151
|
Zhao JF, Zhao Q, Hu H, Liao JZ, Lin JS, Xia C, Chang Y, Liu J, Guo AY, He XX. The ASH1-miR-375-YWHAZ Signaling Axis Regulates Tumor Properties in Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 11:538-553. [PMID: 29858089 PMCID: PMC5944419 DOI: 10.1016/j.omtn.2018.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide malignance, and the underlying mechanisms of this disease are not fully elucidated. In this study, the existence and function of achaete-scute homolog-1 (ASH1)-miR-375-YWHAZ signaling axis in HCC were determined. Our experiments and the Cancer Genome Atlas (TCGA) sequencing data analyses showed that ASH1 and miR-375 were significantly downregulated, whereas YWHAZ was significantly upregulated in HCC. Furthermore, we found that ASH1 positively regulates miR-375, and miR-375 directly downregulates its target YWHAZ. Gain- and loss-of-function study demonstrated ASH1 and miR-375 function as tumor suppressors, whereas YWHAZ acts as an oncogene in HCC. Animal experiment indicated that YWHAZ small interfering RNAs (siRNAs) (si-YWHAZ) delivered by nanoliposomes could suppress the growth of hepatoma xenografts and was well tolerant by nude mice. Further studies revealed that YWHAZ was involved in several protein networks, such as cell autophagy, epithelial-mesenchymal transition (EMT), apoptosis, cell cycle, invasion, and migration. In addition, the patient group with ASH1-high-expression-miR-375-high-expression-YWHAZ-low-expression was correlated with a better clinical prognosis compared with the opposite expression group. In conclusion, we proved the existence of ASH1-miR-375-YWHAZ signaling axis and interpreted its important role in driving HCC tumor progression.
Collapse
Affiliation(s)
- Juan-Feng Zhao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Hu
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhi Liao
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ju-Sheng Lin
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Xia
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - An-Yuan Guo
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Bioinformatics and Systems Biology, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
| | - Xing-Xing He
- Institute of Liver Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
152
|
Wang Y, Yun C, Gao B, Xu Y, Zhang Y, Wang Y, Kong Q, Zhao F, Wang CR, Dent SYR, Wang J, Xu X, Li HB, Fang D. The Lysine Acetyltransferase GCN5 Is Required for iNKT Cell Development through EGR2 Acetylation. Cell Rep 2018; 20:600-612. [PMID: 28723564 DOI: 10.1016/j.celrep.2017.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 03/21/2017] [Accepted: 06/22/2017] [Indexed: 12/11/2022] Open
Abstract
The development of CD1d-restricted invariant natural killer T (iNKT) cells, a population that is critical for both innate and adaptive immunity, is regulated by multiple transcription factors, but the molecular mechanisms underlying how the transcriptional activation of these factors are regulated during iNKT development remain largely unknown. We found that the histone acetyltransferase general control non-derepressible 5 (GCN5) is essential for iNKT cell development during the maturation stage. GCN5 deficiency blocked iNKT cell development in a cell-intrinsic manner. At the molecular level, GCN5 is a specific lysine acetyltransferase of early growth responsive gene 2 (EGR2), a transcription factor required for iNKT cell development. GCN5-mediated acetylation positively regulated EGR2 transcriptional activity, and both genetic and pharmacological GCN5 suppression specifically inhibited the transcription of EGR2 target genes in iNKT cells, including Runx1, promyelocytic leukemia zinc finger protein (PLZF), interleukin (IL)-2Rb, and T-bet. Therefore, our study revealed GCN5-mediated EGR2 acetylation as a molecular mechanism that regulates iNKT development.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Heilongjiang 150081, China
| | - Chawon Yun
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Yuanming Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai 200031, PRC; Department of Otolaryngology-Head and Neck Surgery, Guangzhou Women and Children's Medical Center, Guangzhou 510623, PRC
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PRC
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Fang Zhao
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Chyung-Ru Wang
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center Science Park, Smithville, TX 78957, USA
| | - Jian Wang
- National Center for Protein Sciences Beijing, State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, PRC
| | - Xiangping Xu
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Heilongjiang 150081, China.
| | - Hua-Bin Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Eye, Ear, Nose and Throat Hospital, Fudan University, No. 83, Fenyang Road, Shanghai 200031, PRC.
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, PRC; Department of Pharmacology, Dalian Medical University School of Pharmacy, Dalian 116044, China.
| |
Collapse
|
153
|
The H2B deubiquitinase Usp22 promotes antibody class switch recombination by facilitating non-homologous end joining. Nat Commun 2018. [PMID: 29520062 PMCID: PMC5843634 DOI: 10.1038/s41467-018-03455-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Class switch recombination (CSR) has a fundamental function during humoral immune response and involves the induction and subsequent repair of DNA breaks in the immunoglobulin (Ig) switch regions. Here we show the role of Usp22, the SAGA complex deubiquitinase that removes ubiquitin from H2B-K120, in the repair of programmed DNA breaks in vivo. Ablation of Usp22 in primary B cells results in defects in γH2AX and impairs the classical non-homologous end joining (c-NHEJ), affecting both V(D)J recombination and CSR. Surprisingly, Usp22 depletion causes defects in CSR to various Ig isotypes, but not IgA. We further demonstrate that IgG CSR primarily relies on c-NHEJ, whereas CSR to IgA is more reliant on the alternative end joining pathway, indicating that CSR to different isotypes involves distinct DNA repair pathways. Hence, Usp22 is the first deubiquitinase reported to regulate both V(D)J recombination and CSR in vivo by facilitating c-NHEJ.
Collapse
|
154
|
Ma Y, Fu HL, Wang Z, Huang H, Ni J, Song J, Xia Y, Jin WL, Cui DX. USP22 maintains gastric cancer stem cell stemness and promotes gastric cancer progression by stabilizing BMI1 protein. Oncotarget 2018; 8:33329-33342. [PMID: 28415621 PMCID: PMC5464871 DOI: 10.18632/oncotarget.16445] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/09/2017] [Indexed: 12/11/2022] Open
Abstract
Increased ubiquitin-specific protease 22 (USP22) has been associated with poor prognosis in several cancers including gastric cancer. However, the role of USP22 in gastric tumorigenesis is still unclear. Gastric cancer stem cells have been identified and shown to correlate with gastric cancer initiation and metastasis. In this study, we found that silencing of USP22 inhibited proliferation of gastric cancer cells and suppressed the cancer stem cell spheroid formation in serum-free culture. Furthermore, cancer stem cell markers, such as CD133, SOX2, OCT4 and NANOG were down-regulated. Additionally, knockdown of USP22 inhibited gastric cancer xenografts growth. Our analysis of TCGA database indicated that BMI1 overexpression may predict gastric cancer patient survival, and TAT-BMI1 proteins reversed the USP22 knockdown-mediated decreased in cancer stem cell properties, and elevated the expression of stemness-associated genes. Furthermore, we found that overexpression of USP22 stabilized the BMI1 protein in gastric cancer cells. Taken together, our study demonstrates that USP22 is indispensable for gastric cancer stem cell self-renewal through stabilization of BMI1. These results may provide novel approaches to the theranostics of gastric cancer in the near future.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hua-Lin Fu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Hai Huang
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550005, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Ying Xia
- Department of Clinical Biochemistry, School of Clinical Laboratory Science, Guizhou Medical University, Guiyang, Guizhou 550005, China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Da-Xiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,National Center for Translational Medicine, Collaborative Innovational Center for System Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| |
Collapse
|
155
|
Xing Z, Pan W, Zhang J, Xu X, Zhang X, He X, Fan M. Hydrogen Rich Water Attenuates Renal Injury and Fibrosis by Regulation Transforming Growth Factor-β Induced Sirt1. Biol Pharm Bull 2018; 40:610-615. [PMID: 28458345 DOI: 10.1248/bpb.b16-00832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The current research was designed to study the role of hydrogen in renal fibrosis and the renal epithelial to mesenchymal transition (EMT) induced by transforming growth factor-β1 (TGF-β1). Hydrogen rich water (HW) was used to treat animal and cell models. Unilateral ureteral obstruction (UUO) was performed on Balb/c mice to create a model of renal fibrosis. Human kidney proximal tubular epithelial cells (HK-2 cells) were treated with TGF-β1 for 36 h to induce EMT. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured to test renal function, in addition, kidney histology and immunohistochemical staining of alpha-smooth muscle actin (α-SMA) positive cells was performed to examine the morphological changes. The treatment with UUO induced a robust fibrosis of renal interstitium, shrink of glomerulus and partial fracture of basement membrane. Renal function was also impaired in the experimental group with UUO, with an increase of Scr and BUN in serum. After that, Western-blot was performed to examine the expression of α-SMA, fibronectin, E-cadherin, Smad2 and Sirtuin-1 (Sirt1). The treatment with HW attenuated the development of fibrosis and deterioration of renal function in UUO model. In HK-2 cells, the pretreatment of HW abolished EMT induced by TGF-β1. The down-regulation the expression of Sirt1 induced by TGF-β1 which was dampened by the treatment with HW. Sirtinol, a Sirt1 inhibitor, reversed the effect of HW on EMT induced by TGF-β1. HW can inhibit the development of fibrosis in kidney and prevents HK-2 cells from undergoing EMT which is mediated through Sirt1, a downstream molecule of TGF-β1.
Collapse
Affiliation(s)
- Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Wanma Pan
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xianlin Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University
| |
Collapse
|
156
|
Choupani J, Mansoori Derakhshan S, Bayat S, Alivand MR, Shekari Khaniani M. Narrower insight to SIRT1 role in cancer: A potential therapeutic target to control epithelial-mesenchymal transition in cancer cells. J Cell Physiol 2018; 233:4443-4457. [PMID: 29194618 DOI: 10.1002/jcp.26302] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a highly networked cellular process which involves cell transition from the immotile epithelial to the motile mesenchymal phenotype, whereby cells lose their cell-cell adhesion and cell polarity. This important process is one of the underlying mechanisms for enabling invasion and metastasis of cancer cells which is considered as malignant phase of tumor progression. However, the molecular mechanisms of this process are not fully clarified. It is reported that Sirtuin1 (SIRT1), a NAD+ dependent class III histone deacetylase is associated with tumor metastasis through positive regulation of EMT in several types of cancers. Recent studies confirmed that up and down regulation of SIRT1 expression remarkably change the migration ability of different cancer cells in vitro and tumor metastasis in vivo. Also, according to this fact that carcinomas as the main human solid tumors, originate from different epithelial cell types, SIRT1 role in EMT has received a great attention due to its potential role in tumor development and metastasis. Therefore, SIRT1 has been proposed as a key regulator of cancer metastasis by promoting EMT, although little is known about the cleared effect of SIRT1 in this transition. Our aim in this review is to explain in more detail the role of SIRT1 in various signaling pathways related to carcinogenesis, with the focus on the promoting role of SIRT1 in EMT as a potential therapeutic target to control EMT and to prevent cancer progression.
Collapse
Affiliation(s)
- Jalal Choupani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
157
|
Ubiquitin Specific Peptidase 22 Regulates Histone H2B Mono-Ubiquitination and Exhibits Both Oncogenic and Tumor Suppressor Roles in Cancer. Cancers (Basel) 2017; 9:cancers9120167. [PMID: 29210986 PMCID: PMC5742815 DOI: 10.3390/cancers9120167] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/03/2017] [Accepted: 12/04/2017] [Indexed: 12/19/2022] Open
Abstract
Ubiquitin-Specific Peptidase 22 (USP22) is a ubiquitin hydrolase, notably catalyzing the removal of the mono-ubiquitin moiety from histone H2B (H2Bub1). Frequent overexpression of USP22 has been observed in various cancer types and is associated with poor patient prognosis. Multiple mechanisms have been identified to explain how USP22 overexpression contributes to cancer progression, and thus, USP22 has been proposed as a novel drug target in cancer. However, gene re-sequencing data from numerous cancer types show that USP22 expression is frequently diminished, suggesting it may also harbor tumor suppressor-like properties. This review will examine the current state of knowledge on USP22 expression in cancers, describe its impact on H2Bub1 abundance and present the mechanisms through which altered USP22 expression may contribute to oncogenesis, including an emerging role for USP22 in the maintenance of genome stability in cancer. Clarifying the impact aberrant USP22 expression and abnormal H2Bub1 levels have in oncogenesis is critical before precision medicine therapies can be developed that either directly target USP22 overexpression or exploit the loss of USP22 expression in cancer cells.
Collapse
|
158
|
Ugwu FN, Yu AP, Sin TK, Tam BT, Lai CW, Wong SC, Siu PM. Protective Effect of Unacylated Ghrelin on Compression-Induced Skeletal Muscle Injury Mediated by SIRT1-Signaling. Front Physiol 2017; 8:962. [PMID: 29225581 PMCID: PMC5705540 DOI: 10.3389/fphys.2017.00962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
Unacylated ghrelin, the predominant form of circulating ghrelin, protects myotubes from cell death, which is a known attribute of pressure ulcers. In this study, we investigated whether unacylated ghrelin protects skeletal muscle from pressure-induced deep tissue injury by abolishing necroptosis and apoptosis signaling and whether these effects were mediated by SIRT1 pathway. Fifteen adult Sprague Dawley rats were assigned to receive saline or unacylated ghrelin with or without EX527 (a SIRT1 inhibitor). Animals underwent two 6-h compression cycles with 100 mmHg static pressure applied over the mid-tibialis region of the right limb whereas the left uncompressed limb served as the intra-animal control. Muscle tissues underneath the compression region, and at the similar region of the opposite uncompressed limb, were collected for analysis. Unacylated ghrelin attenuated the compression-induced muscle pathohistological alterations including rounding contour of myofibers, extensive nucleus accumulation in the interstitial space, and increased interstitial space. Unacylated ghrelin abolished the increase in necroptosis proteins including RIP1 and RIP3 and attenuated the elevation of apoptotic proteins including p53, Bax, and AIF in the compressed muscle. Furthermore, unacylated ghrelin opposed the compression-induced phosphorylation and acetylation of p65 subunit of NF-kB. The anti-apoptotic effect of unacylated ghrelin was shown by a decrease in apoptotic DNA fragmentation and terminal dUTP nick-end labeling index in the compressed muscle. The protective effects of unacylated ghrelin vanished when co-treated with EX527. Our findings demonstrated that unacylated ghrelin protected skeletal muscle from compression-induced injury. The myoprotective effects of unacylated ghrelin on pressure-induced tissue injury were associated with SIRT1 signaling.
Collapse
Affiliation(s)
- Felix N Ugwu
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Angus P Yu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| | - Thomas K Sin
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bjorn T Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Christopher W Lai
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - S C Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Parco M Siu
- School of Public Health, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
159
|
Xu G, Cai J, Wang L, Jiang L, Huang J, Hu R, Ding F. MicroRNA-30e-5p suppresses non-small cell lung cancer tumorigenesis by regulating USP22-mediated Sirt1/JAK/STAT3 signaling. Exp Cell Res 2017; 362:268-278. [PMID: 29174979 DOI: 10.1016/j.yexcr.2017.11.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
MicroRNA-30e-5p (miR-30e-5p) is a tumor suppressor that is known to be downregulated in non-small cell lung cancer (NSCLC). However, how miR-30e-5p inhibits NSCLC tumorigenesis is not known. Ubiquitin-specific peptidase 22 (USP22) is upregulated in NSCLC and promotes tumorigenesis via a Sirt1-JAK-STAT3 pathway. In this study, we investigated whether miR-30e-5p inhibits tumor growth by targeting USP22 in NSCLC. Our results reveal that miR-30e-5p expression was correlated negatively with USP22 in NSCLC tissues. Luciferase reporter assays showed that miR-30e-5p negatively regulated USP22 expression by binding to a specific sequence in the 3'UTR. MiR-30e-5p overexpression and USP22 knockdown significantly inhibited tumor growth in vivo and induced cell cycle arrest and apoptosis in NSCLC cells in vitro. The effects of miR-30e-5p inhibition were prevented by USP22 knockdown. MiR-30e-5p inhibited SIRT1 expression and increased expression of p53 and the phosphorylated form of STAT3 (pSTAT3). Furthermore, miR-30e-5p prevented USP22-mediated regulation of SIRT1, pSTAT3, and p53 expression. Taken together, these findings suggest that miR-30e-5p suppresses NSCLC tumorigenesis by downregulatingUSP22-mediated Sirt1/JAK/STAT3 signaling. Our study has identified miR-30e-5p as a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Gaojun Xu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jie Cai
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lianyong Jiang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jianbing Huang
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Rui Hu
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Fangbao Ding
- Department of Cardiothoracic Surgery, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
160
|
Lei H, Shan H, Wu Y. Targeting deubiquitinating enzymes in cancer stem cells. Cancer Cell Int 2017; 17:101. [PMID: 29142505 PMCID: PMC5670729 DOI: 10.1186/s12935-017-0472-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Cancer stem cells (CSCs) are rare but accounted for tumor initiation, progression, metastasis, relapse and therapeutic resistance. Ubiquitination and deubiquitination of stemness-related proteins are essential for CSC maintenance and differentiation, even leading to execute various stem cell fate choices. Deubiquitinating enzymes (DUBs), specifically disassembling ubiquitin chains, are important to maintain the balance between ubiquitination and deubiquitination. In this review, we have focused on the DUBs regulation of stem cell fate determination. For example, we discuss deubiquitinase inhibition may lead stem cell transcription factors and CSCs-related protein degradation. Also, CSCs microenvironment is regulated by DUBs activity. Our review provides a new insight into DUBs activity by emphasizing their cellular role in regulating stem cell fate and illustrates the opportunities for the application of DUBs inhibitors in the CSC-targeted therapy.
Collapse
Affiliation(s)
- Hu Lei
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Huizhuang Shan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yingli Wu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Chemical Biology Division of Shanghai Universities E-Institutes, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| |
Collapse
|
161
|
Bao Y, Wu X, Yuan D, Shi W, Shi J. High Expression of Pirh2 is Associated with Poor Prognosis in Glioma. Cell Mol Neurobiol 2017; 37:1501-1509. [PMID: 28258514 PMCID: PMC11482087 DOI: 10.1007/s10571-017-0481-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/24/2017] [Indexed: 12/17/2022]
Abstract
p53-induced protein with a RING-H2 domain (Pirh2), also known as Rchy1, is an ubiquitin E3 ligase that regulates the turnover and functionality of several proteins involved in cell proliferation and differentiation, cell cycle checkpoints, and cell death. However, it remains unclear whether aberrant expression of Pirh2 is involved in the development of glioma, a major type of primary brain tumor in adults. Western blot and immunohistochemical analyses showed that Pirh2 was highly expressed in glioma specimens, compared with normal brain tissues. High Pirh2 expression was positively correlated with higher tumor grade, as well as Ki-67 expression. Kaplan-Meier analysis revealed that patients with high Pirh2 expression had worsened prognosis, compared with those with low Pirh2 expression. Moreover, to determine whether Pirh2 could regulate malignant behavior of glioma cells, we transfected glioma cells with interfering RNA targeting Pirh2 to specifically silence Pirh2 expression. Mechanistically, our results indicated that knockdown of Pirh2 induced the apoptosis of glioma cells. In addition, depletion of Pirh2 diminished the expression of PCNA and cyclin D1 and led to cell cycle arrest at G1 phase. Taken together, these findings for the first time suggest that Pirh2 might play an important role in the regulation of glioma proliferation and apoptosis and thus serve as a promising therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
- Yifeng Bao
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, People's Republic of China
| | - Xue Wu
- Department of Endocrinology, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, People's Republic of China
| | - Debin Yuan
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, People's Republic of China
| | - Wei Shi
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, People's Republic of China.
| | - Jinlong Shi
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, People's Republic of China.
| |
Collapse
|
162
|
Haq S, Suresh B, Ramakrishna S. Deubiquitylating enzymes as cancer stem cell therapeutics. Biochim Biophys Acta Rev Cancer 2017; 1869:1-10. [PMID: 29054474 DOI: 10.1016/j.bbcan.2017.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/20/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022]
Abstract
The focus of basic and applied research on core stem cell transcription factors has paved the way to initial delineation of their characteristics, their regulatory mechanisms, and the applicability of their regulatory proteins for protein-induced pluripotent stem cells (protein-IPSC) generation and in further clinical settings. Striking parallels have been observed between cancer stem cells (CSCs) and stem cells. For the maintenance of stem cells and CSC pluripotency and differentiation, post translational modifications (i.e., ubiquitylation and deubiquitylation) are tightly regulated, as these modifications result in a variety of stem cell fates. The identification of deubiquitylating enzymes (DUBs) involved in the regulation of core stem cell transcription factors and CSC-related proteins might contribute to providing novel insights into the implications of DUB regulatory mechanisms for governing cellular reprogramming and carcinogenesis. Moreover, we propose the novel possibility of applying DUBs coupled with core transcription factors to improve protein-iPSC generation efficiency. Additionally, this review article further illustrates the potential of applying DUB inhibitors as a novel therapeutic intervention for targeting CSCs. Thus, defining DUBs as core pharmacological targets implies that future endeavors to develop their inhibitors may revolutionize our ability to regulate stem cell maintenance and differentiation, somatic cell reprogramming, and cancer stem cells.
Collapse
Affiliation(s)
- Saba Haq
- Department of Lifesciences, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
163
|
Bardot P, Vincent SD, Fournier M, Hubaud A, Joint M, Tora L, Pourquié O. The TAF10-containing TFIID and SAGA transcriptional complexes are dispensable for early somitogenesis in the mouse embryo. Development 2017; 144:3808-3818. [PMID: 28893950 DOI: 10.1242/dev.146902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 09/02/2017] [Indexed: 01/09/2023]
Abstract
During development, tightly regulated gene expression programs control cell fate and patterning. A key regulatory step in eukaryotic transcription is the assembly of the pre-initiation complex (PIC) at promoters. PIC assembly has mainly been studied in vitro, and little is known about its composition during development. In vitro data suggest that TFIID is the general transcription factor that nucleates PIC formation at promoters. Here we show that TAF10, a subunit of TFIID and of the transcriptional co-activator SAGA, is required for the assembly of these complexes in the mouse embryo. We performed Taf10 conditional deletions during mesoderm development and show that Taf10 loss in the presomitic mesoderm (PSM) does not prevent cyclic gene transcription or PSM segmental patterning, whereas lateral plate differentiation is profoundly altered. During this period, global mRNA levels are unchanged in the PSM, with only a minor subset of genes dysregulated. Together, our data strongly suggest that the TAF10-containing canonical TFIID and SAGA complexes are dispensable for early paraxial mesoderm development, arguing against the generic role in transcription proposed for these fully assembled holo-complexes.
Collapse
Affiliation(s)
- Paul Bardot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Stéphane D Vincent
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Marjorie Fournier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Alexis Hubaud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Mathilde Joint
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch 67400, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch 67400, France.,Université de Strasbourg, Illkirch 67400, France
| |
Collapse
|
164
|
Li X, Seidel CW, Szerszen LT, Lange JJ, Workman JL, Abmayr SM. Enzymatic modules of the SAGA chromatin-modifying complex play distinct roles in Drosophila gene expression and development. Genes Dev 2017; 31:1588-1600. [PMID: 28887412 PMCID: PMC5630023 DOI: 10.1101/gad.300988.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/11/2017] [Indexed: 01/03/2023]
Abstract
In this study, Li et al. demonstrate that the two enzymatic modules of the Drosophila Spt–Ada–Gcn5–acetyltransferase (SAGA) chromatin-modifying complex are differently required in oogenesis. Their findings demonstrate that loss of the histone acetyltransferase (HAT) activity blocks oogenesis, while loss of H2B deubiquitinase (DUB) activity does not, suggesting that the DUB module has functions within SAGA as well as independent functions. The Spt–Ada–Gcn5–acetyltransferase (SAGA) chromatin-modifying complex is a transcriptional coactivator that contains four different modules of subunits. The intact SAGA complex has been well characterized for its function in transcription regulation and development. However, little is known about the roles of individual modules within SAGA and whether they have any SAGA-independent functions. Here we demonstrate that the two enzymatic modules of Drosophila SAGA are differently required in oogenesis. Loss of the histone acetyltransferase (HAT) activity blocks oogenesis, while loss of the H2B deubiquitinase (DUB) activity does not. However, the DUB module regulates a subset of genes in early embryogenesis, and loss of the DUB subunits causes defects in embryogenesis. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that both the DUB and HAT modules bind most SAGA target genes even though many of these targets do not require the DUB module for expression. Furthermore, we found that the DUB module can bind to chromatin and regulate transcription independently of the HAT module. Our results suggest that the DUB module has functions within SAGA and independent functions.
Collapse
Affiliation(s)
- Xuanying Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | - Leanne T Szerszen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
165
|
p53 stability is regulated by diverse deubiquitinating enzymes. Biochim Biophys Acta Rev Cancer 2017; 1868:404-411. [PMID: 28801249 DOI: 10.1016/j.bbcan.2017.08.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 08/05/2017] [Indexed: 02/01/2023]
Abstract
The tumor suppressor protein p53 has a variety of roles in responses to various stress signals. In such responses, p53 activates specific transcriptional targets that control cell cycle arrest, DNA repair, angiogenesis, autophagy, metabolism, migration, aging, senescence, and apoptosis. Since p53 has been identified as the most frequently altered gene in human cancers, regulation and stabilization of its normal functions are important. Stability of p53 is regulated by the ubiquitin-proteasome pathway (UPP). Furthermore, it is readjusted by deubiquitination via deubiquitinating enzymes (DUBs) that can eliminate ubiquitin from p53. Diverse DUBs directly or indirectly affect the ubiquitination of p53 and, consequently, regulate various cellular processes associated with p53. As maintenance of p53 is regulated by a variety of DUBs, the interaction of DUBs and p53 can affect diseases such as cancer. Currently, DUBs have a central role in our understanding of various cancers, and some have potential in the development of effective therapeutic strategies. This review summarizes the current knowledge of p53 and of the interconnection between p53 and DUBs.
Collapse
|
166
|
Shi JX, Wang QJ, Li H, Huang Q. Silencing of USP22 suppresses high glucose-induced apoptosis, ROS production and inflammation in podocytes. MOLECULAR BIOSYSTEMS 2017; 12:1445-56. [PMID: 26953552 DOI: 10.1039/c5mb00722d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ubiquitin-specific protease 22 (USP22) has been reported to mediate various cellular processes, including cell proliferation and apoptosis. However, its role in high glucose-induced podocytes and diabetic rats remains unknown. In the current study, podocytes were treated with different concentrations of d-glucose to establish a high glucose-induced injury model. Additionally, intravenous tail injection of rats with 65 mg kg(-1) of streptozotocin (STZ) was performed to establish a diabetic rat model. Our findings showed that the treatment of podocytes with high d-glucose significantly increased the USP22 expression level. Silencing of USP22 in podocytes attenuated high d-glucose-induced apoptosis and inflammatory responses, evidenced by increases in proliferation and MMP levels and decreases in the apoptotic rate, ROS production, the Bax/Bcl-2 ratio, caspase-3 expression and secretion of TNF-α, IL-1β, IL-6 and TGF-β1. In addition, podocytes with USP22 overexpression significantly enhanced the effect of high d-glucose-induced apoptosis and inflammatory responses. Similar to the protective effect of USP22 knockdown, resveratrol (RSV) depressed not only high d-glucose- and USP22 overexpression-induced cytotoxicity, but also the secretion of TNF-α, IL-1β, IL-6 and TGF-β1. Notably, silencing of USP22 in diabetic rats conferred a similar protective effect against high glucose-induced apoptosis and inflammation. Taken together, the findings of the present study have demonstrated for the first time that USP22 inhibition attenuates high glucose-induced podocyte injuries and inflammation.
Collapse
Affiliation(s)
- Jian-Xia Shi
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China.
| | - Qi-Jin Wang
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China.
| | - Hui Li
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China.
| | - Qin Huang
- Department of Endocrinology, Changhai Hospital, The Second Military Medical University, No. 168, Changhai Road, Yangpu District, Shanghai 200433, China.
| |
Collapse
|
167
|
Jiang L, Xiong J, Zhan J, Yuan F, Tang M, Zhang C, Cao Z, Chen Y, Lu X, Li Y, Wang H, Wang L, Wang J, Zhu WG, Wang H. Ubiquitin-specific peptidase 7 (USP7)-mediated deubiquitination of the histone deacetylase SIRT7 regulates gluconeogenesis. J Biol Chem 2017; 292:13296-13311. [PMID: 28655758 DOI: 10.1074/jbc.m117.780130] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Sirtuin 7 (SIRT7), a member of the NAD+-dependent class III histone deacetylases, is involved in the regulation of various cellular processes and in resisting various stresses, such as hypoxia, low glucose levels, and DNA damage. Interestingly, SIRT7 is linked to the control of glycolysis, suggesting a role in glucose metabolism. Given the important roles of SIRT7, it is critical to clarify how SIRT7 activity is potentially regulated. It has been reported that some transcriptional and post-transcriptional regulatory mechanisms are involved. However, little is known how SIRT7 is regulated by the post-translational modifications. Here, we identified ubiquitin-specific peptidase 7 (USP7), a deubiquitinase, as a negative regulator of SIRT7. We showed that USP7 interacts with SIRT7 both in vitro and in vivo, and we further demonstrated that SIRT7 undergoes endogenous Lys-63-linked polyubiquitination, which is removed by USP7. Although the USP7-mediated deubiquitination of SIRT7 had no effect on its stability, the deubiquitination repressed its enzymatic activity. We also showed that USP7 coordinates with SIRT7 to regulate the expression of glucose-6-phosphatase catalytic subunit (G6PC), a gluconeogenic gene. USP7 depletion by RNA interference increased both G6PC expression and SIRT7 enzymatic activity. Moreover, SIRT7 targeted the G6PC promoter through the transcription factor ELK4 but not through forkhead box O1 (FoxO1). In summary, SIRT7 is a USP7 substrate and has a novel role as a regulator of gluconeogenesis. Our study may provide the basis for new clinical approaches to treat metabolic disorders related to glucose metabolism.
Collapse
Affiliation(s)
- Lu Jiang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Jiannan Xiong
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Junsi Zhan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Fengjie Yuan
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Ming Tang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Chaohua Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Ziyang Cao
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Yongcan Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Xiaopeng Lu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Yinglu Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Hui Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Lina Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191 and
| | - Wei-Guo Zhu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, .,Peking-Tsinghua University Center for Life Science, and.,the Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Haiying Wang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Post-translational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center,
| |
Collapse
|
168
|
lncRNA HULC promotes the growth of hepatocellular carcinoma cells via stabilizing COX-2 protein. Biochem Biophys Res Commun 2017. [PMID: 28634076 DOI: 10.1016/j.bbrc.2017.06.103] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Highly upregulated in liver cancer (HULC), a lncRNA overexpressed in hepatocellular carcinoma (HCC), has been demonstrated to be involved in the carcinogenesis and progression of HCC. However, the mechanisms of HULC promoting the abnormal growth of HCC cells are still not well elucidated. In the present study, we for the first time demonstrated that HULC promoted the growth of HCC cells through elevating COX-2 protein. Moreover, the study of the corresponding mechanism by which HULC upregulated COX-2 showed that HULC enhanced the level of ubiquitin-specific peptidase 22 (USP22), which decreased ubiquitin-mediated degradation of COX-2 protein by removing the conjugated polyubiquitin chains from COX-2 and finally stabilized COX2 protein. In addition, knockdown of USP22 or COX-2 attenuated HULC-mediated abnormal growth of HCC cells. In conclusion, our results demonstrated that "USP22/COX-2" axis played an important role in HULC promoting growth of HCC cells. The identification of this novel pathway may pave a road for developing new potential anti-HCC strategies.
Collapse
|
169
|
Wang A, Ning Z, Lu C, Gao W, Liang J, Yan Q, Tan G, Liu J. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis. Front Pharmacol 2017; 8:274. [PMID: 28567015 PMCID: PMC5434448 DOI: 10.3389/fphar.2017.00274] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22) with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.
Collapse
Affiliation(s)
- Aman Wang
- Department of Oncology, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Zhen Ning
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Chang Lu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Wei Gao
- City College, Zhejiang UniversityHangzhou, China
| | - Jinxiao Liang
- Department of Thoracic Surgery, Zhejiang Cancer HospitalHangzhou, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical UniversityDalian, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| | - Jiwei Liu
- Department of Oncology, The First Affiliated Hospital, Dalian Medical UniversityDalian, China
| |
Collapse
|
170
|
Gao B, Kong Q, Zhang Y, Yun C, Dent SYR, Song J, Zhang DD, Wang Y, Li X, Fang D. The Histone Acetyltransferase Gcn5 Positively Regulates T Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3927-3938. [PMID: 28424240 PMCID: PMC5488716 DOI: 10.4049/jimmunol.1600312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/20/2017] [Indexed: 12/24/2022]
Abstract
Histone acetyltransferases (HATs) regulate inducible transcription in multiple cellular processes and during inflammatory and immune response. However, the functions of general control nonrepressed-protein 5 (Gcn5), an evolutionarily conserved HAT from yeast to human, in immune regulation remain unappreciated. In this study, we conditionally deleted Gcn5 (encoded by the Kat2a gene) specifically in T lymphocytes by crossing floxed Gcn5 and Lck-Cre mice, and demonstrated that Gcn5 plays important roles in multiple stages of T cell functions including development, clonal expansion, and differentiation. Loss of Gcn5 functions impaired T cell proliferation, IL-2 production, and Th1/Th17, but not Th2 and regulatory T cell differentiation. Gcn5 is recruited onto the il-2 promoter by interacting with the NFAT in T cells upon TCR stimulation. Interestingly, instead of directly acetylating NFAT, Gcn5 catalyzes histone H3 lysine H9 acetylation to promote IL-2 production. T cell-specific suppression of Gcn5 partially protected mice from myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, an experimental model for human multiple sclerosis. Our study reveals previously unknown physiological functions for Gcn5 and a molecular mechanism underlying these functions in regulating T cell immunity. Hence Gcn5 may be an important new target for autoimmune disease therapy.
Collapse
Affiliation(s)
- Beixue Gao
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Qingfei Kong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Yana Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chawon Yun
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Smithville, TX 78957
| | - Jianxun Song
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Donna D Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; and
| | - Xuemei Li
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province 261053, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; and
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province 261053, China
| |
Collapse
|
171
|
Ling S, Li J, Shan Q, Dai H, Lu D, Wen X, Song P, Xie H, Zhou L, Liu J, Xu X, Zheng S. USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. Mol Oncol 2017; 11:682-695. [PMID: 28417539 PMCID: PMC5467492 DOI: 10.1002/1878-0261.12067] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 12/25/2022] Open
Abstract
Drug treatments for hepatocellular carcinoma (HCC) often fail because of multidrug resistance (MDR). The mechanisms of MDR are complex but cancer stem cells (CSCs), which are able to self‐renew and differentiate, have recently been shown to be involved. The deubiquitinating enzyme ubiquitin‐specific protease 22 (USP22) is a marker for CSCs. This study aimed to elucidate the role of USP22 in MDR of HCC and the underlying mechanisms. Using in vitro and in vivo assays, we found that modified USP22 levels were responsible for the altered drug‐resistant phenotype of BEL7402 and BEL/FU cells. Downregulation of USP22 dramatically inhibited the expression of ABCC1 (encoding MRP1) but weakly influenced ABCB1 (encoding P‐glycoprotein). Sirtuin 1 (SIRT1) was reported previously as a functional mediator of USP22 that could promote HCC cell proliferation and enhance resistance to chemotherapy. In this study, USP22 directly interacted with SIRT1 and positively regulated SIRT1 protein expression. Regulation of the expression of both USP22 and SIRT1 markedly affected the AKT pathway and MRP1 expression. Inhibition of the AKT pathway by its specific inhibitor LY294002 resulted in downregulation of MRP1. USP22 and MRP1 expression was detected in 168 clinical HCC samples by immunohistochemical staining, and a firm relationship between USP22 and MRP1 was identified. Together, these results indicate that USP22 could promote the MDR in HCC cells by activating the SIRT1/AKT/MRP1 pathway. USP22 might be a potential target, through which the MDR of HCC in clinical setting could be reversed.
Collapse
Affiliation(s)
- Sunbin Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China.,Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jie Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Qiaonan Shan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Haojiang Dai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Di Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xue Wen
- Department of Pathology, First Affiliated Hospital, School of Medicine, Zhejiang University, China
| | - Penghong Song
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Haiyang Xie
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Canada
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Public Health, Hangzhou, China.,Key Laboratory of Organ Transplantation, Hangzhou, Zhejiang, China
| |
Collapse
|
172
|
Kim D, Hong A, Park HI, Shin WH, Yoo L, Jeon SJ, Chung KC. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol 2017; 232:3664-3676. [PMID: 28160502 DOI: 10.1002/jcp.25841] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022]
Abstract
The proto-oncogene c-Myc has a pivotal function in growth control, differentiation, and apoptosis and is frequently affected in human cancer, including breast cancer. Ubiquitin-specific protease 22 (USP22), a member of the USP family of deubiquitinating enzymes (DUBs), mediates deubiquitination of target proteins, including histone H2B and H2A, telomeric repeat binding factor 1, and cyclin B1. USP22 is also a component of the mammalian SAGA transcriptional co-activating complex. In this study, we explored the functional role of USP22 in modulating c-Myc stability and its physiological relevance in breast cancer progression. We found that USP22 promotes deubiquitination of c-Myc in several breast cancer cell lines, resulting in increased levels of c-Myc. Consistent with this, USP22 knockdown reduces c-Myc levels. Furthermore, overexpression of USP22 stimulates breast cancer cell growth and colony formation, and increases c-Myc tumorigenic activity. In conclusion, the present study reveals that USP22 in breast cancer cell lines increases c-Myc stability through c-Myc deubiquitination, which is closely correlated with breast cancer progression.
Collapse
Affiliation(s)
- Dongyeon Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Ahyoung Hong
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Hye In Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Woo Hyun Shin
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Seo Jeong Jeon
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kwang Chul Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
173
|
Yang X, Dong WB, Lei XP, Li QP, Zhang LY, Zhang LP. Resveratrol suppresses hyperoxia-induced nucleocytoplasmic shuttling of SIRT1 and ROS production in PBMC from preterm infants in vitro. J Matern Fetal Neonatal Med 2017; 31:1142-1150. [PMID: 28420272 DOI: 10.1080/14767058.2017.1311310] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xi Yang
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-Bin Dong
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao-Ping Lei
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qing-Ping Li
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lian-Yu Zhang
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ling-Ping Zhang
- Department of Neonatology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
174
|
Qiu GZ, Sun W, Jin MZ, Lin J, Lu PG, Jin WL. The bad seed gardener: Deubiquitinases in the cancer stem-cell signaling network and therapeutic resistance. Pharmacol Ther 2017; 172:127-138. [DOI: 10.1016/j.pharmthera.2016.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
175
|
Goru SK, Kadakol A, Gaikwad AB. Hidden targets of ubiquitin proteasome system: To prevent diabetic nephropathy. Pharmacol Res 2017; 120:170-179. [PMID: 28363724 DOI: 10.1016/j.phrs.2017.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/21/2017] [Indexed: 12/21/2022]
Abstract
Diabetic nephropathy (DN) is the major cause of end stage renal failure. Although, several therapeutic targets have emerged to prevent the progression of DN, the number of people with DN still continues to rise worldwide, suggesting an urgent need of novel targets to prevent DN completely. Currently, the role of ubiquitin proteasome system (UPS) has been highlighted in the pathogenesis and progression of various diseases like obesity, insulin resistance, atherosclerosis, cancers, neurodegerative disorders and including secondary complications of diabetes. UPS mainly involves in protein homeostatis through ubiquitination (post translational modification) and proteasomal degradation of various proteins. Ubiquitination, not only involves in proteasomal degradation, but also directs the substrate proteins to participate in multitude of cell signalling pathways. However, very little is known about ubiquitination and UPS in the progression of DN. This review mainly focuses on UPS and its components including E2 conjugating enzymes, E3 ligases and deubiquitinases (DUBs) in the development of DN and thus may help us to find novel therapeutic targets with in UPS to prevent DN completely in future.
Collapse
Affiliation(s)
- Santosh Kumar Goru
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Almesh Kadakol
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
176
|
LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene 2017; 36:3528-3540. [PMID: 28166203 DOI: 10.1038/onc.2016.521] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 11/21/2016] [Accepted: 12/27/2016] [Indexed: 02/07/2023]
Abstract
Considerable evidences have shown that autophagy has an important role in tumor chemoresistance. However, it is still unknown whether the lncRNA HULC (highly upregulated in liver cancer) is involved in autophagy and chemoresistance of hepatocellular carcinoma (HCC). In this study, we for the first time demonstrated that treatment with antitumor reagents such as oxaliplatin, 5-fluorouracil and pirarubicin (THP) dramatically induced HULC expression and protective autophagy. Silencing of HULC sensitized HCC cells to the three antitumor reagents via inhibiting protective autophagy. Ectopic expression of HULC elicited the autophagy of HCC cells through stabilizing silent information regulator 1 (Sirt1) protein. The investigation for the corresponding mechanism by which HULC stabilized Sirt1 revealed that HULC upregulated ubiquitin-specific peptidase 22 (USP22), leading to the decrease of ubiquitin-mediated degradation of Sirt1 protein by removing the conjugated polyubiquitin chains from Sirt1. Moreover, we found that miR-6825-5p, miR-6845-5p and miR-6886-3p could decrease the level of USP22 protein by binding to the 3'-untranlated region of USP22 mRNA. All the three microRNAs (miRNAs) were downregulated by HULC, which resulted in the elevation of USP22. In addition, we showed that the level of HULC was positively correlated with that of Sirt1 protein in human HCC tissues. Collectively, our data reveals that the pathway 'HULC/USP22/Sirt1/ protective autophagy' attenuates the sensitivity of HCC cells to chemotherapeutic agents, suggesting that this pathway may be a novel target for developing sensitizing strategy to HCC chemotherapy.
Collapse
|
177
|
Wu Y, Ma S, Xia Y, Lu Y, Xiao S, Cao Y, Zhuang S, Tan X, Fu Q, Xie L, Li Z, Yuan Z. Loss of GCN5 leads to increased neuronal apoptosis by upregulating E2F1- and Egr-1-dependent BH3-only protein Bim. Cell Death Dis 2017; 8:e2570. [PMID: 28125090 PMCID: PMC5386373 DOI: 10.1038/cddis.2016.465] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Cellular acetylation homeostasis is a kinetic balance precisely controlled by histone acetyl-transferase (HAT) and histone deacetylase (HDAC) activities. The loss of the counterbalancing function of basal HAT activity alters the precious HAT:HDAC balance towards enhanced histone deacetylation, resulting in a loss of acetylation homeostasis, which is closely associated with neuronal apoptosis. However, the critical HAT member whose activity loss contributes to neuronal apoptosis remains to be identified. In this study, we found that inactivation of GCN5 by either pharmacological inhibitors, such as CPTH2 and MB-3, or by inactivation with siRNAs leads to a typical apoptosis in cultured cerebellar granule neurons. Mechanistically, the BH3-only protein Bim is transcriptionally upregulated by activated Egr-1 and E2F1 and mediates apoptosis following GCN5 inhibition. Furthermore, in the activity withdrawal- or glutamate-evoked neuronal apoptosis models, GCN5 loses its activity, in contrast to Bim induction. Adenovirus-mediated overexpression of GCN5 suppresses Bim induction and apoptosis. Interestingly, the loss of GCN5 activity and the induction of Egr-1, E2F1 and Bim are involved in the early brain injury (EBI) following subarachnoid haemorrhage (SAH) in rats. HDAC inhibition not only significantly rescues Bim expression and apoptosis induced by either potassium deprivation or GCN5 inactivation but also ameliorates these events and EBI in SAH rats. Taken together, our results highlight a new mechanism by which the loss of GCN5 activity promotes neuronal apoptosis through the transcriptional upregulation of Bim, which is probably a critical event in triggering neuronal death when cellular acetylation homeostasis is impaired.
Collapse
Affiliation(s)
- Yanna Wu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shanshan Ma
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China
| | - Yong Xia
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yangpeng Lu
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Shiyin Xiao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Yali Cao
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Sidian Zhuang
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Xiangpeng Tan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Qiang Fu
- Department of General Dentistry, 323 Hospital of the People's Liberation Army, Xi'an, China
| | - Longchang Xie
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
| | - Zhiming Li
- Department of Radiology, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongmin Yuan
- Department of Neurosurgery, the Second Affiliated Hospital and Institute of Neurosciences of Guangzhou Medical University, Guangzhou 510260, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Guangzhou 510260, China
- Guangdong Province Key laboratory of Brain Function and Disease, Guangzhou 510006, China
| |
Collapse
|
178
|
Park EY, Woo Y, Kim SJ, Kim DH, Lee EK, De U, Kim KS, Lee J, Jung JH, Ha KT, Choi WS, Kim IS, Lee BM, Yoon S, Moon HR, Kim HS. Anticancer Effects of a New SIRT Inhibitor, MHY2256, against Human Breast Cancer MCF-7 Cells via Regulation of MDM2-p53 Binding. Int J Biol Sci 2016; 12:1555-1567. [PMID: 27994519 PMCID: PMC5166496 DOI: 10.7150/ijbs.13833] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
The sirtuins (SIRTs), a family of NAD+-dependent class III histone deacetylase, are involved in various biological processes including cell survival, division, senescence, and metabolism via activation of the stress-response pathway. Recently, inhibition of SIRTs has been considered a promising anticancer strategy, but their precise mechanisms of action are not well understood. In particular, the relevance of p53 to SIRT-induced effects has not been fully elucidated. We investigated the anticancer effects of a novel SIRT inhibitor, MHY2256, and its efficacy was compared to that of salermide in MCF-7 (wild-type p53) and SKOV-3 (null-type p53) cells. Cell viability, SIRT1 enzyme activity, cell cycle regulation, apoptosis, and autophagic cell death were measured. We compared sensitivity to cytotoxicity in MCF-7 and SKOV-3 cells. MHY2256 significantly decreased the viability of MCF-7 (IC50, 4.8 μM) and SKOV-3 (IC50, 5.6 μM) cells after a 48 h treatment period. MHY2256 showed potent inhibition (IC50, 0.27 mM) against SIRT1 enzyme activity compared with nicotinamide (IC50, >1 mM). Moreover, expression of SIRT (1, 2, or 3) protein levels was significantly reduced by MHY2256 treatment in both MCF-7 and SKOV-3 cells. Flow cytometry analysis revealed that MHY2256 significantly induced cell cycle arrest in the G1 phase, leading to an effective increase in apoptotic cell death in MCF-7 and SKOV-3 cells. A significant increase in acetylated p53, a target protein of SIRT, was observed in MCF-7 cells after MHY2256 treatment. MHY2256 up-regulated LC3-II and induced autophagic cell death in MCF-7 cells. Furthermore, MHY2256 markedly inhibited tumor growth in a tumor xenograft model of MCF-7 cells. These results suggest that a new SIRT inhibitor, MHY2256, has anticancer activity through p53 acetylation in MCF-7 human breast cancer cells.
Collapse
Affiliation(s)
- Eun Young Park
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Youngwoo Woo
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Seong Jin Kim
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Do Hyun Kim
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Eui Kyung Lee
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Umasankar De
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Jaewon Lee
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Jee H. Jung
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine and Korean Medicine Research Center for Healthy Aging, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, School of Medicine, Konkuk University, Chungju 380-701, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Byung Mu Lee
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, San 30, Jangjeon-dong, Geumjeung-gu, Busan, 609-735, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 440-746, Republic of Korea
| |
Collapse
|
179
|
Hwang JS, Ham SA, Yoo T, Lee WJ, Paek KS, Kim JH, Lee CH, Seo HG. Upregulation of MKP-7 in response to rosiglitazone treatment ameliorates lipopolysaccharide-induced destabilization of SIRT1 by inactivating JNK. Pharmacol Res 2016; 114:47-55. [DOI: 10.1016/j.phrs.2016.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/12/2016] [Accepted: 10/17/2016] [Indexed: 01/26/2023]
|
180
|
CHFR negatively regulates SIRT1 activity upon oxidative stress. Sci Rep 2016; 6:37578. [PMID: 27883020 PMCID: PMC5121620 DOI: 10.1038/srep37578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/01/2016] [Indexed: 11/20/2022] Open
Abstract
SIRT1, the NAD+-dependent protein deacetylase, controls cell-cycle progression and apoptosis by suppressing p53 tumour suppressor. Although SIRT1 is known to be phosphorylated by JNK1 upon oxidative stress and subsequently down-regulated, it still remains elusive how SIRT1 stability and activity are controlled. Here, we have unveiled that CHFR functions as an E3 Ub-ligase of SIRT1, responsible for its proteasomal degradation under oxidative stress conditions. CHFR interacts with and destabilizes SIRT1 by ubiquitylation and subsequent proteolysis. Such CHFR-mediated SIRT1 inhibition leads to the increase of p53 acetylation and its target gene transcription. Notably, CHFR facilitates SIRT1 destabilization when SIRT1 is phosphorylated by JNK1 upon oxidative stress, followed by prominent apoptotic cell death. Meanwhile, JNK inhibitor prevents SIRT1 phosphorylation, leading to elevated SIRT1 protein levels even in the presence of H2O2. Taken together, our results indicate that CHFR plays a crucial role in the cellular stress response pathway by controlling the stability and function of SIRT1.
Collapse
|
181
|
Cytoplasmic ATXN7L3B Interferes with Nuclear Functions of the SAGA Deubiquitinase Module. Mol Cell Biol 2016; 36:2855-2866. [PMID: 27601583 DOI: 10.1128/mcb.00193-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/24/2016] [Indexed: 01/08/2023] Open
Abstract
The SAGA complex contains two enzymatic modules, which house histone acetyltransferase (HAT) and deubiquitinase (DUB) activities. USP22 is the catalytic subunit of the DUB module, but two adaptor proteins, ATXN7L3 and ENY2, are necessary for DUB activity toward histone H2Bub1 and other substrates. ATXN7L3B shares 74% identity with the N-terminal region of ATXN7L3, but the functions of ATXN7L3B are not known. Here we report that ATXN7L3B interacts with ENY2 but not other SAGA components. Even though ATXN7L3B localizes in the cytoplasm, ATXN7L3B overexpression increases H2Bub1 levels, while overexpression of ATXN7L3 decreases H2Bub1 levels. In vitro, ATXN7L3B competes with ATXN7L3 to bind ENY2, and in vivo, knockdown of ATXN7L3B leads to concomitant loss of ENY2. Unlike the ATXN7L3 DUB complex, a USP22-ATXN7L3B-ENY2 complex cannot deubiquitinate H2Bub1 efficiently in vitro Moreover, ATXN7L3B knockdown inhibits migration of breast cancer cells in vitro and limits expression of ER target genes. Collectively, our studies suggest that ATXN7L3B regulates H2Bub1 levels and SAGA DUB activity through competition for ENY2 binding.
Collapse
|
182
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
183
|
Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents. Oncotarget 2016; 6:22575-86. [PMID: 26317794 PMCID: PMC4673183 DOI: 10.18632/oncotarget.4610] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/20/2015] [Indexed: 12/18/2022] Open
Abstract
The capacity of tumor cells for nucleotide excision repair (NER) is a major determinant of the efficacy of and resistance to DNA-damaging chemotherapeutics, such as cisplatin. Here, we demonstrate that using lesion-specific monoclonal antibodies, NER capacity is enhanced in human lung cancer cells after preconditioning with DNA-damaging agents. Preconditioning of cells with a nonlethal dose of UV radiation facilitated the kinetics of subsequent cisplatin repair and vice versa. Dual-incision assay confirmed that the enhanced NER capacity was sustained for 2 days. Checkpoint activation by ATR kinase and expression of NER factors were not altered significantly by the preconditioning, whereas association of XPA, the rate-limiting factor in NER, with chromatin was accelerated. In preconditioned cells, SIRT1 expression was increased, and this resulted in a decrease in acetylated XPA. Inhibition of SIRT1 abrogated the preconditioning-induced predominant XPA binding to DNA lesions. Taking these data together, we conclude that upregulated NER capacity in preconditioned lung cancer cells is caused partly by an increased level of SIRT1, which modulates XPA sensitivity to DNA damage. This study provides some insights into the molecular mechanism of chemoresistance through acquisition of enhanced DNA repair capacity in cancer cells.
Collapse
|
184
|
Kosinsky RL, Wegwitz F, Hellbach N, Dobbelstein M, Mansouri A, Vogel T, Begus-Nahrmann Y, Johnsen SA. Usp22 deficiency impairs intestinal epithelial lineage specification in vivo. Oncotarget 2016; 6:37906-18. [PMID: 26431380 PMCID: PMC4741973 DOI: 10.18632/oncotarget.5412] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic regulatory mechanisms play a central role in controlling gene expression during development, cell differentiation and tumorigenesis. Monoubiquitination of histone H2B is one epigenetic modification which is dynamically regulated by the opposing activities of specific ubiquitin ligases and deubiquitinating enzymes (DUBs). The Ubiquitin-specific Protease 22 (USP22) is the ubiquitin hydrolase component of the human SAGA complex which deubiquitinates histone H2B during transcription. Recently, many studies have investigated an oncogenic potential of USP22 overexpression. However, its physiological function in organ maintenance, development and its cellular function remain largely unknown. A previous study reported embryonic lethality in Usp22 knockout mice. Here we describe a mouse model with a global reduction of USP22 levels which expresses the LacZ gene under the control of the endogenous Usp22 promoter. Using this reporter we found Usp22 to be ubiquitously expressed in murine embryos. Notably, adult Usp22lacZ/lacZ displayed low residual Usp22 expression levels coupled with a reduced body size and weight. Interestingly, the reduction of Usp22 significantly influenced the frequency of differentiated cells in the small intestine and the brain while H2B and H2Bub1 levels remained constant. Taken together, we provide evidence for a physiological role for USP22 in controlling cell differentiation and lineage specification.
Collapse
Affiliation(s)
- Robyn L Kosinsky
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany.,Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - Florian Wegwitz
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Nicole Hellbach
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - Ahmed Mansouri
- Department of Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, RG Molecular Cell Differentiation, 37077 Göttingen, Germany
| | - Tanja Vogel
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Yvonne Begus-Nahrmann
- Institute of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, 37077 Göttingen, Germany
| | - Steven A Johnsen
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
185
|
Buler M, Andersson U, Hakkola J. Who watches the watchmen? Regulation of the expression and activity of sirtuins. FASEB J 2016; 30:3942-3960. [PMID: 27591175 DOI: 10.1096/fj.201600410rr] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/22/2016] [Indexed: 01/07/2023]
Abstract
Sirtuins (SIRT1-7) are a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes that catalyze post-translational modifications of proteins. Together, they regulate crucial cellular functions and are traditionally associated with aging and longevity. Dysregulation of sirtuins plays an important role in major diseases, including cancer and metabolic, cardiac, and neurodegerative diseases. They are extensively regulated in response to a wide range of stimuli, including nutritional and metabolic challenges, inflammatory signals or hypoxic and oxidative stress. Each sirtuin is regulated individually in a tissue- and cell-specific manner. The control of sirtuin expression involves all the major points of regulation, including transcriptional and post-translational mechanisms and microRNAs. Collectively, these mechanisms control the protein levels, localization, and enzymatic activity of sirtuins. In many cases, the regulators of sirtuin expression are also their substrates, which lead to formation of intricate regulatory networks and extensive feedback loops. In this review, we highlight the mechanisms mediating the physiologic and pathologic regulation of sirtuin expression and activity. We also discuss the consequences of this regulation on sirtuin function and cellular physiology.-Buler, M., Andersson, U., Hakkola, J. Who watches the watchmen? Regulation of the expression and activity of sirtuins.
Collapse
Affiliation(s)
- Marcin Buler
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Ulf Andersson
- Drug Safety and Metabolism, AstraZeneca R&D, Göteborg, Sweden
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; and .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| |
Collapse
|
186
|
Liu L, Liu C, Zhang Q, Shen J, Zhang H, Shan J, Duan G, Guo D, Chen X, Cheng J, Xu Y, Yang Z, Yao C, Lai M, Qian C. SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology 2016; 64:814-27. [PMID: 27312708 DOI: 10.1002/hep.28690] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 12/21/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is a highly aggressive liver tumor containing cancer stem cells (CSCs), which participate in tumor invasion, therapeutic resistance, and tumor relapse leading to poor outcome and limited therapeutic options. Histone deacetylatase sirtuin 1 (SIRT1) has been shown to be up-regulated in human cancers; however, its role in liver CSCs is unknown. In this study, we explored the biological functions of SIRT1 in liver CSCs. Our data show that SIRT1 is highly expressed in liver CSCs and decreases during differentiation. In addition, high levels of SIRT1 predict a decreased probability of survival in patients with HCC. SIRT1 is responsible for the maintenance of self-renewal and tumorigenicity of liver CSCs, and overexpression of exogenous SIRT1 can restore self-renewal of non-CSCs. We demonstrated that SOX2 is a main downstream regulator of SIRT1-mediated self-renewal and tumorigenicity potential of liver CSCs. Mechanistically, SIRT1 regulates transcription of the SOX2 gene by way of chromatin-based epigenetic changes, which are dependent on DNA methylation. This effect is achieved by alternation of histone modification and interaction with DNA methyltransferase 3A, resulting in hypermethylation of SOX2 promoter. Furthermore, we demonstrated that insulin growth factor signaling plays an important role in maintaining SIRT1 expression through increased SIRT1 protein stability. CONCLUSIONS These findings highlight the importance of SIRT1 in the biology of liver CSCs and suggest that SIRT1 may serve as a molecular target for HCC therapy. (Hepatology 2016;64:814-827).
Collapse
Affiliation(s)
- Limei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chungang Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.,Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qianzhen Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Junjie Shen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Heng Zhang
- Institute of Urology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Juanjuan Shan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Guangjie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Deyu Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xuejiao Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jiamin Cheng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yanmin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Maode Lai
- Department of Pathology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
187
|
Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, Wang Z, Aldape KD, Xie K, Woodgett JR, Huang S. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol 2016; 18:954-966. [PMID: 27501329 PMCID: PMC5026327 DOI: 10.1038/ncb3396] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Emerging evidences have shown that GSK3β plays oncogenic roles in multiple tumor types; however, the underlying mechanisms remain largely unknown. Herein, we show that nuclear GSK3β is responsible for the accumulation of the histone demethylase KDM1A and critically regulates histone H3K4 methylation during tumorigenesis. GSK3β phosphorylates KDM1A serine 683 upon priming phosphorylation of KDM1A serine 687 by CK1α. Phosphorylation of KDM1A induces its binding with and deubiquitination by USP22, leading to KDM1A stabilization. GSK3β and USP22-dependent KDM1A stabilization is required for the demethylation of histone H3K4, thereby repression of BMP2, CDKN1A, and GATA6 transcription, cancer stem cell self-renewal, and glioblastoma tumorigenesis. In human glioblastoma specimens, KDM1A levels are correlated with nuclear GSK3β and USP22 levels. Furthermore, a GSK3 inhibitor tideglusib sensitizes tumor xenograft to chemotherapy in mice via KDM1A down-regulation and improves survival. Our findings demonstrate that nuclear GSK3β and USP22-mediated KDM1A stabilization is essential for glioblastoma tumorigenesis.
Collapse
Affiliation(s)
- Aidong Zhou
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kangyu Lin
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sicong Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - Yaohui Chen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jianfei Xue
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhongyong Wang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth D Aldape
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| | - James R Woodgett
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Cancer Biology Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, USA
| |
Collapse
|
188
|
Melo-Cardenas J, Zhang Y, Zhang DD, Fang D. Ubiquitin-specific peptidase 22 functions and its involvement in disease. Oncotarget 2016; 7:44848-44856. [PMID: 27057639 PMCID: PMC5190139 DOI: 10.18632/oncotarget.8602] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Deubiquitylases remove ubiquitin moieties from different substrates to regulate protein activity and cell homeostasis. Since this posttranslational modification plays a role in several different cellular functions, its deregulation has been associated with different pathologies. Aberrant expression of the Ubiquitin-Specific Peptidase 22 (USP22) has been associated with poor cancer prognosis and neurological disorders. However, little is known about USP22 role in these pathologies or in normal physiology. This review summarizes the current knowledge about USP22 function from yeast to human and provides an overview of the possible mechanisms by which USP22 is emerging as a potential oncogene.
Collapse
Affiliation(s)
- Johanna Melo-Cardenas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yusi Zhang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donna D. Zhang
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
189
|
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S. Concise Review: Fate Determination of Stem Cells by Deubiquitinating Enzymes. Stem Cells 2016; 35:9-16. [PMID: 27341175 DOI: 10.1002/stem.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Post-translational modification by ubiquitin molecules is a key regulatory process for stem cell fate determination. Ubiquitination and deubiquitination are the major cellular processes used to balance the protein turnover of several transcription factors that regulate stem cell differentiation. Deubiquitinating enzymes (DUBs), which facilitate the processing of ubiquitin, significantly influence stem cell fate choices. Specifically, DUBs play a critical regulatory role during development by directing the production of new specialized cells. This review focuses on the regulatory role of DUBs in various cellular processes, including stem cell pluripotency and differentiation, adult stem cell signaling, cellular reprogramming, spermatogenesis, and oogenesis. Specifically, the identification of interactions of DUBs with core transcription factors has provided new insight into the role of DUBs in regulating stem cell fate determination. Thus, DUBs have emerged as key pharmacologic targets in the search to develop highly specific agents to treat various illnesses. Stem Cells 2017;35:9-16.
Collapse
Affiliation(s)
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
190
|
Suresh B, Lee J, Kim H, Ramakrishna S. Regulation of pluripotency and differentiation by deubiquitinating enzymes. Cell Death Differ 2016; 23:1257-64. [PMID: 27285106 DOI: 10.1038/cdd.2016.53] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/16/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022] Open
Abstract
Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.
Collapse
Affiliation(s)
- B Suresh
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - J Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - H Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - S Ramakrishna
- Graduate School of Biomedical Science and Engineering, Department of Biomedical Science, Hanyang University, Seoul, South Korea.,College of Medicine, Department of Biomedical Science, Hanyang University, Seoul, South Korea
| |
Collapse
|
191
|
Wang Q, Ma S, Song N, Li X, Liu L, Yang S, Ding X, Shan L, Zhou X, Su D, Wang Y, Zhang Q, Liu X, Yu N, Zhang K, Shang Y, Yao Z, Shi L. Stabilization of histone demethylase PHF8 by USP7 promotes breast carcinogenesis. J Clin Invest 2016; 126:2205-20. [PMID: 27183383 DOI: 10.1172/jci85747] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/31/2016] [Indexed: 01/26/2023] Open
Abstract
The histone demethylase PHF8 has been implicated in multiple pathological disorders, including X-linked mental retardation and tumorigenesis. However, it is not clear how the abundance and function of PHF8 are regulated. Here, we report that PHF8 physically associates with the deubiquitinase USP7. Specifically, we demonstrated that USP7 promotes deubiquitination and stabilization of PHF8, leading to the upregulation of a group of genes, including cyclin A2, that are critical for cell growth and proliferation. The USP7-encoding gene was also transcriptionally regulated by PHF8, via positive feedback. USP7 was overexpressed in breast carcinomas, and the level of expression positively correlated with expression of PHF8 and cyclin A2 and with the histological grade of breast cancer. We showed that USP7 promotes breast carcinogenesis by stabilizing PHF8 and upregulating cyclin A2 and that the interaction between USP7 and PHF8 is augmented during DNA damage. Moreover, USP7-promoted PHF8 stabilization conferred cellular resistance to genotoxic insults and was required for the recruitment of BLM and KU70, which are both essential for DNA double-strand break repair. Our study mechanistically links USP7 to epigenetic regulation and DNA repair. Moreover, these data support the pursuit of USP7 and PHF8 as potential targets for breast cancer intervention, especially in combination with chemo- or radiotherapies.
Collapse
|
192
|
Atanassov BS, Mohan RD, Lan X, Kuang X, Lu Y, Lin K, McIvor E, Li W, Zhang Y, Florens L, Byrum SD, Mackintosh SG, Calhoun-Davis T, Koutelou E, Wang L, Tang DG, Tackett AJ, Washburn MP, Workman JL, Dent SYR. ATXN7L3 and ENY2 Coordinate Activity of Multiple H2B Deubiquitinases Important for Cellular Proliferation and Tumor Growth. Mol Cell 2016; 62:558-71. [PMID: 27132940 DOI: 10.1016/j.molcel.2016.03.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/04/2016] [Accepted: 03/25/2016] [Indexed: 10/21/2022]
Abstract
Histone H2B monoubiquitination (H2Bub1) is centrally involved in gene regulation. The deubiquitination module (DUBm) of the SAGA complex is a major regulator of global H2Bub1 levels, and components of this DUBm are linked to both neurodegenerative diseases and cancer. Unexpectedly, we find that ablation of USP22, the enzymatic center of the DUBm, leads to a reduction, rather than an increase, in global H2bub1 levels. In contrast, depletion of non-enzymatic components, ATXN7L3 or ENY2, results in increased H2Bub1. These observations led us to discover two H2Bub1 DUBs, USP27X and USP51, which function independently of SAGA and compete with USP22 for ATXN7L3 and ENY2 for activity. Like USP22, USP51 and USP27X are required for normal cell proliferation, and their depletion suppresses tumor growth. Our results reveal that ATXN7L3 and ENY2 orchestrate activities of multiple deubiquitinating enzymes and that imbalances in these activities likely potentiate human diseases including cancer.
Collapse
Affiliation(s)
- Boyko S Atanassov
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA.
| | - Ryan D Mohan
- University of Missouri - Kansas City, Kansas City, MO 64110, USA
| | - Xianjiang Lan
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Xianghong Kuang
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Yue Lu
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Elizabeth McIvor
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Wenqian Li
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Stephanie D Byrum
- University of Arkansas for Medical Sciences, Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Samuel G Mackintosh
- University of Arkansas for Medical Sciences, Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Tammy Calhoun-Davis
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Li Wang
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Dean G Tang
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA
| | - Alan J Tackett
- University of Arkansas for Medical Sciences, Biochemistry and Molecular Biology, Little Rock, AR 72205, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sharon Y R Dent
- Department of Epigenetics & Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA.
| |
Collapse
|
193
|
McClurg UL, Robson CN. Deubiquitinating enzymes as oncotargets. Oncotarget 2016; 6:9657-68. [PMID: 25962961 PMCID: PMC4496387 DOI: 10.18632/oncotarget.3922] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022] Open
Abstract
Carcinogenesis is a complex process tightly regulated at multiple levels by post-translational modifications. Epigenetics plays a major role in cancer development, all stable changes to the gene expression process that are not a result of a direct change in the DNA code are described as epigenetics. Epigenetic processes are regulated by post-translational modifications including ubiquitination which can directly affect either histones or transcription factors or may target their co-factors and interacting partners exerting an indirect effect. Deubiquitination of these target proteins is equally important and alterations in this pathway can also lead to cancer development, progression and metastasis. Only the correct, unaltered balance between ubiquitination and deubiquitination ensures healthy cellular homeostasis. In this review we focus on the role of deubiquitinating (DUB) enzymes in various aspects of epigenetics including the regulation of transcription factors, histone modifications, DNA damage repair pathways and cell cycle regulation. We discuss the impact of those processes on tumourigenesis and potential therapeutic applications of DUBs for cancer treatment.
Collapse
Affiliation(s)
- Urszula L McClurg
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Craig N Robson
- Solid Tumour Target Discovery Laboratory, Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
194
|
Kuo YH, Qi J, Cook GJ. Regain control of p53: Targeting leukemia stem cells by isoform-specific HDAC inhibition. Exp Hematol 2016; 44:315-21. [PMID: 26923266 DOI: 10.1016/j.exphem.2016.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 12/24/2022]
Abstract
Leukemia stem cells (LSCs) are self-renewable, leukemia-initiating populations that are often resistant to traditional chemotherapy and tyrosine kinase inhibitors currently used for treatment of acute or chronic myeloid leukemia. The persistence and continued acquisition of mutations in resistant LSCs represent a major cause of refractory disease and/or relapse after remission. Understanding the mechanisms regulating LSC growth and survival is critical in devising effective therapies that will improve treatment response and outcome. Several recent studies indicate that the p53 tumor suppressor pathway is often inactivated in de novo myeloid leukemia through oncogenic-specific mechanisms, which converge on aberrant p53 protein deacetylation. Here, we summarize our current understanding of the various mechanisms underlying deregulation of histone deacetylases (HDACs), which could be exploited to restore p53 activity and enhance targeting of LSCs in molecularly defined patient subsets.
Collapse
Affiliation(s)
- Ya-Huei Kuo
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, CA.
| | - Jing Qi
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, CA
| | - Guerry J Cook
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, Norbert Gehr and Family Leukemia Center, City of Hope Medical Center, Duarte, CA
| |
Collapse
|
195
|
Restoration of sirt1 function by pterostilbene attenuates hypoxia-reoxygenation injury in cardiomyocytes. Eur J Pharmacol 2016; 776:26-33. [PMID: 26921129 DOI: 10.1016/j.ejphar.2016.02.052] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Restoration of blood supply to ischemic myocardium causes cardiomyocyte damage, a process known as ischemia-reperfusion injury. Excess reactive oxygen species and intracellular calcium contribute to cell damage but the involvement of sirt1, a versatile protein deacetylase in reperfusion-induced cell damage remains unknown. Here, we found that hypoxia-reoxygenation, an in vitro model of ischemia-reperfusion injury, induced H9c2 cardiomyocyte apoptosis as revealed by caspase-3 assay, Hoechst 33258 staining, flow cytometric analysis and JC-1 staining. Molecular docking analysis showed that, pterostilbene, a natural dimethyl ether derivative of resveratrol, binds to the enzymatic active pocket of sirt1. Importantly, application of pterostilbene at low concentrations of 0.1-3.0 μM rescued H9c2 cells from apoptosis, an effect comparable with resveratrol at 20 μM. Mechanistically, pterostilbene exerted its cardioprotective effects via 1) stimulation of sirt1 activity, since pretreatment of H9c2 cells with splitomicin, an antagonist of sirt1, removed the effects of pterostilbene, and 2) enhancement of sirt1 expression. Therefore, the present study demonstrates that activation of sitr1 during ischemia-reperfusion is cardioprotective and that the natural compound-pterostilbene-could be used therapeutically to alleviate ischemia-reperfusion injury.
Collapse
|
196
|
The Importance of Ubiquitination and Deubiquitination in Cellular Reprogramming. Stem Cells Int 2016; 2016:6705927. [PMID: 26880980 PMCID: PMC4736574 DOI: 10.1155/2016/6705927] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/04/2015] [Accepted: 11/12/2015] [Indexed: 01/09/2023] Open
Abstract
Ubiquitination of core stem cell transcription factors can directly affect stem cell maintenance and differentiation. Ubiquitination and deubiquitination must occur in a timely and well-coordinated manner to regulate the protein turnover of several stemness related proteins, resulting in optimal embryonic stem cell maintenance and differentiation. There are two switches: an E3 ubiquitin ligase enzyme that tags ubiquitin molecules to the target proteins for proteolysis and a second enzyme, the deubiquitinating enzyme (DUBs), that performs the opposite action, thereby preventing proteolysis. In order to maintain stemness and to allow for efficient differentiation, both ubiquitination and deubiquitination molecular switches must operate properly in a balanced manner. In this review, we have summarized the importance of the ubiquitination of core stem cell transcription factors, such as Oct3/4, c-Myc, Sox2, Klf4, Nanog, and LIN28, during cellular reprogramming. Furthermore, we emphasize the role of DUBs in regulating core stem cell transcriptional factors and their function in stem cell maintenance and differentiation. We also discuss the possibility of using DUBs, along with core transcription factors, to efficiently generate induced pluripotent stem cells. Our review provides a relatively new understanding regarding the importance of ubiquitination/deubiquitination of stem cell transcription factors for efficient cellular reprogramming.
Collapse
|
197
|
Tang B, Liang X, Tang F, Zhang J, Zeng S, Jin S, Zhou L, Kudo Y, Qi G. Expression of USP22 and Survivin is an indicator of malignant behavior in hepatocellular carcinoma. Int J Oncol 2015; 47:2208-16. [PMID: 26497847 DOI: 10.3892/ijo.2015.3214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor type, ranking as the third leading cause of all cancer-related deaths in the world. The post-surgical 5-year survival rate is low, largely due to the high recurrence rate. Therefore, the identification of target molecules that control the biological characteristics of HCC is of great importance. Ubiquitin-specific protease 22 (USP22) is a newly discovered deubiquitinating enzyme and is a cancer stem cell marker that plays a role in tumorigenesis, therapy resistance and cell cycle progression. Survivin is a member of the inhibitor of apoptosis protein (IAP) family and is known to function either as an inhibitor for apoptosis or as a regulator of cell division. Levels of survivin are correlated with the aggressiveness of tumors and a poor prognosis in various cancers including HCC. In the present study, we examined the USP22 expression and its association with survivin expression and clinicopathological features in HCC. First, we examined the expression of USP22 and survivin in 151 HCC cases by immunohistochemistry. High expression of USP22 and survivin was frequently observed in HCC cases, in comparison with normal adjacent liver tissues. Expression of USP22 and survivin was well correlated with malignant behavior including tumor size, stage and differentiation in HCC cases. Importantly, HCC patients with high expression of USP22 and survivin showed poor prognosis. USP22 expression was well correlated with survivin expression in HCC cases. This correlation was confirmed in HCC cell lines and tissues by RT-PCR and western blot analysis. Next, to investigate the biological role of USP22 in HCC, we examined the effect of USP22 knockdown on the cell growth and the expression of cell cycle-related protein including survivin in HCC cells. USP22 siRNA suppressed cell growth. Moreover, USP22 siRNA decreased survivin expression together with upregulation of CDK inhibitor, p21 and downregulation of cyclin B. These findings suggest that USP22 may be involved in HCC progression in cooperation with survivin. We suggest that USP22 can be useful as a new prognostic marker and therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Bo Tang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Xingsi Liang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Fang Tang
- Department of Pathology, the Affiliated Hospital, Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, Guilin Medical University, Affiliated Hospital, Guilin, Guangxi 541001, P.R. China
| | - Sien Zeng
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Shengjian Jin
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Lihua Zhou
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | - Guangying Qi
- Department of Pathology and Physiopathology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
198
|
Abstract
Aneuploidy, the unbalanced segregation of chromosomes during cell division, is recurrent in many tumors and the cause of birth defects and genetic diseases. Centromeric chromatin represents the chromosome attachment site to the mitotic spindle, marked by specialized nucleosomes containing a specific histone variant, CEN-H3/Cse4, in yeast. Mislocalization of Cse4 outside the centromere is deleterious and may cause aberrant chromosome behavior and mitotic loss. For this reason, ubiquitylation by the E3-ubiquitin ligase Psh1 and subsequent proteolysis tightly regulates its restricted localization. Among multiproteic machineries, the SAGA complex is not merely engaged in acetylation but also directly involved in deubiquitylation. In this study, we investigated the role of SAGA-DUB’s Ubp8-driven deubiquitylation of the centromeric histone variant Cse4 in budding yeast. We found that Ubp8 works in concert with the E3-ubiquitin ligase Psh1, and that its loss causes defective deubiquitylation and the accumulation of a short ubiquitin oligomer on Cse4. We also show that lack of Ubp8 and defective deubiquitylation increase mitotic instability, cause faster Cse4 proteolysis and induce mislocalization of the centromeric histone outside the centromere. Our data provide evidence for a fundamental role of DUB-Ubp8 in deubiquitylation and the stability of the centromeric histone in budding yeast.
Collapse
|
199
|
Fang M, Fan Z, Tian W, Zhao Y, Li P, Xu H, Zhou B, Zhang L, Wu X, Xu Y. HDAC4 mediates IFN-γ induced disruption of energy expenditure-related gene expression by repressing SIRT1 transcription in skeletal muscle cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:294-305. [PMID: 26619800 DOI: 10.1016/j.bbagrm.2015.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 01/08/2023]
Abstract
Metabolic homeostasis is achieved through balanced energy storage and output. Impairment of energy expenditure is a hallmark event in patients with obesity and type 2 diabetes. Previously we have shown that the pro-inflammatory cytokine interferon gamma (IFN-γ) disrupts energy expenditure in skeletal muscle cells via hypermethylated in cancer 1 (HIC1)-class II transactivator (CIITA) dependent repression of SIRT1 transcription. Here we report that repression of SIRT1 transcription by IFN-γ paralleled loss of histone acetylation on the SIRT1 promoter region with simultaneous recruitment of histone deacetylase 4 (HDAC4). IFN-γ activated HDAC4 in vitro and in vivo by up-regulating its expression and stimulating its nuclear accumulation. HIC1 and CIITA recruited HDAC4 to the SIRT1 promoter and cooperated with HDAC4 to repress SIRT1 transcription. HDAC4 depletion by small interfering RNA or pharmaceutical inhibition normalized histone acetylation on the SIRT1 promoter and restored SIRT1 expression in the presence of IFN-γ. Over-expression of HDAC4 suppressed the transcription of genes involved in energy expenditure in a SIRT1-dependent manner. In contrast, HDAC4 knockdown/inhibition neutralized the effect of IFN-γ on cellular metabolism by normalizing SIRT1 expression. Therefore, our data reveal a role for HDAC4 in regulating cellular energy output and as such provide insights into rationalized design of novel anti-diabetic therapeutics.
Collapse
Affiliation(s)
- Mingming Fang
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China
| | - Zhiwen Fan
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Wenfang Tian
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuhao Zhao
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liping Zhang
- Department of Biochemistry, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
200
|
The Cellular Protein Complex Associated with a Transforming Region of E1A Contains c-MYC. J Virol 2015; 90:1070-9. [PMID: 26559831 DOI: 10.1128/jvi.02039-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/02/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The cell-transforming activity of human adenovirus 5 (hAd5) E1A is mediated by the N-terminal half of E1A, which interacts with three different major cellular protein complexes, p300/CBP, TRRAP/p400, and pRb family members. Among these protein interactions, the interaction of pRb family proteins with conserved region 2 (CR2) of E1A is known to promote cell proliferation by deregulating the activities of E2F family transcription factors. The functional consequences of interaction with the other two protein complexes in regulating the transforming activity of E1A are not well defined. Here, we report that the E1A N-terminal region also interacted with the cellular proto-oncoprotein c-MYC and the homolog of enhancer of yellow 2 (ENY2). Our results suggested that these proteins interacted with an essential E1A transforming domain spanning amino acid residues 26 to 35 which also interacted with TRRAP and p400. Small interfering RNA (siRNA)-mediated depletion of TRRAP reduced c-MYC interaction with E1A, while p400 depletion did not. In contrast, depletion of TRRAP enhanced ENY2 interaction with E1A, suggesting that ENY2 and TRRAP may interact with E1A in a competitive manner. The same E1A region additionally interacted with the constituents of a deubiquitinase complex consisting of USP22, ATXN7, and ATXN7L3 via TRRAP. Acute short hairpin RNA (shRNA)-mediated depletion of c-MYC reduced the E1A transforming activity, while depletion of ENY2 and MAX did not. These results suggested that the association of c-MYC with E1A may, at least partially, play a role in the E1A transformation activity, independently of MAX. IMPORTANCE The transforming region of adenovirus E1A consists of three short modules which complex with different cellular protein complexes. The mechanism by which one of the transforming modules, CR2, promotes cell proliferation, through inactivating the activities of the pRb family proteins, is better understood than the activities of the other domains. Our analysis of the E1A proteome revealed the presence of the proto-oncoprotein c-MYC and of ENY2. We mapped these interactions to a critical transforming module of E1A that was previously known to interact with the scaffolding molecule TRRAP and the E1A-binding protein p400. We showed that c-MYC interacted with E1A through TRRAP, while ENY2 interacted with it independently. The data reported here indicated that depletion of c-MYC in normal human cells reduced the transforming activity of E1A. Our result raises a novel paradigm in oncogenic transformation by a DNA viral oncogene, the E1A gene, that may exploit the activity of a cellular oncogene, the c-MYC gene, in addition to inactivation of the tumor suppressors, such as pRb.
Collapse
|