151
|
Trinh V, Langelier MF, Archambault J, Coulombe B. Structural perspective on mutations affecting the function of multisubunit RNA polymerases. Microbiol Mol Biol Rev 2006; 70:12-36. [PMID: 16524917 PMCID: PMC1393249 DOI: 10.1128/mmbr.70.1.12-36.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
High-resolution crystallographic structures of multisubunit RNA polymerases (RNAPs) have increased our understanding of transcriptional mechanisms. Based on a thorough review of the literature, we have compiled the mutations affecting the function of multisubunit RNA polymerases, many of which having been generated and studied prior to the publication of the first high-resolution structure, and highlighted the positions of the altered amino acids in the structures of both the prokaryotic and eukaryotic enzymes. The observations support many previous hypotheses on the transcriptional process, including the implication of the bridge helix and the trigger loop in the processivity of RNAP, the importance of contacts between the RNAP jaw-lobe module and the downstream DNA in the establishment of a transcription bubble and selection of the transcription start site, the destabilizing effects of ppGpp on the open promoter complex, and the link between RNAP processivity and termination. This study also revealed novel, remarkable features of the RNA polymerase catalytic mechanisms that will require additional investigation, including the putative roles of fork loop 2 in the establishment of a transcription bubble, the trigger loop in start site selection, and the uncharacterized funnel domain in RNAP processivity.
Collapse
Affiliation(s)
- Vincent Trinh
- Gene Transcription Laboratory, Institut de Recherches Cliniques de Montréal, 110 Ave. des Pins Ouest, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
152
|
Symersky J, Perederina A, Vassylyeva MN, Svetlov V, Artsimovitch I, Vassylyev DG. Regulation through the RNA polymerase secondary channel. Structural and functional variability of the coiled-coil transcription factors. J Biol Chem 2006; 281:1309-12. [PMID: 16298991 PMCID: PMC1373684 DOI: 10.1074/jbc.c500405200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gre factors enhance the intrinsic endonucleolytic activity of RNA polymerase to rescue arrested transcription complexes and are thought to confer the high fidelity and processivity of RNA synthesis. The Gre factors insert the extended alpha-helical coiled-coil domains into the RNA polymerase secondary channel to position two invariant acidic residues at the coiled-coil tip near the active site to stabilize the catalytic metal ion. Gfh1, a GreA homolog from Thermus thermophilus, inhibits rather than activates RNA cleavage. Here we report the structure of the T. thermophilus Gfh1 at 2.4 A resolution revealing a two-domain architecture closely resembling that of GreA. However, the interdomain orientation is strikingly distinct (approximately 162 degrees rotation) between the two proteins. In contrast to GreA, which has two acidic residues on a well fixed self-stabilized alpha-turn, the tip of the Gfh1 coiled-coil is flexible and contains four acidic residues. This difference is likely the key to the Gre functional diversity, while Gfh1 inhibits exo- and endonucleolytic cleavage, RNA synthesis, and pyrophosphorolysis, GreA enhances only the endonucleolytic cleavage. We propose that Gfh1 acidic residues stabilize the RNA polymerase active center in a catalytically inactive configuration through Mg2+-mediated interactions. The excess of the acidic residues and inherent flexibility of the coiled-coil tip might allow Gfh1 to adjust its activity to structurally distinct substrates, thereby inhibiting diverse catalytic reactions of RNA polymerase.
Collapse
Affiliation(s)
- Jindrich Symersky
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294 and the the
| | - Anna Perederina
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294 and the the
| | - Marina N. Vassylyeva
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294 and the the
| | - Vladimir Svetlov
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
| | - Irina Artsimovitch
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210
| | - Dmitry G. Vassylyev
- From the Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, Birmingham, Alabama 35294 and the the
| |
Collapse
|
153
|
Burton ZF, Feig M, Gong XQ, Zhang C, Nedialkov YA, Xiong Y. NTP-driven translocation and regulation of downstream template opening by multi-subunit RNA polymerases. Biochem Cell Biol 2005; 83:486-96. [PMID: 16094452 DOI: 10.1139/o05-059] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multi-subunit RNA polymerases bind nucleotide triphosphate (NTP) substrates in the pretranslocated state and carry the dNMP-NTP base pair into the active site for phosphoryl transfer. NTP-driven translocation requires that NTP substrates enter the main-enzyme channel before loading into the active site. Based on this model, a new view of fidelity and efficiency of RNA synthesis is proposed. The model predicts that, during processive elongation, NTP-driven translocation is coupled to a protein conformational change that allows pyrophosphate release: coupling the end of one bond-addition cycle to substrate loading and translocation for the next. We present a detailed model of the RNA polymerase II elongation complex based on 2 low-affinity NTP binding sites located in the main-enzyme channel. This model posits that NTP substrates, elongation factors, and the conserved Rpb2 subunit fork loop 2 cooperate to regulate opening of the downstream transcription bubble.
Collapse
Affiliation(s)
- Zachary F Burton
- Department of Biochemistry and Molecular Biology, Michigan State University, E. Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
154
|
Vassylyev DG, Svetlov V, Vassylyeva MN, Perederina A, Igarashi N, Matsugaki N, Wakatsuki S, Artsimovitch I. Structural basis for transcription inhibition by tagetitoxin. Nat Struct Mol Biol 2005; 12:1086-93. [PMID: 16273103 PMCID: PMC1790907 DOI: 10.1038/nsmb1015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 10/07/2005] [Indexed: 11/10/2022]
Abstract
Tagetitoxin (Tgt) inhibits transcription by an unknown mechanism. A structure at a resolution of 2.4 A of the Thermus thermophilus RNA polymerase (RNAP)-Tgt complex revealed that the Tgt-binding site within the RNAP secondary channel overlaps that of the stringent control effector ppGpp, which partially protects RNAP from Tgt inhibition. Tgt binding is mediated exclusively through polar interactions with the beta and beta' residues whose substitutions confer resistance to Tgt in vitro. Importantly, a Tgt phosphate, together with two active site acidic residues, coordinates the third Mg(2+) ion, which is distinct from the two catalytic metal ions. We show that Tgt inhibits all RNAP catalytic reactions and propose a mechanism in which the Tgt-bound Mg(2+) ion has a key role in stabilization of an inactive transcription intermediate. Remodeling of the active site by metal ions could be a common theme in the regulation of catalysis by nucleic acid enzymes.
Collapse
Affiliation(s)
- Dmitry G Vassylyev
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, School of Medicine, Birmingham, Alabama 35294, USA.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Destoumieux-Garzón D, Duquesne S, Peduzzi J, Goulard C, Desmadril M, Letellier L, Rebuffat S, Boulanger P. The iron-siderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 beta-hairpin region in the recognition mechanism. Biochem J 2005; 389:869-76. [PMID: 15862112 PMCID: PMC1180738 DOI: 10.1042/bj20042107] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The role of the outer-membrane iron transporter FhuA as a potential receptor for the antimicrobial peptide MccJ25 (microcin J25) was studied through a series of in vivo and in vitro experiments. The requirement for both FhuA and the inner-membrane TonB-ExbB-ExbD complex was demonstrated by antibacterial assays using complementation of an fhuA(-) strain and by using isogenic strains mutated in genes encoding the protein complex respectively. In addition, MccJ25 was shown to block phage T5 infection of Escherichia coli, in vivo, by inhibiting phage adhesion, which suggested that MccJ25 prevents the interaction between the phage and its receptor FhuA. This in vivo activity was confirmed in vitro, as MccJ25 inhibited phage T5 DNA ejection triggered by purified FhuA. Direct interaction of MccJ25 with FhuA was demonstrated for the first time by size-exclusion chromatography and isothermal titration calorimetry. MccJ25 bound to FhuA with a 2:1 stoichiometry and a K(d) of 1.2 microM. Taken together, our results demonstrate that FhuA is the receptor for MccJ25 and that the ligand-receptor interaction may occur in the absence of other components of the bacterial membrane. Finally, both differential scanning calorimetry and antimicrobial assays showed that MccJ25 binding involves external loops of FhuA. Unlike native MccJ25, a thermolysin-cleaved MccJ25 variant was unable to bind to FhuA and failed to prevent phage T5 infection of E. coli. Therefore the Val11-Pro16 beta-hairpin region of MccJ25, which is disrupted upon cleavage by thermolysin, is required for microcin recognition.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Chimie et Biochimie des Substances Naturelles, CNRS UMR 5154, Muséum National d'Histoire Naturelle USM 502, Département Régulations Développement et Diversité Moléculaire, 63 rue Buffon, 75005 Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Landick R. NTP-entry routes in multi-subunit RNA polymerases. Trends Biochem Sci 2005; 30:651-4. [PMID: 16243529 DOI: 10.1016/j.tibs.2005.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 09/15/2005] [Accepted: 10/10/2005] [Indexed: 12/28/2022]
Abstract
The recent elucidation of crystal structures for multi-subunit RNA polymerases immediately revealed a mystery: how do nucleotide triphosphate (NTP) substrates reach an active site that is buried deep within the enzyme? The prevailing view is that NTPs enter through an approximately 20A-long secondary channel between the active site and the enzyme surface. Recently, an alternative view has been advocated; namely, NTPs enter the active site pre-bound to the DNA template from the downstream DNA portion of the main channel of the enzyme.
Collapse
Affiliation(s)
- Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
157
|
Temiakov D, Zenkin N, Vassylyeva MN, Perederina A, Tahirov TH, Kashkina E, Savkina M, Zorov S, Nikiforov V, Igarashi N, Matsugaki N, Wakatsuki S, Severinov K, Vassylyev DG. Structural basis of transcription inhibition by antibiotic streptolydigin. Mol Cell 2005; 19:655-66. [PMID: 16167380 DOI: 10.1016/j.molcel.2005.07.020] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Streptolydigin (Stl) is a potent inhibitor of bacterial RNA polymerases (RNAPs). The 2.4 A resolution structure of the Thermus thermophilus RNAP-Stl complex showed that, in full agreement with the available genetic data, the inhibitor binding site is located 20 A away from the RNAP active site and encompasses the bridge helix and the trigger loop, two elements that are considered to be crucial for RNAP catalytic center function. Structure-based biochemical experiments revealed additional determinants of Stl binding and demonstrated that Stl does not affect NTP substrate binding, DNA translocation, and phosphodiester bond formation. The RNAP-Stl complex structure, its comparison with the closely related substrate bound eukaryotic transcription elongation complexes, and biochemical analysis suggest an inhibitory mechanism in which Stl stabilizes catalytically inactive (preinsertion) substrate bound transcription intermediate, thereby blocking structural isomerization of RNAP to an active configuration. The results provide a basis for a design of new antibiotics utilizing the Stl-like mechanism.
Collapse
Affiliation(s)
- Dmitry Temiakov
- Department of Cell Biology, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Stratford, New Jersey 08084, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Tuske S, Sarafianos SG, Wang X, Hudson B, Sineva E, Mukhopadhyay J, Birktoft JJ, Leroy O, Ismail S, Clark AD, Dharia C, Napoli A, Laptenko O, Lee J, Borukhov S, Ebright RH, Arnold E. Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation. Cell 2005; 122:541-52. [PMID: 16122422 PMCID: PMC2754413 DOI: 10.1016/j.cell.2005.07.017] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 06/03/2005] [Accepted: 07/13/2005] [Indexed: 11/17/2022]
Abstract
We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to but not overlapping the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight-bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents.
Collapse
Affiliation(s)
- Steven Tuske
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Stefan G. Sarafianos
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Xinyue Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Brian Hudson
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Elena Sineva
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Jayanta Mukhopadhyay
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Jens J. Birktoft
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Olivier Leroy
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Sajida Ismail
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Arthur D. Clark
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Chhaya Dharia
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| | - Andrew Napoli
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Oleg Laptenko
- Department of Cell Biology, UMDNJ, Stratford NJ 08084, USA
| | - Jookyung Lee
- Department of Cell Biology, UMDNJ, Stratford NJ 08084, USA
| | | | - Richard H. Ebright
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
- Howard Hughes Medical Institute, Piscataway NJ 08854, USA
| | - Eddy Arnold
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway NJ 08854, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
159
|
Semenova E, Yuzenkova Y, Peduzzi J, Rebuffat S, Severinov K. Structure-activity analysis of microcinJ25: distinct parts of the threaded lasso molecule are responsible for interaction with bacterial RNA polymerase. J Bacteriol 2005; 187:3859-63. [PMID: 15901712 PMCID: PMC1112051 DOI: 10.1128/jb.187.11.3859-3863.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptide microcin J25 (MccJ25) inhibits bacterial RNA polymerase. We show that thermolysin-cleaved MccJ25 and MccJ25 lacking amino acids 13 to 17 also inhibit transcription. Our data and structural analysis of intact and thermolysin-digested MccJ25 suggest that distinct regions of MccJ25 are involved in transcription inhibition and cell entry.
Collapse
Affiliation(s)
- Ekaterina Semenova
- Waksman Institute for Microbiology, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
160
|
Borukhov S, Lee J, Laptenko O. Bacterial transcription elongation factors: new insights into molecular mechanism of action. Mol Microbiol 2005; 55:1315-24. [PMID: 15720542 DOI: 10.1111/j.1365-2958.2004.04481.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Like transcription initiation, the elongation and termination stages of transcription cycle serve as important targets for regulatory factors in prokaryotic cells. In this review, we discuss the recent progress in structural and biochemical studies of three evolutionarily conserved elongation factors, GreA, NusA and Mfd. These factors affect RNA polymerase (RNAP) processivity by modulating transcription pausing, arrest, termination or anti-termination. With structural information now available for RNAP and models of ternary elongation complexes, the interaction between these factors and RNAP can be modelled, and possible molecular mechanisms of their action can be inferred. The models suggest that these factors interact with RNAP at or near its three major, nucleic acid-binding channels: Mfd near the upstream opening of the primary (DNA-binding) channel, NusA in the vicinity of both the primary channel and the RNA exit channel, and GreA within the secondary (backtracked RNA-binding) channel, and support the view that these channels are involved in the maintenance of RNAP processivity.
Collapse
Affiliation(s)
- Sergei Borukhov
- Department of Microbiology and Immunology, SUNY Health Sciences Center at Brooklyn, Brooklyn, NY 11203, USA.
| | | | | |
Collapse
|
161
|
Delgado MA, Vincent PA, Farías RN, Salomón RA. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol 2005; 187:3465-70. [PMID: 15866933 PMCID: PMC1112001 DOI: 10.1128/jb.187.10.3465-3470.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present study, we showed that yojI, an Escherichia coli open reading frame with an unknown function, mediates resistance to the peptide antibiotic microcin J25 when it is expressed from a multicopy vector. Disruption of the single chromosomal copy of yojI increased sensitivity of cells to microcin J25. The YojI protein was previously assumed to be an ATP-binding-cassette-type exporter on the basis of sequence similarities. We demonstrate that YojI is capable of pumping out microcin molecules. Thus, one obvious explanation for the protective effect against microcin J25 is that YojI action keeps the intracellular concentration of the peptide below a toxic level. The outer membrane protein TolC in addition to YojI is required for export of microcin J25 out of the cell. Microcin J25 is thus the first known substrate for YojI.
Collapse
Affiliation(s)
- Mónica A Delgado
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), San Miguel de Tucumán, Argentina
| | | | | | | |
Collapse
|
162
|
Vincent PA, Bellomio A, de Arcuri BF, Farías RN, Morero RD. MccJ25 C-terminal is involved in RNA-polymerase inhibition but not in respiration inhibition. Biochem Biophys Res Commun 2005; 331:549-51. [PMID: 15850794 DOI: 10.1016/j.bbrc.2005.03.220] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Indexed: 10/25/2022]
Abstract
Microcin J25 appears to have two intracellular targets: (1) RNA polymerase, which was described in Escherichia coli and Salmonella enterica serovars, and (2) cell respiration in Salmonella enterica serovars. C-terminal glycine amidation of the threaded segment localized in the MccJ25 lariat ring region specifically blocked the RNA-polymerase inhibition, but not the cell respiration inhibition and peptide uptake. These results suggest that different regions of the molecule are responsible for each cellular effect, they are localized far away from the beta-hairpin region and the C-terminal region is an important determinant for RNAP inhibition.
Collapse
Affiliation(s)
- Paula A Vincent
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), Chacabuco 461, 4000 San Miguel de Tucumán, Tucuman, Argentina
| | | | | | | | | |
Collapse
|
163
|
Bellomio A, Vincent PA, de Arcuri BF, Salomón RA, Morero RD, Farías RN. The microcin J25 beta-hairpin region is important for antibiotic uptake but not for RNA polymerase and respiration inhibition. Biochem Biophys Res Commun 2005; 325:1454-8. [PMID: 15555591 DOI: 10.1016/j.bbrc.2004.10.186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Indexed: 11/16/2022]
Abstract
The antibiotic microcin J25 (MccJ25) was cleaved by hydrolysis with thermolysin giving a two-chain peptide (MccJ25-Th19) of 10 and 9 amino acid residues. MccJ25-Th19 with deep modifications in beta-hairpin region had no effect on Escherichia coli growth, but still inhibited RNA polymerase in vitro and oxygen consumption in Salmonella strains. MccJ25-Th19 showed antibiotic activity on E. coli transformed with plasmids containing either fhuA or sbmA genes, which code for proteins involved in MccJ25 transport. These results suggest that an intact beta-hairpin region is crucial for MccJ25 import but not for inhibition of E. coli RNA polymerase or oxygen consumption in Salmonella strains.
Collapse
Affiliation(s)
- Augusto Bellomio
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán), Chacabuco 461, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | | | | | |
Collapse
|
164
|
MacDougall IJA, Lewis PJ, Griffith R. Homology modelling of RNA polymerase and associated transcription factors from Bacillus subtilis. J Mol Graph Model 2005; 23:297-303. [PMID: 15670950 DOI: 10.1016/j.jmgm.2004.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/29/2004] [Accepted: 10/11/2004] [Indexed: 10/26/2022]
Abstract
RNA polymerase (RNAP) is the central enzyme of transcription and requires interaction with transcription factors in vivo for correct processivity. Both the transcription initiation complex and the ternary elongation complex are stabilised by and require protein-protein interactions between the various components involved. These interactions may form the basis for rational design of small peptide mimics of one or more proteins involved in order to inhibit protein-protein interactions and thus transcription. Here, we present homology models of the model Gram positive organism Bacillus subtilis RNA polymerase in the core and holoenzyme forms. Interactions between RNA polymerase and the transcription factor sigmaA were investigated in order to design peptide mimics of the major interactions.
Collapse
Affiliation(s)
- Iain J A MacDougall
- School of Environmental and Life Sciences, The University of Newcastle, Biology Building, Callaghan, NSW 2308, Australia
| | | | | |
Collapse
|
165
|
Knight JL, Mekler V, Mukhopadhyay J, Ebright RH, Levy RM. Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability. Biophys J 2004; 88:925-38. [PMID: 15542547 PMCID: PMC1305165 DOI: 10.1529/biophysj.104.050187] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We are developing distance-restrained docking strategies for modeling macromolecular complexes that combine available high-resolution structures of the components and intercomponent distance restraints derived from systematic fluorescence resonance energy transfer (FRET) measurements. In this article, we consider the problem of docking small-molecule ligands within macromolecular complexes. Using simulated FRET data, we have generated a series of benchmarks that permit estimation of model accuracy based on the quantity and quality of FRET-derived distance restraints, including the number, random error, systematic error, distance distribution, and radial distribution of FRET-derived distance restraints. We find that expected model accuracy is 10 A or better for models based on: i), > or =20 restraints with up to 15% random error and no systematic error, or ii), > or =20 restraints with up to 15% random error, up to 10% systematic error, and a symmetric radial distribution of restraints. Model accuracies can be improved to 5 A or better by increasing the number of restraints to > or =40 and/or by optimizing the distance distribution of restraints. Using experimental FRET data, we have defined the positions of the binding sites within bacterial RNA polymerase of the small-molecule inhibitors rifampicin (Rif) and rifamycin SV (Rif SV). The inferred binding sites for Rif and Rif SV were located with accuracies of, respectively, 7 and 10 A relative to the crystallographically defined binding site for Rif. These accuracies agree with expectations from the benchmark simulations and suffice to indicate that the binding sites for Rif and Rif SV are located within the RNA polymerase active-center cleft, overlapping the binding site for the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Jennifer L Knight
- Department of Chemistry and Chemical Biology and the BioMaPS Institute for Quantitative Biology, and Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
166
|
Perederina A, Svetlov V, Vassylyeva MN, Tahirov TH, Yokoyama S, Artsimovitch I, Vassylyev DG. Regulation through the secondary channel--structural framework for ppGpp-DksA synergism during transcription. Cell 2004; 118:297-309. [PMID: 15294156 DOI: 10.1016/j.cell.2004.06.030] [Citation(s) in RCA: 280] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/02/2004] [Accepted: 06/04/2004] [Indexed: 10/26/2022]
Abstract
Bacterial transcription is regulated by the alarmone ppGpp, which binds near the catalytic site of RNA polymerase (RNAP) and modulates its activity. We show that the DksA protein is a crucial component of ppGpp-dependent regulation. The 2.0 A resolution structure of Escherichia coli DksA reveals a globular domain and a coiled coil with two highly conserved Asp residues at its tip that is reminiscent of the transcript cleavage factor GreA. This structural similarity suggests that DksA coiled coil protrudes into the RNAP secondary channel to coordinate a ppGpp bound Mg2+ ion with the Asp residues, thereby stabilizing the ppGpp-RNAP complex. Biochemical analysis demonstrates that DksA affects transcript elongation, albeit differently from GreA; augments ppGpp effects on initiation; and binds directly to RNAP, positioning the Asp residues near the active site. Substitution of these residues eliminates the synergy between DksA and ppGpp. Thus, the secondary channel emerges as a common regulatory entrance for transcription factors.
Collapse
Affiliation(s)
- Anna Perederina
- Cellular Signaling Laboratory, Mikazuki-cho, Sayo, Hyogo 679-5148, Japan
| | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
High-resolution crystal structures have highlighted functionally important regions in multisubunit RNA polymerases, including the secondary channel, or pore, which is postulated to allow the diffusion of small molecules both into and out of the active center of the enzyme. Recent work from several groups has illustrated how regulatory factors and small molecules can exploit the secondary channel to gain access to the active site and modify the transcription properties of RNA polymerase.
Collapse
Affiliation(s)
- Bryce E Nickels
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Blg. D-1, Boston, MA 02115, USA
| | | |
Collapse
|
168
|
Stuck in a tunnel. Nat Rev Microbiol 2004. [DOI: 10.1038/nrmicro965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|