151
|
Vardjan N, Parpura V, Zorec R. Loose excitation-secretion coupling in astrocytes. Glia 2015; 64:655-67. [PMID: 26358496 DOI: 10.1002/glia.22920] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/26/2015] [Indexed: 12/19/2022]
Abstract
Astrocytes play an important housekeeping role in the central nervous system. Additionally, as secretory cells, they actively participate in cell-to-cell communication, which can be mediated by membrane-bound vesicles. The gliosignaling molecules stored in these vesicles are discharged into the extracellular space after the vesicle membrane fuses with the plasma membrane. This process is termed exocytosis, regulated by SNARE proteins, and triggered by elevations in cytosolic calcium levels, which are necessary and sufficient for exocytosis in astrocytes. For astrocytic exocytosis, calcium is sourced from the intracellular endoplasmic reticulum store, although its entry from the extracellular space contributes to cytosolic calcium dynamics in astrocytes. Here, we discuss calcium management in astrocytic exocytosis and the properties of the membrane-bound vesicles that store gliosignaling molecules, including the vesicle fusion machinery and kinetics of vesicle content discharge. In astrocytes, the delay between the increase in cytosolic calcium activity and the discharge of secretions from the vesicular lumen is orders of magnitude longer than that in neurons. This relatively loose excitation-secretion coupling is likely tailored to the participation of astrocytes in modulating neural network processing.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vladimir Parpura
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert Zorec
- Celica Biomedical, Ljubljana, Slovenia.,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
152
|
Bobermin LD, Hansel G, Scherer EBS, Wyse ATS, Souza DO, Quincozes-Santos A, Gonçalves CA. Ammonia impairs glutamatergic communication in astroglial cells: protective role of resveratrol. Toxicol In Vitro 2015; 29:2022-9. [PMID: 26318273 DOI: 10.1016/j.tiv.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 08/22/2015] [Indexed: 01/09/2023]
Abstract
Ammonia is a key toxin in the precipitation of hepatic encephalopathy (HE), a neuropsychiatric disorder associated with liver failure. In response to ammonia, various toxic events are triggered in astroglial cells, and alterations in brain glutamate communication are common. Resveratrol is a polyphenolic compound that has been extensively studied in pathological events because it presents several beneficial effects, including some in the central nervous system (CNS). We previously described that resveratrol is able to significantly modulate glial functioning and has a protective effect during ammonia challenge in vitro. In this study, we addressed the mechanisms by which resveratrol can protect C6 astroglial cells from glutamatergic alterations induced by ammonia. Resveratrol was able to prevent all the effects triggered by ammonia: (i) decrease in glutamate uptake activity and expression of the EAAC1 glutamate transporter, the main glutamate transporter present in C6 cells; (ii) increase of glutamate release, which was also dependent on the activation of the Na(+)-K(+)-Cl(-) co-transporter NKCC1; (iii) reduction in GS activity and intracellular GSH content; and (iv) impairment of Na(+)K(+)-ATPase activity. Interestingly, resveratrol, per se, also positively modulated the astroglial functions evaluated. Moreover, we demonstrated that heme oxygenase 1 (HO1), an enzyme that is part of the cellular defense system, mediated some of the effects of resveratrol. In conclusion, the mechanisms of the putative protective role of resveratrol against ammonia toxicity involve the modulation of pathways and molecules related to glutamate communication in astroglial cells.
Collapse
Affiliation(s)
- Larissa Daniele Bobermin
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Gisele Hansel
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Emilene B S Scherer
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - André Quincozes-Santos
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
153
|
Bredewold R, Schiavo JK, van der Hart M, Verreij M, Veenema AH. Dynamic changes in extracellular release of GABA and glutamate in the lateral septum during social play behavior in juvenile rats: Implications for sex-specific regulation of social play behavior. Neuroscience 2015; 307:117-27. [PMID: 26318330 DOI: 10.1016/j.neuroscience.2015.08.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/11/2015] [Accepted: 08/21/2015] [Indexed: 10/23/2022]
Abstract
Social play is a motivated and rewarding behavior that is displayed by nearly all mammals and peaks in the juvenile period. Moreover, social play is essential for the development of social skills and is impaired in social disorders like autism. We recently showed that the lateral septum (LS) is involved in the regulation of social play behavior in juvenile male and female rats. The LS is largely modulated by GABA and glutamate neurotransmission, but their role in social play behavior is unknown. Here, we determined whether social play behavior is associated with changes in the extracellular release of GABA and glutamate in the LS and to what extent such changes modulate social play behavior in male and female juvenile rats. Using intracerebral microdialysis in freely behaving rats, we found no sex difference in extracellular GABA concentrations, but extracellular glutamate concentrations are higher in males than in females under baseline conditions and during social play. This resulted in a higher glutamate/GABA concentration ratio in males vs. females and thus, an excitatory predominance in the LS of males. Furthermore, social play behavior in both sexes is associated with significant increases in extracellular release of GABA and glutamate in the LS. Pharmacological blockade of GABA-A receptors in the LS with bicuculline (100 ng/0.5 μl, 250 ng/0.5 μl) dose-dependently decreased the duration of social play behavior in both sexes. In contrast, pharmacological blockade of ionotropic glutamate receptors (NMDA and AMPA/kainate receptors) in the LS with AP-5+CNQX (2mM+0.4mM/0.5 μl, 30 mM+3mM/0.5 μl) dose-dependently decreased the duration of social play behavior in females, but did not alter social play behavior in males. Together, these data suggest a role for GABA neurotransmission in the LS in the regulation of juvenile social play behavior in both sexes, while glutamate neurotransmission in the LS is involved in the sex-specific regulation of juvenile social play behavior.
Collapse
Affiliation(s)
- R Bredewold
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA.
| | - J K Schiavo
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | | | - M Verreij
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| | - A H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
154
|
Seidel JL, Escartin C, Ayata C, Bonvento G, Shuttleworth CW. Multifaceted roles for astrocytes in spreading depolarization: A target for limiting spreading depolarization in acute brain injury? Glia 2015; 64:5-20. [PMID: 26301517 DOI: 10.1002/glia.22824] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/31/2015] [Accepted: 03/02/2015] [Indexed: 12/17/2022]
Abstract
Spreading depolarizations (SDs) are coordinated waves of synchronous depolarization, involving large numbers of neurons and astrocytes as they spread slowly through brain tissue. The recent identification of SDs as likely contributors to pathophysiology in human subjects has led to a significant increase in interest in SD mechanisms, and possible approaches to limit the numbers of SDs or their deleterious consequences in injured brain. Astrocytes regulate many events associated with SD. SD initiation and propagation is dependent on extracellular accumulation of K(+) and glutamate, both of which involve astrocytic clearance. SDs are extremely metabolically demanding events, and signaling through astrocyte networks is likely central to the dramatic increase in regional blood flow that accompanies SD in otherwise healthy tissues. Astrocytes may provide metabolic support to neurons following SD, and may provide a source of adenosine that inhibits neuronal activity following SD. It is also possible that astrocytes contribute to the pathophysiology of SD, as a consequence of excessive glutamate release, facilitation of NMDA receptor activation, brain edema due to astrocyte swelling, or disrupted coupling to appropriate vascular responses after SD. Direct or indirect evidence has accumulated implicating astrocytes in many of these responses, but much remains unknown about their specific contributions, especially in the context of injury. Conversion of astrocytes to a reactive phenotype is a prominent feature of injured brain, and recent work suggests that the different functional properties of reactive astrocytes could be targeted to limit SDs in pathophysiological conditions.
Collapse
Affiliation(s)
- Jessica L Seidel
- Stroke and Neurovascular Regulation Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Carole Escartin
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, F-92260 Fontenay-aux-Roses, France
| | - Cenk Ayata
- Stroke and Neurovascular Regulation Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts.,Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Gilles Bonvento
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Sud, Université Paris-Saclay, F-92260 Fontenay-aux-Roses, France
| | - C William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
155
|
da Silva LB, Poulsen JN, Arendt-Nielsen L, Gazerani P. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells. J Cell Mol Med 2015; 19:1900-9. [PMID: 25754332 PMCID: PMC4549040 DOI: 10.1111/jcmm.12562] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 01/20/2015] [Indexed: 01/06/2023] Open
Abstract
This study investigated the presence of cell membrane docking proteins synaptosomal-associated protein, 25 and 23 kD (SNAP-25 and SNAP-23) in satellite glial cells (SGCs) of rat trigeminal ganglion; whether cultured SGCs would release glutamate in a time- and calcium-dependent manner following calcium-ionophore ionomycin stimulation; and if botulinum neurotoxin type A (BoNTA), in a dose-dependent manner, could block or decrease vesicular release of glutamate. SGCs were isolated from the trigeminal ganglia (TG) of adult Wistar rats and cultured for 7 days. The presence of SNAPs in TG sections and isolated SGCs were investigated using immunohistochemistry and immunocytochemistry, respectively. SGCs were stimulated with ionomycin (5 μM for 4, 8, 12 and 30 min.) to release glutamate. SGCs were then pre-incubated with BoNTA (24 hrs with 0.1, 1, 10 and 100 pM) to investigate if BoNTA could potentially block ionomycin-stimulated glutamate release. Glutamate concentrations were measured by ELISA. SNAP-25 and SNAP-23 were present in SGCs in TG sections and in cultured SGCs. Ionomycin significantly increased glutamate release from cultured SGCs 30 min. following the treatment (P < 0.001). BoNTA (100 pM) significantly decreased glutamate release (P < 0.01). Results from this study demonstrated that SGCs, when stimulated with ionomycin, released glutamate that was inhibited by BoNTA, possibly through cleavage of SNAP-25 and/or SNAP-23. These novel findings demonstrate the existence of vesicular glutamate release from SGCs, which could potentially play a role in the trigeminal sensory transmission. In addition, interaction of BoNTA with non-neuronal cells at the level of TG suggests a potential analgesic mechanism of action of BoNTA.
Collapse
Affiliation(s)
- Larissa Bittencourt da Silva
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Jeppe Nørgaard Poulsen
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Lars Arendt-Nielsen
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| | - Parisa Gazerani
- Center for Sensory - Motor Interaction (SMI), Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
- Laboratory for Cancer Biology, Biomedicine, Department of Health Science and Technology, Faculty of Medicine, Aalborg UniversityAalborg East, Denmark
| |
Collapse
|
156
|
Conditional deletion of the glutamate transporter GLT-1 reveals that astrocytic GLT-1 protects against fatal epilepsy while neuronal GLT-1 contributes significantly to glutamate uptake into synaptosomes. J Neurosci 2015; 35:5187-201. [PMID: 25834045 DOI: 10.1523/jneurosci.4255-14.2015] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
GLT-1 (EAAT2; slc1a2) is the major glutamate transporter in the brain, and is predominantly expressed in astrocytes, but at lower levels also in excitatory terminals. We generated a conditional GLT-1 knock-out mouse to uncover cell-type-specific functional roles of GLT-1. Inactivation of the GLT-1 gene was achieved in either neurons or astrocytes by expression of synapsin-Cre or inducible human GFAP-CreERT2. Elimination of GLT-1 from astrocytes resulted in loss of ∼80% of GLT-1 protein and of glutamate uptake activity that could be solubilized and reconstituted in liposomes. This loss was accompanied by excess mortality, lower body weight, and seizures suggesting that astrocytic GLT-1 is of major importance. However, there was only a small (15%) reduction that did not reach significance of glutamate uptake into crude forebrain synaptosomes. In contrast, when GLT-1 was deleted in neurons, both the GLT-1 protein and glutamate uptake activity that could be solubilized and reconstituted in liposomes were virtually unaffected. These mice showed normal survival, weight gain, and no seizures. However, the synaptosomal glutamate uptake capacity (Vmax) was reduced significantly (40%). In conclusion, astrocytic GLT-1 performs critical functions required for normal weight gain, resistance to epilepsy, and survival. However, the contribution of astrocytic GLT-1 to glutamate uptake into synaptosomes is less than expected, and the contribution of neuronal GLT-1 to synaptosomal glutamate uptake is greater than expected based on their relative protein expression. These results have important implications for the interpretation of the many previous studies assessing glutamate uptake capacity by measuring synaptosomal uptake.
Collapse
|
157
|
Chinchalongporn V, Koppensteiner P, Prè D, Thangnipon W, Bilo L, Arancio O. Connectivity and circuitry in a dish versus in a brain. ALZHEIMERS RESEARCH & THERAPY 2015; 7:44. [PMID: 26045718 PMCID: PMC4456047 DOI: 10.1186/s13195-015-0129-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to understand and find therapeutic strategies for neurological disorders, disease models that recapitulate the connectivity and circuitry of patients’ brain are needed. Owing to many limitations of animal disease models, in vitro neuronal models using patient-derived stem cells are currently being developed. However, prior to employing neurons as a model in a dish, they need to be evaluated for their electrophysiological properties, including both passive and active membrane properties, dynamics of neurotransmitter release, and capacity to undergo synaptic plasticity. In this review, we survey recent attempts to study these issues in human induced pluripotent stem cell-derived neurons. Although progress has been made, there are still many hurdles to overcome before human induced pluripotent stem cell-derived neurons can fully recapitulate all of the above physiological properties of adult mature neurons. Moreover, proper integration of neurons into pre-existing circuitry still needs to be achieved. Nevertheless, in vitro neuronal stem cell-derived models hold great promise for clinical application in neurological diseases in the future.
Collapse
Affiliation(s)
- Vorapin Chinchalongporn
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA ; Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170 Thailand
| | - Peter Koppensteiner
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA ; Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Deborah Prè
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA
| | - Wipawan Thangnipon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhonpathom 73170 Thailand
| | - Leonilda Bilo
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA ; Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University of Naples, 80131 Naples, Italy
| | - Ottavio Arancio
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10032 USA ; Taub Institute for Research on Alzheimer's Disease and the Aging Brain P&S Bldg, Room 12-420D, Columbia University, New York, NY 10032 USA ; Columbia Stem Cell Initiative, CUMC, New York, NY 10032 USA
| |
Collapse
|
158
|
Li X, Zhao H, Tan X, Kostrzewa RM, Du G, Chen Y, Zhu J, Miao Z, Yu H, Kong J, Xu X. Inhibition of connexin43 improves functional recovery after ischemic brain injury in neonatal rats. Glia 2015; 63:1553-67. [PMID: 25988944 DOI: 10.1002/glia.22826] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Xiaojing Li
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Heqing Zhao
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Xianxing Tan
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Richard M. Kostrzewa
- Department of Pharmacology; Quillen College of Medicine, East Tennessee State University; Johnson City Tennessee
| | - Gang Du
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Yuanyuan Chen
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Jiangtao Zhu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
| | - Zhigang Miao
- The Institute of Neuroscience, Soochow University; Suzhou City China
| | - Hailong Yu
- Department of Neurology; Subei People's Hospital; Yangzhou City China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science; Faculty of Medicine, University of Manitoba; Winnipeg Manitoba Canada
| | - Xingshun Xu
- Department of Neurology; The Second Affiliated Hospital of Soochow University; Suzhou City China
- The Institute of Neuroscience, Soochow University; Suzhou City China
| |
Collapse
|
159
|
Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS Lett 2015; 589:1607-19. [PMID: 25980603 DOI: 10.1016/j.febslet.2015.05.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
Abstract
Neuronal communication plays an essential role in the propagation of information in the brain and requires a precisely orchestrated connectivity between neurons. Synaptic transmission is the mechanism through which neurons communicate with each other. It is a strictly regulated process which involves membrane depolarization, the cellular exocytosis machinery, neurotransmitter release from synaptic vesicles into the synaptic cleft, and the interaction between ion channels, G protein-coupled receptors (GPCRs), and downstream effector molecules. The focus of this review is to explore the role of GPCRs and G protein-signaling in neurotransmission, to highlight the function of GPCRs, which are localized in both presynaptic and postsynaptic membrane terminals, in regulation of intrasynaptic and intersynaptic communication, and to discuss the involvement of astrocytic GPCRs in the regulation of neuronal communication.
Collapse
Affiliation(s)
- Yunhong Huang
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| | - Amantha Thathiah
- VIB Center for the Biology of Disease, Leuven, Belgium; Center for Human Genetics (CME) and Leuven Institute for Neurodegenerative Diseases (LIND), University of Leuven (KUL), Leuven, Belgium.
| |
Collapse
|
160
|
Wu XL, Tang YC, Lu QY, Xiao XL, Song TB, Tang FR. Astrocytic Cx 43 and Cx 40 in the mouse hippocampus during and after pilocarpine-induced status epilepticus. Exp Brain Res 2015; 233:1529-39. [PMID: 25690864 DOI: 10.1007/s00221-015-4226-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/09/2015] [Indexed: 12/15/2022]
Abstract
Astrocytes have now been well accepted to play important roles in epileptogenesis by controlling gliotransmitter release and neuronal excitability, contributing to blood-brain barrier dysfunction and involving in brain inflammation. Recent studies indicate that abnormal expression of gap junction protein connexin (Cx) may also be a contributing factor for seizure generation. To further address this issue, we investigated the progressive changes of Cx 43 and Cx 40 in the mouse hippocampus at 4 h, 1 day, 1 week and 2 months during and after pilocarpine-induced status epilepticus (PISE). The co-localization of Cx 43 and Cx 40 with glial fibrillary acidic protein (GFAP) was also examined. We observed that Cx 43 and Cx 40 protein expression remained unaltered at 4 h during and at 1 day (acute stage) after PISE. However, their expression was significantly increased in CA1 and CA3 areas and in the dentate gyrus at 1 week (latent stage) and 2 months (chronic stage) after PISE. Double immunofluorescence labeling indicated the localization of Cx 43 and Cx 40 in astrocytes. Combined with progressive neuronal loss in the mouse hippocampus, our results suggest that the increase in gap junctions in the neuronoglial syncytium of reactive astrocytes may be implicated in synchronization of hippocampal hyperactivity leading to neuronal loss and epileptogenesis.
Collapse
Affiliation(s)
- X L Wu
- Department of Human Anatomy, Histology and Embryology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
161
|
Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: Preliminary findings. Brain Behav Immun 2015; 46:17-22. [PMID: 25500218 PMCID: PMC4414678 DOI: 10.1016/j.bbi.2014.12.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 11/09/2014] [Accepted: 12/02/2014] [Indexed: 12/31/2022] Open
Abstract
Inflammation-induced alterations in central nervous system (CNS) metabolism have focused on glutamate. At excessive concentrations, glutamate is toxic to glia and neurons, and inflammatory cytokines have been shown to influence glutamate turnover by blocking glutamate reuptake and increasing glutamate release. Increased glutamate has also been found in depression, a disorder associated with increased inflammation. Data by our group have shown increased glutamate as measured by magnetic resonance spectroscopy (MRS) in basal ganglia and dorsal anterior cingulate cortex of patients administered the inflammatory cytokine interferon (IFN)-alpha. Given data that increasing age is associated with an exaggerated CNS inflammatory response, we examined whether older age (>55years) would be associated with a greater IFN-alpha-induced increase in CNS glutamate. Using a longitudinal design, 31 patients with hepatitis C virus (HCV) underwent MRS, blood sampling for inflammatory markers, and behavioral assessments before (Visit 1) and after 4weeks (Visit 2) of either IFN-alpha (n=17) or no treatment (n=14). Older patients treated with IFN-alpha exhibited a significantly greater increase in glutamate from Visit 1 to Visit 2 as reflected by the glutamate/creatine ratio (Glu/Cr) in left basal ganglia compared to older controls and younger IFN-alpha-treated and untreated subjects. In addition, increased Glu/Cr in older but not younger IFN-alpha-treated and untreated patients was associated with increased tumor necrosis factor, reduced motivation as measured by the Multidimensional Fatigue Inventory and increased choice movement time on the Cambridge Neuropsychological Test Automated Battery. Taken together, these preliminary data support the notion that older age may interact with inflammation to exaggerate the effects of inflammatory stimuli on CNS glutamate and behavior.
Collapse
|
162
|
Ju WK, Kim KY, Noh YH, Hoshijima M, Lukas TJ, Ellisman MH, Weinreb RN, Perkins GA. Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes. Glia 2015; 63:736-53. [PMID: 25557093 PMCID: PMC4373968 DOI: 10.1002/glia.22781] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
Abnormal structure and function of astrocytes have been observed within the lamina cribrosa region of the optic nerve head (ONH) in glaucomatous neurodegeneration. Glutamate excitotoxicity-mediated mitochondrial alteration has been implicated in experimental glaucoma. However, the relationships among glutamate excitotoxicity, mitochondrial alteration and ONH astrocytes in the pathogenesis of glaucoma remain unknown. We found that functional N-methyl-d-aspartate (NMDA) receptors (NRs) are present in human ONH astrocytes and that glaucomatous human ONH astrocytes have increased expression levels of NRs and the glutamate aspartate transporter. Glaucomatous human ONH astrocytes exhibit mitochondrial fission that is linked to increased expression of dynamin-related protein 1 and its phosphorylation at Serine 616. In BAC ALDH1L1 eGFP or Thy1-CFP transgenic mice, NMDA treatment induced axon loss as well as hypertrophic morphology and mitochondrial fission in astrocytes of the glial lamina. In human ONH astrocytes, NMDA treatment in vitro triggered mitochondrial fission by decreasing mitochondrial length and number, thereby reducing mitochondrial volume density. However, blocking excitotoxicity by memantine (MEM) prevented these alterations by increasing mitochondrial length, number and volume density. In glaucomatous DBA/2J (D2) mice, blocking excitotoxicity by MEM inhibited the morphological alteration as well as increased mitochondrial number and volume density in astrocytes of the glial lamina. However, blocking excitotoxicity decreased autophagosome/autolysosome volume density in both astrocytes and axons in the glial lamina of glaucomatous D2 mice. These findings provide evidence that blocking excitotoxicity prevents ONH astrocyte dysfunction in glaucomatous neurodegeneration by increasing mitochondrial fission, increasing mitochondrial volume density and length, and decreasing autophagosome/autolysosome formation. GLIA 2015;63:736-753.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Keun-Young Kim
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| | - You Hyun Noh
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Masahiko Hoshijima
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
- Department of Medicine, University of California San DiegoLa Jolla, California
| | - Thomas J Lukas
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern UniversityChicago, Illinois
| | - Mark H Ellisman
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| | - Robert N Weinreb
- Department of Ophthalmology, Laboratory for Optic Nerve Biology, Hamilton Glaucoma Center, University of California San DiegoLa Jolla, California
| | - Guy A Perkins
- Center for Research on Biological Systems, National Center for Microscopy and Imaging Research and Department of Neuroscience, University of California San DiegoLa Jolla, California
| |
Collapse
|
163
|
Vardjan N, Zorec R. Excitable Astrocytes: Ca(2+)- and cAMP-Regulated Exocytosis. Neurochem Res 2015; 40:2414-24. [PMID: 25732760 DOI: 10.1007/s11064-015-1545-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 02/15/2015] [Accepted: 02/17/2015] [Indexed: 01/19/2023]
Abstract
During neural activity, neurotransmitters released at synapses reach neighbouring cells, such as astrocytes. These get excited via numerous mechanisms, including the G protein coupled receptors that regulate the cytosolic concentration of second messengers, such as Ca(2+) and cAMP. The stimulation of these pathways leads to feedback modulation of neuronal activity and the activity of other cells by the release of diverse substances, gliosignals that include classical neurotransmitters such as glutamate, ATP, or neuropeptides. Gliosignal molecules are released from astrocytes through several distinct molecular mechanisms, for example, by diffusion through membrane channels, by translocation via plasmalemmal transporters, or by vesicular exocytosis. Vesicular release regulated by a stimulus-mediated increase in cytosolic second messengers involves a SNARE-dependent merger of the vesicle membrane with the plasmalemma. The coupling between the stimulus and vesicular secretion of gliosignals in astrocytes is not as tight as in neurones. This is considered an adaptation to regulate homeostatic processes in a slow time domain as is the case in the endocrine system (slower than the nervous system), hence glial functions constitute the gliocrine system. This article provides an overview of the mechanisms of excitability, involving Ca(2+) and cAMP, where the former mediates phasic signalling and the latter tonic signalling. The molecular, anatomic, and physiologic properties of the vesicular apparatus mediating the release of gliosignals is presented.
Collapse
Affiliation(s)
- Nina Vardjan
- Celica Biomedical, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| | - Robert Zorec
- Celica Biomedical, 1000, Ljubljana, Slovenia.
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, 1000, Ljubljana, Slovenia.
| |
Collapse
|
164
|
Liu L, Mao D, Liu L, Huang Y, Bo T. Effects of progesterone on glutamate transporter 2 and gamma-aminobutyric acid transporter 1 expression in the developing rat brain after recurrent seizures. Neural Regen Res 2015; 7:2036-42. [PMID: 25624835 PMCID: PMC4296423 DOI: 10.3969/j.issn.1673-5374.2012.26.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022] Open
Abstract
Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.
Collapse
Affiliation(s)
- Lingjuan Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Dingan Mao
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Liqun Liu
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Huang
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Tao Bo
- Department of Pediatrics, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
165
|
Abstract
Most extracellular glutamate in the brain is released by xCT, a glial antiporter that exports glutamate and imports cystine. The function of xCT, and extracellular glutamate in general, remains unclear. Several lines of evidence suggest that glutamate from xCT could act in a paracrine fashion to suppress glutamatergic synapse strength by triggering removal of postsynaptic glutamate receptors. To test this idea, we used whole-cell patch-clamp electrophysiology and immunohistochemistry to quantify receptor number and synapse function in xCT knock-out mouse hippocampal CA3-CA1 synapses. Consistent with the hypothesis that xCT suppresses glutamate receptor number and synapse strength, xCT knock-out synapses showed increased AMPA receptor abundance with concomitant large enhancements of spontaneous and evoked synaptic transmission. We saw no evidence for changes in GABA receptor abundance or the overall number of glutamatergic synapses. The xCT knock-out phenotype was replicated by incubating slices in the xCT inhibitor (S)-4-carboxyphenylglycine, and consistent with the idea that xCT works by regulating extracellular glutamate, the xCT knock-out phenotype could be reproduced in controls by incubating the slices in glutamate-free aCSF. We conclude that glutamate secreted via xCT suppresses glutamatergic synapse strength by triggering removal of postsynaptic AMPA receptors.
Collapse
|
166
|
EAAT2 (GLT-1; slc1a2) glutamate transporters reconstituted in liposomes argues against heteroexchange being substantially faster than net uptake. J Neurosci 2015; 34:13472-85. [PMID: 25274824 DOI: 10.1523/jneurosci.2282-14.2014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EAAT2 glutamate transporter, accounts for >90% of hippocampal glutamate uptake. Although EAAT2 is predominantly expressed in astrocytes, ∼10% of EAAT2 molecules are found in axon terminals. Despite the lower level of EAAT2 expression in glutamatergic terminals, when hippocampal slices are incubated with low concentration of d-aspartate (an EAAT2 substrate), axon terminals accumulate d-aspartate as quickly as astroglia. This implies an unexplained mismatch between the distribution of EAAT2 protein and of EAAT2-mediated transport activity. One hypothesis is that (1) heteroexchange of internal substrate with external substrate is considerably faster than net uptake and (2) terminals favor heteroexchange because of high levels of internal glutamate. However, it is currently unknown whether heteroexchange and uptake have similar or different rates. To address this issue, we used a reconstituted system to compare the relative rates of the two processes in rat and mice. Net uptake was sensitive to changes in the membrane potential and was stimulated by external permeable anions in agreement with the existence of an uncoupled anion conductance. By using the latter, we also demonstrate that the rate of heteroexchange also depends on the membrane potential. Additionally, our data further suggest the presence of a sodium leak in EAAT2. By incorporating the new findings in our previous model of glutamate uptake by EAAT2, we predict that the voltage sensitivity of exchange is caused by the voltage-dependent third Na(+) binding. Further, both our experiments and simulations suggest that the relative rates of net uptake and heteroexchange are comparable in EAAT2.
Collapse
|
167
|
Minieri L, Pivonkova H, Harantova L, Anderova M, Ferroni S. Intracellular Na+
inhibits volume-regulated anion channel in rat cortical astrocytes. J Neurochem 2015; 132:286-300. [DOI: 10.1111/jnc.12962] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 09/04/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Laura Minieri
- Department of Pharmacy and Biotechnology; University of Bologna; Bologna Italy
| | - Helena Pivonkova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Lenka Harantova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology; Institute of Experimental Medicine; Academy of Sciences of the Czech Republic; Prague Czech Republic
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology; University of Bologna; Bologna Italy
| |
Collapse
|
168
|
Ji ZG, Wang H. Optogenetic control of astrocytes: Is it possible to treat astrocyte-related epilepsy? Brain Res Bull 2015; 110:20-5. [DOI: 10.1016/j.brainresbull.2014.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 11/15/2022]
|
169
|
Maraula G, Lana D, Coppi E, Gentile F, Mello T, Melani A, Galli A, Giovannini MG, Pedata F, Pugliese AM. The selective antagonism of P2X7 and P2Y1 receptors prevents synaptic failure and affects cell proliferation induced by oxygen and glucose deprivation in rat dentate gyrus. PLoS One 2014; 9:e115273. [PMID: 25526634 PMCID: PMC4272279 DOI: 10.1371/journal.pone.0115273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 11/23/2014] [Indexed: 11/18/2022] Open
Abstract
Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS), including dentate gyrus (DG). The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD) in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs) in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD). Application of MRS2179 (selective antagonist of P2Y1 receptor) and BBG (selective antagonist of P2X7 receptor), before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ) of slices prepared from rats treated with 5-Bromo-2′-deoxyuridine (BrdU) were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX). The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG.
Collapse
Affiliation(s)
- Giovanna Maraula
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Daniele Lana
- Dept. of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Dept. of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Francesca Gentile
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Tommaso Mello
- Dept. of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Alessia Melani
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Galli
- Dept. of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Dept. of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, Florence, Italy
| | - Felicita Pedata
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Anna Maria Pugliese
- Dept. of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA, Division of Pharmacology and Toxicology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
170
|
Scofield MD, Kalivas PW. Astrocytic dysfunction and addiction: consequences of impaired glutamate homeostasis. Neuroscientist 2014; 20:610-22. [PMID: 24496610 PMCID: PMC4913887 DOI: 10.1177/1073858413520347] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Addiction is characterized as a chronic relapsing disorder whereby addicted individuals persistently engage in drug seeking and use despite profound negative consequences. The results of studies using animal models of addiction and relapse indicate that drug seeking is mediated by alterations in cortico-accumbal plasticity induced by chronic drug exposure. Among the maladaptive responses to drug exposure are long-lasting alterations in the expression of proteins localized to accumbal astrocytes, which are responsible for maintaining glutamate homeostasis. These alterations engender an aberrant potentiation of glutamate transmission in the cortico-accumbens circuit that is linked to the reinstatement of drug seeking. Accordingly, pharmacological restoration of glutamate homeostasis functions as an efficient method of reversing drug-induced plasticity and inhibiting drug seeking in both rodents and humans.
Collapse
Affiliation(s)
- Michael D Scofield
- Medical University of South Carolina, Charleston, SC, USA, Department of Neurosciences
| | - Peter W Kalivas
- Medical University of South Carolina, Charleston, SC, USA, Department of Neurosciences
| |
Collapse
|
171
|
Robinson CR, Dougherty PM. Spinal astrocyte gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy. Neuroscience 2014; 285:1-10. [PMID: 25446343 DOI: 10.1016/j.neuroscience.2014.11.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 01/01/2023]
Abstract
There is increasing evidence implicating astrocytes in multiple forms of chronic pain, as well as in the specific context of chemotherapy-induced peripheral neuropathy (CIPN). However, it is still unclear what the exact role of astrocytes may be in the context of CIPN. Findings in oxaliplatin and paclitaxel models have displayed altered expression of astrocytic gap junctions and glutamate transporters as means by which astrocytes may contribute to observed behavioral changes. The current study investigated whether these changes were also generalizable to the bortezomib CIPN. Changes in mechanical sensitivity were verified in bortezomib-treated animals, and these changes were prevented by co-treatment with a glial activation inhibitor (minocycline), a gap junction decoupler (carbenoxolone), and by a glutamate transporter upregulator (ceftriaxone). Immunohistochemistry data at day 30 in bortezomib-treated animals showed increases in expression of glial fibrillary acidic protein (GFAP) and connexin 43 but a decrease in GLAST expression. These changes were prevented by co-treatment with minocycline. Follow-up Western blotting data showed a shift in connexin 43 from a non-phosphorylated state to a phosphorylated state, indicating increased trafficking of expressed connexin 43 to the cell membrane. These data suggest that increases in behavioral sensitivity to cutaneous stimuli may be tied to persistent synaptic glutamate resulting from increased calcium flow between spinal astrocytes.
Collapse
Affiliation(s)
- C R Robinson
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, Unites States
| | - P M Dougherty
- The Department of Anesthesiology and Pain Medicine Research, The University of Texas M.D. Anderson Cancer Center, 1400 Holcombe, Unit 409, Houston, TX 77030, Unites States.
| |
Collapse
|
172
|
Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. Exp Neurol 2014; 261:386-95. [DOI: 10.1016/j.expneurol.2014.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/25/2014] [Accepted: 05/01/2014] [Indexed: 01/10/2023]
|
173
|
Imbrosci B, Neitz A, Mittmann T. Focal cortical lesions induce bidirectional changes in the excitability of fast spiking and non fast spiking cortical interneurons. PLoS One 2014; 9:e111105. [PMID: 25347396 PMCID: PMC4210267 DOI: 10.1371/journal.pone.0111105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/28/2014] [Indexed: 11/29/2022] Open
Abstract
A physiological brain function requires neuronal networks to operate within a well-defined range of activity. Indeed, alterations in neuronal excitability have been associated with several pathological conditions, ranging from epilepsy to neuropsychiatric disorders. Changes in inhibitory transmission are known to play a key role in the development of hyperexcitability. However it is largely unknown whether specific interneuronal subpopulations contribute differentially to such pathological condition. In the present study we investigated functional alterations of inhibitory interneurons embedded in a hyperexcitable cortical circuit at the border of chronically induced focal lesions in mouse visual cortex. Interestingly, we found opposite alterations in the excitability of non fast-spiking (Non Fs) and fast-spiking (Fs) interneurons in acute cortical slices from injured animals. Non Fs interneurons displayed a depolarized membrane potential and a higher frequency of spontaneous excitatory postsynaptic currents (sEPSCs). In contrast, Fs interneurons showed a reduced sEPSCs amplitude. The observed downscaling of excitatory synapses targeting Fs interneurons may prevent the recruitment of this specific population of interneurons to the hyperexcitable network. This mechanism is likely to seriously affect neuronal network function and to exacerbate hyperexcitability but it may be important to protect this particular vulnerable population of GABAegic neurons from excitotoxicity.
Collapse
Affiliation(s)
- Barbara Imbrosci
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- * E-mail: (BI); (TM)
| | - Angela Neitz
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Thomas Mittmann
- Institute of Physiology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- * E-mail: (BI); (TM)
| |
Collapse
|
174
|
Abstract
The multifunctional properties of astrocytes signify their importance in brain physiology and neurological function. In addition to defining the brain architecture, astrocytes are primary elements of brain ion, pH and neurotransmitter homoeostasis. GS (glutamine synthetase), which catalyses the ATP-dependent condensation of ammonia and glutamate to form glutamine, is an enzyme particularly found in astrocytes. GS plays a pivotal role in glutamate and glutamine homoeostasis, orchestrating astrocyte glutamate uptake/release and the glutamate-glutamine cycle. Furthermore, astrocytes bear the brunt of clearing ammonia in the brain, preventing neurotoxicity. The present review depicts the central function of astrocytes, concentrating on the importance of GS in glutamate/glutamine metabolism and ammonia detoxification in health and disease.
Collapse
|
175
|
Hyzinski-García MC, Rudkouskaya A, Mongin AA. LRRC8A protein is indispensable for swelling-activated and ATP-induced release of excitatory amino acids in rat astrocytes. J Physiol 2014; 592:4855-62. [PMID: 25172945 DOI: 10.1113/jphysiol.2014.278887] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In mammals, cellular swelling activates release of small organic osmolytes, including the excitatory amino acids (EAA) glutamate and aspartate, via a ubiquitously expressed volume-regulated chloride/anion channel (VRAC). Pharmacological evidence suggests that VRAC plays plural physiological and pathological roles, including excitotoxic release of glutamate in stroke. However, the molecular identity of this pathway was unknown. Two recent studies discovered that LRRC8 gene family members encode heteromeric VRAC composed of LRRC8A plus LRRC8B-E, which mediate swelling-activated Cl(-) currents and taurine release in human non-neural cells (Z. Qiu et al. Cell 157: 447, 2014; F.K. Voss et al. Science 344: 634, 2014). Here, we tested the contribution of LRRC8A to the EAA release in brain glia. We detected and quantified expression levels of LRRC8A-E in primary rat astrocytes with quantitative RT-PCR and then downregulated LRRC8A with gene-specific siRNAs. In astrocytes exposed to hypo-osmotic media, LRRC8A knockdown dramatically reduced swelling-activated release of the EAA tracer D-[(3)H]aspartate. In parallel HPLC assays, LRRC8A siRNA prevented hypo-osmotic media-induced loss of the endogenous intracellular L-glutamate and taurine. Furthermore, downregulation of LRRC8A completely ablated the ATP-stimulated release of D-[(3)H]aspartate and [(14)C]taurine from non-swollen astrocytes. Overall, these data indicate that LRRC8A is an indispensable component of a permeability pathway that mediates both swelling-activated and agonist-induced amino acid release in brain glial cells.
Collapse
Affiliation(s)
- María C Hyzinski-García
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, 12208, USA
| | - Alena Rudkouskaya
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, 12208, USA
| | - Alexander A Mongin
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY, 12208, USA
| |
Collapse
|
176
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
177
|
A time course analysis of the electrophysiological properties of neurons differentiated from human induced pluripotent stem cells (iPSCs). PLoS One 2014; 9:e103418. [PMID: 25072157 PMCID: PMC4114788 DOI: 10.1371/journal.pone.0103418] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Many protocols have been designed to differentiate human embryonic stem cells (ESCs) and human induced pluripotent stem cells (iPSCs) into neurons. Despite the relevance of electrophysiological properties for proper neuronal function, little is known about the evolution over time of important neuronal electrophysiological parameters in iPSC-derived neurons. Yet, understanding the development of basic electrophysiological characteristics of iPSC-derived neurons is critical for evaluating their usefulness in basic and translational research. Therefore, we analyzed the basic electrophysiological parameters of forebrain neurons differentiated from human iPSCs, from day 31 to day 55 after the initiation of neuronal differentiation. We assayed the developmental progression of various properties, including resting membrane potential, action potential, sodium and potassium channel currents, somatic calcium transients and synaptic activity. During the maturation of iPSC-derived neurons, the resting membrane potential became more negative, the expression of voltage-gated sodium channels increased, the membrane became capable of generating action potentials following adequate depolarization and, at day 48–55, 50% of the cells were capable of firing action potentials in response to a prolonged depolarizing current step, of which 30% produced multiple action potentials. The percentage of cells exhibiting miniature excitatory post-synaptic currents increased over time with a significant increase in their frequency and amplitude. These changes were associated with an increase of Ca2+ transient frequency. Co-culturing iPSC-derived neurons with mouse glial cells enhanced the development of electrophysiological parameters as compared to pure iPSC-derived neuronal cultures. This study demonstrates the importance of properly evaluating the electrophysiological status of the newly generated neurons when using stem cell technology, as electrophysiological properties of iPSC-derived neurons mature over time.
Collapse
|
178
|
Hassanpoor H, Fallah A, Raza M. Mechanisms of hippocampal astrocytes mediation of spatial memory and theta rhythm by gliotransmitters and growth factors. Cell Biol Int 2014; 38:1355-66. [PMID: 24947407 DOI: 10.1002/cbin.10326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022]
Abstract
Our knowledge about encoding and maintenance of spatial memory emphasizes the integrated functional role of the grid cells and the place cells of the hippocampus in the generation of theta rhythm in spatial memory formation. However, the role of astrocytes in these processes is often underestimated in their contribution to the required structural and functional characteristics of hippocampal neural network operative in spatial memory. We show that hippocampal astrocytes, by the secretion of gliotransmitters, such as glutamate, d-serine, and ATP and growth factors such as BDNF and by the expression of receptors and channels such as those of TNFα and aquaporin, have several diverse fuctions in spatial memory. We specifically focus on the role of astrocytes on five phases of spatial memory: (1) theta rhythm generation, (2) theta phase precession, (3) formation of spatial memory by mapping data of entorhinal grid cells into the place cells, (4) storage of spatial information, and (5) maintenance of spatial memory. Finally, by reviewing the literature, we propose specific mechanisms mentioned in the form of a hypothesis suggesting that astrocytes are important in spatial memory formation.
Collapse
Affiliation(s)
- Hossein Hassanpoor
- Department of Bioelectrics, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, IR, Iran
| | | | | |
Collapse
|
179
|
Glutamate metabolism and HIV-associated neurocognitive disorders. J Neurovirol 2014; 20:315-31. [PMID: 24867611 DOI: 10.1007/s13365-014-0258-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 05/09/2014] [Indexed: 12/21/2022]
Abstract
HIV-1 infection can lead to neurocognitive impairment collectively known as HIV-associated neurocognitive disorders (HAND). Although combined antiretroviral treatment (cART) has significantly ameliorated HIV's morbidity and mortality, persistent neuroinflammation and neurocognitive dysfunction continue. This review focuses on the current clinical and molecular evidence of the viral and host factors that influence glutamate-mediated neurotoxicity and neuropathogenesis as an important underlying mechanism during the course of HAND development. In addition, discusses potential pharmacological strategies targeting the glutamatergic system that may help prevent and improve neurological outcomes in HIV-1-infected subjects.
Collapse
|
180
|
Ash ES, Heal DJ, Clare Stanford S. Contrasting changes in extracellular dopamine and glutamate along the rostrocaudal axis of the anterior cingulate cortex of the rat following an acute d-amphetamine or dopamine challenge. Neuropharmacology 2014; 87:180-7. [PMID: 24747182 PMCID: PMC4226319 DOI: 10.1016/j.neuropharm.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/07/2014] [Accepted: 04/02/2014] [Indexed: 11/26/2022]
Abstract
There is evidence for functional specificity of subregions along the rostrocaudal axis of the anterior cingulate cortex (ACC). The subregion-specific distribution of dopaminergic afferents and glutamatergic efferents along the ACC make these obvious candidates for coding such regional responses. We investigated this possibility using microdialysis in freely-moving rats to compare changes in extracellular dopamine and glutamate in the rostral (‘rACC': Cg1 and Cg3 (prelimbic area)) and caudal (‘cACC’: Cg1 and Cg2) ACC induced by systemic or local administration of d-amphetamine. Systemic administration of d-amphetamine (3 mg/kg, i.p.) caused a transient increase in extracellular dopamine in the rACC, but an apparent increase in the cACC of the same animals was less clearly defined. Local infusion of d-amphetamine increased dopamine efflux in the rACC, only. Glutamate efflux in the rACC was increased by local infusion of dopamine (5–50 μM), which had negligible effect in the cACC, but only systemic administration of d-amphetamine increased glutamate efflux and only in the cACC. The asymmetry in the neurochemical responses within the rACC and cACC, to the same experimental challenges, could help explain why different subregions are recruited in the response to specific environmental and somatosensory stimuli and should be taken into account when studying the regulation of neurotransmission in the ACC. This article is part of the Special Issue entitled ‘CNS Stimulants’. Dopamine and glutamate efflux in two anterior cingulate subregions were compared. Responses to d-amphetamine depended on subregion and route of drug administration. These findings could help explain the disparate roles of the two subregions.
Collapse
Affiliation(s)
- Elizabeth S Ash
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - David J Heal
- RenaSci Ltd., Pennyfoot Street, Nottingham NG1 1GF, UK
| | - S Clare Stanford
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
181
|
Thrombin-Facilitated Efflux of d-[3H]-Aspartate from Cultured Astrocytes and Neurons Under Hyponatremia and Chemical Ischemia. Neurochem Res 2014; 39:1219-31. [DOI: 10.1007/s11064-014-1300-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 01/17/2023]
|
182
|
Krzyżanowska W, Pomierny B, Filip M, Pera J. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 2014; 35:444-62. [PMID: 24681894 DOI: 10.1038/aps.2014.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 01/03/2014] [Indexed: 01/18/2023]
Abstract
In this review, we briefly describe glutamate (Glu) metabolism and its specific transports and receptors in the central nervous system (CNS). Thereafter, we focus on excitatory amino acid transporters, cystine/glutamate antiporters (system xc-) and vesicular glutamate transporters, specifically addressing their location and roles in CNS and the molecular mechanisms underlying the regulation of Glu transporters. We provide evidence from in vitro or in vivo studies concerning alterations in Glu transporter expression in response to hypoxia or ischemia, including limited human data that supports the role of Glu transporters in stroke patients. Moreover, the potential to induce brain tolerance to ischemia through modulation of the expression and/or activities of Glu transporters is also discussed. Finally we present strategies involving the application of ischemic preconditioning and pharmacological agents, eg β-lactam antibiotics, amitriptyline, riluzole and N-acetylcysteine, which result in the significant protection of nervous tissues against ischemia.
Collapse
|
183
|
Involvement of connexin43 in the infrasonic noise-induced glutamate release by cultured astrocytes. Neurochem Res 2014; 39:833-42. [PMID: 24634254 DOI: 10.1007/s11064-014-1277-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/13/2014] [Accepted: 03/07/2014] [Indexed: 10/25/2022]
Abstract
Infrasonic noise/infrasound is a type of environmental noise that threatens public health as a nonspecific biological stressor. Glutamate-related excitotoxicity is thought to be responsible for infrasound-induced impairment of learning and memory. In addition to neurons, astrocytes are also capable of releasing glutamate. In the present study, to identify the effect of infrasound on astroglial glutamate release, cultured astrocytes were exposed to infrasound at 16 Hz, 130 dB for different times. We found that infrasound exposure caused a significant increase in glutamate levels in the extracellular fluid. Moreover, blocking the connexin43 (Cx43) hemichannel or gap junction, decreasing the probability of Cx43 being open or inhibiting of Cx43 expression blocked this increase. The results suggest that glutamate release by Cx43 hemichannels/gap junctions is involved in the response of cultured astrocytes to infrasound.
Collapse
|
184
|
The potential therapeutic effect of guanosine after cortical focal ischemia in rats. PLoS One 2014; 9:e90693. [PMID: 24587409 PMCID: PMC3938812 DOI: 10.1371/journal.pone.0090693] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Stroke is a devastating disease. Both excitotoxicity and oxidative stress play important roles in ischemic brain injury, along with harmful impacts on ischemic cerebral tissue. As guanosine plays an important neuroprotective role in the central nervous system, the purpose of this study was to evaluate the neuroprotective effects of guanosine and putative cerebral events following the onset of permanent focal cerebral ischemia. METHODS Permanent focal cerebral ischemia was induced in rats by thermocoagulation. Guanosine was administered immediately, 1 h, 3 h and 6 h after surgery. Behavioral performance was evaluated by cylinder testing for a period of 15 days after surgery. Brain oxidative stress parameters, including levels of ROS/RNS, lipid peroxidation, antioxidant non-enzymatic levels (GSH, vitamin C) and enzymatic parameters (SOD expression and activity and CAT activity), as well as glutamatergic parameters (EAAC1, GLAST and GLT1, glutamine synthetase) were analyzed. RESULTS After 24 h, ischemic injury resulted in impaired function of the forelimb, caused brain infarct and increased lipid peroxidation. Treatment with guanosine restored these parameters. Oxidative stress markers were affected by ischemic insult, demonstrated by increased ROS/RNS levels, increased SOD expression with reduced SOD activity and decreased non-enzymatic (GSH and vitamin C) antioxidant defenses. Guanosine prevented increased ROS/RNS levels, decreased SOD activity, further increased SOD expression, increased CAT activity and restored vitamin C levels. Ischemia also affected glutamatergic parameters, illustrated by increased EAAC1 levels and decreased GLT1 levels; guanosine reversed the decreased GLT1 levels and did not affect the EAAC1 levels. CONCLUSION The effects of brain ischemia were strongly attenuated by guanosine administration. The cellular mechanisms involved in redox and glutamatergic homeostasis, which were both affected by the ischemic insult, were also modulated by guanosine. These observations reveal that guanosine may represent a potential therapeutic agent in cerebral ischemia by preventing oxidative stress and excitotoxicity.
Collapse
|
185
|
Wu YW, Tang X, Arizono M, Bannai H, Shih PY, Dembitskaya Y, Kazantsev V, Tanaka M, Itohara S, Mikoshiba K, Semyanov A. Spatiotemporal calcium dynamics in single astrocytes and its modulation by neuronal activity. Cell Calcium 2014; 55:119-29. [DOI: 10.1016/j.ceca.2013.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 12/20/2022]
|
186
|
Sustained Na+/H+ exchanger activation promotes gliotransmitter release from reactive hippocampal astrocytes following oxygen-glucose deprivation. PLoS One 2014; 9:e84294. [PMID: 24392123 PMCID: PMC3879304 DOI: 10.1371/journal.pone.0084294] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
Hypoxia ischemia (HI)-related brain injury is the major cause of long-term morbidity in neonates. One characteristic hallmark of neonatal HI is the development of reactive astrogliosis in the hippocampus. However, the impact of reactive astrogliosis in hippocampal damage after neonatal HI is not fully understood. In the current study, we investigated the role of Na+/H+ exchanger isoform 1 (NHE1) protein in mouse reactive hippocampal astrocyte function in an in vitro ischemia model (oxygen/glucose deprivation and reoxygenation, OGD/REOX). 2 h OGD significantly increased NHE1 protein expression and NHE1-mediated H+ efflux in hippocampal astrocytes. NHE1 activity remained stimulated during 1–5 h REOX and returned to the basal level at 24 h REOX. NHE1 activation in hippocampal astrocytes resulted in intracellular Na+ and Ca2+ overload. The latter was mediated by reversal of Na+/Ca2+ exchange. Hippocampal astrocytes also exhibited a robust release of gliotransmitters (glutamate and pro-inflammatory cytokines IL-6 and TNFα) during 1–24 h REOX. Interestingly, inhibition of NHE1 activity with its potent inhibitor HOE 642 not only reduced Na+ overload but also gliotransmitter release from hippocampal astrocytes. The noncompetitive excitatory amino acid transporter inhibitor TBOA showed a similar effect on blocking the glutamate release. Taken together, we concluded that NHE1 plays an essential role in maintaining H+ homeostasis in hippocampal astrocytes. Over-stimulation of NHE1 activity following in vitro ischemia disrupts Na+ and Ca2+ homeostasis, which reduces Na+-dependent glutamate uptake and promotes release of glutamate and cytokines from reactive astrocytes. Therefore, blocking sustained NHE1 activation in reactive astrocytes may provide neuroprotection following HI.
Collapse
|
187
|
Brose SA, Marquardt AL, Golovko MY. Fatty acid biosynthesis from glutamate and glutamine is specifically induced in neuronal cells under hypoxia. J Neurochem 2013; 129:400-12. [PMID: 24266789 DOI: 10.1111/jnc.12617] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/27/2013] [Accepted: 11/14/2013] [Indexed: 12/12/2022]
Abstract
Hypoxia is involved in many neuronal and non-neuronal diseases, and defining the mechanisms for tissue adaptation to hypoxia is critical for the understanding and treatment of these diseases. One mechanism for tissue adaptation to hypoxia is increased glutamine and/or glutamate (Gln/Glu) utilization. To address this mechanism, we determined incorporation of Gln/Glu and other lipogenic substrates into lipids and fatty acids in both primary neurons and a neuronal cell line under normoxic and hypoxic conditions and compared this to non-neuronal primary cells and non-neuronal cell lines. Incorporation of Gln/Glu into total lipids was dramatically and specifically increased under hypoxia in neuronal cells including both primary (2.0- and 3.0-fold for Gln and Glu, respectively) and immortalized cultures (3.5- and 8.0-fold for Gln and Glu, respectively), and 90% to 97% of this increase was accounted for by incorporation into fatty acids (FA) depending upon substrate and cell type. All other non-neuronal cells tested demonstrated decreased or unchanged FA synthesis from Gln/Glu under hypoxia. Consistent with these data, total FA mass was also increased in neuronal cells under hypoxia that was mainly accounted for by the increase in saturated and monounsaturated FA with carbon length from 14 to 24. Incorporation of FA synthesized from Gln/Glu was increased in all major lipid classes including cholesteryl esters, triacylglycerols, diacylglycerols, free FA, and phospholipids, with the highest rate of incorporation into triacylglycerols. These results indicate that increased FA biosynthesis from Gln/Glu followed by esterification may be a neuronal specific pathway for adaptation to hypoxia. We identified a novel neuronal specific pathway for adaptation to hypoxia through increased fatty acid biosynthesis from glutamine and glutamate (Gln/Glu) followed by esterification into lipids. All other non-neuronal cells tested demonstrated decreased or unchanged lipid synthesis from Gln/Glu under hypoxia. Incorporation of other lipogenic substrates into lipids was decreased under hypoxia in neuronal cells. We believe that this finding will provide a novel strategy for treatment of oxygen and energy deficient conditions in the neuronal system.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND, USA
| | | | | |
Collapse
|
188
|
Gliotransmission: focus on exocytotic release of L-glutamate and D-serine from astrocytes. Biochem Soc Trans 2013; 41:1557-61. [DOI: 10.1042/bst20130195] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The release of neuromodulators, called gliotransmitters, by astrocytes is proposed to modulate neurotransmission and synaptic plasticity, and thereby cognitive functions; but they are also proposed to have a role in diverse neurological disorders. Two main routes have been proposed to ensure gliotransmitter release: non-exocytotic release from cytosolic pools through plasma membrane proteins, and Ca2+-regulated exocytosis through the fusion of gliotransmitter-storing secretory organelles. Regulated Ca2+-dependent glial exocytosis has received much attention and is appealing since its existence endows astrocytes with some of the basic properties thought to be exclusive to neurons and neuroendocrine cells. The present review summarizes recent findings regarding the exocytotic mechanisms underlying the release of two excitatory amino acids, L-glutamate and D-serine.
Collapse
|
189
|
Astrocytes use a novel transporter to fill gliotransmitter vesicles with D-serine: evidence for vesicular synergy. J Neurosci 2013; 33:10193-4. [PMID: 23785135 DOI: 10.1523/jneurosci.1665-13.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
190
|
Murugan M, Ling EA, Kaur C. Dysregulated glutamate uptake by astrocytes causes oligodendroglia death in hypoxic perventricular white matter damage. Mol Cell Neurosci 2013; 56:342-54. [PMID: 23859823 DOI: 10.1016/j.mcn.2013.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 01/31/2023] Open
Abstract
Excess glutamate mediates damage to oligodendroglia, resulting in myelination disturbances characteristic of hypoxic periventricular white matter (PWM) damage. We sought to examine if hypoxia altered the expression of astroglial excitatory amino acid transporters (EAAT1, EAAT2 and EAAT3) in the PWM, and, if so, whether it activated astroglial N-methyl D-aspartate receptors (NMDAR) which might lead to apoptosis of oligodendroglia. EAAT expression in the PWM of neonatal rats was measured at different time points after hypoxic exposure; it was attenuated at 7 and 14 d following hypoxia. Hypoxia prevented the uptake of glutamate by astroglial EAATs causing increased levels of extracellular glutamate. Excess glutamate augmented the expression of functional astroglial NMDAR. Following hypoxia, an increase in gap junction proteins between astroglia and oligodendroglia aided in the spreading of NMDAR-mediated excitotoxic calcium signals into the latter cell type triggering its apoptosis. Hence, dysregulated glutamate homeostasis is believed to contribute to hypoxia-induced death of oligodendroglia leading to neonatal PWM damage.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | |
Collapse
|
191
|
Oliva I, Fernández M, Martín ED. Dopamine release regulation by astrocytes during cerebral ischemia. Neurobiol Dis 2013; 58:231-41. [PMID: 23800715 DOI: 10.1016/j.nbd.2013.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/16/2013] [Accepted: 06/15/2013] [Indexed: 11/25/2022] Open
Abstract
Brain ischemia triggers excessive release of neurotransmitters that mediate neuronal damage following ischemic injury. The striatum is one of the areas most sensitive to ischemia. Release of dopamine (DA) from ischemic neurons is neurotoxic and directly contributes to the cell death in affected areas. Astrocytes are known to be critically involved in the physiopathology of cerebrovascular disease. However, their response to ischemia and their role in neuroprotection in striatum are not completely understood. In this study, we used an in vitro model to evaluate the mechanisms of ischemia-induced DA release, and to study whether astrocytes modulate the release of DA in response to short-term ischemic conditions. Using slices of adult mouse brain exposed to oxygen and glucose deprivation (OGD), we measured the OGD-evoked DA efflux using fast cyclic voltammetry and also assessed metabolic impairment by 2,3,5-triphenyltetrazolium chloride (TTC) and tissue viability by propidium iodide (PI) staining. Our data indicate that ischemia induces massive release of DA by dual mechanisms: one which operates via vesicular exocytosis and is action potential dependent and another involving reverse transport by the dopamine transporter (DAT). Simultaneous blockade of astrocyte glutamate transporters and DAT prevented the massive release of dopamine and reduced the brain tissue damage. The present results provide the first experimental evidence that astrocytes function as a key cellular element of ischemia-induced DA release in striatum, constituting a novel and promising therapeutic target in ischemia.
Collapse
Affiliation(s)
- Idaira Oliva
- University of Castilla-La Mancha, Albacete, Spain
| | | | | |
Collapse
|
192
|
Lee W, Reyes RC, Gottipati MK, Lewis K, Lesort M, Parpura V, Gray M. Enhanced Ca(2+)-dependent glutamate release from astrocytes of the BACHD Huntington's disease mouse model. Neurobiol Dis 2013; 58:192-9. [PMID: 23756199 DOI: 10.1016/j.nbd.2013.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/09/2013] [Accepted: 06/02/2013] [Indexed: 11/29/2022] Open
Abstract
Huntington's disease (HD) causes preferential loss of a subset of neurons in the brain although the huntingtin protein is expressed broadly in various neural cell types, including astrocytes. Glutamate-mediated excitotoxicity is thought to cause selective neuronal injury, and brain astrocytes have a central role in regulating extracellular glutamate. To determine whether full-length mutant huntingtin expression causes a cell-autonomous phenotype and perturbs astrocyte gliotransmitter release, we studied cultured cortical astrocytes from BACHD mice. Here, we report augmented glutamate release through Ca(2+)-dependent exocytosis from BACHD astrocytes. Although such release is usually dependent on cytosolic Ca(2+) levels, surprisingly, we found that BACHD astrocytes displayed Ca(2+) dynamics comparable to those in wild type astrocytes. These results point to a possible involvement of other factors in regulating Ca(2+)-dependent/vesicular release of glutamate from astrocytes. We found a biochemical footprint that would lead to increased availability of cytosolic glutamate in BACHD astrocytes: i) augmented de novo glutamate synthesis due to an increase in the level of the astrocyte specific mitochondrial enzyme pyruvate carboxylase; and ii) unaltered conversion of glutamate to glutamine, as there were no changes in the expression level of the astrocyte specific enzyme glutamine synthetase. This work identifies a new mechanism in astrocytes that could lead to increased levels of extracellular glutamate in HD and thus may contribute to excitotoxicity in this devastating disease.
Collapse
Affiliation(s)
- William Lee
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, Herculano BA, de Bem AF, Tasca CI. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem Int 2013; 62:948-55. [DOI: 10.1016/j.neuint.2013.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
|
194
|
Milošević M, Stenovec M, Kreft M, Petrušić V, Stević Z, Trkov S, Andjus PR, Zorec R. Immunoglobulins G from patients with sporadic amyotrophic lateral sclerosis affects cytosolic Ca2+ homeostasis in cultured rat astrocytes. Cell Calcium 2013; 54:17-25. [PMID: 23623373 DOI: 10.1016/j.ceca.2013.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/28/2013] [Accepted: 03/30/2013] [Indexed: 12/23/2022]
Abstract
Astrocytes are considered essential in the etiopathogenesis of amyotrophic lateral sclerosis (ALS). We have demonstrated previously that immunoglobulins G (IgG) isolated from patients with ALS enhance the mobility of acidic vesicles in cultured astrocytes in a Ca(2+)-dependent manner. Here we directly examined the impact of purified sporadic ALS IgG on cytosolic [Ca(2+)] ([Ca(2+)]i) in astrocytes. Confocal time-lapse images were acquired and fluorescence of a non-ratiometric Ca(2+) indicator was recorded before and after the application of IgG. ALS IgG (0.1 mg/ml) from 7 patients evoked transient increases in [Ca(2+)]i in ~50% of tested astrocytes. The probability of observing a response was independent of extracellular Ca(2+). The peak increase in [Ca(2+)]i developed ~3 times faster and the time integral of evoked transients was ~2-fold larger; the peak amplitude itself was not affected by extracellular Ca(2+). Application of pharmacological inhibitors revealed that activation of inositol-1,4,5-triphosphate receptors is necessary and sufficient to initiate transients in [Ca(2+)]i; the Ca(2+) influx through store-operated calcium entry prolongs the transient increase in [Ca(2+)]i. Thus, ALS IgG acutely affect [Ca(2+)]i by mobilizing both, intra- and extracellular Ca(2+) into the cytosol of cultured astrocytes.
Collapse
Affiliation(s)
- Milena Milošević
- University of Ljubljana, Medical Faculty, Institute of Pathophysiology, Laboratory of Neuroendocrinology-Molecular Cell Physiology, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Astroglia encompass a subset of versatile glial cells that fulfill a major homeostatic role in the mammalian brain. Since any brain disease results from failure in brain homeostasis, astroglial cells are involved in many, if not all, aspects of neurological and/or psychiatric disorders. In this article, the roles of astrocytes as homeostatic cells in healthy and diseased brains are surveyed. These cells can mount the defence response to the insult of the brain, astrogliosis, when and where they display hypertrophy. Interestingly, astrocytes can alternatively display atrophy in some pathological conditions. Various pathologies, including Alexander and Alzheimer's diseases, amyotrophic lateral sclerosis, stroke and epilepsy, to mention a few, are discussed. Astrocytes could represent a novel target for medical intervention in the treatment of brain disorders.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU 48940, Leioa, Spain
- Institute of Experimental Medicine, ASCR, Videnska 1083, 142 20, Prague, Czech Republic
| | - José J Rodríguez
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU 48940, Leioa, Spain
- Institute of Experimental Medicine, ASCR, Videnska 1083, 142 20, Prague, Czech Republic
| | - Vladimir Parpura
- Ikerbasque, Basque Foundation for Science, 48011, Bilbao, Spain
- Department of Neurosciences, University of the Basque Country UPV/EHU 48940, Leioa, Spain
- Department of Neurobiology, Center for Glial Biology in Medicine, Civitan International Research Center, Atomic Force Microscopy & Nanotechnology Laboratories, & Evelyn F McKnight Brain Institute, University of Alabama, Birmingham, AL, USA
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
196
|
Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res 2013; 36:237-51. [PMID: 23435945 DOI: 10.1007/s12272-013-0057-y] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/14/2012] [Indexed: 01/25/2023]
Abstract
Gabapentin is an anti-epileptic agent but now it is also recommended as first line agent in neuropathic pain, particularly in diabetic neuropathy and post herpetic neuralgia. α2δ-1, an auxillary subunit of voltage gated calcium channels, has been documented as its main target and its specific binding to this subunit is described to produce different actions responsible for pain attenuation. The binding to α2δ-1 subunits inhibits nerve injury-induced trafficking of α1 pore forming units of calcium channels (particularly N-type) from cytoplasm to plasma membrane (membrane trafficking) of pre-synaptic terminals of dorsal root ganglion (DRG) neurons and dorsal horn neurons. Furthermore, the axoplasmic transport of α2δ-1 subunits from DRG to dorsal horns neurons in the form of anterograde trafficking is also inhibited in response to gabapentin administration. Gabapentin has also been shown to induce modulate other targets including transient receptor potential channels, NMDA receptors, protein kinase C and inflammatory cytokines. It may also act on supra-spinal region to stimulate noradrenaline mediated descending inhibition, which contributes to its anti-hypersensitivity action in neuropathic pain.
Collapse
Affiliation(s)
- Ankesh Kukkar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | | | | | | |
Collapse
|
197
|
Barr TP, Albrecht PJ, Hou Q, Mongin AA, Strichartz GR, Rice FL. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels. PLoS One 2013; 8:e56744. [PMID: 23457608 PMCID: PMC3574084 DOI: 10.1371/journal.pone.0056744] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 01/14/2013] [Indexed: 01/17/2023] Open
Abstract
Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.
Collapse
Affiliation(s)
- Travis P. Barr
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
| | - Phillip J. Albrecht
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Quanzhi Hou
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Alexander A. Mongin
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| | - Gary R. Strichartz
- Pain Research Center, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women's Hospital, Boston, Massachusetts, United States of America
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frank L. Rice
- Albany Medical College, Center for Neuroscience and Neuropharmacology, Albany, New York, United States of America
| |
Collapse
|
198
|
Abstract
Astrocytes are the predominant glial cell population in the central nervous system (CNS). Once considered only passive scaffolding elements, astrocytes are now recognised as cells playing essential roles in CNS development and function. They control extracellular water and ion homeostasis, provide substrates for energy metabolism, and regulate neurogenesis, myelination and synaptic transmission. Due to these multiple activities astrocytes have been implicated in almost all brain pathologies, contributing to various aspects of disease initiation, progression and resolution. Evidence is emerging that astrocyte dysfunction can be the direct cause of neurodegeneration, as shown in Alexander's disease where myelin degeneration is caused by mutations in the gene encoding the astrocyte-specific cytoskeleton protein glial fibrillary acidic protein. Recent studies point to a primary role for astrocytes in the pathogenesis of other genetic leukodystrophies such as megalencephalic leukoencephalopathy with subcortical cysts and vanishing white matter disease. The aim of this review is to summarize current knowledge of the pathophysiological role of astrocytes focusing on their contribution to the development of the above mentioned leukodystrophies and on new perspectives for the treatment of neurological disorders.
Collapse
|
199
|
Abstract
The master coordinator of daily schedules in mammals, located in the ventral hypothalamus, is the suprachiasmatic nucleus (SCN). This relatively small population of neurons and glia generates circadian rhythms in physiology and behavior and synchronizes them to local time. Recent advances have begun to define the roles of specific cells and signals (e.g., peptides, amino acids, and purine derivatives) within this network that generate and synchronize daily rhythms. Here we focus on the best-studied signals between neurons and between glia in the mammalian circadian system with an emphasis on time-of-day pharmacology. Where possible, we highlight how commonly used drugs affect the circadian system.
Collapse
|
200
|
Bertollini C, Murana E, Mosca L, D'Erme M, Scala F, Francioso A, Catalano M, Limatola C, Bregestovski P, Di Angelantonio S, Ragozzino D. Transient increase in neuronal chloride concentration by neuroactive aminoacids released from glioma cells. Front Mol Neurosci 2012. [PMID: 23189038 PMCID: PMC3505843 DOI: 10.3389/fnmol.2012.00100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neuronal chloride concentration ([Cl−]i) is known to be dynamically modulated and alterations in Cl− homeostasis may occur in the brain at physiological and pathological conditions, being also likely involved in glioma-related seizures. However, the mechanism leading to changes in neuronal [Cl−]i during glioma invasion are still unclear. To characterize the potential effect of glioma released soluble factors on neuronal [Cl−]i, we used genetically encoded CFP/YFP-based ratiometric Cl-(apical) Sensor transiently expressed in cultured hippocampal neurons. Exposition of neurons to glioma conditioned medium (GCM) caused rapid and transient elevation of [Cl−]i, resulting in the increase of fluorescence ratio, which was strongly reduced by blockers of ionotropic glutamate receptors APV and NBQX. Furthermore, in HEK cells expressing GluR1-AMPA receptors, GCM activated ionic currents with efficacy similar to those caused by glutamate, supporting the notion that GCM contains glutamate or glutamatergic agonists, which cause neuronal depolarization, activation of NMDA and AMPA/KA receptors leading to elevation of [Cl−]i. Chromatographic analysis of the GCM showed that it contained several aminoacids, including glutamate, whose release from glioma cells did not occur via the most common glial mechanisms of transport, or in response to hypoosmotic stress. GCM also contained glycine, whose action contrasted the glutamate effect. Indeed, strychnine application significantly increased GCM-induced depolarization and [Cl−]i rise. GCM-evoked [Cl−]i elevation was not inhibited by antagonists of Cl− transporters and significantly reduced in the presence of anion channels blocker NPPB, suggesting that Cl− selective channels are a major route for GCM-induced Cl− influx. Altogether, these data show that glioma released aminoacids may dynamically alter Cl− equilibrium in surrounding neurons, deeply interfering with their inhibitory balance, likely leading to physiological and pathological consequences.
Collapse
Affiliation(s)
- Cristina Bertollini
- Department of Physiology and Pharmacology, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|