151
|
The Cell Cycle Checkpoint System MAST(L)-ENSA/ARPP19-PP2A is Targeted by cAMP/PKA and cGMP/PKG in Anucleate Human Platelets. Cells 2020; 9:cells9020472. [PMID: 32085646 PMCID: PMC7072724 DOI: 10.3390/cells9020472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
The cell cycle is controlled by microtubule-associated serine/threonine kinase-like (MASTL), which phosphorylates the cAMP-regulated phosphoproteins 19 (ARPP19) at S62 and 19e/α-endosulfine (ENSA) at S67and converts them into protein phosphatase 2A (PP2A) inhibitors. Based on initial proteomic data, we hypothesized that the MASTL-ENSA/ARPP19-PP2A pathway, unknown until now in platelets, is regulated and functional in these anucleate cells. We detected ENSA, ARPP19 and various PP2A subunits (including seven different PP2A B-subunits) in proteomic studies of human platelets. ENSA-S109/ARPP19–S104 were efficiently phosphorylated in platelets treated with cAMP- (iloprost) and cGMP-elevating (NO donors/riociguat) agents. ENSA-S67/ARPP19-S62 phosphorylations increased following PP2A inhibition by okadaic acid (OA) in intact and lysed platelets indicating the presence of MASTL or a related protein kinase in human platelets. These data were validated with recombinant ENSA/ARPP19 and phospho-mutants using recombinant MASTL, protein kinase A and G. Both ARPP19 phosphorylation sites S62/S104 were dephosphorylated by platelet PP2A, but only S62-phosphorylated ARPP19 acted as PP2A inhibitor. Low-dose OA treatment of platelets caused PP2A inhibition, diminished thrombin-stimulated platelet aggregation and increased phosphorylation of distinct sites of VASP, Akt, p38 and ERK1/2 MAP kinases. In summary, our data establish the entire MASTL(like)–ENSA/ARPP19–PP2A pathway in human platelets and important interactions with the PKA, MAPK and PI3K/Akt systems.
Collapse
|
152
|
Keating L, Touati SA, Wassmann K. A PP2A-B56-Centered View on Metaphase-to-Anaphase Transition in Mouse Oocyte Meiosis I. Cells 2020; 9:E390. [PMID: 32046180 PMCID: PMC7072534 DOI: 10.3390/cells9020390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Meiosis is required to reduce to haploid the diploid genome content of a cell, generating gametes-oocytes and sperm-with the correct number of chromosomes. To achieve this goal, two specialized cell divisions without intermediate S-phase are executed in a time-controlled manner. In mammalian female meiosis, these divisions are error-prone. Human oocytes have an exceptionally high error rate that further increases with age, with significant consequences for human fertility. To understand why errors in chromosome segregation occur at such high rates in oocytes, it is essential to understand the molecular players at work controlling these divisions. In this review, we look at the interplay of kinase and phosphatase activities at the transition from metaphase-to-anaphase for correct segregation of chromosomes. We focus on the activity of PP2A-B56, a key phosphatase for anaphase onset in both mitosis and meiosis. We start by introducing multiple roles PP2A-B56 occupies for progression through mitosis, before laying out whether or not the same principles may apply to the first meiotic division in oocytes, and describing the known meiosis-specific roles of PP2A-B56 and discrepancies with mitotic cell cycle regulation.
Collapse
Affiliation(s)
- Leonor Keating
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| | - Sandra A. Touati
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| | - Katja Wassmann
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
153
|
Frohner IE, Mudrak I, Kronlachner S, Schüchner S, Ogris E. Antibodies recognizing the C terminus of PP2A catalytic subunit are unsuitable for evaluating PP2A activity and holoenzyme composition. Sci Signal 2020; 13:13/616/eaax6490. [PMID: 31992581 DOI: 10.1126/scisignal.aax6490] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The methyl-esterification of the C-terminal leucine of the protein phosphatase 2A (PP2A) catalytic (C) subunit is essential for the assembly of specific trimeric PP2A holoenzymes, and this region of the C subunit also contains two threonine and tyrosine phosphorylation sites. Most commercial antibodies-including the monoclonal antibody 1D6 that is part of a frequently used, commercial phosphatase assay kit-are directed toward the C terminus of the C subunit, raising questions as to their ability to recognize methylated and phosphorylated forms of the enzyme. Here, we tested several PP2A C antibodies, including monoclonal antibodies 1D6, 7A6, G-4, and 52F8 and the polyclonal antibody 2038 for their ability to specifically detect PP2A in its various modified forms, as well as to coprecipitate regulatory subunits. The tested antibodies preferentially recognized the nonmethylated form of the enzyme, and they did not coimmunoprecipitate trimeric holoenzymes containing the regulatory subunits B or B', an issue that precludes their use to monitor PP2A holoenzyme activity. Furthermore, some of the antibodies also recognized the phosphatase PP4, demonstrating a lack of specificity for PP2A. Together, these findings suggest that reinterpretation of the data generated by using these reagents is required.
Collapse
Affiliation(s)
- Ingrid E Frohner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Ingrid Mudrak
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stephanie Kronlachner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Stefan Schüchner
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Egon Ogris
- Center for Medical Biochemistry, Max Perutz Labs, Vienna BioCenter, Medical University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
154
|
Protein Phosphatases in G1 Regulation. Int J Mol Sci 2020; 21:ijms21020395. [PMID: 31936296 PMCID: PMC7013402 DOI: 10.3390/ijms21020395] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/29/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Eukaryotic cells make the decision to proliferate, to differentiate or to cease dividing during G1, before passage through the restriction point or Start. Keeping cyclin-dependent kinase (CDK) activity low during this period restricts commitment to a new cell cycle and is essential to provide the adequate timeframe for the sensing of environmental signals. Here, we review the role of protein phosphatases in the modulation of CDK activity and as the counteracting force for CDK-dependent substrate phosphorylation, in budding and fission yeast. Moreover, we discuss recent findings that place protein phosphatases in the interface between nutritional signalling pathways and the cell cycle machinery.
Collapse
|
155
|
Kim JW, Berrios C, Kim M, Schade AE, Adelmant G, Yeerna H, Damato E, Iniguez AB, Florens L, Washburn MP, Stegmaier K, Gray NS, Tamayo P, Gjoerup O, Marto JA, DeCaprio J, Hahn WC. STRIPAK directs PP2A activity toward MAP4K4 to promote oncogenic transformation of human cells. eLife 2020; 9:e53003. [PMID: 31913126 PMCID: PMC6984821 DOI: 10.7554/elife.53003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations involving serine-threonine phosphatase PP2A subunits occur in a range of human cancers, and partial loss of PP2A function contributes to cell transformation. Displacement of regulatory B subunits by the SV40 Small T antigen (ST) or mutation/deletion of PP2A subunits alters the abundance and types of PP2A complexes in cells, leading to transformation. Here, we show that ST not only displaces common PP2A B subunits but also promotes A-C subunit interactions with alternative B subunits (B''', striatins) that are components of the Striatin-interacting phosphatase and kinase (STRIPAK) complex. We found that STRN4, a member of STRIPAK, is associated with ST and is required for ST-PP2A-induced cell transformation. ST recruitment of STRIPAK facilitates PP2A-mediated dephosphorylation of MAP4K4 and induces cell transformation through the activation of the Hippo pathway effector YAP1. These observations identify an unanticipated role of MAP4K4 in transformation and show that the STRIPAK complex regulates PP2A specificity and activity.
Collapse
Affiliation(s)
- Jong Wook Kim
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoUnited States
| | - Christian Berrios
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
| | - Miju Kim
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Amy E Schade
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
| | - Guillaume Adelmant
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - Huwate Yeerna
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
| | - Emily Damato
- Broad Institute of Harvard and MITCambridgeUnited States
| | - Amanda Balboni Iniguez
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Pediatric OncologyDana-Farber Cancer InstituteBostonUnited States
| | | | - Michael P Washburn
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Pathology and Laboratory MedicineUniversity of Kansas Medical CenterKansas CityUnited States
| | - Kim Stegmaier
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Pediatric OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Nathanael S Gray
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
| | - Pablo Tamayo
- Division of Medical Genetics, School of MedicineUniversity of California, San DiegoSan DiegoUnited States
- Moores Cancer CenterUniversity of California, San DiegoSan DiegoUnited States
| | - Ole Gjoerup
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
| | - Jarrod A Marto
- Department of Cancer Biology and Blais Proteomics CenterDana-Farber Cancer InstituteBostonUnited States
- Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUnited States
- Department of Oncologic PathologyDana-Farber Cancer InstituteBostonUnited States
| | - James DeCaprio
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Program in Virology, Graduate School of Arts and SciencesHarvard UniversityCambridgeUnited States
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| | - William C Hahn
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medical OncologyDana-Farber Cancer InstituteBostonUnited States
- Department of MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonUnited States
| |
Collapse
|
156
|
Fujimitsu K, Yamano H. PP2A-B56 binds to Apc1 and promotes Cdc20 association with the APC/C ubiquitin ligase in mitosis. EMBO Rep 2020; 21:e48503. [PMID: 31825153 PMCID: PMC6945068 DOI: 10.15252/embr.201948503] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Cell cycle progression and genome stability are regulated by a ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C). Cyclin-dependent kinase 1 (Cdk1) has long been implicated in APC/C activation; however, the molecular mechanisms of governing this process in vivo are largely unknown. Recently, a Cdk1-dependent phosphorylation relay within Apc3-Apc1 subunits has been shown to alleviate Apc1-mediated auto-inhibition by which a mitotic APC/C co-activator Cdc20 binds to and activates the APC/C. However, the underlying mechanism for dephosphorylation of Cdc20 and APC/C remains elusive. Here, we show that a disordered loop domain of Apc1 (Apc1-loop500 ) directly binds the B56 regulatory subunit of protein phosphatase 2A (PP2A) and stimulates Cdc20 loading to the APC/C. Using the APC/C reconstitution system in Xenopus egg extracts, we demonstrate that mutations in Apc1-loop500 that abolish B56 binding decrease Cdc20 loading and APC/C-dependent ubiquitylation. Conversely, a non-phosphorylatable mutant Cdc20 can efficiently bind the APC/C even when PP2A-B56 binding is impeded. Furthermore, PP2A-B56 preferentially dephosphorylates Cdc20 over the Apc1 inhibitory domain. These results indicate that Apc1-loop500 plays a role in dephosphorylating Cdc20, promoting APC/C-Cdc20 complex formation in mitosis.
Collapse
Affiliation(s)
- Kazuyuki Fujimitsu
- Cell Cycle Control GroupUCL Cancer InstituteUniversity College LondonLondonUK
| | - Hiroyuki Yamano
- Cell Cycle Control GroupUCL Cancer InstituteUniversity College LondonLondonUK
| |
Collapse
|
157
|
Bel Borja L, Soubigou F, Taylor SJP, Fraguas Bringas C, Budrewicz J, Lara-Gonzalez P, Sorensen Turpin CG, Bembenek JN, Cheerambathur DK, Pelisch F. BUB-1 targets PP2A:B56 to regulate chromosome congression during meiosis I in C. elegans oocytes. eLife 2020; 9:65307. [PMID: 33355089 PMCID: PMC7787666 DOI: 10.7554/elife.65307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a heterotrimer composed of scaffolding (A), catalytic (C), and regulatory (B) subunits. PP2A complexes with B56 subunits are targeted by Shugoshin and BUBR1 to protect centromeric cohesion and stabilise kinetochore-microtubule attachments in yeast and mouse meiosis. In Caenorhabditis elegans, the closest BUBR1 orthologue lacks the B56-interaction domain and Shugoshin is not required for meiotic segregation. Therefore, the role of PP2A in C. elegans female meiosis is unknown. We report that PP2A is essential for meiotic spindle assembly and chromosome dynamics during C. elegans female meiosis. BUB-1 is the main chromosome-targeting factor for B56 subunits during prometaphase I. BUB-1 recruits PP2A:B56 to the chromosomes via a newly identified LxxIxE motif in a phosphorylation-dependent manner, and this recruitment is important for proper chromosome congression. Our results highlight a novel mechanism for B56 recruitment, essential for recruiting a pool of PP2A involved in chromosome congression during meiosis I.
Collapse
Affiliation(s)
- Laura Bel Borja
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Flavie Soubigou
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Samuel J P Taylor
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Conchita Fraguas Bringas
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jacqueline Budrewicz
- Ludwig Institute for Cancer ResearchSan DiegoUnited States,Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Pablo Lara-Gonzalez
- Ludwig Institute for Cancer ResearchSan DiegoUnited States,Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | | | - Joshua N Bembenek
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn ArborUnited States
| | - Dhanya K Cheerambathur
- Wellcome Centre for Cell Biology & Institute of Cell Biology, School of Biological Sciences, The University of EdinburghEdinburghUnited Kingdom
| | - Federico Pelisch
- Centre for Gene Regulation and Expression, Sir James Black Centre, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
158
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
159
|
Hayward D, Bancroft J, Mangat D, Alfonso-Pérez T, Dugdale S, McCarthy J, Barr FA, Gruneberg U. Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56. J Cell Biol 2019; 218:3188-3199. [PMID: 31511308 PMCID: PMC6781431 DOI: 10.1083/jcb.201905026] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
During mitosis, the formation of microtubule-kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cycle until all kinetochores have been stably captured by microtubules. MPS1 also contributes to the error correction process rectifying incorrect kinetochore attachments. MPS1 activity at kinetochores requires autophosphorylation at multiple sites including threonine 676 in the activation segment or "T-loop." We now demonstrate that the BUBR1-bound pool of PP2A-B56 regulates MPS1 T-loop autophosphorylation and hence activation status in mammalian cells. Overriding this regulation using phosphomimetic mutations in the MPS1 T-loop to generate a constitutively active kinase results in a prolonged mitotic arrest with continuous turnover of microtubule-kinetochore attachments. Dynamic regulation of MPS1 catalytic activity by kinetochore-localized PP2A-B56 is thus critical for controlled MPS1 activity and timely cell cycle progression.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - James Bancroft
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Sholto Dugdale
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Julia McCarthy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
160
|
Holder J, Poser E, Barr FA. Getting out of mitosis: spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett 2019; 593:2908-2924. [PMID: 31494926 DOI: 10.1002/1873-3468.13595] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Here, we will review the evidence showing that mitotic exit is initiated by regulated proteolysis and then driven by the PPP family of phosphoserine/threonine phosphatases. Rapid APC/CCDC20 and ubiquitin-dependent proteolysis of cyclin B and securin initiates sister chromatid separation, the first step of mitotic exit. Because proteolysis of Aurora and Polo family kinases dependent on APC/CCDH1 is relatively slow, this creates a new regulatory state, anaphase, different to G2 and M-phase. We will discuss how the CDK1-counteracting phosphatases PP1 and PP2A-B55, together with Aurora and Polo kinases, contribute to the temporal regulation and order of events in the different stages of mitotic exit from anaphase to cytokinesis. For PP2A-B55, these timing properties are created by the ENSA-dependent inhibitory pathway and differential recognition of phosphoserine and phosphothreonine. Finally, we will discuss how Aurora B and PP2A-B56 are needed for the spatial regulation of anaphase spindle formation and how APC/C-dependent destruction of PLK1 acts as a timer for abscission, the final event of cytokinesis.
Collapse
Affiliation(s)
- James Holder
- Department of Biochemistry, University of Oxford, UK
| | - Elena Poser
- Department of Biochemistry, University of Oxford, UK
| | | |
Collapse
|
161
|
A Consensus Binding Motif for the PP4 Protein Phosphatase. Mol Cell 2019; 76:953-964.e6. [PMID: 31585692 DOI: 10.1016/j.molcel.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/08/2019] [Accepted: 08/28/2019] [Indexed: 12/18/2022]
Abstract
Dynamic protein phosphorylation constitutes a fundamental regulatory mechanism in all organisms. Phosphoprotein phosphatase 4 (PP4) is a conserved and essential nuclear serine and threonine phosphatase. Despite the importance of PP4, general principles of substrate selection are unknown, hampering the study of signal regulation by this phosphatase. Here, we identify and thoroughly characterize a general PP4 consensus-binding motif, the FxxP motif. X-ray crystallography studies reveal that FxxP motifs bind to a conserved pocket in the PP4 regulatory subunit PPP4R3. Systems-wide in silico searches integrated with proteomic analysis of PP4 interacting proteins allow us to identify numerous FxxP motifs in proteins controlling a range of fundamental cellular processes. We identify an FxxP motif in the cohesin release factor WAPL and show that this regulates WAPL phosphorylation status and is required for efficient cohesin release. Collectively our work uncovers basic principles of PP4 specificity with broad implications for understanding phosphorylation-mediated signaling in cells.
Collapse
|
162
|
Hayward D, Alfonso-Pérez T, Gruneberg U. Orchestration of the spindle assembly checkpoint by CDK1-cyclin B1. FEBS Lett 2019; 593:2889-2907. [PMID: 31469407 DOI: 10.1002/1873-3468.13591] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | |
Collapse
|
163
|
Lev I, Toker IA, Mor Y, Nitzan A, Weintraub G, Antonova O, Bhonkar O, Ben Shushan I, Seroussi U, Claycomb JM, Anava S, Gingold H, Zaidel-Bar R, Rechavi O. Germ Granules Govern Small RNA Inheritance. Curr Biol 2019; 29:2880-2891.e4. [PMID: 31378614 PMCID: PMC6739422 DOI: 10.1016/j.cub.2019.07.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/01/2019] [Accepted: 07/17/2019] [Indexed: 02/04/2023]
Abstract
In C. elegans nematodes, components of liquid-like germ granules were shown to be required for transgenerational small RNA inheritance. Surprisingly, we show here that mutants with defective germ granules can nevertheless inherit potent small RNA-based silencing responses, but some of the mutants lose this ability after many generations of homozygosity. Animals mutated in pptr-1, which is required for stabilization of P granules in the early embryo, display extraordinarily strong heritable RNAi responses, lasting for tens of generations. Intriguingly, the RNAi capacity of descendants derived from mutants defective in the core germ granule proteins MEG-3 and MEG-4 is determined by the genotype of the ancestors and changes transgenerationally. Further, whether the meg-3/4 mutant alleles were present in the paternal or maternal lineages leads to different transgenerational consequences. Small RNA inheritance, rather than maternal contribution of the germ granules themselves, mediates the transgenerational defects in RNAi of meg-3/4 mutants and their progeny. Accordingly, germ granule defects lead to heritable genome-wide mis-expression of endogenous small RNAs. Upon disruption of germ granules, hrde-1 mutants can inherit RNAi, although HRDE-1 was previously thought to be absolutely required for RNAi inheritance. We propose that germ granules sort and shape the RNA pool, and that small RNA inheritance maintains this activity for multiple generations.
Collapse
Affiliation(s)
- Itamar Lev
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Itai Antoine Toker
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Yael Mor
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Anat Nitzan
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Guy Weintraub
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Olga Antonova
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ornit Bhonkar
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Itay Ben Shushan
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Uri Seroussi
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Julie M Claycomb
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Gingold
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronen Zaidel-Bar
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
164
|
Zhao JL, Zhang LQ, Liu N, Xu SL, Yue ZL, Zhang LL, Deng ZP, Burlingame AL, Sun DY, Wang ZY, Sun Y, Zhang SW. Mutual Regulation of Receptor-Like Kinase SIT1 and B'κ-PP2A Shapes the Early Response of Rice to Salt Stress. THE PLANT CELL 2019; 31:2131-2151. [PMID: 31221736 PMCID: PMC6751134 DOI: 10.1105/tpc.18.00706] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 06/14/2019] [Indexed: 05/03/2023]
Abstract
The receptor-like kinase SIT1 acts as a sensor in rice (Oryza sativa) roots, relaying salt stress signals via elevated kinase activity to enhance salt sensitivity. Here, we demonstrate that Protein Phosphatase 2A (PP2A) regulatory subunit B'κ constrains SIT1 activity under salt stress. B'κ-PP2A deactivates SIT1 directly by dephosphorylating the kinase at Thr515/516, a salt-induced phosphorylation site in the activation loop that is essential for SIT1 activity. B'κ overexpression suppresses the salt sensitivity of rice plants expressing high levels of SIT1, thereby contributing to salt tolerance. B'κ functions in a SIT1 kinase-dependent manner. During early salt stress, activated SIT1 phosphorylates B'κ; this not only enhances its binding with SIT1, it also promotes B'κ protein accumulation via Ser502 phosphorylation. Consequently, by blocking SIT1 phosphorylation, B'κ inhibits and fine-tunes SIT1 activity to balance plant growth and stress adaptation.
Collapse
Affiliation(s)
- Ji-Long Zhao
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Li-Qing Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Ning Liu
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Zhi-Liang Yue
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Lu-Lu Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Ping Deng
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94143
| | - Da-Ye Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305
| | - Ying Sun
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| | - Sheng-Wei Zhang
- College of Life Science, Hebei Normal University, Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, Hebei 050024, China
| |
Collapse
|
165
|
Smith RJ, Cordeiro MH, Davey NE, Vallardi G, Ciliberto A, Gross F, Saurin AT. PP1 and PP2A Use Opposite Phospho-dependencies to Control Distinct Processes at the Kinetochore. Cell Rep 2019; 28:2206-2219.e8. [PMID: 31433993 PMCID: PMC6715587 DOI: 10.1016/j.celrep.2019.07.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
PP1 and PP2A-B56 are major serine/threonine phosphatase families that achieve specificity by colocalizing with substrates. At the kinetochore, however, both phosphatases localize to an almost identical molecular space and yet they still manage to regulate unique pathways and processes. By switching or modulating the positions of PP1/PP2A-B56 at kinetochores, we show that their unique downstream effects are not due to either the identity of the phosphatase or its precise location. Instead, these phosphatases signal differently because their kinetochore recruitment can be either inhibited (PP1) or enhanced (PP2A) by phosphorylation inputs. Mathematical modeling explains how these inverse phospho-dependencies elicit unique forms of cross-regulation and feedback, which allows otherwise indistinguishable phosphatases to produce distinct network behaviors and control different mitotic processes. Furthermore, our genome-wide analysis suggests that these major phosphatase families may have evolved to respond to phosphorylation inputs in opposite ways because many other PP1 and PP2A-B56-binding motifs are also phospho-regulated.
Collapse
Affiliation(s)
- Richard J Smith
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Marilia H Cordeiro
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Giulia Vallardi
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | | | - Fridolin Gross
- Istituto Firc di Oncologia Molecolare, IFOM, Milano, Italy
| | - Adrian T Saurin
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
166
|
Interplay between Phosphatases and the Anaphase-Promoting Complex/Cyclosome in Mitosis. Cells 2019; 8:cells8080814. [PMID: 31382469 PMCID: PMC6721574 DOI: 10.3390/cells8080814] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022] Open
Abstract
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Collapse
|
167
|
Antao NV, Marcet-Ortega M, Cifani P, Kentsis A, Foley EA. A Cancer-Associated Missense Mutation in PP2A-Aα Increases Centrosome Clustering during Mitosis. iScience 2019; 19:74-82. [PMID: 31357169 PMCID: PMC6664223 DOI: 10.1016/j.isci.2019.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
Whole-genome doubling (WGD) is common early in tumorigenesis. WGD doubles ploidy and centrosome number. In the ensuing mitoses, excess centrosomes form a multipolar spindle, resulting in a lethal multipolar cell division. To survive, cells must cluster centrosomes to allow bipolar cell division. Cancer cells are often more proficient at centrosome clustering than untransformed cells, but the mechanism behind increased clustering ability is not well understood. Heterozygous missense mutations in PPP2R1A, which encodes the alpha isoform of the "scaffolding" subunit of PP2A (PP2A-Aα), positively correlate with WGD. We introduced a heterozygous hotspot mutation, P179R, into PPP2R1A in human RPE-1 cells. PP2A-AαP179R decreases PP2A assembly and intracellular targeting in mitosis. Strikingly, PP2A-AαP179R enhances centrosome clustering when centrosome number is increased either by cytokinesis failure or centrosome amplification, likely through PP2A-Aα loss of function. Thus cancer-associated mutations in PP2A-Aα may increase cellular fitness after WGD by enhancing centrosome clustering.
Collapse
Affiliation(s)
- Noelle V Antao
- Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Medicine Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA; Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Marcet-Ortega
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Paolo Cifani
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily A Foley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
168
|
Krystkowiak I, Davey NE. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Nucleic Acids Res 2019; 45:W464-W469. [PMID: 28387819 PMCID: PMC5570202 DOI: 10.1093/nar/gkx238] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022] Open
Abstract
The extensive intrinsically disordered regions of higher eukaryotic proteomes contain vast numbers of functional interaction modules known as short linear motifs (SLiMs). Here, we present SLiMSearch, a motif discovery tool that scans a motif consensus, representing the specificity determinants of a motif-binding domain, against a proteome to discover putative novel motif instances. SLiMSearch applies several distinct and complementary approaches exploiting the common properties of SLiMs to predict novel motifs. Consensus matches are annotated with overlapping sequence annotation, including feature information describing protein modular architecture, post-translational modification, structure, sequence variation and experimental characterisation of functional regions. Discriminatory motif attributes such as conservation and accessibility are also calculated. In addition, SLiMSearch provides functional enrichment and evolutionary analysis tools. The enrichment tool analyses GO terms, keywords and interacting partner enrichment to indicate possible motif function. The evolutionary tool evaluates motif taxonomic range and the conservation of motif sequence context. Consensus matches can be filtered based on motif attributes such as accessibility and taxonomic range; or by the localisation, interacting partners or ontology annotation of the peptide-containing protein. SLiMSearch supports a range of species of experimental and therapeutic relevance and is available online at http://slim.ucd.ie/slimsearch/.
Collapse
Affiliation(s)
- Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.,UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
169
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
170
|
Vallardi G, Cordeiro MH, Saurin AT. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:457-484. [PMID: 28840249 DOI: 10.1007/978-3-319-58592-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
171
|
Vallardi G, Allan LA, Crozier L, Saurin AT. Division of labour between PP2A-B56 isoforms at the centromere and kinetochore. eLife 2019; 8:e42619. [PMID: 30829571 PMCID: PMC6398977 DOI: 10.7554/elife.42619] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/03/2019] [Indexed: 11/13/2022] Open
Abstract
PP2A-B56 is a serine/threonine phosphatase complex that regulates several major mitotic processes, including sister chromatid cohesion, kinetochore-microtubule attachment and the spindle assembly checkpoint. We show here that these key functions are divided between different B56 isoforms that localise to either the centromere or kinetochore. The centromeric isoforms rely on a specific interaction with Sgo2, whereas the kinetochore isoforms bind preferentially to BubR1 and other proteins containing an LxxIxE motif. In addition to these selective binding partners, Sgo1 helps to anchor PP2A-B56 at both locations: it collaborates with BubR1 to maintain B56 at the kinetochore and it helps to preserve the Sgo2/B56 complex at the centromere. A series of chimaeras were generated to map the critical region in B56 down to a small C-terminal loop that regulates the key interactions and defines B56 localisation. Together, this study describes how different PP2A-B56 complexes utilise isoform-specific interactions to control distinct processes during mitosis.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cellular Medicine, School of MedicineUniversity of DundeeDundeeUnited Kingdom
| | - Lindsey A Allan
- Division of Cellular Medicine, School of MedicineUniversity of DundeeDundeeUnited Kingdom
| | - Lisa Crozier
- Division of Cellular Medicine, School of MedicineUniversity of DundeeDundeeUnited Kingdom
| | - Adrian T Saurin
- Division of Cellular Medicine, School of MedicineUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
172
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
173
|
Poser E, Caous R, Gruneberg U, Barr FA. Aurora A promotes chromosome congression by activating the condensin-dependent pool of KIF4A. J Cell Biol 2019; 219:e201905194. [PMID: 31881080 PMCID: PMC7041678 DOI: 10.1083/jcb.201905194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/08/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
Aurora kinases create phosphorylation gradients within the spindle during prometaphase and anaphase, thereby locally regulating factors that promote spindle organization, chromosome condensation and movement, and cytokinesis. We show that one such factor is the kinesin KIF4A, which is present along the chromosome axes throughout mitosis and the central spindle in anaphase. These two pools of KIF4A depend on condensin I and PRC1, respectively. Previous work has shown KIF4A is activated by Aurora B at the anaphase central spindle. However, whether or not chromosome-associated KIF4A bound to condensin I is regulated by Aurora kinases remain unclear. To determine the roles of the two different pools of KIF4A, we generated specific point mutants that are unable to interact with either condensin I or PRC1 or are deficient for Aurora kinase regulation. By analyzing these mutants, we show that Aurora A phosphorylates the condensin I-dependent pool of KIF4A and thus actively promotes chromosome congression from the spindle poles to the metaphase plate.
Collapse
Affiliation(s)
- Elena Poser
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Renaud Caous
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A. Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
174
|
Raman D, Pervaiz S. Redox inhibition of protein phosphatase PP2A: Potential implications in oncogenesis and its progression. Redox Biol 2019; 27:101105. [PMID: 30686777 PMCID: PMC6859563 DOI: 10.1016/j.redox.2019.101105] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/17/2023] Open
Abstract
Cellular processes are dictated by the active signaling of proteins relaying messages to regulate cell proliferation, apoptosis, signal transduction and cell communications. An intricate web of protein kinases and phosphatases are critical to the proper transmission of signals across such cascades. By governing 30–50% of all protein dephosphorylation in the cell, with prominent substrate proteins being key regulators of signaling cascades, the phosphatase PP2A has emerged as a celebrated player in various developmental and tumorigenic pathways, thereby posing as an attractive target for therapeutic intervention in various pathologies wherein its activity is deregulated. This review is mainly focused on refreshing our understanding of the structural and functional complexity that cocoons the PP2A phosphatase, and its expression in cancers. Additionally, we focus on its physiological regulation as well as into recent advents and strategies that have shown promise in countering the deregulation of the phosphatase through its targeted reactivation. Finally, we dwell upon one of the key regulators of PP2A in cancer cells-cellular redox status-its multifarious nature, and its integration into the reactome of PP2A, highlighting some of the significant impacts that ROS can inflict on the structural modifications and functional aspect of PP2A.
Collapse
Affiliation(s)
- Deepika Raman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Medical Science Cluster Cancer Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore.
| |
Collapse
|
175
|
Reynhout S, Jansen S, Haesen D, van Belle S, de Munnik SA, Bongers EM, Schieving JH, Marcelis C, Amiel J, Rio M, Mclaughlin H, Ladda R, Sell S, Kriek M, Peeters-Scholte CM, Terhal PA, van Gassen KL, Verbeek N, Henry S, Scott Schwoerer J, Malik S, Revencu N, Ferreira CR, Macnamara E, Braakman HM, Brimble E, Ruzhnikov MR, Wagner M, Harrer P, Wieczorek D, Kuechler A, Tziperman B, Barel O, de Vries BB, Gordon CT, Janssens V, Vissers LE. De Novo Mutations Affecting the Catalytic Cα Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. Am J Hum Genet 2019; 104:139-156. [PMID: 30595372 DOI: 10.1016/j.ajhg.2018.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
Type 2A protein phosphatases (PP2As) are highly expressed in the brain and regulate neuronal signaling by catalyzing phospho-Ser/Thr dephosphorylations in diverse substrates. PP2A holoenzymes comprise catalytic C-, scaffolding A-, and regulatory B-type subunits, which determine substrate specificity and physiological function. Interestingly, de novo mutations in genes encoding A- and B-type subunits have recently been implicated in intellectual disability (ID) and developmental delay (DD). We now report 16 individuals with mild to profound ID and DD and a de novo mutation in PPP2CA, encoding the catalytic Cα subunit. Other frequently observed features were severe language delay (71%), hypotonia (69%), epilepsy (63%), and brain abnormalities such as ventriculomegaly and a small corpus callosum (67%). Behavioral problems, including autism spectrum disorders, were reported in 47% of individuals, and three individuals had a congenital heart defect. PPP2CA de novo mutations included a partial gene deletion, a frameshift, three nonsense mutations, a single amino acid duplication, a recurrent mutation, and eight non-recurrent missense mutations. Functional studies showed complete PP2A dysfunction in four individuals with seemingly milder ID, hinting at haploinsufficiency. Ten other individuals showed mutation-specific biochemical distortions, including poor expression, altered binding to the A subunit and specific B-type subunits, and impaired phosphatase activity and C-terminal methylation. Four were suspected to have a dominant-negative mechanism, which correlated with severe ID. Two missense variants affecting the same residue largely behaved as wild-type in our functional assays. Overall, we found that pathogenic PPP2CA variants impair PP2A-B56(δ) functionality, suggesting that PP2A-related neurodevelopmental disorders constitute functionally converging ID syndromes.
Collapse
|
176
|
Fowle H, Zhao Z, Graña X. PP2A holoenzymes, substrate specificity driving cellular functions and deregulation in cancer. Adv Cancer Res 2019; 144:55-93. [PMID: 31349904 PMCID: PMC9994639 DOI: 10.1016/bs.acr.2019.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PP2A is a highly conserved eukaryotic serine/threonine protein phosphatase of the PPP family of phosphatases with fundamental cellular functions. In cells, PP2A targets specific subcellular locations and substrates by forming heterotrimeric holoenzymes, where a core dimer consisting of scaffold (A) and catalytic (C) subunits complexes with one of many B regulatory subunits. PP2A plays a key role in positively and negatively regulating a myriad of cellular processes, as it targets a very sizable fraction of the cellular substrates phosphorylated on Ser/Thr residues. This review focuses on insights made toward the understanding on how the subunit composition and structure of PP2A holoenzymes mediates substrate specificity, the role of substrate modulation in the signaling of cellular division, growth, and differentiation, and its deregulation in cancer.
Collapse
Affiliation(s)
- Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology and Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|
177
|
Physiologic functions of PP2A: Lessons from genetically modified mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:31-50. [DOI: 10.1016/j.bbamcr.2018.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2023]
|
178
|
Ueda T, Kohama Y, Sakurai H. IER family proteins are regulators of protein phosphatase PP2A and modulate the phosphorylation status of CDC25A. Cell Signal 2018; 55:81-89. [PMID: 30599213 DOI: 10.1016/j.cellsig.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/25/2018] [Accepted: 12/29/2018] [Indexed: 01/09/2023]
Abstract
Proteins encoded by immediate-early response (IER) family genes, IER2, IER5, and IER5L, share homology at their N-terminal regions. IER5 binds to protein phosphatase 2A (PP2A) and enhances dephosphorylation of PP2A target proteins such as heat shock factor HSF1. Here, we show the expression of IER family genes and the target protein-specific function of IER proteins. The IER homology regions of IER2 and IER5L are required for the interaction with PP2A. Expression of IER2 and IER5L in cells leads to reduced phosphorylation of HSF1 and derepression of its transcriptional activity. Although IER5 and IER5L enhance dephosphorylation of ribosomal protein S6 kinase, IER2 fails to do so. IER2, IER5, and IER5L all bind to the cell cycle regulator CDC25A and convert it to the hypophosphorylated form, which causes dissociation from 14-3-3 regulatory protein. IER5 differentially regulates CDC25A levels in cells under normal and thermal stress conditions. These results suggest that IER proteins are target protein-specific regulators of PP2A activity and modulate cell proliferation through CDC25A activity.
Collapse
Affiliation(s)
- Takumi Ueda
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Yuri Kohama
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Kanazawa University Graduate School of Medical Science, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
179
|
Sonntag T, Ostojić J, Vaughan JM, Moresco JJ, Yoon YS, Yates JR, Montminy M. Mitogenic Signals Stimulate the CREB Coactivator CRTC3 through PP2A Recruitment. iScience 2018; 11:134-145. [PMID: 30611118 PMCID: PMC6317279 DOI: 10.1016/j.isci.2018.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/12/2018] [Accepted: 12/13/2018] [Indexed: 11/18/2022] Open
Abstract
The second messenger 3',5'-cyclic adenosine monophosphate (cAMP) stimulates gene expression via the cAMP-regulated transcriptional coactivator (CRTC) family of cAMP response element-binding protein coactivators. In the basal state, CRTCs are phosphorylated by salt-inducible kinases (SIKs) and sequestered in the cytoplasm by 14-3-3 proteins. cAMP signaling inhibits the SIKs, leading to CRTC dephosphorylation and nuclear translocation. Here we show that although all CRTCs are regulated by SIKs, their interactions with Ser/Thr-specific protein phosphatases are distinct. CRTC1 and CRTC2 associate selectively with the calcium-dependent phosphatase calcineurin, whereas CRTC3 interacts with B55 PP2A holoenzymes via a conserved PP2A-binding region (amino acids 380-401). CRTC3-PP2A complex formation was induced by phosphorylation of CRTC3 at S391, facilitating the subsequent activation of CRTC3 by dephosphorylation at 14-3-3 binding sites. As stimulation of mitogenic pathways promoted S391 phosphorylation via the activation of ERKs and CDKs, our results demonstrate how a ubiquitous phosphatase enables cross talk between growth factor and cAMP signaling pathways at the level of a transcriptional coactivator.
Collapse
Affiliation(s)
- Tim Sonntag
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jelena Ostojić
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joan M Vaughan
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Young-Sil Yoon
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marc Montminy
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
180
|
Basler CF, Krogan NJ, Leung DW, Amarasinghe GK. Virus and host interactions critical for filoviral RNA synthesis as therapeutic targets. Antiviral Res 2018; 162:90-100. [PMID: 30550800 DOI: 10.1016/j.antiviral.2018.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 01/24/2023]
Abstract
Filoviruses, which include Ebola virus (EBOV) and Marburg virus, are negative-sense RNA viruses associated with sporadic outbreaks of severe viral hemorrhagic fever characterized by uncontrolled virus replication. The extreme virulence and emerging nature of these zoonotic pathogens make them a significant threat to human health. Replication of the filovirus genome and production of viral RNAs require the function of a complex of four viral proteins, the nucleoprotein (NP), viral protein 35 (VP35), viral protein 30 (VP30) and large protein (L). The latter performs the enzymatic activities required for production of viral RNAs and capping of viral mRNAs. Although it has been recognized that interactions between the virus-encoded components of the EBOV RNA polymerase complex are required for viral RNA synthesis reactions, specific molecular details have, until recently, been lacking. New efforts have combined structural biology and molecular virology to reveal in great detail the molecular basis for critical protein-protein interactions (PPIs) necessary for viral RNA synthesis. These efforts include recent studies that have identified a range of interacting host factors and in some instances demonstrated unique mechanisms by which they act. For a select number of these interactions, combined use of mutagenesis, over-expressing of peptides corresponding to PPI interfaces and identification of small molecules that disrupt PPIs have demonstrated the functional significance of virus-virus and virus-host PPIs and suggest several as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher F Basler
- Center for Microbial Pathogenesis, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
181
|
Kataria M, Mouilleron S, Seo MH, Corbi-Verge C, Kim PM, Uhlmann F. A PxL motif promotes timely cell cycle substrate dephosphorylation by the Cdc14 phosphatase. Nat Struct Mol Biol 2018; 25:1093-1102. [PMID: 30455435 PMCID: PMC6292506 DOI: 10.1038/s41594-018-0152-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/08/2018] [Indexed: 11/08/2022]
Abstract
The cell division cycle consists of a series of temporally ordered events. Cell cycle kinases and phosphatases provide key regulatory input, but how the correct substrate phosphorylation and dephosphorylation timing is achieved is incompletely understood. Here we identify a PxL substrate recognition motif that instructs dephosphorylation by the budding yeast Cdc14 phosphatase during mitotic exit. The PxL motif was prevalent in Cdc14-binding peptides enriched in a phage display screen of native disordered protein regions. PxL motif removal from the Cdc14 substrate Cbk1 delays its dephosphorylation, whereas addition of the motif advances dephosphorylation of otherwise late Cdc14 substrates. Crystal structures of Cdc14 bound to three PxL motif substrate peptides provide a molecular explanation for PxL motif recognition on the phosphatase surface. Our results illustrate the sophistication of phosphatase-substrate interactions and identify them as an important determinant of ordered cell cycle progression.
Collapse
Affiliation(s)
- Meghna Kataria
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
- University College London Cancer Institute, London, UK
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Moon-Hyeong Seo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Natural Constituents Research Center, Korea Institute of Science and Technology, Gangneung, Republic of Korea
| | - Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Departments of Molecular Genetics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
182
|
Nilsson J. Protein phosphatases in the regulation of mitosis. J Cell Biol 2018; 218:395-409. [PMID: 30446607 PMCID: PMC6363451 DOI: 10.1083/jcb.201809138] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022] Open
Abstract
The accurate segregation of genetic material to daughter cells during mitosis depends on the precise coordination and regulation of hundreds of proteins by dynamic phosphorylation. Mitotic kinases are major regulators of protein function, but equally important are protein phosphatases that balance their actions, their coordinated activity being essential for accurate chromosome segregation. Phosphoprotein phosphatases (PPPs) that dephosphorylate phosphoserine and phosphothreonine residues are increasingly understood as essential regulators of mitosis. In contrast to kinases, the lack of a pronounced peptide-binding cleft on the catalytic subunit of PPPs suggests that these enzymes are unlikely to be specific. However, recent exciting insights into how mitotic PPPs recognize specific substrates have revealed that they are as specific as kinases. Furthermore, the activities of PPPs are tightly controlled at many levels to ensure that they are active only at the proper time and place. Here, I will discuss substrate selection and regulation of mitotic PPPs focusing mainly on animal cells and explore how these actions control mitosis, as well as important unanswered questions.
Collapse
Affiliation(s)
- Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
183
|
Heim A, Tischer T, Mayer TU. Calcineurin promotes APC/C activation at meiotic exit by acting on both XErp1 and Cdc20. EMBO Rep 2018; 19:embr.201846433. [PMID: 30373936 DOI: 10.15252/embr.201846433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 11/09/2022] Open
Abstract
Vertebrate oocytes await fertilization arrested at metaphase of the second meiotic division. Fertilization triggers a transient calcium wave, which induces the activation of the anaphase-promoting complex/cyclosome (APC/C) and its co-activator Cdc20 resulting in the destruction of cyclin B and hence meiotic exit. Two calcium-dependent enzymes are implicated in fertilization-induced APC/CC dc20 activation: calcium-/calmodulin-dependent kinase type II (CaMKII) and calcineurin (CaN). While the role of CaMKII in targeting the APC/C inhibitor XErp1/Emi2 for destruction is well-established, it remained elusive how CaN affects APC/CC dc20 activation. Here, we discover that CaN contributes to APC/CC dc20 activation in Xenopus laevis oocytes by two independent but interrelated mechanisms. First, it facilitates the degradation of XErp1 by dephosphorylating it at a site that is part of a phosphorylation-dependent recruiting motif for PP2A-B'56, which antagonizes inhibitory phosphorylation of XErp1. Second, it dephosphorylates Cdc20 at an inhibitory site, thereby supporting its APC/C-activating function. Thus, our comprehensive analysis reveals that CaN contributes to timely APC/C activation at fertilization by both negatively regulating the APC/C inhibitory activity of XErp1 and positively regulating the APC/C-activating function of Cdc20.
Collapse
Affiliation(s)
- Andreas Heim
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | | | - Thomas U Mayer
- Department of Biology, University of Konstanz, Konstanz, Germany .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
184
|
Ivarsson Y, Jemth P. Affinity and specificity of motif-based protein-protein interactions. Curr Opin Struct Biol 2018; 54:26-33. [PMID: 30368054 DOI: 10.1016/j.sbi.2018.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023]
Abstract
It is becoming increasingly clear that eukaryotic cell physiology is largely controlled by protein-protein interactions involving disordered protein regions, which usually interact with globular domains in a coupled binding and folding reaction. Several protein recognition domains are part of large families where members can interact with similar peptide ligands. Because of this, much research has been devoted to understanding how specificity can be achieved. A combination of interface complementarity, interactions outside of the core binding site, avidity from multidomain architecture and spatial and temporal regulation of expression resolves the conundrum. Here, we review recent advances in molecular aspects of affinity and specificity in such protein-protein interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-751 23 Uppsala, Sweden.
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, SE-75123 Uppsala, Sweden.
| |
Collapse
|
185
|
He H, Brenier-Pinchart MP, Braun L, Kraut A, Touquet B, Couté Y, Tardieux I, Hakimi MA, Bougdour A. Characterization of a Toxoplasma effector uncovers an alternative GSK3/β-catenin-regulatory pathway of inflammation. eLife 2018; 7:39887. [PMID: 30320549 PMCID: PMC6214654 DOI: 10.7554/elife.39887] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/14/2018] [Indexed: 12/13/2022] Open
Abstract
The intracellular parasite Toxoplasma gondii, hijacks evolutionarily conserved host processes by delivering effector proteins into the host cell that shift gene expression in a timely fashion. We identified a parasite dense granule protein as GRA18 that once released in the host cell cytoplasm forms versatile complexes with regulatory elements of the β-catenin destruction complex. By interacting with GSK3/PP2A-B56, GRA18 drives β-catenin up-regulation and the downstream effects on host cell gene expression. In the context of macrophages infection, GRA18 induces the expression of a specific set of genes commonly associated with an anti-inflammatory response that includes those encoding chemokines CCL17 and CCL22. Overall, this study adds another original strategy by which T. gondii tachyzoites reshuffle the host cell interactome through a GSK3/β-catenin axis to selectively reprogram immune gene expression.
Collapse
Affiliation(s)
- Huan He
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Marie-Pierre Brenier-Pinchart
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Laurence Braun
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Alexandra Kraut
- University of Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France
| | - Bastien Touquet
- Team Membrane and Cell Dynamics of Host Parasite Interactions, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Yohann Couté
- University of Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France
| | - Isabelle Tardieux
- Team Membrane and Cell Dynamics of Host Parasite Interactions, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Mohamed-Ali Hakimi
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| | - Alexandre Bougdour
- Team Host-pathogen interactions & immunity to infection, University of Grenoble Alpes, Inserm, CNRS, IAB, Grenoble, France
| |
Collapse
|
186
|
Bajaj R, Bollen M, Peti W, Page R. KNL1 Binding to PP1 and Microtubules Is Mutually Exclusive. Structure 2018; 26:1327-1336.e4. [PMID: 30100357 PMCID: PMC6601351 DOI: 10.1016/j.str.2018.06.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023]
Abstract
The kinetochore scaffold 1 (KNL1) protein coordinates the spindle assembly checkpoint (SAC), a signaling pathway that delays chromosome segregation until all sister chromatids are properly attached to spindle microtubules. Recently, microtubules and protein phosphatase 1 (PP1), which both bind the N-terminal domain of KNL1, have emerged as regulators of the SAC; however, how these proteins interact to contribute to SAC signaling is unknown. Here, we use X-ray crystallography, nuclear magnetic resonance spectroscopy, and biochemical assays to show how KNL1 binds both PP1 and microtubules. Unexpectedly, we discovered that PP1 and microtubules bind KNL1 via overlapping binding sites. Further, we showed that Aurora B kinase phosphorylation results in distinct patterns of KNL1 complex disruption. Finally, combining this data with co-sedimentation assays unequivocally demonstrated that microtubules and PP1 binding to KNL1 is mutually exclusive, with preferential formation of the KNL1:PP1 holoenzyme in the presence of PP1.
Collapse
Affiliation(s)
- Rakhi Bajaj
- Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA
| | - Mathieu Bollen
- Laboratory of Biosignaling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Belgium
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA;,Corresponding (lead contact) author: Rebecca Page, Department of Chemistry and Biochemistry, University of Arizona, AZ 85721, USA., 520.626.0389,
| |
Collapse
|
187
|
Veggiani G, Sidhu SS. Peptides meet ubiquitin: Simple interactions regulating complex cell signaling. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Gianluca Veggiani
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research; University of Toronto; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, Banting and Best Department of Medical Research; University of Toronto; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
188
|
Lyons SP, Jenkins NP, Nasa I, Choy MS, Adamo ME, Page R, Peti W, Moorhead GB, Kettenbach AN. A Quantitative Chemical Proteomic Strategy for Profiling Phosphoprotein Phosphatases from Yeast to Humans. Mol Cell Proteomics 2018; 17:2448-2461. [PMID: 30228194 DOI: 10.1074/mcp.ra118.000822] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/21/2018] [Indexed: 11/06/2022] Open
Abstract
A "tug-of-war" between kinases and phosphatases establishes the phosphorylation states of proteins. While serine and threonine phosphorylation can be catalyzed by more than 400 protein kinases, the majority of serine and threonine dephosphorylation is carried out by seven phosphoprotein phosphatases (PPPs). The PPP family consists of protein phosphatases 1 (PP1), 2A (PP2A), 2B (PP2B), 4 (PP4), 5 (PP5), 6 (PP6), and 7 (PP7). The imbalance in numbers between serine- and threonine-directed kinases and phosphatases led to the early belief that PPPs are unspecific and that kinases are the primary determinants of protein phosphorylation. However, it is now clear that PPPs achieve specificity through association with noncatalytic subunits to form multimeric holoenzymes, which expands the number of functionally distinct signaling entities to several hundred. Although there has been great progress in deciphering signaling by kinases, much less is known about phosphatases.We have developed a chemical proteomic strategy for the systematic interrogation of endogenous PPP catalytic subunits and their interacting proteins, including regulatory and scaffolding subunits (the "PPPome"). PP1, PP2A, PP4, PP5, and PP6 were captured using an immobilized, specific but nonselective PPP inhibitor microcystin-LR (MCLR), followed by protein identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in a single analysis. Here, we combine this approach of phosphatase inhibitor bead profiling and mass spectrometry (PIB-MS) with label-free and tandem mass tag (TMT) quantification to map the PPPome in human cancer cell lines, mouse tissues, and yeast species, through which we identify cell- and tissue-type-specific PPP expression patterns and discover new PPP interacting proteins.
Collapse
Affiliation(s)
- Scott P Lyons
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Nicole P Jenkins
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, USA
| | - Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, USA
| | - Meng S Choy
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, USA
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Greg B Moorhead
- Department of Biological Science, University of Calgary, Alberta, Canada
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
189
|
Sundell GN, Arnold R, Ali M, Naksukpaiboon P, Orts J, Güntert P, Chi CN, Ivarsson Y. Proteome-wide analysis of phospho-regulated PDZ domain interactions. Mol Syst Biol 2018; 14:e8129. [PMID: 30126976 PMCID: PMC6100724 DOI: 10.15252/msb.20178129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
A key function of reversible protein phosphorylation is to regulate protein-protein interactions, many of which involve short linear motifs (3-12 amino acids). Motif-based interactions are difficult to capture because of their often low-to-moderate affinities. Here, we describe phosphomimetic proteomic peptide-phage display, a powerful method for simultaneously finding motif-based interaction and pinpointing phosphorylation switches. We computationally designed an oligonucleotide library encoding human C-terminal peptides containing known or predicted Ser/Thr phosphosites and phosphomimetic variants thereof. We incorporated these oligonucleotides into a phage library and screened the PDZ (PSD-95/Dlg/ZO-1) domains of Scribble and DLG1 for interactions potentially enabled or disabled by ligand phosphorylation. We identified known and novel binders and characterized selected interactions through microscale thermophoresis, isothermal titration calorimetry, and NMR We uncover site-specific phospho-regulation of PDZ domain interactions, provide a structural framework for how PDZ domains accomplish phosphopeptide binding, and discuss ligand phosphorylation as a switching mechanism of PDZ domain interactions. The approach is readily scalable and can be used to explore the potential phospho-regulation of motif-based interactions on a large scale.
Collapse
Affiliation(s)
- Gustav N Sundell
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Roland Arnold
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Muhammad Ali
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| | - Piangfan Naksukpaiboon
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Julien Orts
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
| | - Peter Güntert
- Laboratory of Physical Chemistry, ETH Zürich, Zürich, Switzerland
- Institute of Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
190
|
Krystkowiak I, Manguy J, Davey NE. PSSMSearch: a server for modeling, visualization, proteome-wide discovery and annotation of protein motif specificity determinants. Nucleic Acids Res 2018; 46:W235-W241. [PMID: 29873773 PMCID: PMC6030969 DOI: 10.1093/nar/gky426] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/11/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
There is a pressing need for in silico tools that can aid in the identification of the complete repertoire of protein binding (SLiMs, MoRFs, miniMotifs) and modification (moiety attachment/removal, isomerization, cleavage) motifs. We have created PSSMSearch, an interactive web-based tool for rapid statistical modeling, visualization, discovery and annotation of protein motif specificity determinants to discover novel motifs in a proteome-wide manner. PSSMSearch analyses proteomes for regions with significant similarity to a motif specificity determinant model built from a set of aligned motif-containing peptides. Multiple scoring methods are available to build a position-specific scoring matrix (PSSM) describing the motif specificity determinant model. This model can then be modified by a user to add prior knowledge of specificity determinants through an interactive PSSM heatmap. PSSMSearch includes a statistical framework to calculate the significance of specificity determinant model matches against a proteome of interest. PSSMSearch also includes the SLiMSearch framework's annotation, motif functional analysis and filtering tools to highlight relevant discriminatory information. Additional tools to annotate statistically significant shared keywords and GO terms, or experimental evidence of interaction with a motif-recognizing protein have been added. Finally, PSSM-based conservation metrics have been created for taxonomic range analyses. The PSSMSearch web server is available at http://slim.ucd.ie/pssmsearch/.
Collapse
Affiliation(s)
- Izabella Krystkowiak
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jean Manguy
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- Food for Health Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Norman E Davey
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
- UCD School of Medicine & Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
191
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
192
|
The present and the future of motif-mediated protein-protein interactions. Curr Opin Struct Biol 2018; 50:162-170. [PMID: 29730529 DOI: 10.1016/j.sbi.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023]
Abstract
Protein-protein interactions (PPIs) are essential to governing virtually all cellular processes. Of particular importance are the versatile motif-mediated interactions (MMIs), which are thus far underrepresented in available interaction data. This is largely due to technical difficulties inherent in the properties of MMIs, but due to the increasing recognition of the vital roles of MMIs in biology, several systematic approaches have recently been developed to detect novel MMIs. Consequently, rapidly growing numbers of motifs are being identified and pursued further for therapeutic applications. In this review, we discuss the current understanding on the diverse functions and disease-relevance of MMIs, the key methodologies for detection of MMIs, and the potential of MMIs for drug development.
Collapse
|
193
|
Kónya Z, Bécsi B, Kiss A, Tamás I, Lontay B, Szilágyi L, Kövér KE, Erdődi F. Aralkyl selenoglycosides and related selenosugars in acetylated form activate protein phosphatase-1 and -2A. Bioorg Med Chem 2018; 26:1875-1884. [PMID: 29501414 DOI: 10.1016/j.bmc.2018.02.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/03/2018] [Accepted: 02/20/2018] [Indexed: 01/03/2023]
Abstract
Aralkyl and aryl selenoglycosides as well as glycosyl selenocarboxylate derivatives were assayed on the activity of protein phosphatase-1 (PP1) and -2A (PP2A) catalytic subunits (PP1c and PP2Ac) in search of compounds for PP1c and PP2Ac effectors. The majority of tested selenoglycosides activated both PP1c and PP2Ac by ∼2-4-fold in a phosphatase assay with phosphorylated myosin light chain substrate when the hydroxyl groups of the glycosyl moiety were acetylated, but they were without any effects in the non-acetylated forms. A peptide from the myosin phosphatase target subunit-1 (MYPT123-38) that included an RVxF PP1c-binding motif attenuated activation of PP1c by 2-Trifluoromethylbenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (TFM-BASG) and 4-Bromobenzyl 2,3,4,6-tetra-O-acetyl-1-seleno-β-d-glucopyranoside (Br-BASG). MYPT123-38 stimulated PP2Ac and contributed to PP2Ac activation exerted by either Br-BASG or TFM-BASG. Br-BASG and TFM-BASG suppressed partially binding of PP1c to MYPT1 in surface plasmon resonance based binding experiments. Molecular docking predicted that the hydrophobic binding surfaces in PP1c for interaction with either the RVxF residues of PP1c-interactors or selenoglycosides are partially overlapped. Br-BASG and TFM-BASG caused a moderate increase in the phosphatase activity of HeLa cells in 1 h, and suppressed cell viability in 24 h incubations. In conclusion, our present study identified selenoglycosides as novel activators of PP1 and PP2A as well as provided insights into the structural background of their interactions establishing a molecular model for future design of more efficient phosphatase activator molecules.
Collapse
Affiliation(s)
- Zoltán Kónya
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary.
| | - Bálint Bécsi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - István Tamás
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Beáta Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary.
| | - László Szilágyi
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Katalin E Kövér
- Institute of Chemistry, University of Debrecen, H-4032 Debrecen, Hungary.
| | - Ferenc Erdődi
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, H-4032 Debrecen, Hungary.
| |
Collapse
|
194
|
Touati SA, Kataria M, Jones AW, Snijders AP, Uhlmann F. Phosphoproteome dynamics during mitotic exit in budding yeast. EMBO J 2018; 37:embj.201798745. [PMID: 29650682 PMCID: PMC5978319 DOI: 10.15252/embj.201798745] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
The cell division cycle culminates in mitosis when two daughter cells are born. As cyclin-dependent kinase (Cdk) activity reaches its peak, the anaphase-promoting complex/cyclosome (APC/C) is activated to trigger sister chromatid separation and mitotic spindle elongation, followed by spindle disassembly and cytokinesis. Degradation of mitotic cyclins and activation of Cdk-counteracting phosphatases are thought to cause protein dephosphorylation to control these sequential events. Here, we use budding yeast to analyze phosphorylation dynamics of 3,456 phosphosites on 1,101 proteins with high temporal resolution as cells progress synchronously through mitosis. This reveals that successive inactivation of S and M phase Cdks and of the mitotic kinase Polo contributes to order these dephosphorylation events. Unexpectedly, we detect as many new phosphorylation events as there are dephosphorylation events. These correlate with late mitotic kinase activation and identify numerous candidate targets of these kinases. These findings revise our view of mitotic exit and portray it as a dynamic process in which a range of mitotic kinases contribute to order both protein dephosphorylation and phosphorylation.
Collapse
Affiliation(s)
- Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Meghna Kataria
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| | - Andrew W Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
195
|
Nasa I, Kettenbach AN. Coordination of Protein Kinase and Phosphoprotein Phosphatase Activities in Mitosis. Front Cell Dev Biol 2018; 6:30. [PMID: 29623276 PMCID: PMC5874294 DOI: 10.3389/fcell.2018.00030] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/09/2023] Open
Abstract
Dynamic changes in protein phosphorylation govern the transitions between different phases of the cell division cycle. A "tug of war" between highly conserved protein kinases and the family of phosphoprotein phosphatases (PPP) establishes the phosphorylation state of proteins, which controls their function. More than three-quarters of all proteins are phosphorylated at one or more sites in human cells, with the highest occupancy of phosphorylation sites seen in mitosis. Spatial and temporal regulation of opposing kinase and PPP activities is crucial for accurate execution of the mitotic program. The role of mitotic kinases has been the focus of many studies, while the contribution of PPPs was for a long time underappreciated and is just emerging. Misconceptions regarding the specificity and activity of protein phosphatases led to the belief that protein kinases are the primary determinants of mitotic regulation, leaving PPPs out of the limelight. Recent studies have shown that protein phosphatases are specific and selective enzymes, and that their activity is tightly regulated. In this review, we discuss the emerging roles of PPPs in mitosis and their regulation of and by mitotic kinases, as well as mechanisms that determine PPP substrate recognition and specificity.
Collapse
Affiliation(s)
- Isha Nasa
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
196
|
Cordeiro MH, Smith RJ, Saurin AT. A fine balancing act: A delicate kinase-phosphatase equilibrium that protects against chromosomal instability and cancer. Int J Biochem Cell Biol 2018; 96:148-156. [PMID: 29108876 DOI: 10.1016/j.biocel.2017.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 12/31/2022]
Abstract
Cancer cells rewire signalling networks to acquire specific hallmarks needed for their proliferation, survival, and dissemination throughout the body. Although this is often associated with the constitutive activation or inactivation of protein phosphorylation networks, there are other contexts when the dysregulation must be much milder. For example, chromosomal instability is a widespread cancer hallmark that relies on subtle defects in chromosome replication and/or division, such that these processes remain functional, but nevertheless error-prone. In this article, we will discuss how perturbations to the delicate kinase-phosphatase balance could lie at the heart of this type of dysregulation. In particular, we will explain how the two principle mechanisms that safeguard the chromosome segregation process rely on an equilibrium between at least two kinases and two phosphatases to function correctly. This balance is set during mitosis by a central complex that has also been implicated in chromosomal instability - the BUB1/BUBR1/BUB3 complex - and we will put forward a hypothesis that could link these two findings. This could be relevant for cancer treatment because most tumours have evolved by pushing the boundaries of chromosomal instability to the limit. If this involves subtle changes to the kinase-phosphatase equilibrium, then it may be possible to exacerbate these defects and tip tumour cells over the edge, whilst still maintaining the viability of healthy cells.
Collapse
Affiliation(s)
- Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Richard John Smith
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
197
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
198
|
Oliveira M, Lert-itthiporn W, Cavadas B, Fernandes V, Chuansumrit A, Anunciação O, Casademont I, Koeth F, Penova M, Tangnararatchakit K, Khor CC, Paul R, Malasit P, Matsuda F, Simon-Lorière E, Suriyaphol P, Pereira L, Sakuntabhai A. Joint ancestry and association test indicate two distinct pathogenic pathways involved in classical dengue fever and dengue shock syndrome. PLoS Negl Trop Dis 2018; 12:e0006202. [PMID: 29447178 PMCID: PMC5813895 DOI: 10.1371/journal.pntd.0006202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/02/2018] [Indexed: 11/18/2022] Open
Abstract
Ethnic diversity has been long considered as one of the factors explaining why the severe forms of dengue are more prevalent in Southeast Asia than anywhere else. Here we take advantage of the admixed profile of Southeast Asians to perform coupled association-admixture analyses in Thai cohorts. For dengue shock syndrome (DSS), the significant haplotypes are located in genes coding for phospholipase C members (PLCB4 added to previously reported PLCE1), related to inflammation of blood vessels. For dengue fever (DF), we found evidence of significant association with CHST10, AHRR, PPP2R5E and GRIP1 genes, which participate in the xenobiotic metabolism signaling pathway. We conducted functional analyses for PPP2R5E, revealing by immunofluorescence imaging that the coded protein co-localizes with both DENV1 and DENV2 NS5 proteins. Interestingly, only DENV2-NS5 migrated to the nucleus, and a deletion of the predicted top-linking motif in NS5 abolished the nuclear transfer. These observations support the existence of differences between serotypes in their cellular dynamics, which may contribute to differential infection outcome risk. The contribution of the identified genes to the genetic risk render Southeast and Northeast Asian populations more susceptible to both phenotypes, while African populations are best protected against DSS and intermediately protected against DF, and Europeans the best protected against DF but the most susceptible against DSS.
Collapse
Affiliation(s)
- Marisa Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
| | - Worachart Lert-itthiporn
- Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Bruno Cavadas
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Verónica Fernandes
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Ampaiwan Chuansumrit
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Orlando Anunciação
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
| | - Isabelle Casademont
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Fanny Koeth
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
| | - Marina Penova
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kanchana Tangnararatchakit
- Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chiea Chuen Khor
- Genome Institute of Singapore, A-STAR, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Richard Paul
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, Paris, France
| | - Prida Malasit
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol University, Bangkok, Thailand
- Medical Biotechnology Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Fumihiko Matsuda
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Etienne Simon-Lorière
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, Paris, France
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Luisa Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- * E-mail: (LP); (AS)
| | - Anavaj Sakuntabhai
- Functional Genetics of Infectious Diseases Unit, Institut Pasteur, Paris, France
- Pasteur Kyoto International Joint Research Unit for Integrative Vaccinomics, Kyoto, Japan
- CNRS, Unité de Recherche Associée 3012, Paris, France
- * E-mail: (LP); (AS)
| |
Collapse
|
199
|
Gelens L, Qian J, Bollen M, Saurin AT. The Importance of Kinase-Phosphatase Integration: Lessons from Mitosis. Trends Cell Biol 2018; 28:6-21. [PMID: 29089159 DOI: 10.1016/j.tcb.2017.09.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/20/2022]
Abstract
Kinases and phosphatases work antagonistically to control the behaviour of individual substrate molecules. This can be incorrectly extrapolated to imply that they also work antagonistically on the signals or processes that these molecules control. In fact, in many situations kinases and phosphatases work together to positively drive signal responses. We explain how this 'cooperativity' is critical for setting the amplitude, localisation, timing, and shape of phosphorylation signals. We use mitosis to illustrate why these properties are important for controlling mitotic entry, sister chromatid cohesion, kinetochore-microtubule attachments, the spindle assembly checkpoint, mitotic spindle elongation, and mitotic exit. These examples provide a rationale to explain how complex signalling behaviour could rely on similar types of integration within many other biological processes.
Collapse
Affiliation(s)
- Lendert Gelens
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| | - Junbin Qian
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, Belgium
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
200
|
Kruse T, Biedenkopf N, Hertz EPT, Dietzel E, Stalmann G, López-Méndez B, Davey NE, Nilsson J, Becker S. The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Mol Cell 2017; 69:136-145.e6. [PMID: 29290611 DOI: 10.1016/j.molcel.2017.11.034] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/01/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
Transcription of the Ebola virus genome depends on the viral transcription factor VP30 in its unphosphorylated form, but the underlying molecular mechanism of VP30 dephosphorylation is unknown. Here we show that the Ebola virus nucleoprotein (NP) recruits the host PP2A-B56 protein phosphatase through a B56-binding LxxIxE motif and that this motif is essential for VP30 dephosphorylation and viral transcription. The LxxIxE motif and the binding site of VP30 in NP are in close proximity, and both binding sites are required for the dephosphorylation of VP30. We generate a specific inhibitor of PP2A-B56 and show that it suppresses Ebola virus transcription and infection. This work dissects the molecular mechanism of VP30 dephosphorylation by PP2A-B56, and it pinpoints this phosphatase as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Thomas Kruse
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Nadine Biedenkopf
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany
| | - Emil Peter Thrane Hertz
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Erik Dietzel
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany
| | - Gertrud Stalmann
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany
| | - Blanca López-Méndez
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| | - Stephan Becker
- Institute of Virology, Philipps Universität Marburg, Marburg, Germany; German Center of Infection Research (DZIF), Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|