151
|
Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 2019; 19:563-578. [PMID: 29930302 DOI: 10.1038/s41580-018-0029-7] [Citation(s) in RCA: 317] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly - through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer.
Collapse
|
152
|
Pan Y, Wang W, Huang S, Ni W, Wei Z, Cao Y, Yu S, Jia Q, Wu Y, Chai C, Zheng Q, Zhang L, Wang A, Sun Z, Huang S, Wang S, Chen W, Lu Y. Beta-elemene inhibits breast cancer metastasis through blocking pyruvate kinase M2 dimerization and nuclear translocation. J Cell Mol Med 2019; 23:6846-6858. [PMID: 31343107 PMCID: PMC6787513 DOI: 10.1111/jcmm.14568] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/08/2019] [Accepted: 07/05/2019] [Indexed: 12/26/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), playing a central role in regulating aerobic glycolysis, was considered as a promising target for cancer therapy. However, its role in cancer metastasis is rarely known. Here, we found a tight relationship between PKM2 and breast cancer metastasis, demonstrated by the findings that beta-elemene (β-elemene), an approved drug for complementary cancer therapy, exerted distinct anti-metastatic activity dependent on PKM2. The results indicated that β-elemene inhibited breast cancer cell migration, invasion in vitro as well as metastases in vivo. β-Elemene further inhibited the process of aerobic glycolysis and decreased the utilization of glucose and the production of pyruvate and lactate through suppressing pyruvate kinase activity by modulating the transformation of dimeric and tetrameric forms of PKM2. Further analysis revealed that β-elemene suppressed aerobic glycolysis by blocking PKM2 nuclear translocation and the expression of EGFR, GLUT1 and LDHA by influencing the expression of importin α5. Furthermore, the effect of β-elemene on migration, invasion, PKM2 transformation, and nuclear translocation could be reversed in part by fructose-1,6-bisphosphate (FBP) and L-cysteine. Taken together, tetrameric transformation and nuclear translocation of PKM2 are essential for cancer metastasis, and β-elemene inhibited breast cancer metastasis via blocking aerobic glycolysis mediated by dimeric PKM2 transformation and nuclear translocation, being a promising anti-metastatic agent from natural compounds.
Collapse
Affiliation(s)
- Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenting Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuzhu Cao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuan Chai
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qian Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhang
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiguang Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Shijun Wang
- Shandong Co-innovation Center of TCM Formula, College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| |
Collapse
|
153
|
Macpherson JA, Theisen A, Masino L, Fets L, Driscoll PC, Encheva V, Snijders AP, Martin SR, Kleinjung J, Barran PE, Fraternali F, Anastasiou D. Functional cross-talk between allosteric effects of activating and inhibiting ligands underlies PKM2 regulation. eLife 2019; 8:e45068. [PMID: 31264961 PMCID: PMC6636998 DOI: 10.7554/elife.45068] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022] Open
Abstract
Several enzymes can simultaneously interact with multiple intracellular metabolites, however, how the allosteric effects of distinct ligands are integrated to coordinately control enzymatic activity remains poorly understood. We addressed this question using, as a model system, the glycolytic enzyme pyruvate kinase M2 (PKM2). We show that the PKM2 activator fructose 1,6-bisphosphate (FBP) alone promotes tetramerisation and increases PKM2 activity, but addition of the inhibitor L-phenylalanine (Phe) prevents maximal activation of FBP-bound PKM2 tetramers. We developed a method, AlloHubMat, that uses eigenvalue decomposition of mutual information derived from molecular dynamics trajectories to identify residues that mediate FBP-induced allostery. Experimental mutagenesis of these residues identified PKM2 variants in which activation by FBP remains intact but cannot be attenuated by Phe. Our findings reveal residues involved in FBP-induced allostery that enable the integration of allosteric input from Phe and provide a paradigm for the coordinate regulation of enzymatic activity by simultaneous allosteric inputs.
Collapse
Affiliation(s)
- Jamie A Macpherson
- Cancer Metabolism LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
- Randall Centre for Cell and Molecular BiophysicsKing’s College LondonLondonUnited Kingdom
| | - Alina Theisen
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of ChemistryUniversity of ManchesterManchesterUnited Kingdom
| | - Laura Masino
- Structural Biology Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Louise Fets
- Cancer Metabolism LaboratoryThe Francis Crick InstituteLondonUnited Kingdom
| | - Paul C Driscoll
- Metabolomics Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Vesela Encheva
- Proteomics Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Ambrosius P Snijders
- Proteomics Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Stephen R Martin
- Structural Biology Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Jens Kleinjung
- Computational Biology Science Technology PlatformThe Francis Crick InstituteLondonUnited Kingdom
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of ChemistryUniversity of ManchesterManchesterUnited Kingdom
| | - Franca Fraternali
- Randall Centre for Cell and Molecular BiophysicsKing’s College LondonLondonUnited Kingdom
| | | |
Collapse
|
154
|
Zhang Z, Deng X, Liu Y, Liu Y, Sun L, Chen F. PKM2, function and expression and regulation. Cell Biosci 2019; 9:52. [PMID: 31391918 PMCID: PMC6595688 DOI: 10.1186/s13578-019-0317-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022] Open
Abstract
Pyruvate kinase (PK), as one of the key enzymes for glycolysis, can encode four different subtypes from two groups of genes, although the M2 subtype PKM2 is expressed mainly during embryonic development in normal humans, and is closely related to tissue repair and regeneration, with the deepening of research, the role of PKM2 in tumor tissue has received increasing attention. PKM2 can be aggregated into tetrameric and dimeric forms, PKM2 in the dimer state can enter the nuclear to regulate gene expression, the transformation between them can play an important role in tumor cell energy supply, epithelial-mesenchymal transition (EMT), invasion and metastasis and cell proliferation. We will use the switching effect of PKM2 in glucose metabolism as the entry point to expand and enrich the Warburg effect. In addition, PKM2 can also regulate each other with various proteins by phosphorylation, acetylation and other modifications, mediate the different intracellular localization of PKM2 and then exert specific biological functions. In this paper, we will illustrate each of these points.
Collapse
Affiliation(s)
- Ze Zhang
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xinyue Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Yuanda Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, 130041 China
| | - Yahui Liu
- Department of General Surgery, The First Hospital of Jilin University, Changchun, 130021 China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021 China
| | - Fangfang Chen
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
155
|
Guo L, Guo YY, Li BY, Peng WQ, Chang XX, Gao X, Tang QQ. Enhanced acetylation of ATP-citrate lyase promotes the progression of nonalcoholic fatty liver disease. J Biol Chem 2019; 294:11805-11816. [PMID: 31197036 DOI: 10.1074/jbc.ra119.008708] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatic steatosis is a hallmark of nonalcoholic fatty liver disease (NAFLD) and is promoted by dysregulated de novo lipogenesis. ATP-citrate lyase (ACLY) is a crucial lipogenic enzyme that is up-regulated in individuals with NAFLD. A previous study has shown that acetylation of ACLY at Lys-540, Lys-546, and Lys-554 (ACLY-3K) increases ACLY protein stability by antagonizing its ubiquitylation, thereby promoting lipid synthesis and cell proliferation in lung cancer cells. But the functional importance of this regulatory mechanism in other cellular or tissue contexts or under other pathophysiological conditions awaits further investigation. Here, we show that ACLY-3K acetylation also promotes ACLY protein stability in AML12 cells, a mouse hepatocyte cell line, and found that the deacetylase sirtuin 2 (SIRT2) deacetylates ACLY-3K and destabilizes ACLY in these cells. Of note, the livers of mice and humans with NAFLD had increased ACLY protein and ACLY-3K acetylation levels and decreased SIRT2 protein levels. Mimicking ACLY-3K acetylation by replacing the three lysines with three glutamines (ACLY-3KQ variant) promoted lipid accumulation both in high glucose-treated AML12 cells and in the livers of high-fat/high-sucrose (HF/HS) diet-fed mice. Moreover, overexpressing SIRT2 in AML12 cells inhibited lipid accumulation, which was more efficiently reversed by overexpressing the ACLY-3KQ variant than by overexpressing WT ACLY. Additionally, hepatic SIRT2 overexpression decreased ACLY-3K acetylation and its protein level and alleviated hepatic steatosis in HF/HS diet-fed mice. Our findings reveal a posttranscriptional mechanism underlying the up-regulation of hepatic ACLY in NAFLD and suggest that the SIRT2/ACLY axis is involved in NAFLD progression.
Collapse
Affiliation(s)
- Liang Guo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Guo
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bai-Yu Li
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wan-Qiu Peng
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin-Xia Chang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Gao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of the School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
156
|
Phenotypic selection with an intrabody library reveals an anti-apoptotic function of PKM2 requiring Mitofusin-1. PLoS Biol 2019; 17:e2004413. [PMID: 31181072 PMCID: PMC6586363 DOI: 10.1371/journal.pbio.2004413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/20/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Bcl-2 family proteins control a decisive apoptotic event: mitochondrial outer membrane permeabilization (MOMP). To discover MOMP-regulating proteins, we expressed a library of intracellular single-chain variable fragments (scFvs) (“intrabodies”) and selected for those rescuing cells from apoptosis induced by BimS (the short isoform of Bim). One anti-apoptotic intrabody, intrabody 5 (IB5), recognized pyruvate kinase M2 (PKM2), which is expressed in cancer cells. PKM2 deletion ablated this clonogenic rescue; thus, IB5 activated a latent cytoprotective function of PKM2. This resulted not from pyruvate kinase activity per se but rather from the formation of an active tetrameric conformation of PKM2. A stably tetrameric PKM2 mutant, K422R, promoted cell survival even in the absence of IB5, and IB5 further increased survival. Mitochondria isolated from IB5-expressing cells were relatively resistant to MOMP in vitro. In cells, IB5 expression up-regulated Mitofusin-1 (Mfn1) and increased mitochondrial length. Importantly, Mfn1 deficiency abrogated IB5’s cytoprotective effect. PKM2’s anti-apoptotic function could help explain its preferential expression in human cancer. Proteins belonging to the Bcl-2 family regulate a common form of cell death known as apoptosis. Typically, these proteins function in apoptosis by controlling the formation of large pores in the mitochondrial outer membrane (MOM). While many proteins that regulate apoptosis have been identified over the years, some may still be unknown. Here, we used an unbiased approach in which we first expressed in cultured tumor cells a library of intracellular single-chain antibodies termed “intrabodies.” We then selected for intrabodies that allowed cells to evade apoptosis. We identified pyruvate kinase isoform M2 (PKM2), a major glycolytic enzyme that has been linked to cancer development, as the specific target of one such anti-apoptotic intrabody. We showed that the PKM2-specific intrabody promoted cell survival not by neutralizing its target but rather by activating an anti-apoptotic function of PKM2. While this cell survival function of PKM2 was not related to changes in the levels of Bcl-2 family proteins or to effects on the enzymatic activity of PKM2, we found that cell survival requires the increased expression of a MOM protein, Mitofusin-1 (Mfn1), known to regulate mitochondrial fusion. We conclude that this cell survival function of PKM2 could contribute to a role in cancer progression for this protein.
Collapse
|
157
|
Amin S, Yang P, Li Z. Pyruvate kinase M2: A multifarious enzyme in non-canonical localization to promote cancer progression. Biochim Biophys Acta Rev Cancer 2019; 1871:331-341. [PMID: 30826427 DOI: 10.1016/j.bbcan.2019.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Rewiring glucose metabolism, termed as Warburg effect or aerobic glycolysis, is a common signature of cancer cells to meet their high energetic and biosynthetic demands of rapid growth and proliferation. Pyruvate kinase M2 isoform (PKM2) is a key player in such metabolic reshuffle, which functions as a rate-limiting glycolytic enzyme in the cytosol of highly-proliferative cancer cells. During the recent decades, PKM2 has been extensively studied in non-canonical localizations such as nucleus, mitochondria, and extracellular secretion, and pertained to novel biological functions in tumor progression. Such functions of PKM2 open a new avenue for cancer researchers. This review summarizes up-to-date functions of PKM2 at various subcellular localizations of cancer cells and draws attention to the translocation of PKM2 from cytosol into the nucleus induced by posttranslational modifications. Moreover, PKM2 in tumor cells could have an important role in resistance acquisition processes against various chemotherapeutic drugs, which have raised a concern on PKM2 as a potential therapeutic target. Finally, we summarize the current status and future perspectives to improve the potential of PKM2 as a therapeutic target for the development of anticancer therapeutic strategies.
Collapse
Affiliation(s)
- Sajid Amin
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Peng Yang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China; School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
158
|
Liu BW, Wang TJ, Li LL, Zhang L, Liu YX, Feng JY, Wu Y, Xu FF, Zhang QS, Bao MZ, Zhang WY, Ye LH. Oncoprotein HBXIP induces PKM2 via transcription factor E2F1 to promote cell proliferation in ER-positive breast cancer. Acta Pharmacol Sin 2019; 40:530-538. [PMID: 29925919 PMCID: PMC6462016 DOI: 10.1038/s41401-018-0015-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 02/02/2023]
Abstract
We have reported that hepatitis B X-interacting protein (HBXIP, also termed LAMTOR5) can act as an oncogenic transcriptional co-activator to modulate gene expression, promoting breast cancer development. Pyruvate kinase muscle isozyme M2 (PKM2), encoded by PKM gene, has emerged as a key oncoprotein in breast cancer. Yet, the regulatory mechanism of PKM2 is still unexplored. Here, we report that HBXIP can upregulate PKM2 to accelerate proliferation of estrogen receptor positive (ER+) breast cancer. Immunohistochemistry analysis using breast cancer tissue microarray uncovered a positive association between the expression of HBXIP and PKM2. We also discovered that PKM2 expression was positively related with HBXIP expression in clinical breast cancer patients by real-time PCR assay. Interestingly, in ER+ breast cancer cells, HBXIP was capable of upregulating PKM2 expression at mRNA and protein levels in a dose-dependent manner, as well as increasing the activity of PKM promoter. Mechanistically, HBXIP could stimulate PKM promoter through binding to the -779/-579 promoter region involving co-activation of E2F transcription factor 1 (E2F1). In function, cell viability, EdU, colony formation, and xenograft tumor growth assays showed that HBXIP contributed to accelerating cell proliferation through PKM2 in ER+ breast cancer. Collectively, we conclude that HBXIP induces PKM2 through transcription factor E2F1 to facilitate ER+ breast cancer cell proliferation. We provide new evidence for the mechanism of transcription regulation of PKM2 in promotion of breast cancer progression.
Collapse
Affiliation(s)
- Bo-Wen Liu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tian-Jiao Wang
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei-Lei Li
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Zhang
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yun-Xia Liu
- Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jin-Yan Feng
- Department of Cancer Research, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yue Wu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fei-Fei Xu
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Quan-Sheng Zhang
- Department of Organ Transplantation, Key Laboratory of Organ Transplantation of Tianjin, Tianjin First Central Hospital, Tianjin, 300071, China
| | - Ming-Zhu Bao
- Department of Organ Transplantation, Key Laboratory of Organ Transplantation of Tianjin, Tianjin First Central Hospital, Tianjin, 300071, China
| | - Wei-Ying Zhang
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Li-Hong Ye
- Department of Biochemistry, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
159
|
Mitochondrial Retrograde Signalling and Metabolic Alterations in the Tumour Microenvironment. Cells 2019; 8:cells8030275. [PMID: 30909478 PMCID: PMC6468901 DOI: 10.3390/cells8030275] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/22/2022] Open
Abstract
This review explores the molecular mechanisms that may be responsible for mitochondrial retrograde signalling related metabolic reprogramming in cancer and host cells in the tumour microenvironment and provides a summary of recent updates with regard to the functional modulation of diverse cells in the tumour microenvironment.
Collapse
|
160
|
Chen TJ, Wang HJ, Liu JS, Cheng HH, Hsu SC, Wu MC, Lu CH, Wu YF, Wu JW, Liu YY, Kung HJ, Wang WC. Mutations in the PKM2 exon-10 region are associated with reduced allostery and increased nuclear translocation. Commun Biol 2019; 2:105. [PMID: 30911680 PMCID: PMC6420622 DOI: 10.1038/s42003-019-0343-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/08/2019] [Indexed: 12/27/2022] Open
Abstract
PKM2 is a key metabolic enzyme central to glucose metabolism and energy expenditure. Multiple stimuli regulate PKM2's activity through allosteric modulation and post-translational modifications. Furthermore, PKM2 can partner with KDM8, an oncogenic demethylase and enter the nucleus to serve as a HIF1α co-activator. Yet, the mechanistic basis of the exon-10 region in allosteric regulation and nuclear translocation remains unclear. Here, we determined the crystal structures and kinetic coupling constants of exon-10 tumor-related mutants (H391Y and R399E), showing altered structural plasticity and reduced allostery. Immunoprecipitation analysis revealed increased interaction with KDM8 for H391Y, R399E, and G415R. We also found a higher degree of HIF1α-mediated transactivation activity, particularly in the presence of KDM8. Furthermore, overexpression of PKM2 mutants significantly elevated cell growth and migration. Together, PKM2 exon-10 mutations lead to structure-allostery alterations and increased nuclear functions mediated by KDM8 in breast cancer cells. Targeting the PKM2-KDM8 complex may provide a potential therapeutic intervention.
Collapse
Affiliation(s)
- Tsan-Jan Chen
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Hung-Jung Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053 Taiwan
| | - Jai-Shin Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Hsin-Hung Cheng
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Sheng-Chieh Hsu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, 35053 Taiwan
- Institute of Biotechnology, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Meng-Chen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Chien-Hung Lu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Yu-Fang Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Jing-Wen Wu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Ying-Yuan Liu
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, 35053 Taiwan
- Department of Biochemistry and Molecular Medicine, University of California Davis School of Medicine, University of California Davis Cancer Centre, Sacramento, CA 95817 USA
| | - Wen-Ching Wang
- Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing-Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
161
|
Archer SL. Pyruvate Kinase and Warburg Metabolism in Pulmonary Arterial Hypertension: Uncoupled Glycolysis and the Cancer-Like Phenotype of Pulmonary Arterial Hypertension. Circulation 2019; 136:2486-2490. [PMID: 29255124 DOI: 10.1161/circulationaha.117.031655] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
162
|
Succinylation-dependent mitochondrial translocation of PKM2 promotes cell survival in response to nutritional stress. Cell Death Dis 2019; 10:170. [PMID: 30787272 PMCID: PMC6382874 DOI: 10.1038/s41419-018-1271-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/22/2018] [Accepted: 11/28/2018] [Indexed: 01/15/2023]
Abstract
Tumor growth and progression is characteristically associated with the synergistic effects of uncontrolled cellular proliferation and cell survival under stress. Pyruvate kinase M2 (PKM2) contributes to both of these effects. However, the specific mechanism by which PKM2 promotes uncontrolled proliferation or cell survival under stress in different nutritional environments is unclear. We show that succinylation mediated mitochondrial translocation of PKM2 under glucose starvation plays a role in switching the cellular machinery from proliferation to cell survival mode and vice versa. Mitochondrial PKM2 inhibits ubiquitination-mediated degradation of voltage-dependent anion channel 3 (VDAC3) and increases mitochondrial permeability to generate more ATP for cell survival under nutritional depletion. We found there is a positive correlation of upregulation of mitochondrial PKM2 and upregulation of VDAC3 in human colon cancer. This shows the mechanisms identified in this study in fact play a role in neoplastic biology. We therefore developed a small molecule designated compound 8 that blocks mitochondrial translocation of PKM2 and inhibits tumor development. Our data suggest that blocking PKM2 mitochondrial function with a small molecule inhibitor has potential for cancer treatment.
Collapse
|
163
|
Verma K, Patel A. Pyruvate Kinase M2 serves as blockade for nucleosome repositioning and abrogates Chd7 remodeling activity. PLoS One 2019; 14:e0211515. [PMID: 30735509 PMCID: PMC6368300 DOI: 10.1371/journal.pone.0211515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
Pyruvate Kinase M2 (PKM2) mediates metabolic reshuffling and is ubiquitously upregulated in several cancer types. The non-metabolic function of PKM2 as key nuclear kinase and modulator of gene expression is instrumental in cancer progression and tumorigenesis. Here, we attempt to discern the non-canonical function of PKM2 as an epigenetic modulator and the underlying implication of this activity. Using 5'-FAM labelled reconstituted mononucleosome we have shown that PKM2 interacts with the complex through Histone H3 and possibly obstruct the access to DNA binding factors. Subsequently, the interaction negatively impacts the ATP dependent remodeling activity of Chromodomain Helicase DNA binding protein-7 (Chd7). Chd7 remodeling activity is required to ameliorate DNA damage and is crucial to genome stability. Our study shows that PKM2 blocks the Chd7 mediated sliding of nucleosome. It can be conjectured that stalling Chd7 may lead to impaired DNA damage and increased genomic instability. We propose a mechanism in which PKM2 negatively regulate nucleosome repositioning in chromatin and may exacerbate cancer by altering the nucleosome architecture. This research is imperative to our understanding of how altered cancer metabolism can potentially modulate the gene expression and sustain incessant proliferation by tweaking the chromatin topography.
Collapse
Affiliation(s)
- Kirtika Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Ashok Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| |
Collapse
|
164
|
A critical review of the role of M 2PYK in the Warburg effect. Biochim Biophys Acta Rev Cancer 2019; 1871:225-239. [PMID: 30708038 PMCID: PMC6525063 DOI: 10.1016/j.bbcan.2019.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022]
Abstract
It is becoming generally accepted in recent literature that the Warburg effect in cancer depends on inhibition of M2PYK, the pyruvate kinase isozyme most commonly expressed in tumors. We remain skeptical. There continues to be a general lack of solid experimental evidence for the underlying idea that a bottle neck in aerobic glycolysis at the level of M2PYK results in an expanded pool of glycolytic intermediates (which are thought to serve as building blocks necessary for proliferation and growth of cancer cells). If a bottle neck at M2PYK exists, then the remarkable increase in lactate production by cancer cells is a paradox, particularly since a high percentage of the carbons of lactate originate from glucose. The finding that pyruvate kinase activity is invariantly increased rather than decreased in cancer undermines the logic of the M2PYK bottle neck, but is consistent with high lactate production. The "inactive" state of M2PYK in cancer is often described as a dimer (with reduced substrate affinity) that has dissociated from an active tetramer of M2PYK. Although M2PYK clearly dissociates easier than other isozymes of pyruvate kinase, it is not clear that dissociation of the tetramer occurs in vivo when ligands are present that promote tetramer formation. Furthermore, it is also not clear whether the dissociated dimer retains any activity at all. A number of non-canonical functions for M2PYK have been proposed, all of which can be challenged by the finding that not all cancer cell types are dependent on M2PYK expression. Additional in-depth studies of the Warburg effect and specifically of the possible regulatory role of M2PYK in the Warburg effect are needed.
Collapse
|
165
|
Chen M, Sheng XJ, Qin YY, Zhu S, Wu QX, Jia L, Meng N, He YT, Yan GR. TBC1D8 Amplification Drives Tumorigenesis through Metabolism Reprogramming in Ovarian Cancer. Theranostics 2019; 9:676-690. [PMID: 30809301 PMCID: PMC6376479 DOI: 10.7150/thno.30224] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer cells undergo metabolic reprogramming to support their energy demand and biomass synthesis. However, the mechanisms driving cancer metabolism reprogramming are not well understood. Methods: The differential proteins and interacted proteins were identified by proteomics. Western blot, qRT-PCR and IHC staining were used to analyze TBC1D8 levels. In vivo tumorigenesis and metastasis were performed by xenograft tumor model. Cross-Linking assays were designed to analyze PKM2 polymerization. Lactate production, glucose uptake and PK activity were determined. Results: We established two aggressive ovarian cancer (OVCA) cell models with increased aerobic glycolysis. TBC1D8, a member of the TBC domain protein family, was significantly up-regulated in the more aggressive OVCA cells. TBC1D8 is amplified and up-regulated in OVCA tissues. OVCA patients with high TBC1D8 levels have poorer prognoses. TBC1D8 promotes OVCA tumorigenesis and aerobic glycolysis in a GAP activity-independent manner in vitro and in vivo. TBC1D8 bound to PKM2, not PKM1, via its Rab-GAP TBC domain. Mechanistically, TBC1D8 binds to PKM2 and hinders PKM2 tetramerization to decreases pyruvate kinase activity and promote aerobic glycolysis, and to promote the nuclear translocation of PKM2, which induces the expression of genes which are involved in glucose metabolism and cell cycle. Conclusions:TBC1D8 drives OVCA tumorigenesis and metabolic reprogramming, and TBC1D8 serves as an independent prognosis factor for OVCA patients.
Collapse
Affiliation(s)
- Min Chen
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiu-Jie Sheng
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuan-Yi Qin
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Song Zhu
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Qing-Xia Wu
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Department of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Liqing Jia
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Nan Meng
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yu-Tian He
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Guang-Rong Yan
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
166
|
Icard P, Fournel L, Wu Z, Alifano M, Lincet H. Interconnection between Metabolism and Cell Cycle in Cancer. Trends Biochem Sci 2019; 44:490-501. [PMID: 30655165 DOI: 10.1016/j.tibs.2018.12.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/17/2022]
Abstract
Cell cycle progression and division is regulated by checkpoint controls and sequential activation of cyclin-dependent kinases (CDKs). Understanding of how these events occur in synchrony with metabolic changes could have important therapeutic implications. For biosynthesis, cancer cells enhance glucose and glutamine consumption. Inactivation of pyruvate kinase M2 (PKM2) promotes transcription in G1 phase. Glutamine metabolism supports DNA replication in S phase and lipid synthesis in G2 phase. A boost in glycolysis and oxidative metabolism can temporarily furnish more ATP when necessary (G1/S transition, segregation of chromosomes). Recent studies have shown that a few metabolic enzymes [PKM2, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB3), GAPDH] also periodically translocate to the nucleus and oversee cell cycle regulators or oncogene expression (c-Myc). Targeting these metabolic enzymes could increase the response to CDK inhibitors (CKIs).
Collapse
Affiliation(s)
- Philippe Icard
- CHU de Caen, Université Caen Normandie, Medical School, Caen, F-14000, France; Inserm U1086, BioTICLA axis, Université Caen Normandie, F-14000, France; Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France.
| | - Ludovic Fournel
- Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France; Inserm UMRS 1007, Paris Descartes University, 75270 Paris cedex 06, France
| | - Zherui Wu
- Inserm UMRS 1007, Paris Descartes University, 75270 Paris cedex 06, France
| | - Marco Alifano
- Department of Thoracic Surgery, Paris Center University Hospital, AP-HP, Paris, France; Inserm UMRS 1138, Centre de recherche des Cordeliers, Paris Descartes University, 75270 Paris cedex 06, France
| | - Hubert Lincet
- Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon (CRCL), France; Université Lyon Claude Bernard 1, Lyon, France; ISPB, Faculté de Pharmacie, Lyon, France
| |
Collapse
|
167
|
Kitada M, Ogura Y, Monno I, Koya D. Sirtuins and Type 2 Diabetes: Role in Inflammation, Oxidative Stress, and Mitochondrial Function. Front Endocrinol (Lausanne) 2019; 10:187. [PMID: 30972029 PMCID: PMC6445872 DOI: 10.3389/fendo.2019.00187] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/06/2019] [Indexed: 01/05/2023] Open
Abstract
The rising incidence of type 2 diabetes mellitus (T2DM) is a major public health concern, and novel therapeutic strategies to prevent T2DM are urgently needed worldwide. Aging is recognized as one of the risk factors for metabolic impairments, including insulin resistance and T2DM. Inflammation, oxidative stress, and mitochondrial dysfunction are closely related to both aging and metabolic disease. Calorie restriction (CR) can retard the aging process in organisms ranging from yeast to rodents and delay the onset of numerous age-related disorders, such as insulin resistance and diabetes. Therefore, metabolic CR mimetics may represent new therapeutic targets for insulin resistance and T2DM. Sirtuin 1 (SIRT1), the mammalian homolog of Sir2, was originally identified as a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. The activation of SIRT1 is closely associated with longevity under CR, and it is recognized as a CR mimetic. Currently, seven sirtuins have been identified in mammals. Among these sirtuins, SIRT1 and SIRT2 are located in the nucleus and cytoplasm, SIRT3 exists predominantly in mitochondria, and SIRT6 is located in the nucleus. These sirtuins regulate metabolism through their regulation of inflammation, oxidative stress and mitochondrial function via multiple mechanisms, resulting in the improvement of insulin resistance and T2DM. In this review, we describe the current understanding of the biological functions of sirtuins, especially SIRT1, SIRT2, SIRT3, and SIRT6, focusing on oxidative stress, inflammation, and mitochondrial function, which are closely associated with aging.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
- *Correspondence: Munehiro Kitada
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
168
|
Abstract
Recent studies have revealed a relationship between cellular metabolism and cell function in immune cells. Cellular metabolism not only provides supplemental ATP, but also supports dynamic changes in cell proliferation and differentiation. For example, T cells exhibit subset-specific metabolic profiles, and require certain types of metabolism for their functions. Determining the metabolic profiles that support inflammatory immune responses may lead to novel treatment strategies for chronic inflammatory diseases such as rheumatoid arthritis (RA). However, the mechanisms by which metabolism modulates cell function have been unclear. Recent studies have begun to unveil unexpected non-metabolic functions for metabolic enzymes in the context of inflammation, including roles in signaling and gene regulation. Here we describe recent findings related to immunometabolism, the metabolome of RA patients, and the metabolically independent functions of glycolytic enzymes. We discuss how metabolic processes impact immune cells, especially T cells and fibroblast like synoviocytes, which are considered the orchestrators of autoimmune arthritis.
Collapse
Affiliation(s)
- Takaichi Okano
- a Clinical Laboratory , Kobe University Hospital , Kobe , Japan.,b Department of Rheumatology and Clinical Immunology , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Jun Saegusa
- a Clinical Laboratory , Kobe University Hospital , Kobe , Japan.,b Department of Rheumatology and Clinical Immunology , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Soshi Takahashi
- c Center for Rheumatic Diseases , Shinko Hospital , Kobe , Japan
| | - Yo Ueda
- b Department of Rheumatology and Clinical Immunology , Kobe University Graduate School of Medicine , Kobe , Japan
| | - Akio Morinobu
- b Department of Rheumatology and Clinical Immunology , Kobe University Graduate School of Medicine , Kobe , Japan
| |
Collapse
|
169
|
Metabolite sensing and signaling in cell metabolism. Signal Transduct Target Ther 2018; 3:30. [PMID: 30416760 PMCID: PMC6224561 DOI: 10.1038/s41392-018-0024-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/27/2018] [Accepted: 05/31/2018] [Indexed: 02/07/2023] Open
Abstract
Metabolite sensing is one of the most fundamental biological processes. During evolution, multilayered mechanisms developed to sense fluctuations in a wide spectrum of metabolites, including nutrients, to coordinate cellular metabolism and biological networks. To date, AMPK and mTOR signaling are among the best-understood metabolite-sensing and signaling pathways. Here, we propose a sensor-transducer-effector model to describe known mechanisms of metabolite sensing and signaling. We define a metabolite sensor by its specificity, dynamicity, and functionality. We group the actions of metabolite sensing into three different modes: metabolite sensor-mediated signaling, metabolite-sensing module, and sensing by conjugating. With these modes of action, we provide a systematic view of how cells sense sugars, lipids, amino acids, and metabolic intermediates. In the future perspective, we suggest a systematic screen of metabolite-sensing macromolecules, high-throughput discovery of biomacromolecule-metabolite interactomes, and functional metabolomics to advance our knowledge of metabolite sensing and signaling. Most importantly, targeting metabolite sensing holds great promise in therapeutic intervention of metabolic diseases and in improving healthy aging. A simple, three-part model provides a systematic view of how cells sense sugars, lipids, amino acids and metabolic intermediates. Cells quickly and accurately perceive changes in intra- and extracellular molecules such as nutrients to respond to changing environments. Drawing on existing knowledge about AMPK and MTORC1 signaling, Yi-Ping Wang and Qun-Ying Lei at Fudan University in Shanghai propose a model in which three components: a sensor, transducer and effector enable metabolic sensing and signaling to proceed. The sensor detects the metabolite, and, through conjugation, conformational changes or protein–protein interactions, transmits this information to the transducer, which decides the appropriate response. The transducer then issues orders to effector proteins which coordinate the action. The future identification of novel metabolic sensors through systematic screening could lead to new therapeutic interventions for metabolic and age-related diseases.
Collapse
|
170
|
Sizemore ST, Zhang M, Cho JH, Sizemore GM, Hurwitz B, Kaur B, Lehman NL, Ostrowski MC, Robe PA, Miao W, Wang Y, Chakravarti A, Xia F. Pyruvate kinase M2 regulates homologous recombination-mediated DNA double-strand break repair. Cell Res 2018; 28:1090-1102. [PMID: 30297868 PMCID: PMC6218445 DOI: 10.1038/s41422-018-0086-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 08/16/2018] [Indexed: 02/08/2023] Open
Abstract
Resistance to genotoxic therapies is a primary cause of treatment failure and tumor recurrence. The underlying mechanisms that activate the DNA damage response (DDR) and allow cancer cells to escape the lethal effects of genotoxic therapies remain unclear. Here, we uncover an unexpected mechanism through which pyruvate kinase M2 (PKM2), the highly expressed PK isoform in cancer cells and a master regulator of cancer metabolic reprogramming, integrates with the DDR to directly promote DNA double-strand break (DSB) repair. In response to ionizing radiation and oxidative stress, ATM phosphorylates PKM2 at T328 resulting in its nuclear accumulation. pT328-PKM2 is required and sufficient to promote homologous recombination (HR)-mediated DNA DSB repair through phosphorylation of CtBP-interacting protein (CtIP) on T126 to increase CtIP's recruitment at DSBs and resection of DNA ends. Disruption of the ATM-PKM2-CtIP axis sensitizes cancer cells to a variety of DNA-damaging agents and PARP1 inhibition. Furthermore, increased nuclear pT328-PKM2 level is associated with significantly worse survival in glioblastoma patients. Combined, these data advocate the use of PKM2-targeting strategies as a means to not only disrupt cancer metabolism but also inhibit an important mechanism of resistance to genotoxic therapies.
Collapse
Affiliation(s)
- Steven T Sizemore
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Manchao Zhang
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Ju Hwan Cho
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Gina M Sizemore
- Department of Cancer Biology & Genetics, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Brian Hurwitz
- Department of Neurological Surgery, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Balveen Kaur
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
- Department of Neurological Surgery, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Norman L Lehman
- Department of Pathology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Michael C Ostrowski
- Department of Cancer Biology & Genetics, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Pierre A Robe
- Department of Neurology and Neurosurgery, Rudolf Magnus Brain Institute, University Medical Center of Utrecht, Utrecht, The Netherlands
- Departments of Neurosurgery and Human Genetics, University of Liege, Liege, Belgium
| | - Weili Miao
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Fen Xia
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
171
|
Yu X, Ma R, Wu Y, Zhai Y, Li S. Reciprocal Regulation of Metabolic Reprogramming and Epigenetic Modifications in Cancer. Front Genet 2018; 9:394. [PMID: 30283496 PMCID: PMC6156463 DOI: 10.3389/fgene.2018.00394] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Cancer cells reprogram their metabolism to meet their demands for survival and proliferation. The metabolic plasticity of tumor cells help them adjust to changes in the availability and utilization of nutrients in the microenvironment. Recent studies revealed that many metabolites and metabolic enzymes have non-metabolic functions contributing to tumorigenesis. One major function is regulating epigenetic modifications to facilitate appropriate responses to environmental cues. Accumulating evidence showed that epigenetic modifications could in turn alter metabolism in tumors. Although a comprehensive understanding of the reciprocal connection between metabolic and epigenetic rewiring in cancer is lacking, some conceptual advances have been made. Understanding the link between metabolism and epigenetic modifications in cancer cells will shed lights on the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Xilan Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Yinsheng Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Yansheng Zhai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| | - Shanshan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
172
|
Zhang N, Gao R, Yang J, Zhu Y, Zhang Z, Xu X, Wang J, Liu X, Li Z, Li Z, Gong D, Li J, Bi J, Kong C. Quantitative Global Proteome and Lysine Succinylome Analyses Reveal the Effects of Energy Metabolism in Renal Cell Carcinoma. Proteomics 2018; 18:e1800001. [PMID: 29882248 DOI: 10.1002/pmic.201800001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 05/24/2018] [Indexed: 01/19/2023]
Abstract
In light of the increasing incidence of renal cell carcinoma (RCC), its molecular mechanisms have been comprehensively explored in numerous recent studies. However, few studies focus on the influence of multi-factor interactions during the occurrence and development of RCC. This study aims to investigate the quantitative global proteome and the changes in lysine succinylation in related proteins, seeking to facilitate a better understanding of the molecular mechanisms underlying RCC. LC-MS/MS combined with bioinformatics analysis are used to quantitatively detect the perspectives at the global protein level. IP and WB analysis were conducted to further verify the alternations of related proteins and lysine succinylation. A total of 3,217 proteins and 1,238 lysine succinylation sites are quantified in RCC tissues, and 668 differentially expressed proteins and 161 differentially expressed lysine succinylation sites are identified. Besides, expressions of PGK1 and PKM2 at protein and lysine, succinylation levels are significantly altered in RCC tissues. Bioinformatics analysis indicates that the glycolysis pathway is a potential mechanism of RCC progression and lysine succinylation may plays a potential role in energy metabolism. These results can provide a new direction for exploring the molecular mechanism of RCC tumorigenesis.
Collapse
Affiliation(s)
- Naiwen Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Ruxu Gao
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jianyu Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zhe Zhang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Xiaolong Xu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jianfeng Wang
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Xiankui Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zeliang Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zhenhua Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Daxin Gong
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Institute of Urology, The First Hospital of China Medical University, Shenyang, 110001, P. R. China
| |
Collapse
|
173
|
Li YH, Li XF, Liu JT, Wang H, Fan LL, Li J, Sun GP. PKM2, a potential target for regulating cancer. Gene 2018; 668:48-53. [PMID: 29775756 DOI: 10.1016/j.gene.2018.05.038] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/07/2018] [Accepted: 05/13/2018] [Indexed: 01/09/2023]
Abstract
Aberrated glucose metabolism is a key future of cancer cells. Unlike normal cells, tumor cells favor glycolysis even in the presence of sufficient oxygen. Pyruvate kinase (PK), a key glucose metabolic enzyme, converts phosphoenolpyruvate (PEP) to pyruvate by transferring the high-energy phosphate group to adenosine diphosphate (ADP) to produce adenosine triphosphate (ATP). Pyruvate kinase M2 (PKM2), one of the four isozyme of PK, which universally expressed in rapidly proliferating cells such as embryonic cells and cancer cells. Recent years, more and more research suggested PKM2 plays a crucial role in cancer progression through both metabolic and non-metabolic pathways. On the one hand, the middle product of glycolysis, such as amino acids, nucleotides, lipids is necessary to rapid growth of cancer cells. On the other hand, PKM2 supports tumor growth through regulating the expression of gene that involved in cell proliferation, migration and apoptosis. In this article, we review the recent advances to further understand the regulation and function of PKM2 in tumorigenesis. Given its multiple effects on cancer, PKM2 may be a potential target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu-Huan Li
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiao-Feng Li
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei 230032, Anhui, China
| | - Jia-Tao Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Lu-Lu Fan
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Mei Shan Road, Hefei 230032, Anhui, China.
| | - Guo-Ping Sun
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
174
|
Yang KM, Kim K. Protein kinase CK2 modulation of pyruvate kinase M isoforms augments the Warburg effect in cancer cells. J Cell Biochem 2018; 119:8501-8510. [PMID: 30015359 DOI: 10.1002/jcb.27078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Protein kinase CK2 is active in cancer cells. Previously, we reported that increased CK2 activity could induce epithelial mesenchymal transition of cancer cells. CK2 also induced epithelial mesenchymal transition in colon cancer cell lines such as HT29 and SW620, and the transitioned cells (CK2α cells) became more proliferative than the controls. We assumed that CK2 could affect cancer cell growth by modulating their energy metabolism. Here, we examined the molecular effects of CK2 on the glucose metabolism of cancer cells. We found that CK2α cells consumed more glucose and produced more lactate than control cells did. An XF glycolysis stress test showed that aerobic glycolysis was augmented up to the cancer cell's maximal glycolytic capacity in CK2α cells. Molecular analysis revealed that pyruvate kinase M1 was downregulated and pyruvate kinase M2 was nuclear localized in CK2α cells. Consequently, the expression and activity of lactate dehydrogenase A (LDHA) were upregulated. Treatment with FX11-a specific LDHA inhibitor-or clustered regularly interspaced short palindromic repeats (CRISPR)-mediated knockout of LDHA inhibited the CK2-driven proliferation of cancer cells. We conclude that CK2 augments the Warburg effect, resulting in increased proliferation of cancer cells.
Collapse
Affiliation(s)
- Kyung Mi Yang
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Korea.,Integrated Genomic Research Center for Metabolic Regulation, Seodaemun-gu, Seoul, Korea
| |
Collapse
|
175
|
Chen D, Wei L, Liu ZR, Yang JJ, Gu X, Wei ZZ, Liu LP, Yu SP. Pyruvate Kinase M2 Increases Angiogenesis, Neurogenesis, and Functional Recovery Mediated by Upregulation of STAT3 and Focal Adhesion Kinase Activities After Ischemic Stroke in Adult Mice. Neurotherapeutics 2018; 15:770-784. [PMID: 29869055 PMCID: PMC6095793 DOI: 10.1007/s13311-018-0635-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ischemic stroke remains a serious threat to human life. Generation of neuronal and vascular cells is an endogenous regenerative mechanism in the adult brain, which may contribute to tissue repair after stroke. However, the regenerative activity is typically insufficient for significant therapeutic effects after brain injuries. Pyruvate kinase isoform M2 (PKM2) is a key regulator for energy metabolism. PKM2 also has nonmetabolic roles involving regulations of gene expression, cell proliferation, and migration in cancer cells as well as noncancerous cells. In a focal ischemic stroke mouse model, recombinant PKM2 (rPKM2) administration (160 ng/kg, intranasal delivery) at 1 h after stroke showed the significant effect of a reduced infarct volume of more the 60%. Delayed treatment of rPKM2, however, lost the acute neuroprotective effect. We then tested a novel hypothesis that delayed treatment of PKM2 might show proregenerative effects for long-term functional recovery and this chronic action could be mediated by its downstream STAT3 signaling. rPKM2 (160 ng/kg) was delivered to the brain using noninvasive intranasal administration 24 h after the stroke and repeated every other day. Western blot analysis revealed that, 7 days after the stroke, the levels of PKM2 and phosphorylated STAT3 and the expression of angiogenic factors VEGF, Ang-1, and Tie-2 in the peri-infarct region were significantly increased in the rPKM2 treatment group compared with those of the stroke vehicle group. To label proliferating cells, 5-bromo-2'-deoxyuridine (BrdU, 50 mg/kg, i.p.) was injected every day starting 3 days after stroke. At 14 days after stroke, immunohistochemistry showed that rPKM2 increased cell homing of doublecortin (DCX)-positive neuroblasts to the ischemic cortex. In neural progenitor cell (NPC) cultures, rPKM2 (0.4-4 nM) increased the expression of integrin β1 and the activation/phosphorylation of focal adhesion kinase (FAK). A mediator role of FAK in PKM2-promoted cell migration was verified in FAK-knockout fibroblast cultures. In the peri-infarct region of the brain, increased numbers of Glut-1/BrdU and NeuN/BrdU double-positive cells indicated enhanced angiogenesis and neurogenesis, respectively, compared to stroke vehicle mice. Using Laser Doppler imaging, we observed better recovery of the local blood flow in the peri-infarct region of rPKM2-treated mice 14 days after stroke. Meanwhile, rPKM2 improved the sensorimotor functional recovery measured by the adhesive removal test. Inhibiting the STAT3 phosphorylation/activation by the STAT3 inhibitor, BP-1-102 (3 mg/kg/day, o.g.), abolished all beneficial effects of rPKM2 in the stroke mice. Taken together, this investigation provides the first evidence demonstrating that early treatment of rPKM2 shows an acute neuroprotective effect against ischemic brain damage, whereas delayed rPKM2 treatment promotes regenerative activities in the poststroke brain leading to better functional recovery. The underlying mechanism involves activation of the STAT3 and FAK signals in the poststroke brain.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Suite 620B, Atlanta, GA, 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Suite 620B, Atlanta, GA, 30322, USA
| | - Zhi-Ren Liu
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Jenny J Yang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Suite 620B, Atlanta, GA, 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Suite 620B, Atlanta, GA, 30322, USA
- Center for Visual and Neurocognitive Rehabilitation, Veteran's Affair Medical Center, Atlanta, GA, 30033, USA
| | - Li-Ping Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, Woodruff Memorial Research Building, Suite 620B, Atlanta, GA, 30322, USA.
- Center for Visual and Neurocognitive Rehabilitation, Veteran's Affair Medical Center, Atlanta, GA, 30033, USA.
| |
Collapse
|
176
|
Chen Y, Huang Q, Liu W, Zhu Q, Cui CP, Xu L, Guo X, Wang P, Liu J, Dong G, Wei W, Liu CH, Feng Z, He F, Zhang L. Mutually exclusive acetylation and ubiquitylation of the splicing factor SRSF5 control tumor growth. Nat Commun 2018; 9:2464. [PMID: 29942010 PMCID: PMC6018636 DOI: 10.1038/s41467-018-04815-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Most tumor cells take up more glucose than normal cells. Splicing dysregulation is one of the molecular hallmarks of cancer. However, the role of splicing factor in glucose metabolism and tumor development remains poorly defined. Here, we show that upon glucose intake, the splicing factor SRSF5 is specifically induced through Tip60-mediated acetylation on K125, which antagonizes Smurf1-mediated ubiquitylation. SRSF5 promotes the alternative splicing of CCAR1 to produce CCAR1S proteins, which promote tumor growth by enhancing glucose consumption and acetyl-CoA production. Conversely, upon glucose starvation, SRSF5 is deacetylated by HDAC1, and ubiquitylated by Smurf1 on the same lysine, resulting in proteasomal degradation of SRSF5. The CCAR1L proteins accumulate to promote apoptosis. Importantly, SRSF5 is hyperacetylated and upregulated in human lung cancers, which correlates with increased CCAR1S expression and tumor progression. Thus, SRSF5 responds to high glucose to promote cancer development, and SRSF5-CCAR1 axis may be valuable targets for cancer therapeutics.
Collapse
Affiliation(s)
- Yuhan Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Affiliated BaYi Children's Hospital, PLA Army General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, 100700, China
| | - Qingyang Huang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Wen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Qiong Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China.,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Liang Xu
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Biochemistry and Molecular Biology, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xing Guo
- Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.,Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Ping Wang
- Department of Central Laboratory, Shanghai Tenth People's Hospital, School of Life Science and Technology, Tongji University, Shanghai, 200072, China
| | - Jingwen Liu
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Guanglong Dong
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhichun Feng
- Affiliated BaYi Children's Hospital, PLA Army General Hospital, National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology, Beijing Key Laboratory of Pediatric Organ Failure, Beijing, 100700, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 100850, China. .,Department of Genomics and Proteomics, Beijing Institute of Radiation Medicine, Beijing, 100850, China. .,School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
177
|
Dou C, Liu Z, Tu K, Zhang H, Chen C, Yaqoob U, Wang Y, Wen J, van Deursen J, Sicard D, Tschumperlin D, Zou H, Huang WC, Urrutia R, Shah VH, Kang N. P300 Acetyltransferase Mediates Stiffness-Induced Activation of Hepatic Stellate Cells Into Tumor-Promoting Myofibroblasts. Gastroenterology 2018; 154:2209-2221.e14. [PMID: 29454793 PMCID: PMC6039101 DOI: 10.1053/j.gastro.2018.02.015] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatic stellate cells (HSCs) contribute to desmoplasia and stiffness of liver metastases by differentiating into matrix-producing myofibroblasts. We investigated whether stiffness due to the presence of tumors increases activation of HSCs into myofibroblasts and their tumor-promoting effects, as well as the role of E1A binding protein p300, a histone acetyltransferase that regulates transcription, in these processes. METHODS HSCs were isolated from liver tissues of patients, mice in which the p300 gene was flanked by 2 loxP sites (p300F/F mice), and p300+/+ mice (controls). The HSCs were placed on polyacrylamide gels with precisely defined stiffness, and their activation (differentiation into myofibroblasts) was assessed by immunofluorescence and immunoblot analyses for alpha-smooth muscle actin. In HSCs from mice, the p300 gene was disrupted by cre recombinase. In human HSCs, levels of p300 were knocked down with small hairpin RNAs or a mutant form of p300 that is not phosphorylated by AKT (p300S1834A) was overexpressed. Human HSCs were also cultured with inhibitors of p300 (C646), PI3K signaling to AKT (LY294002), or RHOA (C3 transferase) and effects on stiffness-induced activation were measured. RNA sequencing and chromatin immunoprecipitation-quantitative polymerase chain reaction were used to identify HSC genes that changed expression levels in response to stiffness. We measured effects of HSC-conditioned media on proliferation of HT29 colon cancer cells and growth of tumors following subcutaneous injection of these cells into mice. MC38 colon cancer cells were injected into portal veins of p300F/Fcre and control mice, and liver metastases were measured. p300F/Fcre and control mice were given intraperitoneal injections of CCl4 to induce liver fibrosis. Liver tissues were collected and analyzed by immunofluorescence, immunoblot, and histology. RESULTS Substrate stiffness was sufficient to activate HSCs, leading to nuclear accumulation of p300. Disrupting p300 level or activity blocked stiffness-induced activation of HSCs. In HSCs, substrate stiffness activated AKT signaling via RHOA to induce phosphorylation of p300 at serine 1834; this caused p300 to translocate to the nucleus, where it up-regulated transcription of genes that increase activation of HSCs and metastasis, including CXCL12. MC38 cells, injected into portal veins, formed fewer metastases in livers of p300F/Fcre mice than control mice. Expression of p300 was increased in livers of mice following injection of CCl4; HSC activation and collagen deposition were reduced in livers of p300F/Fcre mice compared with control mice. CONCLUSIONS In studies of mice, we found liver stiffness to activate HSC differentiation into myofibroblasts, which required nuclear accumulation of p300. p300 increases HSC expression of genes that promote metastasis.
Collapse
Affiliation(s)
- Changwei Dou
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Department of Hepatobiliary Surgery, Zhejiang provincial People's Hospital, Hangzhou, China
| | - Zhikui Liu
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, 1st Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China,Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Hongbin Zhang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Chen Chen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Usman Yaqoob
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Yuanguo Wang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jialing Wen
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota
| | - Jan van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Hongzhi Zou
- Guangdong Institute of Gastroenterology, 6th Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Chien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taiwan, R.O.C
| | - Raul Urrutia
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN
| | - Vijay H. Shah
- GI Research Unit and Cancer Cell Biology Program, Mayo Clinic, Rochester, MN,To whom correspondence should be addressed: Ningling Kang, Ph.D., Hormel Institute, 801 16th Ave NE Austin MN 55912. Fax: (507) 437-9606. Phone: (507) 437-9680. . Vijay Shah, M.D., Mayo Clinic, 200 1st ST SW Rochester MN 55915. Fax: (507) 255-6318. Phone: (507) 255-6028.
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
178
|
An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor. Biochem J 2018; 475:1821-1837. [PMID: 29748232 PMCID: PMC5980995 DOI: 10.1042/bcj20180171] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/29/2022]
Abstract
We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that, within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors, while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer–monomer dissociation Kd is estimated to be ∼0.9 µM with a slow dissociation rate (t1/2 ∼ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such ‘allostatic’ regulation may be important in metabolic reprogramming and influencing cell fate.
Collapse
|
179
|
Li J, Li S, Guo J, Li Q, Long J, Ma C, Ding Y, Yan C, Li L, Wu Z, Zhu H, Li KK, Wen L, Zhang Q, Xue Q, Zhao C, Liu N, Ivanov I, Luo M, Xi R, Long H, Wang PG, Chen Y. Natural Product Micheliolide (MCL) Irreversibly Activates Pyruvate Kinase M2 and Suppresses Leukemia. J Med Chem 2018; 61:4155-4164. [PMID: 29641204 PMCID: PMC5949721 DOI: 10.1021/acs.jmedchem.8b00241] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Indexed: 01/21/2023]
Abstract
Metabolic reprogramming of cancer cells is essential for tumorigenesis in which pyruvate kinase M2 (PKM2), the low activity isoform of pyruvate kinase, plays a critical role. Herein, we describe the identification of a nature-product-derived micheliolide (MCL) that selectively activates PKM2 through the covalent binding at residue cysteine424 (C424), which is not contained in PKM1. This interaction promotes more tetramer formation, inhibits the lysine433 (K433) acetylation, and influences the translocation of PKM2 into the nucleus. In addition, the pro-drug dimethylaminomicheliolide (DMAMCL) with similar properties as MCL significantly suppresses the growth of leukemia cells and tumorigenesis in a zebrafish xenograft model. Cell-based assay with knock down PKM2 expression verifies that the effects of MCL are dependent on PKM2 expression. DMAMCL is currently in clinical trials in Australia. Our discovery may provide a valuable pharmacological mechanism for clinical treatment and benefit the development of new anticancer agents.
Collapse
Affiliation(s)
- Jing Li
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Shanshan Li
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jianshuang Guo
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Qiuying Li
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Jing Long
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Cheng Ma
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yahui Ding
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Chunli Yan
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Liangwei Li
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Zhigang Wu
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - He Zhu
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Keqin Kathy Li
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Liuqing Wen
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Quan Zhang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Qingqing Xue
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Caili Zhao
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Ning Liu
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Ivaylo Ivanov
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Ming Luo
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Rimo Xi
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| | - Haibo Long
- Department
of Nephrology, Zhujiang Hospital, Southern
Medical University, Guangzhou 510280, China
| | - Peng George Wang
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
- Center
for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yue Chen
- State
Key Laboratory of Medicinal Chemical Biology, College of Pharmacy
and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300350, China
| |
Collapse
|
180
|
Wang F, Wang K, Xu W, Zhao S, Ye D, Wang Y, Xu Y, Zhou L, Chu Y, Zhang C, Qin X, Yang P, Yu H. SIRT5 Desuccinylates and Activates Pyruvate Kinase M2 to Block Macrophage IL-1β Production and to Prevent DSS-Induced Colitis in Mice. Cell Rep 2018; 19:2331-2344. [PMID: 28614718 DOI: 10.1016/j.celrep.2017.05.065] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/03/2017] [Accepted: 05/19/2017] [Indexed: 12/15/2022] Open
Abstract
LPS-activated macrophages undergo a metabolic shift from dependence on mitochondria-produced ATP to reliance on aerobic glycolysis, where PKM2 is a critical determinant. Here, we show that PKM2 is a physiological substrate of SIRT5 and that SIRT5-regulated hypersuccinylation inhibits the pyruvate kinase activity of PKM2 by promoting its tetramer-to-dimer transition. Moreover, a succinylation-mimetic PKM2 K311E mutation promotes nuclear accumulation and increases protein kinase activity. Furthermore, we show that SIRT5-dependent succinylation promotes PKM2 entry into nucleus, where a complex of PKM2-HIF1α is formed at the promoter of IL-1β gene in LPS-stimulated macrophages. Activation of PKM2 using TEPP-46 attenuates Sirt5-deficiency-mediated IL-1β upregulation in LPS-stimulated macrophages. Finally, we find that Sirt5-deficient mice are more susceptible to DSS-induced colitis, which is associated with Sirt5 deficiency prompted PKM2 hypersuccinylation and boosted IL-1β production. In conclusion, our findings reveal a mechanism by which SIRT5 suppresses the pro-inflammatory response in macrophages at least in part by regulating PKM2 succinylation, activity, and function.
Collapse
Affiliation(s)
- Fang Wang
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ke Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Shimin Zhao
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Dan Ye
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yi Wang
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Ying Xu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Lisha Zhou
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Chu
- Department of Immunity, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Cuiping Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Pengyuan Yang
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Hongxiu Yu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
181
|
Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med 2018; 50:1-16. [PMID: 29657328 PMCID: PMC5938058 DOI: 10.1038/s12276-018-0065-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
182
|
Lu Z, Hunter T. Metabolic Kinases Moonlighting as Protein Kinases. Trends Biochem Sci 2018; 43:301-310. [PMID: 29463470 PMCID: PMC5879014 DOI: 10.1016/j.tibs.2018.01.006] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/15/2018] [Accepted: 01/25/2018] [Indexed: 12/17/2022]
Abstract
Protein kinases regulate every aspect of cellular activity, whereas metabolic enzymes are responsible for energy production and catabolic and anabolic processes. Emerging evidence demonstrates that some metabolic enzymes, such as pyruvate kinase M2 (PKM2), phosphoglycerate kinase 1 (PGK1), ketohexokinase (KHK) isoform A (KHK-A), hexokinase (HK), and nucleoside diphosphate kinase 1 and 2 (NME1/2), that phosphorylate soluble metabolites can also function as protein kinases and phosphorylate a variety of protein substrates to regulate the Warburg effect, gene expression, cell cycle progression and proliferation, apoptosis, autophagy, exosome secretion, T cell activation, iron transport, ion channel opening, and many other fundamental cellular functions. The elevated protein kinase functions of these moonlighting metabolic enzymes in tumor development make them promising therapeutic targets for cancer.
Collapse
Affiliation(s)
- Zhimin Lu
- Brain Tumor Center and Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Cancer Biology Program, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
183
|
Shakespear MR, Iyer A, Cheng CY, Das Gupta K, Singhal A, Fairlie DP, Sweet MJ. Lysine Deacetylases and Regulated Glycolysis in Macrophages. Trends Immunol 2018; 39:473-488. [PMID: 29567326 DOI: 10.1016/j.it.2018.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022]
Abstract
Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages.
Collapse
Affiliation(s)
- Melanie R Shakespear
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Catherine Youting Cheng
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), National Capital Region (NCR) Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
184
|
Prakasam G, Iqbal MA, Bamezai RNK, Mazurek S. Posttranslational Modifications of Pyruvate Kinase M2: Tweaks that Benefit Cancer. Front Oncol 2018; 8:22. [PMID: 29468140 PMCID: PMC5808394 DOI: 10.3389/fonc.2018.00022] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/22/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer cells rewire metabolism to meet biosynthetic and energetic demands. The characteristic increase in glycolysis, i.e., Warburg effect, now considered as a hallmark, supports cancer in various ways. To attain such metabolic reshuffle, cancer cells preferentially re-express the M2 isoform of pyruvate kinase (PKM2, M2-PK) and alter its quaternary structure to generate less-active PKM2 dimers. The relatively inactive dimers cause the accumulation of glycolytic intermediates that are redirected into anabolic pathways. In addition, dimeric PKM2 also benefits cancer cells through various non-glycolytic moonlight functions, such as gene transcription, protein kinase activity, and redox balance. A large body of data have shown that several distinct posttranslation modifications (PTMs) regulate PKM2 in a way that benefits cancer growth, e.g., formation of PKM2 dimers. This review discusses the recent advancements in our understanding of various PTMs and the benefits they impart to the sustenance of cancer. Understanding the PTMs in PKM2 is crucial to assess their therapeutic potential and to design novel anticancer strategies.
Collapse
Affiliation(s)
- Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi, India
| | | | - Sybille Mazurek
- Institute of Veterinary Physiology and Biochemistry, University of Giessen, Giessen, Germany
| |
Collapse
|
185
|
Wang XJ, Qiao Y, Xiao MM, Wang L, Chen J, Lv W, Xu L, Li Y, Wang Y, Tan MD, Huang C, Li J, Zhao TC, Hou Z, Jing N, Chin YE. Opposing Roles of Acetylation and Phosphorylation in LIFR-Dependent Self-Renewal Growth Signaling in Mouse Embryonic Stem Cells. Cell Rep 2017; 18:933-946. [PMID: 28122243 DOI: 10.1016/j.celrep.2016.12.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/25/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
LIF promotes self-renewal of mouse embryonic stem cells (mESCs), and in its absence, the cells differentiate. LIF binds to the LIF receptor (LIFR) and activates the JAK-STAT3 pathway, but it remains unknown how the receptor complex triggers differentiation or self-renewal. Here, we report that the LIFR cytoplasmic domain contains a self-renewal domain within the juxtamembrane region and a differentiation domain within the C-terminal region. The differentiation domain contains four SPXX repeats that are phosphorylated by MAPK to restrict STAT3 activation; the self-renewal domain is characterized by a 3K motif that is acetylated by p300. In mESCs, acetyl-LIFR undergoes homodimerization, leading to STAT3 hypo- or hyper-activation depending on the presence or absence of gp130. LIFR-activated STAT3 restricts differentiation via cytokine induction. Thus, LIFR acetylation and serine phosphorylation differentially promote stem cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Xiong-Jun Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China; Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; iHuman Institute, Shanghai Tech University, 99 Haike Road, Shanghai 201210, China
| | - Minzhe M Xiao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Lingbo Wang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Jun Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China; Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenjian Lv
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Li Xu
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yan Li
- Department of Signal Transduction, School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yumei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Ming-Dian Tan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Chao Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | - Ting C Zhao
- Department of Surgery, Boston University Medical School, Roger Williams Medical Center, Providence, RI 02908, USA
| | - Zhaoyuan Hou
- Hongqiao Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China.
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
186
|
Srivastava D, Razzaghi M, Henzl MT, Dey M. Structural Investigation of a Dimeric Variant of Pyruvate Kinase Muscle Isoform 2. Biochemistry 2017; 56:6517-6520. [PMID: 29182273 DOI: 10.1021/acs.biochem.7b01013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pyruvate kinase muscle isoform 2 (PKM2) catalyzes the terminal step in glycolysis, transferring a phosphoryl group from phosphoenolpyruvate to ADP, to produce pyruvate and ATP. PKM2 activity is allosterically regulated by fructose 1,6-bisphosphate (FBP), an upstream glycolytic intermediate. FBP stabilizes the tetrameric form of the enzyme. In its absence, the PKM2 tetramers dissociate, yielding a dimer-monomer mixture having lower enzymatic activity. The S437Y variant of PKM2 is incapable of binding FBP. Consistent with that defect, we find that S437Y exists in a monomer-dimer equilibrium in solution, with a Kd of ∼20 μM. Interestingly, however, the protein crystallizes as a tetramer, providing insight into the structural basis for impaired FBP binding of S437Y.
Collapse
Affiliation(s)
- Dhiraj Srivastava
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Mortezaali Razzaghi
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Michael T Henzl
- Department of Biochemistry, University of Missouri-Columbia , Columbia, Missouri 65211, United States
| | - Mishtu Dey
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
187
|
O-GlcNAcylation destabilizes the active tetrameric PKM2 to promote the Warburg effect. Proc Natl Acad Sci U S A 2017; 114:13732-13737. [PMID: 29229835 DOI: 10.1073/pnas.1704145115] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Warburg effect, characterized by increased glucose uptake and lactate production, is a well-known universal across cancer cells and other proliferating cells. PKM2, a splice isoform of the pyruvate kinase (PK) specifically expressed in these cells, serves as a major regulator of this metabolic reprogramming with an adjustable activity subjected to numerous allosteric effectors and posttranslational modifications. Here, we have identified a posttranslational modification on PKM2, O-GlcNAcylation, which specifically targets Thr405 and Ser406, residues of the region encoded by the alternatively spliced exon 10 in cancer cells. We show that PKM2 O-GlcNAcylation is up-regulated in various types of human tumor cells and patient tumor tissues. The modification destabilized the active tetrameric PKM2, reduced PK activity, and led to nuclear translocation of PKM2. We also observed that the modification was associated with an increased glucose consumption and lactate production and enhanced level of lipid and DNA synthesis, indicating that O-GlcNAcylation promotes the Warburg effect. In vivo experiments showed that blocking PKM2 O-GlcNAcylation attenuated tumor growth. Thus, we demonstrate that O-GlcNAcylation is a regulatory mechanism for PKM2 in cancer cells and serves as a bridge between PKM2 and metabolic reprogramming typical of the Warburg effect.
Collapse
|
188
|
He Y, Gao M, Cao Y, Tang H, Liu S, Tao Y. Nuclear localization of metabolic enzymes in immunity and metastasis. Biochim Biophys Acta Rev Cancer 2017; 1868:359-371. [PMID: 28757126 DOI: 10.1016/j.bbcan.2017.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023]
Abstract
Metabolism is essential to all living organisms that provide cells with energy, regulators, building blocks, enzyme cofactors and signaling molecules, and is in tune with nutritional conditions and the function of cells to make the appropriate developmental decisions or maintain homeostasis. As a fundamental biological process, metabolism state affects the production of multiple metabolites and the activation of various enzymes that participate in regulating gene expression, cell apoptosis, cancer progression and immunoreactions. Previous studies generally focus on the function played by the metabolic enzymes in the cytoplasm and mitochondrion. In this review, we conclude the role of them in the nucleus and their implications for cancer progression, immunity and metastasis.
Collapse
Affiliation(s)
- Yuchen He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Menghui Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqu Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China; Cancer Research Institute, School of Basic Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
189
|
Lau AN, Israelsen WJ, Roper J, Sinnamon MJ, Georgeon L, Dayton TL, Hillis AL, Yilmaz OH, Di Vizio D, Hung KE, Vander Heiden MG. PKM2 is not required for colon cancer initiated by APC loss. Cancer Metab 2017; 5:10. [PMID: 29214019 PMCID: PMC5707917 DOI: 10.1186/s40170-017-0172-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/06/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Cancer cells express the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2). PKM2 expression is not required for some cancers, and PKM2 loss can promote cancer progression; however, PKM2 has been reported to be essential in other tumor contexts, including a proposed non-metabolic role in β-catenin nuclear translocation. PKM2 is expressed in colon cancers where loss of the Apc tumor suppressor results in β-catenin nuclear translocation and aberrant activation of the canonical Wnt signaling pathway. Whether PKM2 is required in this colon cancer context has not been investigated. RESULTS Colon tumorigenesis was induced in mice harboring conditional Apc and Pkm2 alleles, and tumor progression was monitored by serial colonoscopy. PKM2 deletion had no effect on overall survival, the number of mice that developed tumors, or the number of tumors that developed per animal. Immunohistochemical analysis demonstrated PKM2 expression in wild-type tumors and the expected loss of PKM2 expression in tumors from Pkm2 conditional mice. Loss of PKM2 resulted in pyruvate kinase M1 expression but had no effect on nuclear β-catenin staining. These findings are consistent with tumor growth and activated Wnt signaling despite PKM2 loss in this model. We also found a large fraction of human colon cancers had very low or undetectable levels of PKM2 expression. CONCLUSIONS PKM2 is not required for Apc-deficient colon cancer or for nuclear translocation of β-catenin in Apc-null tumor cells. These findings suggest that PKM2 expression is not required for colon tumor formation or progression.
Collapse
Affiliation(s)
- Allison N. Lau
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - William J. Israelsen
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Jatin Roper
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Medicine, Tufts Medical Center, Boston, MA 02111 USA
| | - Mark J. Sinnamon
- Department of Medicine, Tufts Medical Center, Boston, MA 02111 USA
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114 USA
- Harvard Medical School, Boston, MA 02114 USA
| | - Larissa Georgeon
- Department of Medicine, Tufts Medical Center, Boston, MA 02111 USA
| | - Talya L. Dayton
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Alissandra L. Hillis
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Omer H. Yilmaz
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Dolores Di Vizio
- Departments of Surgery, Biomedical Sciences, and Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA USA
| | - Kenneth E. Hung
- Department of Medicine, Tufts Medical Center, Boston, MA 02111 USA
| | - Matthew G. Vander Heiden
- Koch Institute for Integrative Cancer Research and the Department of Biology at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA
| |
Collapse
|
190
|
Seki SM, Gaultier A. Exploring Non-Metabolic Functions of Glycolytic Enzymes in Immunity. Front Immunol 2017; 8:1549. [PMID: 29213268 PMCID: PMC5702622 DOI: 10.3389/fimmu.2017.01549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023] Open
Abstract
At the beginning of the twentieth century, discoveries in cancer research began to elucidate the idiosyncratic metabolic proclivities of tumor cells (1). Investigators postulated that revealing the distinct nutritional requirements of cells with unchecked growth potential would reveal targetable metabolic vulnerabilities by which their survival could be selectively curtailed. Soon thereafter, researchers in the field of immunology began drawing parallels between the metabolic characteristics of highly proliferative cancer cells and those of immune cells that respond to perceived threats to host physiology by invading tissues, clonally expanding, and generating vast amounts of pro-inflammatory effector molecules to provide the host with protection. Throughout the past decade, increasing effort has gone into elucidating the biosynthetic and bioenergetic requirements of immune cells during inflammatory responses. It is now well established that, like tumor cells, immune cells must undergo metabolic adaptations to fulfill their effector functions (2, 3). Unraveling the metabolic adaptations that license inflammatory immune responses may lead to the development of novel classes of therapeutics for pathologies with prominent inflammatory components (e.g., autoimmunity). However, the translational potential of discoveries made toward this end is currently limited by the ubiquitous nature of the "pathologic" process being targeted: metabolism. Recent works have started to unravel unexpected non-metabolic functions for metabolic enzymes in the context of inflammation, including signaling and gene regulation. One way information gained through the study of immunometabolism may be leveraged for therapeutic benefit is by exploiting these non-canonical features of metabolic machinery, modulating their contribution to the immune response without impacting their basal metabolic functions. The focus of this review is to discuss the metabolically independent functions of glycolytic enzymes and how these could impact T cells, agents of the immune system that are commonly considered as orchestrators of auto-inflammatory processes.
Collapse
Affiliation(s)
- Scott M Seki
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA, United States.,Graduate Program in Neuroscience, Charlottesville, VA, United States.,Medical Scientist Training Program, Charlottesville, VA, United States
| | - Alban Gaultier
- Center for Brain Immunology and Glia, Department of Neuroscience, Charlottesville, VA, United States
| |
Collapse
|
191
|
Xia L, Qin K, Wang XR, Wang XL, Zhou AW, Chen GQ, Lu Y. Pyruvate kinase M2 phosphorylates H2AX and promotes genomic instability in human tumor cells. Oncotarget 2017; 8:109120-109134. [PMID: 29312595 PMCID: PMC5752508 DOI: 10.18632/oncotarget.22621] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/28/2017] [Indexed: 01/02/2023] Open
Abstract
Pyruvate kinase (PK) catalyzes the conversion of phosphoenolpyruvate and ADP to pyruvate and ATP, a rate-limiting reaction in glycolysis. M2 isoform of PK (PKM2) is the predominant form of PK expressed in tumors. In addition to its well established cytosolic functions as a glycolytic enzyme, PKM2 displays nuclear localization and important nonmetabolic functions in tumorigenesis. Herein, we report that nuclear PKM2 interacts with histone H2AX under DNA damage conditions. Depletion of PKM2 decreased the level of serine 139-phosphorylated H2AX (γ-H2AX) in response to DNA damage. The in vitro kinase assay reveals that PKM2 directly phosphorylates H2AX at serine 139, which is abolished by the deletion of FBP-binding pocket of PKM2 (PKM2-Del515-520). Replacement of wild type PKM2 with the kinase dead mutant PKM2-Del515-520 leads to decreased cell proliferation and chromosomal aberrations under DNA damage conditions. Together, we propose that PKM2 promotes genomic instability in tumor cells which involves direct phosphorylation of H2AX. These findings reveal PKM2 as a novel modulator for genomic instability in tumor cells.
Collapse
Affiliation(s)
- Li Xia
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Kang Qin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xin-Ran Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Xiao-Ling Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ai-Wu Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ying Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
192
|
Liu Y, Wu H, Mei Y, Ding X, Yang X, Li C, Deng M, Gong J. Clinicopathological and prognostic significance of PKM2 protein expression in cirrhotic hepatocellular carcinoma and non-cirrhotic hepatocellular carcinoma. Sci Rep 2017; 7:15294. [PMID: 29127353 PMCID: PMC5681582 DOI: 10.1038/s41598-017-14813-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/16/2017] [Indexed: 12/15/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), a key protein in glucose and lipid metabolism, has been reported to be related to carcinogenesis in various malignancies. However, its roles in hepatocellular carcinoma with cirrhotic liver (CL) and hepatocellular carcinoma with non-cirrhoticliver (NCL) haves not been investigated. In our study western bloting, qRT-PCR and immunohistochemistry were performed to evaluate the clinical significance of PKM2 protein expression in CL and NCL. The results revealed that PKM2 protein expression was significantly higher in HCC tissues than in their adjacent non-tumour tissues. The high expression rates of PKM2 were more frequently noted in CL (45. 6%) than in NCL (31. 9%) tissues. High PKM2 expression in CL and NCL tissues was significantly associated with vascular invasion (P = 0.002 and P = 0.004, respectively) and intrahepatic metastasis (P < 0.001 and P = 0.019, respectively). Importantly, Kaplan-Meier survival analysis showed that the disease-specific survival (DSS) and recurrence-free survival (RFS) were lower in CL with high PKM2 expression than in NCL with high PKM2 expression (P = 0.003 and P = 0.003, respectively). Overall, high PKM2 expression was more frequently found in CL than in NCL, and PKM2 overexpression was associated with poor survival rates in patients with CL and NCL.
Collapse
Affiliation(s)
- Yan Liu
- Department of Geriatric gastroenterology, the Fifth People's Hospital of Chengdu, Sichuan, 611130, China
| | - Hao Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Mei
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiong Ding
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoli Yang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Changping Li
- Department of gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Mingming Deng
- Department of gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Jianping Gong
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
193
|
Shanmugasundaram K, Nayak BK, Friedrichs WE, Kaushik D, Rodriguez R, Block K. NOX4 functions as a mitochondrial energetic sensor coupling cancer metabolic reprogramming to drug resistance. Nat Commun 2017; 8:997. [PMID: 29051480 PMCID: PMC5648812 DOI: 10.1038/s41467-017-01106-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 08/16/2017] [Indexed: 01/01/2023] Open
Abstract
The molecular mechanisms that couple glycolysis to cancer drug resistance remain unclear. Here we identify an ATP-binding motif within the NADPH oxidase isoform, NOX4, and show that ATP directly binds and negatively regulates NOX4 activity. We find that NOX4 localizes to the inner mitochondria membrane and that subcellular redistribution of ATP levels from the mitochondria act as an allosteric switch to activate NOX4. We provide evidence that NOX4-derived reactive oxygen species (ROS) inhibits P300/CBP-associated factor (PCAF)-dependent acetylation and lysosomal degradation of the pyruvate kinase-M2 isoform (PKM2). Finally, we show that NOX4 silencing, through PKM2, sensitizes cultured and ex vivo freshly isolated human-renal carcinoma cells to drug-induced cell death in xenograft models and ex vivo cultures. These findings highlight yet unidentified insights into the molecular events driving cancer evasive resistance and suggest modulation of ATP levels together with cytotoxic drugs could overcome drug-resistance in glycolytic cancers.
Collapse
Affiliation(s)
| | - Bijaya K Nayak
- Department of Medicine, UT Health, San Antonio, TX, 78229, USA
| | | | - Dharam Kaushik
- Department of Urology, UT Health, San Antonio, TX, 78229, USA
| | | | - Karen Block
- Department of Medicine, UT Health, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
194
|
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H, Yan GR. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell 2017; 68:171-184.e6. [PMID: 28985503 DOI: 10.1016/j.molcel.2017.09.015] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022]
Abstract
A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.
Collapse
Affiliation(s)
- Jin-Zhou Huang
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Institutes of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Min Chen
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - De Chen
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Cheng Gao
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Song Zhu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongyang Huang
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Min Hu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Huifang Zhu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
195
|
Lee Y, Ka SO, Cha HN, Chae YN, Kim MK, Park SY, Bae EJ, Park BH. Myeloid Sirtuin 6 Deficiency Causes Insulin Resistance in High-Fat Diet-Fed Mice by Eliciting Macrophage Polarization Toward an M1 Phenotype. Diabetes 2017; 66:2659-2668. [PMID: 28607107 DOI: 10.2337/db16-1446] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/20/2017] [Indexed: 11/13/2022]
Abstract
Obesity-related insulin resistance is closely associated with macrophage accumulation and subsequent cytokine release in local tissues. Sirtuin 6 (Sirt6) is known to exert an anti-inflammatory function, but its role in macrophages in the context of obesity has not been investigated. We generated myeloid-specific Sirt6 knockout (mS6KO) mice and investigated the metabolic characteristics after high-fat diet (HFD) feeding for 16 weeks. Compared with their wild-type littermates, HFD-fed mS6KO mice exhibited greater increases in body weight, fasting blood glucose and insulin levels, hepatic steatosis, glucose intolerance, and insulin resistance. Gene expression, histology, and flow cytometric analyses demonstrated that liver and adipose tissue inflammation were elevated in HFD-fed mS6KO mice relative to wild type, with a greater accumulation of F4/80+CD11b+CD11c+ adipose tissue macrophages. Myeloid Sirt6 deletion facilitated proinflammatory M1 polarization of bone marrow macrophages and augmented the migration potential of macrophages toward adipose-derived chemoattractants. Mechanistically, Sirt6 deletion in macrophages promoted the activation of nuclear factor-κB (NF-κB) and endogenous production of interleukin-6, which led to STAT3 activation and the positive feedback circuits for NF-κB stimulation; this cross talk expedited an M1 polarization. We conclude that Sirt6 in macrophages is required for the prevention of obesity-associated tissue inflammation and insulin resistance.
Collapse
Affiliation(s)
- Youngyi Lee
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Sun-O Ka
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, North Gyeongsang, Republic of Korea
| | - Yu-Na Chae
- Research Institute of Dong-A ST, Yongin, Gyeonggi, Republic of Korea
| | - Mi-Kyung Kim
- Research Institute of Dong-A ST, Yongin, Gyeonggi, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, North Gyeongsang, Republic of Korea
| | - Eun Ju Bae
- College of Pharmacy, Woosuk University, Wanju, Jeonbuk, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, Jeonbuk, Republic of Korea
| |
Collapse
|
196
|
Ding H, Jiang L, Xu J, Bai F, Zhou Y, Yuan Q, Luo J, Zen K, Yang J. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis. Am J Physiol Renal Physiol 2017; 313:F561-F575. [PMID: 28228400 DOI: 10.1152/ajprenal.00036.2017] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 11/22/2022] Open
Abstract
Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy.
Collapse
Affiliation(s)
- Hao Ding
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Lei Jiang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Jing Xu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Feng Bai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Yang Zhou
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Qi Yuan
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Jing Luo
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Advanced Institute of Life Sciences, Nanjing, China
| | - Junwei Yang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
197
|
Cao Y, Wang RH. Associations among Metabolism, Circadian Rhythm and Age-Associated Diseases. Aging Dis 2017; 8:314-333. [PMID: 28580187 PMCID: PMC5440111 DOI: 10.14336/ad.2016.1101] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/01/2016] [Indexed: 12/12/2022] Open
Abstract
Accumulating epidemiological studies have implicated a strong link between age associated metabolic diseases and cancer, though direct and irrefutable evidence is missing. In this review, we discuss the connection between Warburg effects and tumorigenesis, as well as adaptive responses to environment such as circadian rhythms on molecular pathways involved in metabolism. We also review the central role of the sirtuin family of proteins in physiological modulation of cellular processes and age-associated metabolic diseases. We also provide a macroscopic view of how the circadian rhythm affects metabolism and may be involved in cell metabolism reprogramming and cancer pathogenesis. The aberrations in metabolism and the circadian system may lead to age-associated diseases directly or through intermediates. These intermediates may be either mutated or reprogrammed, thus becoming responsible for chromatin modification and oncogene transcription. Integration of circadian rhythm and metabolic reprogramming in the holistic understanding of metabolic diseases and cancer may provide additional insights into human diseases.
Collapse
Affiliation(s)
- Yiwei Cao
- Faculty of Health Science, University of Macau, Macau, China
| | - Rui-Hong Wang
- Faculty of Health Science, University of Macau, Macau, China
| |
Collapse
|
198
|
SEN SATARUPA, DESHMANE SATISHL, KAMINSKI RAFAL, AMINI SHOHREH, DATTA PRASUNK. Non-Metabolic Role of PKM2 in Regulation of the HIV-1 LTR. J Cell Physiol 2017; 232:517-525. [PMID: 27249540 PMCID: PMC5714288 DOI: 10.1002/jcp.25445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/31/2016] [Indexed: 12/31/2022]
Abstract
Identification of cellular proteins, in addition to already known transcription factors such as NF-κB, Sp1, C-EBPβ, NFAT, ATF/CREB, and LEF-1, which interact with the HIV-1 LTR, is critical in understanding the mechanism of HIV-1 replication in monocytes/macrophages. Our studies demonstrate upregulation of pyruvate kinase isoform M2 (PKM2) expression during HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells, a macrophage model of latency. We observed that HIV-1SF162 infection of monocyte/macrophages and reactivation of HIV-1 in U1 cells by PMA resulted in increased levels of nuclear PKM2 compared to PMA-induced U937 cells. Furthermore, there was a significant increase in the nuclear dimeric form of PKM2 in the PMA-induced U1 cells in comparison to PMA-induced U937 cells. We focused on understanding the potential role of PKM2 in HIV-1 LTR transactivation. Chromatin immunoprecipitation (ChIP) analysis in PMA-activated U1 and TZM-bl cells demonstrated the interaction of PKM2 with the HIV-1 LTR. Our studies show that overexpression of PKM2 results in transactivation of HIV-1 LTR-luciferase reporter in U937, U-87 MG, and TZM-bl cells. Using various truncated constructs of the HIV-1 LTR, we mapped the region spanning -120 bp to -80 bp to be essential for PKM2-mediated transactivation. This region contains the NF-κB binding site and deletion of this site attenuated PKM2-mediated activation of HIV-1 LTR. Immunoprecipitation experiments using U1 cell lysates demonstrated a physical interaction between PKM2 and the p65 subunit of NF-κB. These observations demonstrate for the first time that PKM2 is a transcriptional co-activator of HIV-1 LTR. J. Cell. Physiol. 232: 517-525, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- SATARUPA SEN
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - SATISH L. DESHMANE
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - RAFAL KAMINSKI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - SHOHREH AMINI
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
- Department of Biology, College of Science and Technology, Philadelphia, Pennsylvania
| | - PRASUN K. DATTA
- Department of Neuroscience, Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
199
|
Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026534. [PMID: 27881443 DOI: 10.1101/cshperspect.a026534] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
p300 and CREB-binding protein (CBP), two homologous lysine acetyltransferases in metazoans, have a myriad of cellular functions. They exert their influence mainly through their roles as transcriptional regulators but also via nontranscriptional effects inside and outside of the nucleus on processes such as DNA replication and metabolism. The versatility of p300/CBP as molecular tools has led to their exploitation by viral oncogenes for cellular transformation and by cancer cells to achieve and maintain an oncogenic phenotype. How cancer cells use p300/CBP in their favor varies depending on the cellular context and is evident by the growing list of loss- and gain-of-function genetic alterations in p300 and CBP in solid tumors and hematological malignancies. Here, we discuss the biological functions of p300/CBP and how disruption of these functions by mutations and alterations in expression or subcellular localization contributes to the cancer phenotype.
Collapse
Affiliation(s)
- Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
200
|
Kulkarni RA, Worth AJ, Zengeya TT, Shrimp JH, Garlick JM, Roberts AM, Montgomery DC, Sourbier C, Gibbs BK, Mesaros C, Tsai YC, Das S, Chan KC, Zhou M, Andresson T, Weissman AM, Linehan WM, Blair IA, Snyder NW, Meier JL. Discovering Targets of Non-enzymatic Acylation by Thioester Reactivity Profiling. Cell Chem Biol 2017; 24:231-242. [PMID: 28163016 DOI: 10.1016/j.chembiol.2017.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/14/2016] [Accepted: 01/10/2017] [Indexed: 01/15/2023]
Abstract
Non-enzymatic protein modification driven by thioester reactivity is thought to play a major role in the establishment of cellular lysine acylation. However, the specific protein targets of this process are largely unknown. Here we report an experimental strategy to investigate non-enzymatic acylation in cells. Specifically, we develop a chemoproteomic method that separates thioester reactivity from enzymatic utilization, allowing selective enrichment of non-enzymatic acylation targets. Applying this method to cancer cell lines identifies numerous candidate targets of non-enzymatic acylation, including several enzymes in lower glycolysis. Functional studies highlight malonyl-CoA as a reactive thioester metabolite that can modify and inhibit glycolytic enzyme activity. Finally, we show that synthetic thioesters can be used as novel reagents to probe non-enzymatic acylation in living cells. Our studies provide new insights into the targets and drivers of non-enzymatic acylation, and demonstrate the utility of reactivity-based methods to experimentally investigate this phenomenon in biology and disease.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Andrew J Worth
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas T Zengeya
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jonathan H Shrimp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Julie M Garlick
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Allison M Roberts
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - David C Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Carole Sourbier
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Benjamin K Gibbs
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Clementina Mesaros
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yien Che Tsai
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - King C Chan
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Allan M Weissman
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA
| | - Ian A Blair
- Penn SRP Center, Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W Snyder
- Drexel University, A.J. Drexel Autism Institute, 3020 Market Street, Philadelphia, PA 19104, USA
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|