151
|
Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFĸB in good times and bad. Front Neuroendocrinol 2017; 46:15-31. [PMID: 28502781 PMCID: PMC5523465 DOI: 10.1016/j.yfrne.2017.05.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/21/2017] [Accepted: 05/09/2017] [Indexed: 01/23/2023]
Abstract
Mutual regulation and balance between the endocrine and immune systems facilitate an organism's stress response and are impaired following chronic stress or prolonged immune activation. Concurrent alterations in stress physiology and immunity are increasingly recognized as contributing factors to several stress-linked neuropsychiatric disorders including depression, anxiety, and post-traumatic stress disorder. Accumulating evidence suggests that impaired balance and crosstalk between the glucocorticoid receptor (GR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) - effectors of the stress and immune axes, respectively - may play a key role in mediating the harmful effects of chronic stress on mood and behavior. Here, we first review the molecular mechanisms of GR and NFκB interactions in health, then describe potential shifts in the GR-NFκB dynamics in chronic stress conditions within the context of brain circuitry relevant to neuropsychiatric diseases. Furthermore, we discuss developmental influences and sex differences in the regulation of these two transcription factors.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Emory University, Graduate Division of Biological Sciences, Neuroscience Graduate Program, United States
| | - Sydney A Rowson
- Emory University, Graduate Division of Biological Sciences, Molecular and Systems Pharmacology Graduate Studies Program, United States
| | - Gretchen N Neigh
- Virginia Commonwealth University, Department of Anatomy & Neurobiology, United States.
| |
Collapse
|
152
|
Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci 2017; 11:316. [PMID: 28676747 PMCID: PMC5476783 DOI: 10.3389/fnhum.2017.00316] [Citation(s) in RCA: 461] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023] Open
Abstract
While modernization has dramatically increased lifespan, it has also witnessed that the nature of stress has changed dramatically. Chronic stress result failures of homeostasis thus lead to various diseases such as atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and depression. However, while 75%-90% of human diseases is related to the activation of stress system, the common pathways between stress exposure and pathophysiological processes underlying disease is still debatable. Chronic inflammation is an essential component of chronic diseases. Additionally, accumulating evidence suggested that excessive inflammation plays critical roles in the pathophysiology of the stress-related diseases, yet the basis for this connection is not fully understood. Here we discuss the role of inflammation in stress-induced diseases and suggest a common pathway for stress-related diseases that is based on chronic mild inflammation. This framework highlights the fundamental impact of inflammation mechanisms and provides a new perspective on the prevention and treatment of stress-related diseases.
Collapse
Affiliation(s)
- Yun-Zi Liu
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| | - Yun-Xia Wang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| | - Chun-Lei Jiang
- Laboratory of Stress Medicine, Faculty of Psychology and Mental Health, Second Military Medical UniversityShanghai, China
| |
Collapse
|
153
|
Dean J, Keshavan M. The neurobiology of depression: An integrated view. Asian J Psychiatr 2017; 27:101-111. [PMID: 28558878 DOI: 10.1016/j.ajp.2017.01.025] [Citation(s) in RCA: 448] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/18/2017] [Accepted: 01/21/2017] [Indexed: 12/19/2022]
Abstract
Major Depressive Disorder (MDD) is one of the most common and debilitating mental disorders; however, its etiology remains unclear. This paper aims to summarize the major neurobiological underpinnings of depression, synthesizing the findings into a comprehensive integrated view. A literature review was conducted using Pubmed. Search terms included "depression" or "MDD" AND "biology", "neurobiology", "inflammation", "neurogenesis", "monoamine", and "stress". Articles from 1995 to 2016 were reviewed with a focus on the connection between different biological and psychological models. Some possible pathophysiological mechanisms of depression include altered neurotransmission, HPA axis abnormalities involved in chronic stress, inflammation, reduced neuroplasticity, and network dysfunction. All of these proposed mechanisms are integrally related and interact bidirectionally. In addition, psychological factors have been shown to have a direct effect on neurodevelopment, causing a biological predisposition to depression, while biological factors can lead to psychological pathology as well. The authors suggest that while it is possible that there are several different endophenotypes of depression with distinct pathophysiological mechanisms, it may be helpful to think of depression as one united syndrome, in which these mechanisms interact as nodes in a matrix. Depressive disorders are considered in the context of the RDoC paradigm, identifying the pathological mechanisms at every translational level, with a focus on how these mechanisms interact. Finally, future directions of research are identified.
Collapse
Affiliation(s)
- Jason Dean
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA, 02115, United States.
| | - Matcheri Keshavan
- Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center, Harvard Medical School, 75 Fenwood Rd., Boston, MA, 02115, United States.
| |
Collapse
|
154
|
Mkhize NVP, Qulu L, Mabandla MV. The Effect of Quercetin on Pro- and Anti-Inflammatory Cytokines in a Prenatally Stressed Rat Model of Febrile Seizures. J Exp Neurosci 2017; 11:1179069517704668. [PMID: 28579828 PMCID: PMC5439593 DOI: 10.1177/1179069517704668] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/23/2017] [Indexed: 12/20/2022] Open
Abstract
Febrile seizures are childhood convulsions resulting from an infection that leads to an inflammatory response and subsequent convulsions. Prenatal stress has been shown to heighten the progression and intensity of febrile seizures. Current medications are costly and have adverse effects associated with prolonged use. Quercetin flavonoid exhibits anti-inflammatory, anti-convulsant, and anti-stress effects. This study was aimed to investigate the therapeutic effect of quercetin in a prenatally stressed rat model of febrile seizures. We hypothesized that quercetin will alleviate the effects of prenatal stress in a febrile seizure rat model. On gestational day 13, Sprague-Dawley rat dams were subjected to restraint stress for 1 hour/d for 7 days. Febrile seizures were induced on postnatal day 14 on rat pups by intraperitoneally injecting lipopolysaccharide followed by kainic acid and quercetin on seizure onset. Hippocampal tissue was harvested to profile cytokine concentrations. Our results show that quercetin suppresses prenatal stress–induced pro-inflammatory marker (interleukin 1 beta) levels, subsequently attenuating febrile seizures. This shows that quercetin can be therapeutic for febrile seizures in prenatally stressed individuals.
Collapse
Affiliation(s)
- Nombuso Valencia Pearl Mkhize
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Lihle Qulu
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine & Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
155
|
Psychosocial stress on neuroinflammation and cognitive dysfunctions in Alzheimer's disease: the emerging role for microglia? Neurosci Biobehav Rev 2017; 77:148-164. [PMID: 28185874 DOI: 10.1016/j.neubiorev.2017.01.046] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/20/2017] [Accepted: 01/31/2017] [Indexed: 01/22/2023]
Abstract
Chronic psychosocial stress is increasingly recognized as a risk factor for late-onset Alzheimer's disease (LOAD) and associated cognitive deficits. Chronic stress also primes microglia and induces inflammatory responses in the adult brain, thereby compromising synapse-supportive roles of microglia and deteriorating cognitive functions during aging. Substantial evidence demonstrates that failure of microglia to clear abnormally accumulating amyloid-beta (Aβ) peptide contributes to neuroinflammation and neurodegeneration in AD. Moreover, genome-wide association studies have linked variants in several immune genes, such as TREM2 and CD33, the expression of which in the brain is restricted to microglia, with cognitive dysfunctions in LOAD. Thus, inflammation-promoting chronic stress may create a vicious cycle of aggravated microglial dysfunction accompanied by increased Aβ accumulation, collectively exacerbating neurodegeneration. Surprisingly, however, little is known about whether and how chronic stress contributes to microglia-mediated neuroinflammation that may underlie cognitive impairments in AD. This review aims to summarize the currently available clinical and preclinical data and outline potential molecular mechanisms linking stress, microglia and neurodegeneration, to foster future research in this field.
Collapse
|
156
|
The role of neuroimmune signaling in alcoholism. Neuropharmacology 2017; 122:56-73. [PMID: 28159648 DOI: 10.1016/j.neuropharm.2017.01.031] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/24/2017] [Accepted: 01/29/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption and stress increase brain levels of known innate immune signaling molecules. Microglia, the innate immune cells of the brain, and neurons respond to alcohol, signaling through Toll-like receptors (TLRs), high-mobility group box 1 (HMGB1), miRNAs, pro-inflammatory cytokines and their associated receptors involved in signaling between microglia, other glia and neurons. Repeated cycles of alcohol and stress cause a progressive, persistent induction of HMGB1, miRNA and TLR receptors in brain that appear to underlie the progressive and persistent loss of behavioral control, increased impulsivity and anxiety, as well as craving, coupled with increasing ventral striatal responses that promote reward seeking behavior and increase risk of developing alcohol use disorders. Studies employing anti-oxidant, anti-inflammatory, anti-depressant, and innate immune antagonists further link innate immune gene expression to addiction-like behaviors. Innate immune molecules are novel targets for addiction and affective disorders therapies. This article is part of the Special Issue entitled "Alcoholism".
Collapse
|
157
|
Long-Term Effects of the Periconception Period on Embryo Epigenetic Profile and Phenotype: The Role of Stress and How This Effect Is Mediated. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1014:117-135. [PMID: 28864988 DOI: 10.1007/978-3-319-62414-3_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Stress represents an unavoidable aspect of human life, and pathologies associated with dysregulation of stress mechanisms - particularly psychiatric disorders - represent a significant global health problem. While it has long been observed that levels of stress experienced in the periconception period may greatly affect the offspring's risk of psychiatric disorders, the mechanisms underlying these associations are not yet comprehensively understood. In order to address this question, this chapter will take a 'top-down' approach, by first defining stress and associated concepts, before exploring the mechanistic basis of the stress response in the form of the hypothalamic-pituitary-adrenal (HPA) axis, and how dysregulation of the HPA axis can impede our mental and physical health, primarily via imbalances in glucocorticoids (GCs) and their corresponding receptors (GRs) in the brain. The current extent of knowledge pertaining to the impact of stress on developmental programming and epigenetic inheritance is then extensively discussed, including the role of chromatin remodelling associated with specific HPA axis-related genes and the possible role of regulatory RNAs as messengers of environmental stress both in the intrauterine environment and across the germ line. Furthering our understanding of the role of stress on embryonic development is crucial if we are to increase our predictive power of disease risk and devise-effective treatments and intervention strategies.
Collapse
|
158
|
Gonzalez Deniselle MC, Liere P, Pianos A, Meyer M, Aprahamian F, Cambourg A, Di Giorgio NP, Schumacher M, De Nicola AF, Guennoun R. Steroid Profiling in Male Wobbler Mouse, a Model of Amyotrophic Lateral Sclerosis. Endocrinology 2016; 157:4446-4460. [PMID: 27571131 DOI: 10.1210/en.2016-1244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Wobbler mouse is an animal model for human motoneuron diseases, especially amyotrophic lateral sclerosis (ALS), used in the investigation of both pathology and therapeutic treatment. ALS is a fatal neurodegenerative disease, characterized by the selective and progressive death of motoneurons, leading to progressive paralysis. Previous limited studies have reported steroidal hormone dysregulation in Wobbler mouse and in ALS patients, suggesting endocrine dysfunctions which may be involved in the pathogenesis of the disease. In this study, we established a steroid profiling in brain, spinal cord, plasma, adrenal glands, and testes in 2-month-old male Wobbler mice and their littermates by gas chromatography coupled to mass spectrometry. Our results show in Wobbler mice the following: 1) a marked up-regulation of corticosterone levels in adrenal glands, plasma, spinal cord regions (cervical, thoracic, lumbar) and brain; 2) a strong decrease in T levels in the testis, plasma, spinal cord, and brain; and 3) increased levels of progesterone and especially of its reduced metabolites 5α-dihydroprogesterone, allopregnanolone, and 20α-dihydroprogesterone in the brain, spinal cord, and adrenal glands. Furthermore, Wobbler mice showed a hypothalamic-pituitary-gonadal hypoactivity. Interestingly, plasma concentrations of corticosterone and T correlate well with their respective levels in cervical spinal cord in both control and Wobbler mice. T down-regulation is probably the consequence of adrenal hyperactivity, and the up-regulation of progesterone and its reduced metabolites may correspond to an endogenous protective mechanism in response to motoneuron degeneration. Our findings suggest that increased levels of corticosterone and decreased levels of T in plasma could be a signature of motoneuron degeneration.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Philippe Liere
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Antoine Pianos
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Maria Meyer
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Fanny Aprahamian
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Annie Cambourg
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Noelia P Di Giorgio
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Michael Schumacher
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Alejandro F De Nicola
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| | - Rachida Guennoun
- Unité 1195 INSERM and University Paris-Sud and University Paris Saclay (P.L., A.P., F.A., A.C., M.S., R.G.), 94276 Kremlin-Bicêtre, France; Laboratory of Neuroendocrine Biochemistry (M.C.G.-D., M.M., A.F.D.N.) and Laboratory of Neuroendocrinology (N.P.D.G.), Instituto de Biologia y Medicina Experimental-Consejo Nacional de Investigaciones Cientificas y Técnicas, 1428 Buenos Aires, Argentina; and Departamento de Ciencias Fisiológicas (M.C.G.-D.), Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
159
|
Orellana AMM, Vasconcelos AR, Leite JA, de Sá Lima L, Andreotti DZ, Munhoz CD, Kawamoto EM, Scavone C. Age-related neuroinflammation and changes in AKT-GSK-3β and WNT/ β-CATENIN signaling in rat hippocampus. Aging (Albany NY) 2016; 7:1094-111. [PMID: 26647069 PMCID: PMC4712335 DOI: 10.18632/aging.100853] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aging is a multifactorial process associated with an increased susceptibility to neurodegenerative disorders which can be related to chronic inflammation. Chronic inflammation, however, can be characterized by the persistent elevated glucocorticoid (GCs) levels, activation of the proinflammatory transcription factor NF-кB, as well as an increase in cytokines. Interestingly, both NF-кB and cytokines can be even modulated by Glycogen Synthase Kinase 3 beta (GSK-3β) activity, which is a key protein that can intermediate inflammation and metabolism, once it has a critical role in AKT signaling pathway, and can also intermediate WNT/β-CATENIN signaling pathway. The aim of this study was to verify age-related changes in inflammatory status, as well as in the AKT and WNT signaling pathways. Results showed an age-related increase in neuroinflammation as indicated by NF-кB activation, TNF-α and GCs increased levels, a decrease in AKT activation and an increase in GSK-3β activity in both 12- and 24- month old animals. Aging also seems to induce a progressive decrease in canonical WNT/β-CATENIN signaling pathway once there is a decrease in DVL-2 levels and in the transcription of Axin2 gene. Little is known about the DVL-2 regulation as well as its roles in WNT signaling pathway, but for the first time it was suggested that DVL-2 expression can be changed along aging.
Collapse
Affiliation(s)
- Ana Maria Marques Orellana
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Jacqueline Alves Leite
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Larissa de Sá Lima
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Diana Zukas Andreotti
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| |
Collapse
|
160
|
Melief J, Koper JW, Endert E, Møller HJ, Hamann J, Uitdehaag BM, Huitinga I. Glucocorticoid receptor haplotypes conferring increased sensitivity (BclI and N363S) are associated with faster progression of multiple sclerosis. J Neuroimmunol 2016; 299:84-89. [DOI: 10.1016/j.jneuroim.2016.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 10/21/2022]
|
161
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
162
|
Oxidative stress: a potential link between emotional wellbeing and immune response. Curr Opin Pharmacol 2016; 29:70-6. [PMID: 27400336 DOI: 10.1016/j.coph.2016.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/22/2016] [Indexed: 01/13/2023]
Abstract
Emotional wellbeing is central to normal health and good living. Persistent psychological stress often disrupts emotional wellbeing and triggers onset of neuropsychiatric ailments. An integrated, multisystemic stress response involving neuroinflammatory, neuroendocrine and metabolic cascades seem to have some causative links. Of particular interest are the neuroinflammatory processes. Psychological stress has been suggested to negatively affect normal functioning of the immune system contributing to the pathophysiology of some neuropsychiatric conditions. Thus examination of the interaction between the immune system and the central nervous system is likely to reveal molecular targets critical for development of potential therapeutic and preventive measures. This review is a summarized discussion of evidence linking impact of psychological stress on the immune system, with a particular emphasis on oxidative stress mechanisms by which mental stress potentially impacts immune function leading to activation of multiple cascades resulting in subsequent manifestation of psychiatric symptomologies.
Collapse
|
163
|
Wincewicz D, Juchniewicz A, Waszkiewicz N, Braszko JJ. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression. Pharmacol Biochem Behav 2016; 148:108-18. [PMID: 27375198 DOI: 10.1016/j.pbb.2016.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/10/2016] [Accepted: 06/29/2016] [Indexed: 01/19/2023]
Abstract
Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (p<0.001), decreased OR (p<0.001), substantial CORT increase (p<0.001) and significantly downregulated expression of BDNF in the mPFC (p<0.001), which were attenuated in rats receiving TLM and TLM+GW9662. These data indicate that procognitive effect of ARBs in stressed subjects do not result from PPAR-γ activation, but AT1 blockade and subsequent hypothalamus-pituitary-adrenal axis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade.
Collapse
Affiliation(s)
- D Wincewicz
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland; Department of Psychiatry, Medical University of Bialystok, Poland.
| | - A Juchniewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Poland
| | - N Waszkiewicz
- Department of Psychiatry, Medical University of Bialystok, Poland
| | - J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15274 Bialystok, Poland
| |
Collapse
|
164
|
Maturana CJ, Aguirre A, Sáez JC. High glucocorticoid levels during gestation activate the inflammasome in hippocampal oligodendrocytes of the offspring. Dev Neurobiol 2016; 77:625-642. [PMID: 27314460 DOI: 10.1002/dneu.22409] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022]
Abstract
Exposure to high levels of glucocorticoids (GCs) during early life induces long-lasting neuroinflammation. GCs induce rapid degranulation of mast cells, which release proinflammatory molecules promoting activation of microglia and astrocytes. The possible involvement of oligodendrocytes, however, remains poorly understood. It was studied whether high GC levels during gestation activates the inflammasome in hippocampal oligodendrocytes of mouse offspring. Oligodendrocytes of control pups showed expression of inflammasome components (NLRP3, ACS, and caspase-1) and their levels were increased by prenatal administration of dexamethasone (DEX), a synthetic GC. These cells also showed high levels of IL-1β and TNF-α, revealing activation of the inflammasome. Moreover, they showed increased levels of the P2X7 receptor and pannexin1, which are associated to inflammasome activation. However, levels of connexins either were not affected (Cx29) or reduced (Cx32 and Cx47). Nonetheless, the functional states of pannexin1 and connexin hemichannels were elevated and directly associated to functional P2X7 receptors. As observed in DEX-treated brain slices, hemichannel activity first increased in hippocampal mast cells and later in microglia and macroglia. DEX-induced oligodendrocyte hemichannel activity was mimicked by urocortin-II, which is a corticotropin-releasing hormone receptor (CRHR) agonist. Response to DEX and urocortin-II was inhibited by antalarmin (a CRHR blocker) or by mast cells or microglia inhibitors. The increase in hemichannel activity persisted for several weeks after birth and cross-fostering with a control mother did not reverse this condition. It is proposed that activation of the oligodendrocyte inflammasome might be relevant in demyelinating diseases associated with early life exposure to high GC levels. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 625-642, 2017.
Collapse
Affiliation(s)
- Carola J Maturana
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| | - Adam Aguirre
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento De Fisiología, Facultad De Ciencias Biológicas, Pontificia Universidad Católica De Chile, Santiago, Chile.,Centro Interdisciplinario de Neurociencias de Valparaíso, Instituto Milenio, Valparaíso, Chile
| |
Collapse
|
165
|
Freiman SV, Onufriev MV, Stepanichev MY, Moiseeva YV, Lazareva NA, Gulyaeva NV. The stress effects of a single injection of isotonic saline solution: systemic (blood) and central (frontal cortex and dorsal and ventral hippocampus). NEUROCHEM J+ 2016. [DOI: 10.1134/s1819712416020033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
166
|
Wise PH. Child Poverty and the Promise of Human Capacity: Childhood as a Foundation for Healthy Aging. Acad Pediatr 2016; 16:S37-45. [PMID: 27044700 DOI: 10.1016/j.acap.2016.01.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 02/07/2023]
Abstract
The effect of child poverty and related early life experiences on adult health outcomes and patterns of aging has become a central focus of child health research and advocacy. In this article a critical review of this proliferating literature and its relevance to child health programs and policy are presented. This literature review focused on evidence of the influence of child poverty on the major contributors to adult morbidity and mortality in the United States, the mechanisms by which these associations operate, and the implications for reforming child health programs and policies. Strong and varied evidence base documents the effect of child poverty and related early life experiences and exposures on the major threats to adult health and healthy aging. Studies using a variety of methodologies, including longitudinal and cross-sectional strategies, have reported significant findings regarding cardiovascular disorders, obesity and diabetes, certain cancers, mental health conditions, osteoporosis and fractures, and possibly dementia. These relationships can operate through alterations in fetal and infant development, stress reactivity and inflammation, the development of adverse health behaviors, the conveyance of child chronic illness into adulthood, and inadequate access to effective interventions in childhood. Although the reviewed studies document meaningful relationships between child poverty and adult outcomes, they also reveal that poverty, experiences, and behaviors in adulthood make important contributions to adult health and aging. There is strong evidence that poverty in childhood contributes significantly to adult health. Changes in the content, financing, and advocacy of current child health programs will be required to address the childhood influences on adult health and disease. Policy reforms that reduce child poverty and mitigate its developmental effects must be integrated into broader initiatives and advocacy that also attend to the health and well-being of adults.
Collapse
Affiliation(s)
- Paul H Wise
- March of Dimes Center for Prematurity Research, the Division of Neonatology, Department of Pediatrics, School of Medicine, and the Centers for Health Policy/Primary Care and Outcomes Research, Stanford University, Calif.
| |
Collapse
|
167
|
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know? Front Neuroendocrinol 2016; 41:153-71. [PMID: 26746105 DOI: 10.1016/j.yfrne.2015.12.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 12/27/2015] [Indexed: 01/18/2023]
Abstract
Depression (MDD) is prodromal to, and a component of, Alzheimer's disease (AD): it may also be a trigger for incipient AD. MDD is not a unitary disorder, so there may be particular subtypes of early life MDD that pose independent high risks for later AD, though the identification of these subtypes is problematical. There may either be a common pathological event underlying both MDD and AD, or MDD may sensitize the brain to a second event ('hit') that precipitates AD. MDD may also accelerate brain ageing, including altered DNA methylation, increased cortisol but decreasing DHEA and thus the risk for AD. So far, genes predicting AD (e.g. APOEε4) are not risk factors for MDD, and those implicated in MDD (e.g. SLC6A4) are not risks for AD, so a common genetic predisposition looks unlikely. There is as yet no strong indication that an epigenetic event occurs during some forms of MDD that predisposes to later AD, though the evidence is limited. Glucocorticoids (GCs) are disturbed in some cases of MDD and in AD. GCs have marked degenerative actions on the hippocampus, a site of early β-amyloid deposition, and rare genetic variants of GC-regulating enzymes (e.g. 11β-HSD) predispose to AD. GCs also inhibit hippocampal neurogenesis and plasticity, and thus episodic memory, a core symptom of AD. Disordered GCs in MDD may inhibit neurogenesis, but the contribution of diminished neurogenesis to the onset or progression of AD is still debated. GCs and cytokines also reduce BDNF, implicated in both MDD and AD and hippocampal neurogenesis, reinforcing the notion that those cases of MDD with disordered GCs may be a risk for AD. Cytokines, including IL1β, IL6 and TNFα, are increased in the blood in some cases of MDD. They also reduce hippocampal neurogenesis, and increased cytokines are a known risk for later AD. Inflammatory changes occur in both MDD and AD (e.g. raised CRP, TNFα). Both cytokines and GCs can have pro-inflammatory actions in the brain. Inflammation (e.g. microglial activation) may be a common link, but this has not been systematically investigated. We lack substantial, rigorous and comprehensive follow-up studies to better identify possible subtypes of MDD that may represent a major predictor for later AD. This would enable specific interventions during critical episodes of these subtypes of MDD that should reduce this substantial risk.
Collapse
Affiliation(s)
- Joe Herbert
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, UK.
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, The Netherlands
| |
Collapse
|
168
|
Abstract
Glucocorticoid and glucocorticoid receptor (GC/GR) interactions alter numerous aspects of neuronal function. These consequences (e.g., anti-inflammatory vs. pro-inflammatory) can vary depending on the duration of GC exposure or central nervous system (CNS) injury model. In this review we discuss how GC/GR interactions impact neuronal recovery after a central or peripheral nerve injury and discuss how GC exposure duration can produce divergent CNS neuronal growth responses. Finally we consider how new findings on gender specific immune cell responses after a nerve injury could intersect with GC/GR interactions to impact pain processing.
Collapse
Affiliation(s)
- Kathryn M Madalena
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, OH, USA
| |
Collapse
|
169
|
Dankel SJ, Loenneke JP, Loprinzi PD. Mild Depressive Symptoms Among Americans in Relation to Physical Activity, Current Overweight/Obesity, and Self-Reported History of Overweight/Obesity. Int J Behav Med 2016; 23:553-60. [DOI: 10.1007/s12529-016-9541-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
170
|
Stress and cortisol in disaster evacuees: an exploratory study on associations with social protective factors. Appl Psychophysiol Biofeedback 2016; 40:33-44. [PMID: 25787070 DOI: 10.1007/s10484-015-9270-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Though cumulative emotional and physical effects of disasters may diminish evacuees' short and long-term mental and physical health, social factors may buffer such consequences. We approached survivors of the October 2007 San Diego, California firestorms. We gathered data during the evacuation and 3 months afterward. Questionnaires measured social support as well as PTSD, depression, and anxiety symptoms. Saliva samples were used to assess the stress hormone, cortisol. Analyses, adjusting for age, gender, and socioeconomic status, showed PTSD symptoms were associated with flattening of the diurnal cortisol rhythm during evacuation. Secondary analyses showed those reporting a family emphasis on moral and religious values had lower psychological distress. Though anxiety symptoms had significantly decreased in the overall sample at follow-up, blunted cortisol rhythms persisted among those individuals with continued high anxiety. Results highlight a possible psychological, and perhaps a physiological, benefit of social and existential factors in disaster situations. Future work should explore the role of psychosocial factors and stress physiology in the development of long-term health concerns among individuals exposed to disaster.
Collapse
|
171
|
Kim YK, Na KS, Myint AM, Leonard BE. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:277-84. [PMID: 26111720 DOI: 10.1016/j.pnpbp.2015.06.008] [Citation(s) in RCA: 438] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/25/2015] [Accepted: 06/16/2015] [Indexed: 12/30/2022]
Abstract
Cytokines are pleiotropic molecules with important roles in inflammatory responses. Pro-inflammatory cytokines and neuroinflammation are important not only in inflammatory responses but also in neurogenesis and neuroprotection. Sustained stress and the subsequent release of pro-inflammatory cytokines lead to chronic neuroinflammation, which contributes to depression. Hippocampal glucocorticoid receptors (GRs) and the associated hypothalamus-pituitary-adrenal (HPA) axis have close interactions with pro-inflammatory cytokines and neuroinflammation. Elevated pro-inflammatory cytokine levels and GR functional resistance are among the most widely investigated factors in the pathophysiology of depression. These two major components create a vicious cycle. In brief, chronic neuroinflammation inhibits GR function, which in turn exacerbates pro-inflammatory cytokine activity and aggravates chronic neuroinflammation. On the other hand, neuroinflammation causes an imbalance between oxidative stress and the anti-oxidant system, which is also associated with depression. Although current evidence strongly suggests that cytokines and GRs have important roles in depression, they are essential components of a whole system of inflammatory and endocrine interactions, rather than playing independent parts. Despite the evidence that a dysfunctional immune and endocrine system contributes to the pathophysiology of depression, much research remains to be undertaken to clarify the cause and effect relationship between depression and neuroinflammation.
Collapse
Affiliation(s)
- Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Sae Na
- Department of Psychiatry, Gachon University Gil Medical Center, Incheon, Republic of Korea.
| | - Aye-Mu Myint
- Laboratory for Psychoneuroimmunology, Psychiatric Hospital, Ludwig-Maximilian University, Munich, Germany
| | - Brian E Leonard
- Pharmacology Department, National University of Ireland, Galway, Ireland; Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany
| |
Collapse
|
172
|
Galtrey CM, Cock HR. Stress and Epilepsy. NEUROPSYCHIATRIC SYMPTOMS OF NEUROLOGICAL DISEASE 2016. [DOI: 10.1007/978-3-319-22159-5_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
173
|
Vasconcelos AR, Cabral-Costa JV, Mazucanti CH, Scavone C, Kawamoto EM. The Role of Steroid Hormones in the Modulation of Neuroinflammation by Dietary Interventions. Front Endocrinol (Lausanne) 2016; 7:9. [PMID: 26869995 PMCID: PMC4740355 DOI: 10.3389/fendo.2016.00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Steroid hormones, such as sex hormones and glucocorticoids, have been demonstrated to play a role in different cellular processes in the central nervous system, ranging from neurodevelopment to neurodegeneration. Environmental factors, such as calorie intake or fasting frequency, may also impact on such processes, indicating the importance of external factors in the development and preservation of a healthy brain. The hypothalamic-pituitary-adrenal axis and glucocorticoid activity play a role in neurodegenerative processes, including in disorders such as in Alzheimer's and Parkinson's diseases. Sex hormones have also been shown to modulate cognitive functioning. Inflammation is a common feature in neurodegenerative disorders, and sex hormones/glucocorticoids can act to regulate inflammatory processes. Intermittent fasting can protect the brain against cognitive decline that is induced by an inflammatory stimulus. On the other hand, obesity increases susceptibility to inflammation, while metabolic syndromes, such as diabetes, are associated with neurodegeneration. Consequently, given that gonadal and/or adrenal steroids may significantly impact the pathophysiology of neurodegeneration, via their effect on inflammatory processes, this review focuses on how environmental factors, such as calorie intake and intermittent fasting, acting through their modulation of steroid hormones, impact on inflammation that contributes to cognitive and neurodegenerative processes.
Collapse
Affiliation(s)
- Andrea Rodrigues Vasconcelos
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - João Victor Cabral-Costa
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Caio Henrique Mazucanti
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Elisa Mitiko Kawamoto,
| |
Collapse
|
174
|
Duque EDA, Munhoz CD. The Pro-inflammatory Effects of Glucocorticoids in the Brain. Front Endocrinol (Lausanne) 2016; 7:78. [PMID: 27445981 PMCID: PMC4923130 DOI: 10.3389/fendo.2016.00078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 06/17/2016] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids are a class of steroid hormones derived from cholesterol. Their actions are mediated by the glucocorticoid and mineralocorticoid receptors, members of the superfamily of nuclear receptors, which, once bound to their ligands, act as transcription factors that can directly modulate gene expression. Through protein-protein interactions with other transcription factors, they can also regulate the activity of many genes in a composite or tethering way. Rapid non-genomic signaling was also demonstrated since glucocorticoids can act through membrane receptors and activate signal transduction pathways, such as protein kinases cascades, to modulate other transcriptions factors and activate or repress various target genes. By all these different mechanisms, glucocorticoids regulate numerous important functions in a large variety of cells, not only in the peripheral organs but also in the central nervous system during development and adulthood. In general, glucocorticoids are considered anti-inflammatory and protective agents due to their ability to inhibit gene expression of pro-inflammatory mediators and other possible damaging molecules. Nonetheless, recent studies have uncovered situations in which these hormones can act as pro-inflammatory agents depending on the dose, chronicity of exposure, and the structure/organ analyzed. In this review, we will provide an overview of the conditions under which these phenomena occur, a discussion that will serve as a basis for exploring the mechanistic foundation of glucocorticoids pro-inflammatory gene regulation in the brain.
Collapse
Affiliation(s)
- Erica de Almeida Duque
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carolina Demarchi Munhoz,
| |
Collapse
|
175
|
Puga DA, Tovar CA, Guan Z, Gensel JC, Lyman MS, McTigue DM, Popovich PG. Stress exacerbates neuron loss and microglia proliferation in a rat model of excitotoxic lower motor neuron injury. Brain Behav Immun 2015; 49:246-54. [PMID: 26100488 PMCID: PMC4567453 DOI: 10.1016/j.bbi.2015.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/01/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
All individuals experience stress and hormones (e.g., glucocorticoids/GCs) released during stressful events can affect the structure and function of neurons. These effects of stress are best characterized for brain neurons; however, the mechanisms controlling the expression and binding affinity of glucocorticoid receptors in the spinal cord are different than those in the brain. Accordingly, whether stress exerts unique effects on spinal cord neurons, especially in the context of pathology, is unknown. Using a controlled model of focal excitotoxic lower motor neuron injury in rats, we examined the effects of acute or chronic variable stress on spinal cord motor neuron survival and glial activation. New data indicate that stress exacerbates excitotoxic spinal cord motor neuron loss and associated activation of microglia. In contrast, hypertrophy and hyperplasia of astrocytes and NG2+ glia were unaffected or were modestly suppressed by stress. Although excitotoxic lesions cause significant motor neuron loss and stress exacerbates this pathology, overt functional impairment did not develop in the relevant forelimb up to one week post-lesion. These data indicate that stress is a disease-modifying factor capable of altering neuron and glial responses to pathological challenges in the spinal cord.
Collapse
Affiliation(s)
- Denise A Puga
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - C Amy Tovar
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - Zhen Guan
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Matthew S Lyman
- Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States; Department of Neuroscience, Wexner Medical Center at The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
176
|
Sapolsky RM. Stress and the brain: individual variability and the inverted-U. Nat Neurosci 2015; 18:1344-6. [DOI: 10.1038/nn.4109] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
177
|
Herrera AJ, Espinosa-Oliva AM, Carrillo-Jiménez A, Oliva-Martín MJ, García-Revilla J, García-Quintanilla A, de Pablos RM, Venero JL. Relevance of chronic stress and the two faces of microglia in Parkinson's disease. Front Cell Neurosci 2015; 9:312. [PMID: 26321913 PMCID: PMC4536370 DOI: 10.3389/fncel.2015.00312] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/28/2015] [Indexed: 12/26/2022] Open
Abstract
This review is aimed to highlight the importance of stress and glucocorticoids (GCs) in modulating the inflammatory response of brain microglia and hence its potential involvement in Parkinson’s disease (PD). The role of inflammation in PD has been reviewed extensively in the literature and it is supposed to play a key role in the course of the disease. Historically, GCs have been strongly associated as anti-inflammatory hormones. However, accumulating evidence from the peripheral and central nervous system have clearly revealed that, under specific conditions, GCs may promote brain inflammation including pro-inflammatory activation of microglia. We have summarized relevant data linking PD, neuroinflamamation and chronic stress. The timing and duration of stress response may be critical for delineating an immune response in the brain thus probably explain the dual role of GCs and/or chronic stress in different animal models of PD.
Collapse
Affiliation(s)
- Antonio J Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Alejandro Carrillo-Jiménez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - María J Oliva-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Juan García-Revilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Alberto García-Quintanilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - Rocío M de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| | - José L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Sevilla, Spain
| |
Collapse
|
178
|
Frank MG, Watkins LR, Maier SF. The permissive role of glucocorticoids in neuroinflammatory priming: mechanisms and insights. Curr Opin Endocrinol Diabetes Obes 2015; 22:300-5. [PMID: 26087336 PMCID: PMC4516217 DOI: 10.1097/med.0000000000000168] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Glucocorticoids have been universally regarded as anti-inflammatory; however, a considerable number of studies now demonstrate that under some conditions, glucocorticoids are capable of potentiating neuroinflammatory processes (i.e. priming), a permissive function of glucocorticoids. The present review addresses recent evidence that provides insight into the mechanism(s) of glucocorticoid-induced neuroinflammatory priming. RECENT FINDINGS Glucocorticoids have been found to prime inflammasomes [i.e. nucleotide-binding domain, leucine-rich repeat, pyrin domain containing proteins-3 (NLRP3)], which are intracellular multiprotein complexes that mediate proinflammatory processes. Inflammasomes are activated by products of stressed or damaged cells. Interestingly, these products (damage-associated molecular patterns) are induced by stress and mediate stress-induced neuroinflammatory priming. SUMMARY In light of these findings, we propose a model of glucocorticoid-induced neuroinflammatory priming whereby stress and glucocorticoids induce cellular damage/stress in the brain, the products of which prime the NLRP3 inflammasome. Thus, glucocorticoid-induced priming of the NLRP3 inflammasome may mediate the potentiated neuroinflammatory response to a subsequent proinflammatory immune challenge. We propose that during a flight-or-flight response, available energy stores should be diverted to defensive behaviours, and it might be after the emergency is over that resources should be shifted to recuperation and host defense against infection. This is the scenario that would be promoted by elevated glucocorticoids reducing ongoing inflammation while simultaneously priming the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Matthew G. Frank
- Corresponding Author: Department of Psychology and Neuroscience, Center for Neuroscience, Campus Box 345, University of Colorado Boulder, Boulder, CO, 80309-0345, USA, Tel: +1-303-919-8116, Fax: +1-303-492-2967,
| | | | | |
Collapse
|
179
|
Palma-Gudiel H, Córdova-Palomera A, Leza JC, Fañanás L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review. Neurosci Biobehav Rev 2015; 55:520-35. [PMID: 26073068 DOI: 10.1016/j.neubiorev.2015.05.016] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 01/04/2023]
Abstract
Early life stress (ELS) is a known risk factor for suffering psychopathology in adulthood. The hypothalamic-pituitary-adrenal (HPA) axis has been described to be deregulated in both individuals who experienced early psychosocial stress and in patients with a wide range of psychiatric disorders. The NR3C1 gene codes for the glucocorticoid receptor, a key element involved in several steps of HPA axis modulation. In this review, we gather existing evidence linking NR3C1 methylation pattern with either ELS or psychopathology. We summarize that several types of ELS have been frequently associated with NR3C1 hypermethylation whereas hypomethylation has been continuously found to be associated with post-traumatic stress disorder. In light of the reported findings, the main concerns of ongoing research in this field are the lack of methodological consensus and selection of CpG sites. Further studies should target individual CpG site methylation assessment focusing in biologically relevant areas such as transcription factor binding regions whereas widening the examined sequence in order to include all non-coding first exons of the NR3C1 gene in the analysis.
Collapse
Affiliation(s)
- Helena Palma-Gudiel
- Unity of Anthropology, Departament of Animal Biology, Faculty of Biology, Instituto de Biomedicina (IBUB), Universidad de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Aldo Córdova-Palomera
- Unity of Anthropology, Departament of Animal Biology, Faculty of Biology, Instituto de Biomedicina (IBUB), Universidad de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Juan Carlos Leza
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Doctor Esquerdo, 46, 28007 Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | - Lourdes Fañanás
- Unity of Anthropology, Departament of Animal Biology, Faculty of Biology, Instituto de Biomedicina (IBUB), Universidad de Barcelona (UB), Av. Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), C/ Doctor Esquerdo, 46, 28007 Madrid, Spain.
| |
Collapse
|
180
|
|
181
|
Chronic high fat feeding increases anxiety-like behaviour and reduces transcript abundance of glucocorticoid signalling genes in the hippocampus of female rats. Behav Brain Res 2015; 286:265-70. [DOI: 10.1016/j.bbr.2015.02.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/10/2015] [Accepted: 02/16/2015] [Indexed: 12/21/2022]
|
182
|
Bertin J, Dury AY, Ke Y, Ouellet J, Labrie F. Accurate and sensitive liquid chromatography/tandem mass spectrometry simultaneous assay of seven steroids in monkey brain. Steroids 2015; 98:37-48. [PMID: 25697058 DOI: 10.1016/j.steroids.2015.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/23/2015] [Accepted: 02/07/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Following its secretion mainly by the adrenal glands, dehydroepiandrosterone (DHEA) acts primarily in the cells/tissues which express the enzymes catalyzing its intracellular conversion into sex steroids by the mechanisms of intracrinology. Although reliable assays of endogenous serum steroids are now available using mass spectrometry (MS)-based technology, sample preparation from tissue matrices remains a challenge. This is especially the case with high lipid-containing tissues such as the brain. With the combination of a UPLC system with a sensitive tandem MS, it is now possible to measure endogenous unconjugated steroids in monkey brain tissue. METHODS A Shimadzu UPLC LC-30AD system coupled to a tandem MS AB Sciex Qtrap 6500 system was used. RESULTS The lower limits of quantifications are achieved at 250 pg/mL for DHEA, 200 pg/mL for 5-androstenediol (5-diol), 12 pg/mL for androstenedione (4-dione), 50 pg/mL for testosterone (Testo), 10 pg/mL for dihydrotestosterone (DHT), 4 pg/mL for estrone (E1) and 1 pg/mL for estradiol (E2). The linearity and accuracy of quality controls (QCs) and endogenous quality controls (EndoQCs) are according to the guidelines of the regulatory agencies for all seven compounds. CONCLUSION We describe a highly sensitive, specific and robust LC-MS/MS method for the simultaneous measurement of seven unconjugated steroids in monkey brain tissue. The single and small amount of sample required using a relatively simple preparation method should be useful for steroid assays in various peripheral tissues and thus help analysis of the role of locally-made sex steroids in the regulation of specific physiological functions.
Collapse
Affiliation(s)
- Jonathan Bertin
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Alain Y Dury
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Yuyong Ke
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Johanne Ouellet
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada
| | - Fernand Labrie
- EndoCeutics Inc., 2795 Laurier Blvd, Suite 500, Quebec City, QC G1V 4M7, Canada.
| |
Collapse
|
183
|
Degaspari S, Tzanno-Martins CB, Fujihara CK, Zatz R, Branco-Martins JP, Viel TA, Buck HDS, Orellana AMM, Böhmer AE, de Sá Lima L, Andreotti DZ, Munhoz CD, Scavone C, Kawamoto EM. Altered KLOTHO and NF-κB-TNF-α Signaling Are Correlated with Nephrectomy-Induced Cognitive Impairment in Rats. PLoS One 2015; 10:e0125271. [PMID: 25961830 PMCID: PMC4427267 DOI: 10.1371/journal.pone.0125271] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 03/23/2015] [Indexed: 12/23/2022] Open
Abstract
Renal insufficiency can have a negative impact on cognitive function. Neuroinflammation and changes in klotho levels associate with chronic kidney disease (CKD) and may play a role in the development of cognitive impairment (CI). The present study evaluates the correlation of cognitive deficits with neuroinflammation and soluble KLOTHO in the cerebral spinal fluid (CSF) and brain tissue of nephrectomized rats (Nx), with 5/6 renal mass ablation. Nx and sham Munich Wistar rats were tested over 4 months for locomotor activity, as well as inhibitory avoidance or novel object recognition, which started 30 days after the surgery. EMSA for Nuclear factor-κB and MILLIPLEXMAP or ELISA kit were used to evaluate cytokines, glucocorticoid and KLOTHO levels. Nx animals that showed a loss in aversive-related memory and attention were included in the CI group (Nx-CI) (n=14) and compared to animals with intact learning (Nx-M n=12 and Sham n=20 groups). CSF and tissue samples were collected 24 hours after the last behavioral test. The results show that the Nx-groups have increased NF-κB binding activity and tumor necrosis factor-alpha (TNF-α) levels in the hippocampus and frontal cortex, with these changes more pronounced in the Nx-CI group frontal cortex. In addition, the Nx-CI group showed significantly increased CSF glucocorticoid levels and TNF-α /IL-10 ratio compared to the Sham group. Klotho levels were decreased in Nx-CI frontal cortex but not in hippocampus, when compared to Nx-M and Sham groups. Overall, these results suggest that neuroinflammation mediated by frontal cortex NF-κB, TNF-α and KLOTHO signaling may contribute to Nx-induced CI in rats.
Collapse
Affiliation(s)
- Sabrina Degaspari
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | | | - Clarice Kazue Fujihara
- Renal Division, Department of Clinical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Zatz
- Renal Division, Department of Clinical Medicine, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Tania Araujo Viel
- School of Arts, Sciences and Humanities, Universidade de São Paulo, São Paulo, Brazil
| | - Hudson de Souza Buck
- Department of Physiological Sciences, Santa Casa de São Paulo Medical School, São Paulo 01221–020, Brazil
| | - Ana Maria Marques Orellana
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Ana Elisa Böhmer
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Larissa de Sá Lima
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Diana Zukas Andreotti
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Carolina Demarchi Munhoz
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- * E-mail:
| | - Elisa Mitiko Kawamoto
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
184
|
Horowitz MA, Zunszain PA. Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci 2015; 1351:68-79. [PMID: 25943397 DOI: 10.1111/nyas.12781] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Major depressive disorder has been linked to alterations in several interacting systems, particularly with respect to neuroendocrine and neuroinflammatory dysfunction. Increased levels of both cortisol and proinflammatory cytokines have regularly been described. This presents an apparent paradox, given the well-known anti-inflammatory properties of glucocorticoids, including inhibition of cytokine release. There are two competing theories to resolve this paradox: one proposes that reduced glucocorticoid signaling, as a result of glucocorticoid resistance, creates a permissive environment for an overactive innate immune system; the other theory focuses on evidence that glucocorticoids can be proinflammatory under some circumstances, depending on context and temporal factors. This review assesses the evidence base and limitations of both theories, discussing animal and clinical data, and preliminary work in human neural cells. Further work to delineate the relationship between neuroimmune and neuroendocrine systems in depression will be critical for understanding the biological perturbations underpinning depression, and therefore, for discerning treatment targets, and we include suggestions for future directions.
Collapse
Affiliation(s)
- Mark A Horowitz
- Stress, Psychiatry, and Immunology Laboratory (SPI-Lab), Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Patricia A Zunszain
- Stress, Psychiatry, and Immunology Laboratory (SPI-Lab), Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
185
|
Chijiwa T, Oka T, Lkhagvasuren B, Yoshihara K, Sudo N. Prior chronic stress induces persistent polyI:C-induced allodynia and depressive-like behavior in rats: Possible involvement of glucocorticoids and microglia. Physiol Behav 2015; 147:264-73. [PMID: 25936823 DOI: 10.1016/j.physbeh.2015.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/03/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022]
Abstract
When animals suffer from viral infections, they develop a set of symptoms known as the "sickness response." Recent studies suggest that psychological stress can modulate the sickness response. However, it remains uncertain whether acute and chronic psychosocial stresses have the same effect on viral infection-induced sickness responses. To address this question, we compared changes in polyI:C-induced sickness responses, such as fever, change of body weight and food intake, mechanical allodynia, and depressive-like behavior, in rats that had been pre-exposed to single and repeated social defeat stresses. Intraperitoneal injection of polyI:C induced a maximal fever of 38.0°C 3h after injection. Rats exposed to prior social defeat stress exhibited blunted febrile responses, which were more pronounced in the repeated stress group. Furthermore, only the repeated stress group showed late-onset and prolonged mechanical allodynia lasting until 8days after injection in the von Frey test and prolonged immobility time in the forced swim test 9days post-injection. To assess the role of glucocorticoids and microglia in the delayed and persistent development of these sickness responses in rats exposed to repeated stress, we investigated the effect of pretreatment with RU486, a glucocorticoid receptor antagonist, and minocycline, an inhibitor of microglial activation, on polyI:C-induced allodynia and depressive-like behavior. Pretreatment with either drug inhibited both the delayed allodynia and depressive-like behavior. The present study demonstrates that repeated, but not single, social defeat stress followed by systemic polyI:C administration induced prolonged allodynia and depressive-like behavior in rats. Our results show that even though a single-event psychosocial stress does not have any effect by itself, animals may develop persistent allodynia and depressive-like behavior when they suffer from an infectious disease if they are pre-exposed to repeated or chronic psychosocial stress. Furthermore, this study suggests that stress-induced corticosterone and microglial activation play a pivotal role in this phenomenon.
Collapse
Affiliation(s)
- Takeharu Chijiwa
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takakazu Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Battuvshin Lkhagvasuren
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
186
|
Franklin TC, Wohleb ES, Duman RS. The Role of Immune Cells in the Brain during Physiological and Pathological Conditions. Psychiatr Ann 2015. [DOI: 10.3928/00485713-20150501-05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
187
|
Orellana JA, Moraga-Amaro R, Díaz-Galarce R, Rojas S, Maturana CJ, Stehberg J, Sáez JC. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Front Cell Neurosci 2015; 9:102. [PMID: 25883550 PMCID: PMC4382970 DOI: 10.3389/fncel.2015.00102] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/09/2015] [Indexed: 12/21/2022] Open
Abstract
Stress affects brain areas involved in learning and emotional responses, which may contribute in the development of cognitive deficits associated with major depression. These effects have been linked to glial cell activation, glutamate release and changes in neuronal plasticity and survival including atrophy of hippocampal apical dendrites, loss of synapses and neuronal death. Under neuro-inflammatory conditions, we recently unveiled a sequential activation of glial cells that release ATP and glutamate via hemichannels inducing neuronal death due to activation of neuronal NMDA/P2X7 receptors and pannexin1 hemichannels. In the present work, we studied if stress-induced glia activation is associated to changes in hemichannel activity. To this end, we compared hemichannel activity of brain cells after acute or chronic restraint stress in mice. Dye uptake experiments in hippocampal slices revealed that acute stress induces opening of both Cx43 and Panx1 hemichannels in astrocytes, which were further increased by chronic stress; whereas enhanced Panx1 hemichannel activity was detected in microglia and neurons after acute/chronic and chronic stress, respectively. Moreover, inhibition of NMDA/P2X7 receptors reduced the chronic stress-induced hemichannel opening, whereas blockade of Cx43 and Panx1 hemichannels fully reduced ATP and glutamate release in hippocampal slices from stressed mice. Thus, we propose that gliotransmitter release through hemichannels may participate in the pathogenesis of stress-associated psychiatric disorders and possibly depression.
Collapse
Affiliation(s)
- Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Raúl Díaz-Galarce
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Sebastián Rojas
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Carola J Maturana
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas and Facultad de Medicina, Universidad Andres Bello Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile ; Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso Santiago, Chile
| |
Collapse
|
188
|
Machado A, Herrera AJ, de Pablos RM, Espinosa-Oliva AM, Sarmiento M, Ayala A, Venero JL, Santiago M, Villarán RF, Delgado-Cortés MJ, Argüelles S, Cano J. Chronic stress as a risk factor for Alzheimer's disease. Rev Neurosci 2015; 25:785-804. [PMID: 25178904 DOI: 10.1515/revneuro-2014-0035] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/11/2014] [Indexed: 12/27/2022]
Abstract
This review aims to point out that chronic stress is able to accelerate the appearance of Alzheimer's disease (AD), proposing the former as a risk factor for the latter. Firstly, in the introduction we describe some human epidemiological studies pointing out the possibility that chronic stress could increase the incidence, or the rate of appearance of AD. Afterwards, we try to justify these epidemiological results with some experimental data. We have reviewed the experiments studying the effect of various stressors on different features in AD animal models. Moreover, we also point out the data obtained on the effect of chronic stress on some processes that are known to be involved in AD, such as inflammation and glucose metabolism. Later, we relate some of the processes known to be involved in aging and AD, such as accumulation of β-amyloid, TAU hyperphosphorylation, oxidative stress and impairement of mitochondrial function, emphasizing how they are affected by chronic stress/glucocorticoids and comparing with the description made for these processes in AD. All these data support the idea that chronic stress could be considered a risk factor for AD.
Collapse
|
189
|
Santarsieri M, Kumar RG, Kochanek PM, Berga SL, Wagner AK. Variable neuroendocrine-immune dysfunction in individuals with unfavorable outcome after severe traumatic brain injury. Brain Behav Immun 2015; 45:15-27. [PMID: 25218898 PMCID: PMC4342288 DOI: 10.1016/j.bbi.2014.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/07/2014] [Accepted: 09/02/2014] [Indexed: 01/08/2023] Open
Abstract
Bidirectional communication between the immune and neuroendocrine systems is not well understood in the context of traumatic brain injury (TBI). The purpose of this study was to characterize relationships between cerebrospinal fluid (CSF) cortisol and inflammation after TBI, and to determine how these relationships differ by outcome. CSF samples were collected from 91 subjects with severe TBI during days 0-6 post-injury, analyzed for cortisol and inflammatory markers, and compared to healthy controls (n=13 cortisol, n=11 inflammatory markers). Group-based trajectory analysis (TRAJ) delineated subpopulations with similar longitudinal CSF cortisol profiles (high vs. low cortisol). Glasgow Outcome Scale (GOS) scores at 6months served as the primary outcome measure reflecting global outcome. Inflammatory markers that displayed significant bivariate associations with both GOS and cortisol TRAJ (interleukin [IL]-6, IL-10, soluble Fas [sFas], soluble intracellular adhesion molecule [sICAM]-1, and tumor necrosis factor alpha [TNF]-α) were used to generate a cumulative inflammatory load score (ILS). Subsequent analysis revealed that cortisol TRAJ group membership mediated ILS effects on outcome (indirect effect estimate=-0.253, 95% CI (-0.481, -0.025), p=0.03). Correlational analysis between mean cortisol levels and ILS were examined separately within each cortisol TRAJ group and by outcome. Within the low cortisol TRAJ group, subjects with unfavorable 6-month outcome displayed a negative correlation between ILS and mean cortisol (r=-0.562, p=0.045). Conversely, subjects with unfavorable outcome in the high cortisol TRAJ group displayed a positive correlation between ILS and mean cortisol (r=0.391, p=0.006). Our results suggest that unfavorable outcome after TBI may result from dysfunctional neuroendocrine-immune communication wherein an adequate immune response is not mounted or, alternatively, neuroinflammation is prolonged. Importantly, the nature of neuroendocrine-immune dysfunction differs between cortisol TRAJ groups. These results present a novel biomarker-based index from which to discriminate outcome and emphasize the need for evaluating tailored treatments targeting inflammation early after injury.
Collapse
Affiliation(s)
- Martina Santarsieri
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Raj G. Kumar
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh,Department of Critical Care Medicine, University of Pittsburgh
| | - Sarah L. Berga
- Department of Obstetrics and Gynecology, Wake Forest University
| | - Amy K. Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh,Center for Neuroscience, University of Pittsburgh,Safar Center for Resuscitation Research, University of Pittsburgh
| |
Collapse
|
190
|
Interactions of early adversity with stress-related gene polymorphisms impact regional brain structure in females. Brain Struct Funct 2015; 221:1667-79. [PMID: 25630611 DOI: 10.1007/s00429-015-0996-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 01/21/2015] [Indexed: 12/17/2022]
Abstract
Early adverse life events (EALs) have been associated with regional thinning of the subgenual cingulate cortex (sgACC), a brain region implicated in the development of disorders of mood and affect, and often comorbid functional pain disorders, such as irritable bowel syndrome (IBS). Regional neuroinflammation related to chronic stress system activation has been suggested as a possible mechanism underlying these neuroplastic changes. However, the interaction of genetic and environmental factors in these changes is poorly understood. The current study aimed to evaluate the interactions of EALs and candidate gene polymorphisms in influencing thickness of the sgACC. 210 female subjects (137 healthy controls; 73 IBS) were genotyped for stress and inflammation-related gene polymorphisms. Genetic variation with EALs, and diagnosis on sgACC thickness was examined, while controlling for race, age, and total brain volume. Compared to HCs, IBS had significantly reduced sgACC thickness (p = 0.03). Regardless of disease group (IBS vs. HC), thinning of the left sgACC was associated with a significant gene-gene environment interaction between the IL-1β genotype, the NR3C1 haplotype, and a history of EALs (p = 0.05). Reduced sgACC thickness in women with the minor IL-1β allele, was associated with EAL total scores regardless of NR3C1 haplotype status (p = 0.02). In subjects homozygous for the major IL-1β allele, reduced sgACC with increasing levels of EALs was seen only with the less common NR3C1 haplotype (p = 0.02). These findings support an interaction between polymorphisms related to stress and inflammation and early adverse life events in modulating a key region of the emotion arousal circuit.
Collapse
|
191
|
Delpech JC, Madore C, Nadjar A, Joffre C, Wohleb ES, Layé S. Microglia in neuronal plasticity: Influence of stress. Neuropharmacology 2015; 96:19-28. [PMID: 25582288 DOI: 10.1016/j.neuropharm.2014.12.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 01/17/2023]
Abstract
The central nervous system (CNS) has previously been regarded as an immune-privileged site with the absence of immune cell responses but this dogma was not entirely true. Microglia are the brain innate immune cells and recent findings indicate that they participate both in CNS disease and infection as well as facilitate normal CNS function. Microglia are highly plastic and play integral roles in sculpting the structure of the CNS, refining neuronal circuitry and connectivity, and contribute actively to neuronal plasticity in the healthy brain. Interestingly, psychological stress can perturb the function of microglia in association with an impaired neuronal plasticity and the development of emotional behavior alterations. As a result it seemed important to describe in this review some findings indicating that the stress-induced microglia dysfunction may underlie neuroplasticity deficits associated to many mood disorders. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'.
Collapse
Affiliation(s)
- Jean-Christophe Delpech
- Nutrition et Neurobiologie Intégrée, INRA 1286, 33077 Bordeaux Cedex, France; Nutrition et Neurobiologie Intégrée, University of Bordeaux, Bordeaux 33077, France
| | - Charlotte Madore
- Nutrition et Neurobiologie Intégrée, INRA 1286, 33077 Bordeaux Cedex, France; Nutrition et Neurobiologie Intégrée, University of Bordeaux, Bordeaux 33077, France
| | - Agnes Nadjar
- Nutrition et Neurobiologie Intégrée, INRA 1286, 33077 Bordeaux Cedex, France; Nutrition et Neurobiologie Intégrée, University of Bordeaux, Bordeaux 33077, France
| | - Corinne Joffre
- Nutrition et Neurobiologie Intégrée, INRA 1286, 33077 Bordeaux Cedex, France; Nutrition et Neurobiologie Intégrée, University of Bordeaux, Bordeaux 33077, France
| | - Eric S Wohleb
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, INRA 1286, 33077 Bordeaux Cedex, France; Nutrition et Neurobiologie Intégrée, University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
192
|
Jason LA, Zinn ML, Zinn MA. Myalgic Encephalomyelitis: Symptoms and Biomarkers. Curr Neuropharmacol 2015; 13:701-34. [PMID: 26411464 PMCID: PMC4761639 DOI: 10.2174/1570159x13666150928105725] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/09/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
Myalgic Encephalomyelitis (ME) continues to cause significant morbidity worldwide with an estimated one million cases in the United States. Hurdles to establishing consensus to achieve accurate evaluation of patients with ME continue, fueled by poor agreement about case definitions, slow progress in development of standardized diagnostic approaches, and issues surrounding research priorities. Because there are other medical problems, such as early MS and Parkinson's Disease, which have some similar clinical presentations, it is critical to accurately diagnose ME to make a differential diagnosis. In this article, we explore and summarize advances in the physiological and neurological approaches to understanding, diagnosing, and treating ME. We identify key areas and approaches to elucidate the core and secondary symptom clusters in ME so as to provide some practical suggestions in evaluation of ME for clinicians and researchers. This review, therefore, represents a synthesis of key discussions in the literature, and has important implications for a better understanding of ME, its biological markers, and diagnostic criteria. There is a clear need for more longitudinal studies in this area with larger data sets, which correct for multiple testing.
Collapse
Affiliation(s)
- Leonard A. Jason
- Department of Psychology, Center for Community Research, DePaul University, Chicago, Illinois, United States
| | | | | |
Collapse
|
193
|
Zoppi S, Madrigal JL, Caso JR, García-Gutiérrez MS, Manzanares J, Leza JC, García-Bueno B. Regulatory role of the cannabinoid CB2 receptor in stress-induced neuroinflammation in mice. Br J Pharmacol 2014; 171:2814-26. [PMID: 24467609 DOI: 10.1111/bph.12607] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/13/2013] [Accepted: 01/20/2014] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Stress exposure produces excitotoxicity and neuroinflammation, contributing to the cellular damage observed in stress-related neuropathologies. The endocannabinoids provide a homeostatic system, present in stress-responsive neural circuits. Here, we have assessed the possible regulatory role of cannabinoid CB2 receptors in stress-induced excitotoxicity and neuroinflammation. EXPERIMENTAL APPROACH We used wild type (WT), transgenic overexpressing CB2 receptors (CB2xP) and CB2 receptor knockout (CB2-KO) mice exposed to immobilization and acoustic stress (2 h·day(-1) for 4 days). The CB2 receptor agonist JWH-133 was administered daily (2 mg·kg(-1), i.p.) to WT and CB2-KO animals. Glutamate uptake was measured in synaptosomes from frontal cortex; Western blots and RT-PCR were used to measure proinflammatory cytokines, enzymes and mediators in homogenates of frontal cortex. KEY RESULTS Increased plasma corticosterone induced by stress was not modified by manipulating CB2 receptors. JWH-133 treatment or overexpression of CB2 receptors increased control levels of glutamate uptake, which were reduced by stress back to control levels. JWH-133 prevented the stress-induced increase in proinflammatory cytokines (TNF-α and CCL2), in NF-κB, and in NOS-2 and COX-2 and in the consequent cellular oxidative and nitrosative damage (lipid peroxidation). CB2xP mice exhibited anti-inflammatory or neuroprotective actions similar to those in JWH-133 pretreated animals. Conversely, lack of CB2 receptors (CB2-KO mice) exacerbated stress-induced neuroinflammatory responses and confirmed that effects of JWH-133 were mediated through CB2 receptors. CONCLUSIONS AND IMPLICATIONS Pharmacological manipulation of CB2 receptors is a potential therapeutic strategy for the treatment of stress-related pathologies with a neuroinflammatory component, such as depression.
Collapse
Affiliation(s)
- S Zoppi
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, Madrid, Spain; Instituto UCM de Investigación en Neuroquímica, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
194
|
Greater glucocorticoid receptor activation in hippocampus of aged rats sensitizes microglia. Neurobiol Aging 2014; 36:1483-95. [PMID: 25559333 DOI: 10.1016/j.neurobiolaging.2014.12.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/30/2014] [Accepted: 12/04/2014] [Indexed: 12/21/2022]
Abstract
Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher corticosterone levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal corticosterone levels were associated with increased hippocampal 11β-hydroxysteroid dehydrogenase type 1 protein expression, the enzyme that catalyzes glucocorticoid formation and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia and prevented Escherichia coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia.
Collapse
|
195
|
Chronic stress, cortisol dysfunction, and pain: a psychoneuroendocrine rationale for stress management in pain rehabilitation. Phys Ther 2014; 94:1816-25. [PMID: 25035267 PMCID: PMC4263906 DOI: 10.2522/ptj.20130597] [Citation(s) in RCA: 396] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pain is a primary symptom driving patients to seek physical therapy, and its attenuation commonly defines a successful outcome. A large body of evidence is dedicated to elucidating the relationship between chronic stress and pain; however, stress is rarely addressed in pain rehabilitation. A physiologic stress response may be evoked by fear or perceived threat to safety, status, or well-being and elicits the secretion of sympathetic catecholamines (epinephrine and norepinepherine) and neuroendocrine hormones (cortisol) to promote survival and motivate success. Cortisol is a potent anti-inflammatory that functions to mobilize glucose reserves for energy and modulate inflammation. Cortisol also may facilitate the consolidation of fear-based memories for future survival and avoidance of danger. Although short-term stress may be adaptive, maladaptive responses (eg, magnification, rumination, helplessness) to pain or non-pain-related stressors may intensify cortisol secretion and condition a sensitized physiologic stress response that is readily recruited. Ultimately, a prolonged or exaggerated stress response may perpetuate cortisol dysfunction, widespread inflammation, and pain. Stress may be unavoidable in life, and challenges are inherent to success; however, humans have the capability to modify what they perceive as stressful and how they respond to it. Exaggerated psychological responses (eg, catastrophizing) following maladaptive cognitive appraisals of potential stressors as threatening may exacerbate cortisol secretion and facilitate the consolidation of fear-based memories of pain or non-pain-related stressors; however, coping, cognitive reappraisal, or confrontation of stressors may minimize cortisol secretion and prevent chronic, recurrent pain. Given the parallel mechanisms underlying the physiologic effects of a maladaptive response to pain and non-pain-related stressors, physical therapists should consider screening for non-pain-related stress to facilitate treatment, prevent chronic disability, and improve quality of life.
Collapse
|
196
|
Litteljohn D, Nelson E, Hayley S. IFN-γ differentially modulates memory-related processes under basal and chronic stressor conditions. Front Cell Neurosci 2014; 8:391. [PMID: 25477784 PMCID: PMC4238410 DOI: 10.3389/fncel.2014.00391] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/03/2014] [Indexed: 02/06/2023] Open
Abstract
Cytokines are inflammatory messengers that orchestrate the brain’s response to immunological challenges, as well as possibly even toxic and psychological insults. We previously reported that genetic ablation of the pro-inflammatory cytokine, interferon-gamma (IFN-γ), attenuated some of the corticosteroid, cytokine, and limbic dopaminergic variations induced by 6 weeks of exposure to an unpredictable psychologically relevant stressor. Presently, we sought to determine whether a lack of IFN-γ would likewise modify the impact of chronic stress on hippocampus-dependent memory function and related neurotransmitter and neurotrophin signaling systems. As predicted, chronic stress impaired spatial recognition memory (Y-maze task) in the wild-type animals. In contrast, though the IFN-γ knockouts (KOs) showed memory disturbances in the basal state, under conditions of chronic stress these mice actually exhibited facilitated memory performance. Paralleling these findings, while overall the KOs displayed altered noradrenergic and/or serotonergic activity in the hippocampus and locus coeruleus, norepinephrine utilization in both of these memory-related brain regions was selectively increased among the chronically stressed KOs. However, contrary to our expectations, neither IFN-γ deletion nor chronic stressor exposure significantly affected nucleus accumbens dopaminergic neurotransmission or hippocampal brain-derived neurotrophic factor protein expression. These findings add to a growing body of evidence implicating cytokines in the often differential regulation of neurobehavioral processes in health and disease. Whereas in the basal state IFN-γ appears to be involved in sustaining memory function and the activity of related brain monoamine systems, in the face of ongoing psychologically relevant stress the cytokine may, in fact, act to restrict potentially adaptive central noradrenergic and spatial memory responses.
Collapse
Affiliation(s)
- Darcy Litteljohn
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| | - Eric Nelson
- Faculty of Medicine, University of Toronto Toronto, ON, Canada
| | - Shawn Hayley
- Department of Neuroscience, Carleton University Ottawa, ON, Canada
| |
Collapse
|
197
|
Griffin GD, Charron D, Al-Daccak R. Post-traumatic stress disorder: revisiting adrenergics, glucocorticoids, immune system effects and homeostasis. Clin Transl Immunology 2014; 3:e27. [PMID: 25505957 PMCID: PMC4255796 DOI: 10.1038/cti.2014.26] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 10/05/2014] [Accepted: 10/05/2014] [Indexed: 11/09/2022] Open
Abstract
This review focuses on post-traumatic stress disorder (PTSD). Several sequelae of PTSD are partially attributed to glucocorticoid-induced neuronal loss in the hippocampus and amygdala. Glucocorticoids and adrenergic agents cause both immediate and late sequelae and are considered from the perspective of their actions on the expression of cytokines as well as some of their physiological and psychological effects. A shift in immune system balance from Th1 to Th2 dominance is thought to result from the actions of both molecular groups. The secretion of glucocorticoids and adrenergic agents is commonly induced by trauma or stress, and synergy between these two parallel but separate pathways can produce long- and short-term sequelae in individuals with PTSD. Potential therapies are suggested, and older therapies that involve the early effects of adrenergics or glucocorticoids are reviewed for their control of acute symptoms. These therapies may also be useful for acute flashback therapy. Timely and more precise glucocorticoid and adrenergic control is recommended for maintaining these molecular groups within acceptable homeostatic limits and thus managing immune and brain sequelae. Psychotherapy should supplement the above therapeutic measures; however, psychotherapy is not the focus of this paper. Instead, this review focuses on the probable molecular basis of PTSD. Integrating historical findings regarding glucocorticoids and adrenergic agents into current research and clinical applications returns the focus to potentially life-changing treatments. Autologous adoptive immune therapy may also offer utility. This paper reports clinical and translational research that connects and challenges separate fields of study, current and classical, in an attempt to better understand and ameliorate the effects of PTSD.
Collapse
Affiliation(s)
- Gerald D Griffin
- TJ Long School of Pharmacy and Health Sciences, University of the Pacific , Stockton, CA, USA
| | - Dominique Charron
- Laboratoire 'Jean Dausset' Histocompatibilite'-Imuunogenetique, Hospital Saint-Louis , Paris, France
| | - Rheem Al-Daccak
- CR1-HDR, INSERM UMRS-940, Hospital Saint-Louis , Paris, France
| |
Collapse
|
198
|
Takei K, Denda S, Kumamoto J, Denda M. Low environmental humidity induces synthesis and release of cortisol in an epidermal organotypic culture system. Exp Dermatol 2014; 22:662-4. [PMID: 24079737 DOI: 10.1111/exd.12224] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Dry environmental conditions induce a variety of skin pathologies and a recent report indicating that cortisol synthesis in epidermis was increased during wound healing led us to hypothesize that environmental dryness might induce increased cortisol secretion in epidermis. Therefore, we incubated a skin equivalent model under dry (relative humidity: less than 10%) and humid (relative humidity: approximately 100%) conditions for 48 hours and evaluated cortisol secretion and mRNA levels of cortisol-synthesizing enzyme (steroid 11β-hydroxylase, CYP11B1) and IL-1β. Cortisol secretion was increased threefold, and CYP11B1 and IL-1β mRNAs were increased 38-fold and sixfold, respectively, in the dry condition versus the humid condition. Occlusion with a water-impermeable plastic membrane partially blocked the increases in cortisol secretion and CYP11B1 and IL-1β mRNA expression in the dry condition. Thus, environmental dryness might induce increased cortisol secretion in epidermis of diseased skin characterized by epidermal barrier dysfunction, potentially influencing mental state and systemic physiology.
Collapse
Affiliation(s)
- Kentaro Takei
- Japan Science and Technology Agency, CREST, Tokyo, Japan
| | | | | | | |
Collapse
|
199
|
Lerch JK, Puga DA, Bloom O, Popovich PG. Glucocorticoids and macrophage migration inhibitory factor (MIF) are neuroendocrine modulators of inflammation and neuropathic pain after spinal cord injury. Semin Immunol 2014; 26:409-14. [DOI: 10.1016/j.smim.2014.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
|
200
|
Walker WR, Yancu CN, Skowronski JJ. Trait anxiety reduces affective fading for both positive and negative autobiographical memories. Adv Cogn Psychol 2014; 10:81-9. [PMID: 25320653 PMCID: PMC4197641 DOI: 10.5709/acp-0159-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 02/27/2014] [Indexed: 12/13/2022] Open
Abstract
The affect associated with negative events fades faster than the affect
associated with positive events (the Fading Affect Bias; the FAB). The research
that we report examined the relation between trait anxiety and the FAB. Study 1
assessed anxiety using the Depression, Anxiety, and Stress Scale; Studies 2 and
3 used the Beck Anxiety Inventory. Studies 1 and 2 used retrospective procedures
to probe positive event memories and negative event memories while Study 3 used
a diary procedure. The results of all 3 studies showed that increased anxiety
was associated with both a lowered FAB and lower overall affect fading for both
positive events and negative events. These results suggest that for people free
of trait anxiety, the FAB reflects the operation of a healthy coping mechanism
in autobiographical memory that is disrupted by trait anxiety.
Collapse
|