual and environmental correlates. METHODS This cross-sectional study was conducted in Hunan, China. A total of 623 hepatological surgery nurses completed an online survey (response rate: 72.78%). Burnout was measured using the standard Maslach Burnout Inventory (MBI). Information on individual factors and environmental factors was collected by self-designed questionnaires. RESULTS The scores of emotional exhaustion, depersonalization, and personal achievement in nurse burnout were 30 (26-34), 11 (8-14), and 23 (20-26) respectively. The prevalence of high burnout ranged from 52.81% for emotional exhaustion to 90.37% for decreased personal achievement. The three dimensions of burnout shared common correlates such as self-rated physical health and working environment, while also having additional unique correlates such as overwork, satisfaction with income, and age. CONCLUSION Hepatological surgery nurses in Hunan Province are suffering from high levels of burnout, which requires public attention and urgent interventions. Improvement of the physical health and working environment of nurses may be the most beneficial intervention measures to tackle various dimensions of burnout, while other targeted measures are also needed for each specific dimension.
Collapse
Affiliation(s)
- Honghui Zhang
- Department of Hepatobiliary Diseases, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Yuting Xiao
- Department of Nursing, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Ting Dai
- Department of Hepatobiliary Diseases, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Qian Li
- Department of Hepatobiliary Diseases, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Ling Huang
- Department of Nursing, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Xiu Huang
- Department of Nursing, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Dan Liu
- Department of Hepatobiliary Diseases, Hunan Provincial People's Hospital: The First-Affiliated Hospital of Hunan Normal University, Hunan, China
| | - Yu Yu
- Department of Psychiatry, Division of Prevention and Community Research, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jia Guo
- Department of Clinical Nursing, Xiangya School of Nursing, Central South University, Hunan, China
| |
Collapse
|
184
|
Li S, Yin S, Ding H, Shao Y, Zhou S, Pu W, Han L, Wang T, Yu H. Polyphenols as potential metabolism mechanisms regulators in liver protection and liver cancer prevention. Cell Prolif 2023; 56:e13346. [PMID: 36229407 DOI: 10.1111/cpr.13346] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver cancer is one of the common malignancies. The dysregulation of metabolism is a driver of accelerated tumourigenesis. Metabolic changes are well documented to maintain tumour growth, proliferation and survival. Recently, a variety of polyphenols have been shown to have a crucial role both in liver disease prevention and metabolism regulation. METHODS We conducted a literature search and combined recent data with systematic analysis to comprehensively describe the molecular mechanisms that link polyphenols to metabolic regulation and their contribution in liver protection and liver cancer prevention. RESULTS Targeting metabolic dysregulation in organisms prevents and resists the development of liver cancer, which has important implications for identifying new therapeutic strategies for the management and treatment of cancer. Polyphenols are a class of complex compounds composed of multiple phenolic hydroxyl groups and are the main active ingredients of many natural plants. They mediate a broad spectrum of biological and pharmacological functions containing complex lipid metabolism, glucose metabolism, iron metabolism, intestinal flora imbalance, as well as the direct interaction of their metabolites with key cell-signalling proteins. A large number of studies have found that polyphenols affect the metabolism of organisms by interfering with a variety of intracellular signals, thereby protecting the liver and reducing the risk of liver cancer. CONCLUSION This review systematically illustrates that various polyphenols, including resveratrol, chlorogenic acid, caffeic acid, dihydromyricetin, quercetin, catechins, curcumin, etc., improve metabolic disorders through direct or indirect pathways to protect the liver and fight liver cancer.
Collapse
Affiliation(s)
- Shuangfeng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shuangshuang Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Hui Ding
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingying Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Shiyue Zhou
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Weiling Pu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Lifeng Han
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
185
|
Yu Q, He R, Jiang H, Wu J, Xi Z, He K, Liu Y, Zhou T, Feng M, Wan P, Yan H, Xia Q. Association between Metabolic Dysfunction-associated Fatty Liver Disease and Cognitive Impairment. J Clin Transl Hepatol 2022; 10:1034-1041. [PMID: 36381086 PMCID: PMC9634777 DOI: 10.14218/jcth.2021.00490] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated fatty liver disease (MAFLD) is a newly proposed term based on modified criteria. Although nonalcoholic fatty liver disease (NAFLD) has been well-documented as a multisystem disease, research on the correlation of MAFLD and extra-hepatic diseases is limited. This study aimed to clarify the association of MAFLD, as well as NAFLD status with cognitive function. METHODS A total of 5,662 participants 20-59 years of age who underwent cognitive tests and liver ultrasonography in the Third National Health and Nutrition Examination Survey were included in the analysis. Cognitive function was evaluated using three computer-administered tests, the serial digit learning test (SDLT), the simple reaction time test (SRTT) and the symbol digit substitution test (SDST). RESULTS Participants with MAFLD had significantly poorer performance on the SRTT [odds ratio (OR) 1.47, 95% confidence interval (CI): 1.14-1.89)]. MAFLD with moderate-severe liver steatosis was associated with higher risks of scoring low in the SDLT (OR 1.37, 95% CI: 1.04-1.82) and SRTT (OR 1.55, 95% CI: 1.19-2.02). NAFLD combined with metabolic dysfunction, instead of NAFLD without metabolic disorders, was associated an increased risk of a low SRTT score (OR 1.44, 95% CI: 1.10-1.82). MAFLD patients had a high probability of fibrosis, prediabetes, and diabetes and were also significantly associated with increased risks based on the SDST or SRTT score. CONCLUSIONS MAFLD was significantly associated with increased risk of cognitive impairment, especially among MAFLD patients with a high degree of liver fibrosis, moderate-severe steatosis, or hyperglycemia.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixin He
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haowen Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ji Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhifeng Xi
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongbo Liu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zhou
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingxuan Feng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hexin Yan
- Department of Anesthesiology and Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Correspondence to: Qiang Xia, Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid.org/0000-0002-9199-9723. Tel: +86-21-68383775, Fax: +86-21-68383775, E-mail: ; Hexin Yan, Department of Anesthesiology and Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid/0000-0002-5699-8581. Tel: +86-21-31010390, Fax: +86-21-31010390, E-mail:
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Correspondence to: Qiang Xia, Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid.org/0000-0002-9199-9723. Tel: +86-21-68383775, Fax: +86-21-68383775, E-mail: ; Hexin Yan, Department of Anesthesiology and Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China. ORCID: https://orcid/0000-0002-5699-8581. Tel: +86-21-31010390, Fax: +86-21-31010390, E-mail:
| |
Collapse
|
186
|
Yan G, Li S, Wen Y, Luo Y, Huang J, Chen B, Lv S, Chen L, He L, He M, Yang Q, Yu Z, Xiao W, Tang Y, Li W, Han J, Zhao F, Yu S, Kong F, Abbasi B, Yin H, Gu C. Characteristics of intestinal microbiota in C57BL/6 mice with non-alcoholic fatty liver induced by high-fat diet. Front Microbiol 2022; 13:1051200. [PMID: 36620001 PMCID: PMC9813237 DOI: 10.3389/fmicb.2022.1051200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction As a representation of the gut microbiota, fecal and cecal samples are most often used in human and animal studies, including in non-alcoholic fatty liver disease (NAFLD) research. However, due to the regional structure and function of intestinal microbiota, whether it is representative to use cecal or fecal contents to study intestinal microbiota in the study of NAFLD remains to be shown. Methods The NAFLD mouse model was established by high-fat diet induction, and the contents of the jejunum, ileum, cecum, and colon (formed fecal balls) were collected for 16S rRNA gene analysis. Results Compared with normal mice, the diversity and the relative abundance of major bacteria and functional genes of the ileum, cecum and colon were significantly changed, but not in the jejunum. In NAFLD mice, the variation characteristics of microbiota in the cecum and colon (feces) were similar. However, the variation characteristics of intestinal microbiota in the ileum and large intestine segments (cecum and colon) were quite different. Discussion Therefore, the study results of cecal and colonic (fecal) microbiota cannot completely represent the results of jejunal and ileal microbiota.
Collapse
Affiliation(s)
- Guangwen Yan
- College of Animal Science, Xichang University, Xichang, China
| | - Shuaibing Li
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yuhang Wen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yadan Luo
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Jingrong Huang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Baoting Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Shuya Lv
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lang Chen
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Yong Tang
- Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Kong
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China
| | - Benazir Abbasi
- College of Veterinary Medicine, Nanjing Agricultural University, Jiangsu, China
| | - Hongmei Yin
- College of Animal Science, Xichang University, Xichang, China,*Correspondence: Hongmei Yin,
| | - Congwei Gu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China,Model Animal and Human Disease Research of Luzhou Key Laboratory, Luzhou, China,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China,Congwei Gu,
| |
Collapse
|
187
|
Guo W, Ge X, Lu J, Xu X, Gao J, Wang Q, Song C, Zhang Q, Yu C. Diet and Risk of Non-Alcoholic Fatty Liver Disease, Cirrhosis, and Liver Cancer: A Large Prospective Cohort Study in UK Biobank. Nutrients 2022; 14:nu14245335. [PMID: 36558494 PMCID: PMC9788291 DOI: 10.3390/nu14245335] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background and Aims: Epidemiological evidence has shown the association between nutritional habits and liver disease. However, results remain conflicting. This study investigated the influence of dietary factors on the risk of incident non-alcoholic fatty liver disease (NAFLD), cirrhosis, and liver cancer. Methods: Data from the UK Biobank database were analyzed (n = 372,492). According to baseline data from the food frequency questionnaire, two main dietary patterns (Western and prudent) were identified using principal component analysis. We used cox proportional hazards models to explore the associations of individual food groups and dietary patterns with NAFLD, cirrhosis, and liver cancer. Results: During a median follow-up of 12 years, 3527 hospitalized NAFLD, 1643 cirrhosis, and 669 liver cancer cases were recorded among 372,492 participants without prior history of cancer or chronic liver diseases at baseline. In multivariable adjusted analysis, participants in the high tertile of Western dietary pattern score had an 18% (95%CI = 1.09−1.29), 21% (95%CI = 1.07−1.37), and 24% (95%CI = 1.02−1.50) higher risk of incident NAFLD, liver cirrhosis, and liver cancer, respectively, compared with the low tertile. Participants in the high tertile of prudent scores had a 15% (95%CI = 0.75−0.96) lower risk of cirrhosis, as compared with those in the low tertile. In addition, the higher consumption of red meat and the lower consumption of fruit, cereal, tea, and dietary fiber were significantly associated with a higher risk of NAFLD, cirrhosis, and liver cancer (ptrend < 0.05). Conclusions: This large prospective cohort study showed that an increased intake of food from the Western dietary pattern could be correlated with an increased risk of chronic liver diseases, while the prudent pattern was only correlated with a reduced liver cirrhosis risk. These data may provide new insights into lifestyle interventions for the prevention of chronical liver diseases.
Collapse
Affiliation(s)
- Wen Guo
- Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinyuan Ge
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Lu
- Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Xu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiaxin Gao
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Quanrongzi Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ci Song
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100000, China
| | - Qun Zhang
- Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (Q.Z.); (C.Y.); Tel.: +86-25-83-714-511 (Q.Z.); +86-25-86-868-437 (C.Y.)
| | - Chengxiao Yu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
- Correspondence: (Q.Z.); (C.Y.); Tel.: +86-25-83-714-511 (Q.Z.); +86-25-86-868-437 (C.Y.)
| |
Collapse
|
188
|
Miwa T, Hanai T, Imai K, Takai K, Shiraki M, Hayashi H, Shimizu S, Nishigaki Y, Tomita E, Shimizu M. Effects of Rifaximin on Circulating Albumin Structures and Serum Ammonia Levels in Patients with Liver Cirrhosis: A Preliminary Study. J Clin Med 2022; 11:jcm11247318. [PMID: 36555935 PMCID: PMC9784744 DOI: 10.3390/jcm11247318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Circulating albumin structures, including their oxidized and reduced forms, are involved in hepatic encephalopathy (HE) development. However, the effects of rifaximin, a key drug in HE treatment, on the circulating albumin structure in patients with liver cirrhosis remain unclear. In this multicenter prospective study, eight patients with hyperammonemia (≥80 μg/dL) were enrolled. The circulating albumin structure was evaluated using the ratio of oxidized albumin (human nonmercaptalbumin, HNA). Patients were administered 400 mg rifaximin 3 times/day for 3 months, and laboratory data were assessed at baseline and during observation. Among the eight patients, three were men; the median age and body mass index were 70 years and 26.4 kg/m2, respectively. The median HNA and serum ammonia levels at baseline were 41% and 143 μg/dL, respectively. After rifaximin therapy, HNA showed a decreasing tendency (median; from 41% to 36%, p = 0.321), but serum albumin levels showed no significant change (from 3.5 g/dL to 3.5 g/dL, p = 1.00); serum ammonia levels significantly reduced (median: 143 μg/dL to 76 μg/dL, p = 0.015). Thus, rifaximin reduces serum ammonia levels and may improve circulating albumin structure in patients with cirrhosis. Further large-scale studies are required to confirm these preliminary results.
Collapse
Affiliation(s)
- Takao Miwa
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Health Administration Center, Gifu University, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-(58)-230-6308
| | - Tatsunori Hanai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Center for Nutrition Support & Infection Control, Gifu University Hospital, Gifu 501-1194, Japan
| | - Kenji Imai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Koji Takai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
- Division for Regional Cancer Control, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
| | - Makoto Shiraki
- Department of Gastroenterology, Chuno Kosei Hospital, Gifu 501-3802, Japan
| | - Hideki Hayashi
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Shogo Shimizu
- Department of Gastroenterology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - Yoichi Nishigaki
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Eiichi Tomita
- Department of Gastroenterology and Hepatology, Gifu Municipal Hospital, Gifu 500-8513, Japan
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| |
Collapse
|
189
|
The Relationship and Changes of Liver Blood Supply, Portal Pressure Gradient, and Liver Volume following TIPS in Cirrhosis. Can J Gastroenterol Hepatol 2022; 2022:7476477. [PMID: 36531835 PMCID: PMC9754828 DOI: 10.1155/2022/7476477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
AIM Transjugular intrahepatic portosystemic shunt (TIPS) alters the liver blood supply and reduces portal pressure. This study was to investigate the changes and associations of the hepatic blood flow, liver volume, and portal pressure gradient (PPG) after TIPS in liver cirrhosis. METHODS Twenty-one patients with liver cirrhosis who received TIPS were recruited. The contrast CT images were used to assess the iodine density (ID) of liver parenchymal and liver volume. The ID of the liver parenchyma was used to reflect hepatic blood flow. We used a paired t-test and regression analysis to investigate the effect of TIPS on hepatic blood flow, liver volume, and PPG in individuals with cirrhosis and the factors that affect changes in liver volume. RESULTS After TIPS, there was a significant improvement in the ID of liver parenchyma at arterial phase (AP) and PPG in individuals with cirrhosis (P < 0.05). Each 1 unit increase in the ID change of whole liver parenchyma at the venous phase (VP) was significantly associated with a 269.44 cm3 increase in the liver volume after TIPS (b = 269.44, P = 0.012). With an increasing ID change of whole liver parenchyma at VP, the change in liver volume followed an increasing trend (P for overall association = 0.005). CONCLUSIONS Our data indicate that there was a significant improvement in hepatic blood flow, especially at AP, after TIPS and the change in hepatic blood supply from the portal vein is positively associated with the change in liver volume after TIPS. Increasing the blood supply to the liver from the portal vein may improve the reduction of liver volume.
Collapse
|
190
|
Gao J, Sun X, Zhou Q, Jiang S, Zhang Y, Ge H, Qin X. Circadian clock disruption aggravates alcohol liver disease in an acute mouse model. Chronobiol Int 2022; 39:1554-1566. [PMID: 36354126 DOI: 10.1080/07420528.2022.2132865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Circadian rhythms are important for organisms to adapt to the environment and maintain homeostasis. Disruptions of circadian rhythms contribute to the occurrence, progression, and exacerbation of diseases, such as cancer, psychiatric disorders, and metabolic disorders. Alcohol-induced liver disease (ALD) is one of the most prevalent liver diseases. Disruptions of the circadian clock enhance the ALD symptoms using chronic mice models or genetic manipulated mice. However, chronic models are time consuming and clock gene deletions interfere with metabolisms. Here, we report that constant light (LL) condition significantly disrupted the circadian clock in an acute ALD model, resulting in aggravated ALD phenotypes in wild type mice. Comparative transcriptome analysis revealed that the alcohol feeding affected the circadian pathway, as well as metabolic pathways. The acute alcohol feeding plus the LL condition further interfered with metabolic pathways and dysregulated canonical circadian gene expressions. These findings support the idea that disrupting the circadian clock could provide an improved ALD mouse model for further applications, such as facilitating identification of potential therapeutic targets for the prevention and treatment of ALD.Abbreviations: ALD, alcohol-induced liver disease; LD, 12 h light _ 12 h dark; LL, constant light; HF, high-fat liquid control diet; ETH, ethanol-containing diet; NIAAA, National Institute on Alcohol Abuse and Alcoholism; TTFLs, transcription-translation feedback loops; FDA, US Foods and Drug Administration; NAFLD, non-alcoholic fatty liver disease; RER, respiratory exchange rate; DEGs, differentially expressed genes; H&E, haematoxylin and eosin; ALT, alanine transaminase; AST, aspartate transaminase; TG, triglycerides.
Collapse
Affiliation(s)
- Jiajia Gao
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Xianpu Sun
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Qin Zhou
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Shuo Jiang
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Honghua Ge
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
191
|
Wang Q, Zhao H, Deng Y, Zheng H, Xiang H, Nan Y, Hu J, Meng Q, Xu X, Fang J, Xu J, Wang X, You H, Pan CQ, Xie W, Jia J. Validation of Baveno VII criteria for recompensation in entecavir-treated patients with hepatitis B-related decompensated cirrhosis. J Hepatol 2022; 77:1564-1572. [PMID: 36038017 DOI: 10.1016/j.jhep.2022.07.037] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/03/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Antiviral therapy improves the clinical outcomes of patients with chronic hepatitis B (CHB), including those with cirrhosis. In the present study, we validated the Baveno VII definition of recompensation and explored the criteria for stable improvement of liver function tests in entecavir-treated patients with CHB-related decompensated cirrhosis. METHODS In this multicentre prospective study, patients with decompensated (ascites) CHB-related cirrhosis were enrolled and treated with entecavir for 120 weeks. Patients were followed up for clinical events, viral and biochemical tests, and ultrasonography every 6 months. The recompensation rate per Baveno VII criteria was calculated. Multivariate regression models were used to identify the predictors of recompensation. Finally, the criteria for stable improvement of liver function tests were explored. RESULTS Of the 320 recruited patients, 283 completed the 120-week study, with 261/283 (92.2%) achieving HBV DNA levels <20 IU/ml and 171/283 (60.4%) achieving resolution of ascites, encephalopathy, and absence of recurrent variceal bleeding for at least 12 months. We identified model for end-stage liver disease <10 and/or liver function tests within Child-Pugh Class A (albumin >35 g/L, international normalised ratio <1.50 and total bilirubin <34 μmol/L) as the criteria for stable improvement of liver function tests. Accordingly, 56.2% (159/283) of patients fulfilled the Baveno VII definition of recompensation with a stable improvement of liver function tests defined by the current study. CONCLUSIONS Our study defined the criteria for a stable improvement of liver function tests required by the Baveno VII definition of recompensation in patients with CHB-related decompensated cirrhosis on antiviral therapy. The criteria derived from this multicentre prospective study warrant further validation in patients with cirrhosis of other aetiologies. LAY SUMMARY Decompensation of cirrhosis marks the point at which the liver is no longer able to function normally (and symptoms become apparent). Recently the idea of recompensation was proposed for individuals who may experience an improvement in liver function if the underlying cause of their liver disease is addressed (e.g. antivirals for viral cirrhosis). Herein, we show that over 50% of patients with hepatitis B-related decompensated cirrhosis treated with antivirals could recompensate and we propose laboratory criteria which could be used to define recompensation.
Collapse
Affiliation(s)
- Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hong Zhao
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - You Deng
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | | | | | - Yuemin Nan
- The Third Hospital of Hebei Medical University, Hebei, China
| | - Jinhua Hu
- The Fifth Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - Qinghua Meng
- Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Xiaoyuan Xu
- Peking University First Hospital, Beijing, China
| | - Jilian Fang
- Peking University People's Hospital, Beijing, China
| | - Jie Xu
- Peking University Third Hospital, Beijing, China
| | - Xiaoming Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Calvin Q Pan
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wen Xie
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
192
|
Ren H, Li W, Liu X, Zhao N. γδ T cells: The potential role in liver disease and implications for cancer immunotherapy. J Leukoc Biol 2022; 112:1663-1668. [PMID: 36098208 DOI: 10.1002/jlb.5mr0822-733rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Indexed: 01/04/2023] Open
Abstract
The γδ T cell subset was discovered over 30 years ago, yet continues to be an exciting and challenging component of the adaptive immune response. While γδ T cells represent a very small fraction of all T cells in humans, γδ T cells have a vital effect on human immunity, serving as a bridge between the innate and adaptive immune systems. The characteristics of γδ T cells include recognition of non-MHC restrictive antigens, as well as the ability to secrete an abundance of cytokines, suggesting that γδ T cells have high antitumor activity. As such, they have gained ample attention with respect to tumor immunotherapy in the last decade. The γδ T cell subset comprises up to ∼15-20% of the T-lymphocyte population in the liver, although the liver is recognized as an immune organ with primary immune functions, the role of γδ T cells in liver disease has not been established. Herein, we present a comprehensive overview of molecular mechanisms underlying immune γδ T cell activity in liver disease, including immune liver injury, viral hepatitis, cirrhosis, and hepatocellular carcinoma, and review γδ T cell-based clinical immunotherapeutic approaches.
Collapse
Affiliation(s)
- He Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - WanJing Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xin Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Na Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
193
|
Abstract
OBJECTIVE This study aimed to explore the prognostic value of the lymphocyte (LYM)-to-white blood cell (WBC) ratio (LWR) in patients with decompensated liver cirrhosis (DLC). METHODS This study was conducted by recruiting 214 patients with DLC with different aetiologies (development cohort). Receiver operating characteristic (ROC) curve analyses were used to assess the predictive accuracy of the LWR, and Youden's index was used to determine the optimal cut-off values of the LWR based on the ROC curve. Next, patients were divided into high- and low-LWR groups according to the cut-off values. Multivariate logistic analyses were performed to determine the independent predictors for the 1-, 3- and 6-month mortality. Restricted cubic spline (RCS) was used to determine and visualize the association between LWR and the risk of death. We verified the predictive ability of LWR in the validation cohort of 139 patients. RESULTS In the development cohort, there were 16 (7.5%), 22 (10.3%) and 30 patients (14.0%) who died at 1, 3 and 6 months, respectively. The LWR was significantly lower in non-survivors than in survivors and was an independent predictor of poor outcomes. The ROC analyses with the Delong test showed that the LWR had comparable predictive power with the Model for End-Stage Liver Disease (MELD) score, neutrophil-to-LYM ratio (NLR) and Chronic Liver Failure consortium score for acute decompensated (CLIF-C ADs). RCS showed a non-linear relationship between the LWR and the risk of death at 1 and 3 months, whereas a linear relationship was observed between the LWR and the risk of death at 6 months. We verified that the decreased LWR was an independent predictor of adverse outcomes at 3-, and 6-month follow-up endpoints in the validation cohort. CONCLUSIONS Our findings indicate that a lower LWR is an independent factor for unfavourable outcomes and may serve as a potential novel prognostic predictor in patients with DLC.KEY MESSAGESThis study is the first report on the prognostic value of the lymphocyte (LYM)-to-white blood cell (WBC) ratio (LWR) in patients with decompensated liver cirrhosis (DLC).Decreased LWR is an independent factor for adverse outcomes in patients with DLC.
Collapse
Affiliation(s)
- Yanan Xie
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, PR China
| | - Chiyi He
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, PR China
| | - Wei Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, PR China
| |
Collapse
|
194
|
Sun CY, Yang LL, Zhao P, Yan PZ, Li J, Zhao DS. Mechanisms of Cynarine for treatment of non-alcoholic fatty liver disease based on the integration of network pharmacology, molecular docking and cell experiment. Hereditas 2022; 159:44. [PMID: 36451177 PMCID: PMC9714250 DOI: 10.1186/s41065-022-00256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Nonalcoholic Fatty Liver Disease (NAFLD) is a chronic Liver Disease prevalent all over the world. It has become more and more common in Japan, China and most western developed countries. The global prevalence rate is 25.24%, and the trend is increasing year by year. Related studies have shown that Cynarine has certain liver protection, lipid lowering and immune intervention effects. So, this study to systematically predict and analyze the mechanism of Cynarine in the treatment of non-alcoholic fatty liver disease (NAFLD) based on the integration of network pharmacology, molecular docking, and cell experiment. METHODS We performed Heatmap and Venn diagram analyses to identify genes and targets in Cynarine treat NAFLD. The network of Cynarine-therapeutic targets and the protein-protein interaction network (PPI) was constructed. We used gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to visualize associated functional pathways. The Sybyl tool was used to dock the Cynarine with key therapeutic targets molecularly. Finally, cell experiments were applied to validate the role of Cynarine in the treatment of NAFLD. RESULTS The Cynarine could act on 48 targets of NAFLD, and the role of CASP3, TP53, MMP9, ELANE, NOTCH1 were more important. The PPI network showed that immune and inflammation-related targets played a pivotal role. The KEGG analysis found that the PI3K-Akt signaling pathway, cell cycle and MAPK signaling pathway may be the main pathways for Cynarine to prevent and treat NAFLD. Molecular docking studies confirmed that Cynarine has good binding activity with therapeutic targets. Cynarine reduced the fat deposition ability of NAFLD model cells, and effectively reduced the levels of ALT and AST released by liver cells due to excessive lipid accumulation. We also found that Cynarine inhibited the expression of AKT1 and MAPK1. CONCLUSIONS This study revealed that Cynarine could significantly reduce the fat deposition ability of NAFLD model cells, which may be closely related to the effective regulation of AKT1 and MAPK1 expression by Cynarine.
Collapse
Affiliation(s)
- Chun-Yong Sun
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Le-Le Yang
- grid.437123.00000 0004 1794 8068State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078 China
| | - Pan Zhao
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Pei-Zheng Yan
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Jia Li
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| | - Dong-Sheng Zhao
- grid.464402.00000 0000 9459 9325College of Pharmacy, Shandong University of Traditional Chinese Medicine, No. 4655 Daxue Road, Jinan, 250355 China
| |
Collapse
|
195
|
Fan G, Li F, Wang P, Jin X, Liu R. Natural-Product-Mediated Autophagy in the Treatment of Various Liver Diseases. Int J Mol Sci 2022; 23:ijms232315109. [PMID: 36499429 PMCID: PMC9739742 DOI: 10.3390/ijms232315109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy is essential for the maintenance of hepatic homeostasis, and autophagic malfunction has been linked to the pathogenesis of substantial liver diseases. As a popular source of drug discovery, natural products have been used for centuries to effectively prevent the progression of various liver diseases. Emerging evidence has suggested that autophagy regulation is a critical mechanism underlying the therapeutic effects of these natural products. In this review, relevant studies are retrieved from scientific databases published between 2011 and 2022, and a novel scoring system was established to critically evaluate the completeness and scientific significance of the reviewed literature. We observed that numerous natural products were suggested to regulate autophagic flux. Depending on the therapeutic or pathogenic role autophagy plays in different liver diseases, autophagy-regulative natural products exhibit different therapeutic effects. According to our novel scoring system, in a considerable amount of the involved studies, convincing and reasonable evidence to elucidate the regulatory effects and underlying mechanisms of natural-product-mediated autophagy regulation was missing and needed further illustration. We highlight that autophagy-regulative natural products are valuable drug candidates with promising prospects for the treatment of liver diseases and deserve more attention in the future.
Collapse
Affiliation(s)
- Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Ping Wang
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
| | - Xuejing Jin
- Center for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing 100029, China
- Correspondence: (X.J.); (R.L.); Tel.: +86-15632374331 (X.J.); +86-10-53912122 (R.L.)
| |
Collapse
|
196
|
Lu YH, Hong Y, Zhang TY, Chen YX, Wei ZJ, Gao CY. Rosmarinic acid exerts anti-inflammatory effect and relieves oxidative stress via Nrf2 activation in carbon tetrachloride-induced liver damage. Food Nutr Res 2022; 66:8359. [PMID: 36590857 PMCID: PMC9793765 DOI: 10.29219/fnr.v66.8359] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background Rosmarinic acid (RA) has biological and pharmaceutical properties and shows hepatoprotective potential. However, the hepatoprotective mechanism of RA needs to be further elucidated in vivo and in vitro. Objective This study was aimed to evaluate the protective effect of RA on carbon tetrachloride (CCl4)-induced liver injury and elucidate the hepatoprotective mechanism of RA in vivo and in vitro. Design In vivo, the mice were orally administrated with RA (10, 20, and 40 mg/kg bw) daily for 28 consecutive days, and 1% CCl4 (5 mL/kg bw, dissolved in peanut oil) was used to induce liver injury. In vitro, the big rat liver (BRL) hepatocytes were pretreated with RA (0.2, 0.4, and 0.8 mg/mL) for 3 h, and then the hepatocytes were treated with CC14 (final concentration, 14 mM) for 3 h to induce cell injury. The related indexes, including hepatic function, oxidative stress, protein expression of nuclear-factor erythroid 2-related factor 2 (Nrf2) pathway, inflammation, histopathological change, hepatocyte apoptosis, and mitochondrial membrane potential, were evaluated. Results Oral administration of RA to mice considerably decreased the CCl4-induced elevation of serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), triacylglycerols (TG), total cholesterol (TC), total bilirubin (TBIL), hepatic reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), 8-hydroxydeoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-8 (IL-8). RA also increased the levels of hepatic glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) and the protein expressions of Nrf2, quinine oxidoreductase (NQO1), and heme oxygenease-1 (HO-1). Histopathological examinations indicated that RA (20 and 40 mg/kg bw) alleviated the liver tissue injury induced by CCl4. Moreover, RA inhibited the hepatocyte apoptosis caused by CCl4 based on TUNEL assay. In vitro, RA pretreatment remarkably recovered the cell viability and reduced the CCl4-induced elevation of AST, ALT, lactate dehydrogenase (LDH), ROS, and 8-OHdG. Immunohistochemistry staining demonstrated that pretreatment with RA markedly inhibited the expression of IL-6, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and Caspase-3 in CCl4-treated hepatocytes. Additionally, RA pretreatment significantly decreased the elevation of mitochondrial membrane potential in CCl4-treated hepatocytes. Conclusions RA exerted a protective effect against CCl4-induced liver injury in mice through activating Nrf2 signaling pathway, reducing antioxidant damage, suppressing inflammatory response, and inhibiting hepatocyte apoptosis. RA could attenuate BRL hepatocyte ROS production, DNA oxidative damage, inflammatory response, and apoptosis induced by CCl4 exposure.
Collapse
Affiliation(s)
- Yue-hong Lu
- College of Bioscience and Bioengineering, North Minzu University, Yinchuan, China
| | - Yue Hong
- School of Public Health, Dali University, Dali, China
| | | | - You-xia Chen
- School of Public Health, Dali University, Dali, China
| | - Zhao-jun Wei
- College of Bioscience and Bioengineering, North Minzu University, Yinchuan, China,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Chun-yan Gao
- College of Bioscience and Bioengineering, North Minzu University, Yinchuan, China,Chun-yan Gao, College of Bioscience and Bioengineering, North Minzu University, No. 204, North Street of Wenchang, Xixia district, Yinchuan 750021 China.
| |
Collapse
|
197
|
Role of ER Stress in Xenobiotic-Induced Liver Diseases and Hepatotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4640161. [PMID: 36388166 PMCID: PMC9652065 DOI: 10.1155/2022/4640161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
The liver is a highly metabolic organ and plays a crucial role in the transportation, storage, and/or detoxication of xenobiotics. Liver damage induced by xenobiotics (e.g., heavy metal, endocrine disrupting chemicals, Chinese herbal medicine, or nanoparticles) has become a pivotal reason for liver diseases, leading to great clinical challenge and much attention for the past decades. Given that endoplasmic reticulum (ER) is the prominent organelle involved in hepatic metabolism, ER dysfunction, namely, ER stress, is clearly observed in various liver diseases. In response to ER stress, a conserved adaptive signaling pathway known as unfolded protein response (UPR) is activated to restore ER homeostasis. However, the prolonged ER stress with UPR eventually leads to the death of hepatocytes, which is a pathogenic event in many hepatic diseases. Therefore, analyzing the perturbation in the activation or inhibition of ER stress and the UPR signaling pathway is likely an effective marker for investigating the molecular mechanisms behind the toxic effects of xenobiotics on the liver. We review the role of ER stress in hepatic diseases and xenobiotic-induced hepatotoxicity, which not only provides a theoretical basis for further understanding the pathogenesis of liver diseases and the mechanisms of hepatotoxicity induced by xenobiotics but also presents a potential target for the prevention and treatment of xenobiotic-related liver diseases.
Collapse
|
198
|
Hassan HM, Li J. Prospect of Animal Models for Acute-on-chronic Liver Failure: A Mini-review. J Clin Transl Hepatol 2022; 10:995-1003. [PMID: 36304511 PMCID: PMC9547251 DOI: 10.14218/jcth.2022.00086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 12/04/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a clinical syndrome that develops in patients with chronic liver diseases following a precipitating event and associated with a high mortality rate due to systemic multiorgan failure. Establishing a suitable and stable animal model to precisely elucidate the molecular basis of ACLF pathogenesis is essential for the development of effective early diagnostic and treatment strategies. In this context, this article provides a concise and inclusive review of breakthroughs in ACLF animal model development.
Collapse
Affiliation(s)
- Hozeifa Mohamed Hassan
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jun Li
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Correspondence to: Jun Li, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, Zhejiang 310003. China. ORCID: https://orcid.org/0000-0002-7236-8088. Tel/Fax: +86-571-87236425, E-mail:
| |
Collapse
|
199
|
Ray G. Management of liver diseases: Current perspectives. World J Gastroenterol 2022; 28:5818-5826. [PMID: 36353204 PMCID: PMC9639658 DOI: 10.3748/wjg.v28.i40.5818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/04/2022] [Accepted: 09/21/2022] [Indexed: 02/06/2023] Open
Abstract
There is increasing incidence and prevalence of acute and chronic liver diseases (CLDs) all over the world which influence the quality of life and can give rise to life threatening complications. The burden of advanced liver disease due to hepatitis B has been controlled by antivirals but its eradication is difficult soon. Highly effective directly acting antiviral therapy has reduced the burden of hepatitis C but is partially offset by increasing IV drug abuse. Non-alcoholic fatty liver disease pandemic is on and there is recent alarming increase in alcohol related liver disease, both of which have no drug cure apart from control of the risk factors. Genetic factors have been identified in progression of all forms of CLD. Due to better management of complications of CLD, the life span of patients have increased spiking the number of hepatocellular carcinoma (HCC) and patients needing liver transplantation (LT). The present severe acute respiratory syndrome coronavirus pandemic has affected the outcome CLD including LT in addition to causing acute hepatitis. Better diagnostics and therapeutics are available for liver fibrosis, portal hypertension, HCC and post LT management and many drugs are under trial. The present review summarises the current scenario of the epidemiology and the advances in diagnosis and treatment of liver diseases including their complications like portal hypertension, HCC and LT.
Collapse
Affiliation(s)
- Gautam Ray
- Gastroenterology Unit, Department of Medicine, B.R.Singh (Railway) Hospital, Kolkata 700014, West Bengal, India
| |
Collapse
|
200
|
Song XJ, Wang SY, Jia SY, Wang GJ, Zhang WB. Effects of electroacupuncture on liver function in mice with chronic alcoholic liver injury: visual display by in vivo fluorescence imaging. Acupunct Med 2022:9645284221125248. [PMID: 36263700 DOI: 10.1177/09645284221125248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Acupuncture can improve the symptoms of alcohol-induced bodily injury and has been accepted by the World Health Organization. In this study, in vivo fluorescence imaging (IVFI) was applied to display and evaluate the effect of electroacupuncture (EA) on liver function (LF) in mice with chronic alcoholic liver injury (cALI). METHODS IVFI of the Cy5.5-galactosylated polylysine (Cy5.5-GP) probe targeting the liver asialoglycoprotein receptor (ASGPR) and liver indocyanine green (ICG) clearance was performed to visually evaluate the effect of EA at ST36 and BL18 on liver reserve function and hepatic metabolism in mice with cALI. In addition, changes in ASGPR expression, serum indexes of LF, and hepatic morphology were observed. RESULTS After EA at ST36 and BL18, the ASGPR-targeted fluorescence signals (FS) in the liver increased significantly in cALI mice (p < 0.05) and exhibited relationships with liver ASGPR expression, liver ICG clearance, liver histology, and serum marker levels of LF in cALI mice undergoing EA intervention. CONCLUSIONS As displayed by IVFI, EA at ST36 and BL18 appears to improve liver reserve function and inhibit the development of liver injury in mice with cALI. EA may have potential as a treatment strategy to protect against ALI.
Collapse
Affiliation(s)
- Xiao-Jing Song
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-You Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shu-Yong Jia
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Jun Wang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei-Bo Zhang
- Department of Biomedical Engineering, Institute of Acupuncture & Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|