151
|
Morrone Parfitt G, Coccia E, Goldman C, Whitney K, Reyes R, Sarrafha L, Nam KH, Sohail S, Jones DR, Crary JF, Ordureau A, Blanchard J, Ahfeldt T. Disruption of lysosomal proteolysis in astrocytes facilitates midbrain organoid proteostasis failure in an early-onset Parkinson's disease model. Nat Commun 2024; 15:447. [PMID: 38200091 PMCID: PMC10781970 DOI: 10.1038/s41467-024-44732-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Accumulation of advanced glycation end products (AGEs) on biopolymers accompanies cellular aging and drives poorly understood disease processes. Here, we studied how AGEs contribute to development of early onset Parkinson's Disease (PD) caused by loss-of-function of DJ1, a protein deglycase. In induced pluripotent stem cell (iPSC)-derived midbrain organoid models deficient for DJ1 activity, we find that lysosomal proteolysis is impaired, causing AGEs to accumulate, α-synuclein (α-syn) phosphorylation to increase, and proteins to aggregate. We demonstrated these processes are at least partly driven by astrocytes, as DJ1 loss reduces their capacity to provide metabolic support and triggers acquisition of a pro-inflammatory phenotype. Consistently, in co-cultures, we find that DJ1-expressing astrocytes are able to reverse the proteolysis deficits of DJ1 knockout midbrain neurons. In conclusion, astrocytes' capacity to clear toxic damaged proteins is critical to preserve neuronal function and their dysfunction contributes to the neurodegeneration observed in a DJ1 loss-of-function PD model.
Collapse
Affiliation(s)
- Gustavo Morrone Parfitt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Department of Neuroscience, Genentech, Inc., South San Francisco, CA, 94080, USA.
| | - Elena Coccia
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Camille Goldman
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell-Based Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo Reyes
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Lily Sarrafha
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Ki Hong Nam
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Soha Sohail
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA
| | - Drew R Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY, USA
| | - John F Crary
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
- Friedman Brain Institute at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular, and Cell-Based Medicine at Mount Sinai, New York, NY, USA
| | - Alban Ordureau
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joel Blanchard
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Tim Ahfeldt
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute at Mount Sinai, New York, NY, USA.
- Recursion Pharmaceuticals, Salt Lake City, UT, USA.
| |
Collapse
|
152
|
Liénard C, Pintart A, Bomont P. Neuronal Autophagy: Regulations and Implications in Health and Disease. Cells 2024; 13:103. [PMID: 38201307 PMCID: PMC10778363 DOI: 10.3390/cells13010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/02/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Autophagy is a major degradative pathway that plays a key role in sustaining cell homeostasis, integrity, and physiological functions. Macroautophagy, which ensures the clearance of cytoplasmic components engulfed in a double-membrane autophagosome that fuses with lysosomes, is orchestrated by a complex cascade of events. Autophagy has a particularly strong impact on the nervous system, and mutations in core components cause numerous neurological diseases. We first review the regulation of autophagy, from autophagosome biogenesis to lysosomal degradation and associated neurodevelopmental/neurodegenerative disorders. We then describe how this process is specifically regulated in the axon and in the somatodendritic compartment and how it is altered in diseases. In particular, we present the neuronal specificities of autophagy, with the spatial control of autophagosome biogenesis, the close relationship of maturation with axonal transport, and the regulation by synaptic activity. Finally, we discuss the physiological functions of autophagy in the nervous system, during development and in adulthood.
Collapse
Affiliation(s)
- Caroline Liénard
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
- CHU Montpellier, University of Montpellier, 34295 Montpellier, France
| | - Alexandre Pintart
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| | - Pascale Bomont
- NeuroMyoGene Institute—PGNM, CNRS UMR 5261—INSERM U1315, University of Claude Bernard Lyon 1, 69008 Lyon, France; (C.L.); (A.P.)
| |
Collapse
|
153
|
Thinwa JW, Zou Z, Parks E, Sebti S, Hui K, Wei Y, Goodarzi M, Singh V, Urquhart G, Jewell JL, Pfeiffer JK, Levine B, Reese TA, Shiloh MU. CDKL5 regulates p62-mediated selective autophagy and confers protection against neurotropic viruses. J Clin Invest 2024; 134:e168544. [PMID: 37917202 PMCID: PMC10760973 DOI: 10.1172/jci168544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss-of-function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found that deletion of CDKL5 or expression of a clinically relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. Cdkl5-knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.
Collapse
Affiliation(s)
| | | | | | | | - Kelvin Hui
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yongjie Wei
- Cancer Research Institute, Guangzhou Medical University, Guangzhou, China
| | | | | | - Greg Urquhart
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Beth Levine
- Department of Internal Medicine
- Department of Microbiology
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
154
|
Wang X, Song Y, Cong P, Wang Z, Liu Y, Xu J, Xue C. Docosahexaenoic Acid-Acylated Astaxanthin Monoester Ameliorates Amyloid-β Pathology and Neuronal Damage by Restoring Autophagy in Alzheimer's Disease Models. Mol Nutr Food Res 2024; 68:e2300414. [PMID: 37991232 DOI: 10.1002/mnfr.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Indexed: 11/23/2023]
Abstract
SCOPE Astaxanthin (AST) is ubiquitous in aquatic foods and microorganisms. The study previously finds that docosahexaenoic acid-acylated AST monoester (AST-DHA) improves cognitive function in Alzheimer's disease (AD), although the underlying mechanism remains unclear. Moreover, autophagy is reportedly involved in amyloid-β (Aβ) clearance and AD pathogenesis. Therefore, this study aims to evaluate the preventive effect of AST-DHA and elucidates the mechanism of autophagy modulation in Aβ pathology. METHODS AND RESULTS In the cellular AD model, AST-DHA significantly reduces toxic Aβ1-42 levels and alleviated the accumulation of autophagic markers (LC3II/I and p62) in Aβ25-35 -induced SH-SY5Y cells. Notably, AST-DHA restores the autophagic flux in SH-SY5YmRFP-GFP-LC3 cells. In APP/PS1 mice, a 3-month dietary supplementation of AST-DHA exceeded free-astaxanthin (F-AST) capacity to increase hippocampal and cortical autophagy. Mechanistically, AST-DHA restores autophagy by activating the ULK1 signaling pathway and restoring autophagy-lysosome fusion. Moreover, AST-DHA relieves ROS production and mitochondrial stress affecting autophagy in AD. As a favorable outcome of restored autophagy, AST-DHA mitigates cerebral Aβ and p-Tau deposition, ultimately improving neuronal function. CONCLUSION The findings demonstrate that AST-DHA can rectify autophagic impairment in AD, and confer neuroprotection in Aβ-related pathology, which supports the future application of AST as an autophagic inducer for maintaining brain health.
Collapse
Affiliation(s)
- Xiaoxu Wang
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province, 266003, China
| | - Yu Song
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Peixu Cong
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Zhigao Wang
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Yanjun Liu
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province, 214122, China
| | - Jie Xu
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
| | - Changhu Xue
- A State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No. 1299, Sansha Road, Qingdao, Shandong Province, 266235, China
- Qingdao Marine Science and Technology Center, Qingdao, Shandong Province, 266235, China
| |
Collapse
|
155
|
Liang X, Wang Y, Li S, Fan J, Zhou F, Li X, Li S, Li Y. Enhancing Rab7 Activity by Inhibiting TBC1D5 Expression Improves Mitophagy in Alzheimer's Disease Models. J Alzheimers Dis 2024; 100:279-296. [PMID: 38848175 DOI: 10.3233/jad-231300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Background Mitochondrial dysfunction exists in Alzheimer's disease (AD) brain, and damaged mitochondria need to be removed by mitophagy. Small GTPase Rab7 regulates the fusion of mitochondria and lysosome, while TBC1D5 inhibits Rab7 activation. However, it is not clear whether the regulation of Rab7 activity by TBC1D5 can improve mitophagy and inhibit AD progression. Objective To investigate the role of TBC1D5 in mitophagy and its regulatory mechanism for Rab7, and whether activation of mitophagy can inhibit the progression of AD. Methods Mitophagy was determined by western blot and immunofluorescence. The morphology and quantity of mitochondria were tracked by TEM. pCMV-Mito-AT1.03 was employed to detect the cellular ATP. Amyloid-β secreted by AD cells was detected by ELISA. Co-immunoprecipitation was used to investigate the binding partner of the target protein. Golgi-cox staining was applied to observe neuronal morphology of mice. The Morris water maze test and Y-maze were performed to assess spatial learning and memory, and the open field test was measured to evaluate motor function and anxiety-like phenotype of experimental animals. Results Mitochondrial morphology was impaired in AD models, and TBC1D5 was highly expressed. Knocking down TBC1D5 increased the expression of active Rab7, promoted the fusion of lysosome and autophagosome, thus improving mitophagy, and improved the morphology of hippocampal neurons and the impaired behavior in AD mice. Conclusions Knocking down TBC1D5 increased Rab7 activity and promoted the fusion of autophagosome and lysosome. Our study provided insights into the mechanisms that bring new possibilities for AD therapy targeting mitophagy.
Collapse
Affiliation(s)
- Xiao Liang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yangyang Wang
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Siyu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Jianing Fan
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Fanlin Zhou
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer - iCQBC, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Xiaoju Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer - iCQBC, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Shijie Li
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer - iCQBC, Chongqing University Cancer Hospital, Chongqing, P.R. China
| | - Yu Li
- School of Medicine, Chongqing University, Chongqing, P.R. China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, P.R. China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer - iCQBC, Chongqing University Cancer Hospital, Chongqing, P.R. China
| |
Collapse
|
156
|
Chen B, Guo G, Wang G, Zhu Q, Wang L, Shi W, Wang S, Chen Y, Chi X, Wen F, Maarouf M, Huang S, Yang Z, Chen JL. ATG7/GAPLINC/IRF3 axis plays a critical role in regulating pathogenesis of influenza A virus. PLoS Pathog 2024; 20:e1011958. [PMID: 38227600 PMCID: PMC10817227 DOI: 10.1371/journal.ppat.1011958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/26/2024] [Accepted: 01/08/2024] [Indexed: 01/18/2024] Open
Abstract
Autophagy-related protein 7 (ATG7) is an essential autophagy effector enzyme. Although it is well known that autophagy plays crucial roles in the infections with various viruses including influenza A virus (IAV), function and underlying mechanism of ATG7 in infection and pathogenesis of IAV remain poorly understood. Here, in vitro studies showed that ATG7 had profound effects on replication of IAV. Depletion of ATG7 markedly attenuated the replication of IAV, whereas overexpression of ATG7 facilitated the viral replication. ATG7 conditional knockout mice were further employed and exhibited significantly resistant to viral infections, as evidenced by a lower degree of tissue injury, slower body weight loss, and better survival, than the wild type animals challenged with either IAV (RNA virus) or pseudorabies virus (DNA virus). Interestingly, we found that ATG7 promoted the replication of IAV in autophagy-dependent and -independent manners, as inhibition of autophagy failed to completely block the upregulation of IAV replication by ATG7. To determine the autophagy-independent mechanism, transcriptome analysis was utilized and demonstrated that ATG7 restrained the production of interferons (IFNs). Loss of ATG7 obviously enhanced the expression of type I and III IFNs in ATG7-depleted cells and mice, whereas overexpression of ATG7 impaired the interferon response to IAV infection. Consistently, our experiments demonstrated that ATG7 significantly suppressed IRF3 activation during the IAV infection. Furthermore, we identified long noncoding RNA (lncRNA) GAPLINC as a critical regulator involved in the promotion of IAV replication by ATG7. Importantly, both inactivation of IRF3 and inhibition of IFN response caused by ATG7 were mediated through control over GAPLINC expression, suggesting that GAPLINC contributes to the suppression of antiviral immunity by ATG7. Together, these results uncover an autophagy-independent mechanism by which ATG7 suppresses host innate immunity and establish a critical role for ATG7/GAPLINC/IRF3 axis in regulating IAV infection and pathogenesis.
Collapse
Affiliation(s)
- Biao Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Guijie Guo
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Guoqing Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Qianwen Zhu
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Lulu Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Wenhao Shi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Song Wang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Yuhai Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Xiaojuan Chi
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Faxin Wen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Mohamed Maarouf
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Zhou Yang
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| | - Ji-Long Chen
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People’s Republic of China
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, People’s Republic of China
| |
Collapse
|
157
|
Chen J, Huang M. Intensive care unit-acquired weakness: Recent insights. JOURNAL OF INTENSIVE MEDICINE 2024; 4:73-80. [PMID: 38263973 PMCID: PMC10800771 DOI: 10.1016/j.jointm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 01/25/2024]
Abstract
Intensive care unit-acquired weakness (ICU-AW) is a common complication in critically ill patients and is associated with a variety of adverse outcomes. These include the need for prolonged mechanical ventilation and ICU stay; higher ICU, in-hospital, and 1-year mortality; and increased in-hospital costs. ICU-AW is associated with multiple risk factors including age, underlying disease, severity of illness, organ failure, sepsis, immobilization, receipt of mechanical ventilation, and other factors related to critical care. The pathological mechanism of ICU-AW remains unclear and may be considerably varied. This review aimed to evaluate recent insights into ICU-AW from several aspects including risk factors, pathophysiology, diagnosis, and treatment strategies; this provides new perspectives for future research.
Collapse
Affiliation(s)
- Juan Chen
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
158
|
Ryan L, Rubinsztein DC. The autophagy of stress granules. FEBS Lett 2024; 598:59-72. [PMID: 38101818 DOI: 10.1002/1873-3468.14787] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023]
Abstract
Our understanding of stress granule (SG) biology has deepened considerably in recent years, and with this, increased understanding of links has been made between SGs and numerous neurodegenerative diseases. One of the proposed mechanisms by which SGs and any associated protein aggregates may become pathological is based upon defects in their autophagic clearance, and so the precise processes governing the degradation of SGs are important to understand. Mutations and disease-associated variants implicated in amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease and frontotemporal lobar dementia compromise autophagy, whilst autophagy-inhibiting drugs or knockdown of essential autophagy proteins result in the persistence of SGs. In this review, we will consider the current knowledge regarding the autophagy of SG.
Collapse
Affiliation(s)
- Laura Ryan
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
- UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, UK
| |
Collapse
|
159
|
Bonam SR, Mastrippolito D, Georgel P, Muller S. Pharmacological targets at the lysosomal autophagy-NLRP3 inflammasome crossroads. Trends Pharmacol Sci 2024; 45:81-101. [PMID: 38102020 DOI: 10.1016/j.tips.2023.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Many aspects of cell homeostasis and integrity are maintained by the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome. The NLRP3 oligomeric protein complex assembles in response to exogenous and endogenous danger signals. This inflammasome has also been implicated in the pathogenesis of a range of disease conditions, particularly chronic inflammatory diseases. Given that NLRP3 modulates autophagy, which is also a key regulator of inflammasome activity, excessive inflammation may be controlled by targeting this intersecting pathway. However, specific niche areas of NLRP3-autophagy interactions and their reciprocal regulatory mechanisms remain underexplored. Consequently, we lack treatment methods specifically targeting this pivotal axis. Here, we discuss the potential of such strategies in the context of autoimmune and metabolic diseases and propose some research avenues.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dylan Mastrippolito
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France
| | - Philippe Georgel
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; Strasbourg Institute of Drug Discovery and Development (IMS), Strasbourg, France; Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University, Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), Strasbourg, France.
| |
Collapse
|
160
|
Proikas-Cezanne T, Thumm M. Autophagy-from yeast to humans: Thirty years of molecular autophagy. FEBS Lett 2024; 598:3-6. [PMID: 38206618 DOI: 10.1002/1873-3468.14796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024]
Affiliation(s)
- Tassula Proikas-Cezanne
- Interfaculty Institute of Cell Biology, Department of Biology, Faculty of Science Eberhard Karls University, Tübingen, Germany
| | - Michael Thumm
- Institute of Cellular Biochemistry, Goettingen University Medical Centre, Goettingen, Germany
| |
Collapse
|
161
|
Ding X, Zhu C, Wang W, Li M, Ma C, Gao B. SIRT1 is a regulator of autophagy: Implications for the progression and treatment of myocardial ischemia-reperfusion. Pharmacol Res 2024; 199:106957. [PMID: 37820856 DOI: 10.1016/j.phrs.2023.106957] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/09/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
SIRT1 is a highly conserved nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase. It is involved in the regulation of various pathophysiological processes, including cell proliferation, survival, differentiation, autophagy, and oxidative stress. Therapeutic activation of SIRT1 protects the heart and cardiomyocytes from pathology-related stress, particularly myocardial ischemia/reperfusion (I/R). Autophagy is an important metabolic pathway for cell survival during energy or nutrient deficiency, hypoxia, or oxidative stress. Autophagy is a double-edged sword in myocardial I/R injury. The activation of autophagy during the ischemic phase removes excess metabolic waste and helps ensure cardiomyocyte survival, whereas excessive autophagy during reperfusion depletes the cellular components and leads to autophagic cell death. Increasing research on I/R injury has indicated that SIRT1 is involved in the process of autophagy and regulates myocardial I/R. SIRT1 regulates autophagy through various pathways, such as the deacetylation of FOXOs, ATGs, and LC3. Recent studies have confirmed that SIRT1-mediated autophagy plays different roles at different stages of myocardial I/R injury. By targeting the mechanism of SIRT1-mediated autophagy at different stages of I/R injury, new small-molecule drugs, miRNA activators, or blockers can be developed. For example, resveratrol, sevoflurane, quercetin, and melatonin in the ischemic stage, coptisine, curcumin, berberine, and some miRNAs during reperfusion, were involved in regulating the SIRT1-autophagy axis, exerting a cardioprotective effect. Here, we summarize the possible mechanisms of autophagy regulation by SIRT1 in myocardial I/R injury and the related molecular drug applications to identify strategies for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoqing Ding
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Wenhong Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Mengying Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Chunwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Binghong Gao
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
162
|
Su Z, Chen D, Huang J, Liang Z, Ren W, Zhang Z, Jiang Q, Luo T, Guo L. Isoliquiritin treatment of osteoporosis by promoting osteogenic differentiation and autophagy of bone marrow mesenchymal stem cells. Phytother Res 2024; 38:214-230. [PMID: 37859562 DOI: 10.1002/ptr.8032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Osteoporosis is a chronic progressive bone disease characterized by the decreased osteogenic ability of osteoblasts coupled with increased osteoclast activity. Natural products showing promising therapeutic potential for postmenopausal osteoporosis remain underexplored. In this study, we aimed to analyze the therapeutic effects of isoliquiritin (ISL) on osteoporosis in mice and its possible mechanism of action. An ovariectomy-induced osteoporosis mouse model and bone marrow mesenchymal stem cells (BMSCs) were used to analyze the effects of ISL on bone regeneration in vivo and in vitro, respectively. Mitogen-activated protein kinase (MAPK) and autophagy inhibitors were used, to investigate whether the MAPK signaling pathway and autophagy affect the osteogenic differentiation of BMSCs. ISL significantly improved bone formation and reduced bone resorption in mouse femurs without inducing any detectable toxicity in critical organs such as the liver, kidney, brain, heart, and spleen. In vitro experiments showed that ISL enhanced the proliferation and osteogenic differentiation of BMSCs and that its osteogenic effect was attenuated by p38/extracellular regulated protein kinase (ERK) and autophagy inhibitors. Further studies showed that the inhibition of phosphorylated p38/ERK blocked ISL autophagy in BMSCs. ISL promoted the osteogenic differentiation of BMSCs through the p38/ERK-autophagy pathway and was therapeutically effective in treating osteoporosis in ovariectomized mice without any observed toxicity to vital organs. These results strongly suggest the promising potential of ISL as a safe and efficacious candidate drug for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhikang Su
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ding Chen
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jiangyon Huang
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zitian Liang
- Department of Dentistry and Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wen Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zeyu Zhang
- Department of Dentistry and Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qianzhou Jiang
- Department of Dentistry and Endodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Tao Luo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Lvhua Guo
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
163
|
Priori EC, Ratto D, De Luca F, Sandionigi A, Savino E, Giammello F, Romeo M, Brandalise F, Roda E, Rossi P. Hericium erinaceus Extract Exerts Beneficial Effects on Gut-Neuroinflammaging-Cognitive Axis in Elderly Mice. BIOLOGY 2023; 13:18. [PMID: 38248449 PMCID: PMC10813749 DOI: 10.3390/biology13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Ageing is a biological phenomenon that determines the impairment of cognitive performances, in particular, affecting memory. Inflammation and cellular senescence are known to be involved in the pathogenesis of cognitive decline. The gut microbiota-brain axis could exert a critical role in influencing brain homeostasis during ageing, modulating neuroinflammation, and possibly leading to inflammaging. Due to their anti-ageing properties, medicinal mushrooms can be utilised as a resource for developing pharmaceuticals and functional foods. Specifically, Hericium erinaceus (He), thanks to its bioactive metabolites, exerts numerous healthy beneficial effects, such as reinforcing the immune system, counteracting ageing, and improving cognitive performance. Our previous works demonstrated the capabilities of two months of He1 standardised extract oral supplementation in preventing cognitive decline in elderly frail mice. Herein, we showed that this treatment did not change the overall gut microbiome composition but significantly modified the relative abundance of genera specifically involved in cognition and inflammation. Parallelly, a significant decrease in crucial markers of inflammation and cellular senescence, i.e., CD45, GFAP, IL6, p62, and γH2AX, was demonstrated in the dentate gyrus and Cornus Ammonis hippocampal areas through immunohistochemical experiments. In summary, we suggested beneficial and anti-inflammatory properties of He1 in mouse hippocampus through the gut microbiome-brain axis modulation.
Collapse
Affiliation(s)
- Erica Cecilia Priori
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Daniela Ratto
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Fabrizio De Luca
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Anna Sandionigi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
- Quantia Consulting S.r.l., Via Petrarca 20, 22066 Mariano Comense, Italy
| | - Elena Savino
- Department of Earth and Environmental Science, University of Pavia, 27100 Pavia, Italy;
| | - Francesca Giammello
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | - Marcello Romeo
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| | | | - Elisa Roda
- Laboratory of Clinical & Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Paola Rossi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (E.C.P.); (D.R.); (F.D.L.); (F.G.); (M.R.)
| |
Collapse
|
164
|
Wang W, Ma X, Bhatta S, Shao C, Zhao F, Fujioka H, Torres S, Wu F, Zhu X. Intraneuronal β-amyloid impaired mitochondrial proteostasis through the impact on LONP1. Proc Natl Acad Sci U S A 2023; 120:e2316823120. [PMID: 38091289 PMCID: PMC10740390 DOI: 10.1073/pnas.2316823120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial proteostasis regulated by chaperones and proteases in each compartment of mitochondria is critical for mitochondrial function, and it is suspected that mitochondrial proteostasis deficits may be involved in mitochondrial dysfunction in AD. In this study, we identified LONP1, an ATP-dependent protease in the matrix, as a top Aβ42 interacting mitochondrial protein through an unbiased screening and found significantly decreased LONP1 expression and extensive mitochondrial proteostasis deficits in AD experimental models both in vitro and in vivo, as well as in the brain of AD patients. Impaired METTL3-m6A signaling contributed at least in part to Aβ42-induced LONP1 reduction. Moreover, Aβ42 interaction with LONP1 impaired the assembly and protease activity of LONP1 both in vitro and in vivo. Importantly, LONP1 knockdown caused mitochondrial proteostasis deficits and dysfunction in neurons, while restored expression of LONP1 in neurons expressing intracellular Aβ and in the brain of CRND8 APP transgenic mice rescued Aβ-induced mitochondrial deficits and cognitive deficits. These results demonstrated a critical role of LONP1 in disturbed mitochondrial proteostasis and mitochondrial dysfunction in AD and revealed a mechanism underlying intracellular Aβ42-induced mitochondrial toxicity through its impact on LONP1 and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Sabina Bhatta
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Changjuan Shao
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Hisashi Fujioka
- Electron Microscopy Core Facility, Case Western Reserve University, Cleveland, OH44106
| | - Sandy Torres
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Fengqin Wu
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| |
Collapse
|
165
|
Zhu H, Xiao F, Xiao Y, Guo Y, Shan X, Zhang Z, Zhang L, Guo H. Targeting CB2R in astrocytes for Parkinson's disease therapy: unraveling the Foxg1-mediated neuroprotective mechanism through autophagy-mediated NLRP3 degradation. J Neuroinflammation 2023; 20:304. [PMID: 38110963 PMCID: PMC10729372 DOI: 10.1186/s12974-023-02989-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/09/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Inflammasomes in astrocytes have been shown to play a crucial role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). Cannabinoid Receptor 2(CB2R), a G protein-coupled receptor (GPCR), is considered a promising therapeutic target in inflammation-related disorders. This study aims to explore the role of CB2R in regulating NOD-like receptor family pyrin domain containing 3 (NLRP3)-mediated neuroinflammation in astrocytes. METHODS In an in vivo animal model, specific targeting of astrocytic CB2R was achieved by injecting CB2R-specific adenovirus (or fork head box g1(foxg1) adenovirus) to knock down CB2R or administering CB2R agonists, inhibitors, etc., in the substantia nigra pars compacta (SNc) of mice. A PD mouse model was established using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induction. Animal behavioral tests, western blot, immunofluorescence, and other experiments were performed to assess the loss of midbrain tyrosine hydroxylase (TH) neurons, activation of astrocytes, and activation of the NLRP3 pathway. Primary astrocytes were cultured in vitro, and NLRP3 inflammasomes were activated using 1-methyl-4-phenylpyridinium (MPP+) or lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Western blot and ELISA experiments were conducted to assess the release of inflammatory factors. Transcriptomic sequencing and CUT&RUN techniques were employed to study the CB2R regulation of the foxg1 binding site on the autophagy molecule microtubule-associated protein 1 light chain 3 beta (MAP1LC3B). RESULTS Astrocytic CB2R knockdown impaired the motor abilities of MPTP-induced mice, exacerbated the loss of TH neurons, and induced activation of the NLRP3/Caspase-1/interleukin 1 (IL-1β) pathway. Activation of CB2R significantly alleviated motor impairments in mice while reducing NLRP3 deposition on astrocytes. In vitro cell experiments showed that CB2R activation attenuated the activation of the NLRP3/Caspase-1/IL-1β pathway induced by LPS + ATP or MPP+. Additionally, it inhibited the binding of foxg1 to MAP1LC3B, increased astrocytic autophagy levels, and facilitated NLRP3 degradation through the autophagy-lysosome pathway. CONCLUSION Activation of CB2R on astrocytes effectively mitigates NLRP3-mediated neuroinflammation and ameliorates the disease characteristics of PD in mice. CB2R represents a potential therapeutic target for treating PD.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Feng Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Yun Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Xuesong Shan
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China
- Institute of Neuroscience, Nanchang University, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1# Minde Road, Nanchang, Jiangxi, People's Republic of China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, China.
- Jiangxi Health Commission Key Laboratory of Neurological Medicine, Nanchang, China.
- Institute of Neuroscience, Nanchang University, Nanchang, China.
| |
Collapse
|
166
|
Xu X, Li M, Su Y, Wang Q, Qin P, Huang H, Zhang Y, Zhou Y, Yan J. Cdk5 phosphorylation-dependent C9orf72 degradation promotes neuronal death in Parkinson's disease models. CNS Neurosci Ther 2023; 29:3952-3966. [PMID: 37353944 PMCID: PMC10651984 DOI: 10.1111/cns.14319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/08/2023] [Accepted: 05/22/2023] [Indexed: 06/25/2023] Open
Abstract
AIMS Chromosome 9 open reading frame 72 (C9orf72) is one of the most dazzling molecules in neurodegenerative diseases, albeit that its role in Parkinson's disease (PD) remains unknown. This article aimed to explore the potential mechanism of C9orf72 involved in the pathogenesis of PD. METHODS The expression and phosphorylation levels of C9orf72 were examined by Western blotting, RT-PCR, and immunoprecipitation using PD models. Multiple bioinformatics software was used to predict the potential phosphorylation sites of C9orf72 by Cdk5, followed by verification of whether Cdk5-inhibitor ROSCOVITINE could reverse the degradation of C9orf72 in PD. By constructing the sh-C9orf72-knockdown adenovirus and overexpressing the FLAG-C9orf72 plasmid, the effects of C9orf72 knockdown and overexpression, respectively, were determined. A short peptide termed Myr-C9orf72 was used to verify whether interfering with Cdk5 phosphorylation at the Ser9 site of the C9orf72 protein could alleviate autophagy disorder, neuronal death, and movement disorder in PD models. RESULTS The expression level of the C9orf72 protein was significantly reduced, albeit the mRNA expression was not changed in the PD models. Moreover, the phosphorylation level was enhanced, and its reduction was mainly degraded by the ubiquitin-proteasome pathway. The key nervous system kinase Cdk5 directly phosphorylated the S9 site of the C9orf72 protein, which promoted the degradation of the C9orf72 protein. The knockdown of C9orf72 aggravated autophagy dysfunction and increased neuronal loss and motor dysfunction in substantia nigra neurons of PD mice. The overexpression of C9orf72 alleviated autophagy dysfunction in PD neurons. Specifically, interference with Cdk5 phosphorylation at the S9 site of C9orf72 alleviated autophagy dysfunction, neuronal death, and motor dysfunction mediated by C9orf72 protein degradation during PD. CONCLUSIONS Cumulatively, our findings illustrate the importance of the role of C9orf72 in the regulation of neuronal death during PD progression via the Cdk5-dependent degradation.
Collapse
Affiliation(s)
- Xingfeng Xu
- Department of PhysiologyGuilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinGuangxiChina
| | - Mao Li
- Department of PhysiologyGuilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinGuangxiChina
| | - Yan Su
- Department of PhysiologyGuilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinGuangxiChina
| | - Qi Wang
- Department of PhysiologyGuilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinGuangxiChina
| | - Peifang Qin
- Department of MicrobiologyGuilin Medical UniversityGuilinGuangxiChina
| | - Haitao Huang
- Department of MicrobiologyGuilin Medical UniversityGuilinGuangxiChina
| | - Yuting Zhang
- Department of MicrobiologyGuilin Medical UniversityGuilinGuangxiChina
| | - Yali Zhou
- Department of MicrobiologyGuilin Medical UniversityGuilinGuangxiChina
| | - Jianguo Yan
- Department of PhysiologyGuilin Medical UniversityGuilinGuangxiChina
- Guangxi Key Laboratory of Brain and Cognitive NeuroscienceGuilin Medical UniversityGuilinGuangxiChina
| |
Collapse
|
167
|
Zhou J, Pathak JL, Liu Q, Hu S, Cao T, Watanabe N, Huo Y, Li J. Modes and Mechanisms of Salivary Gland Epithelial Cell Death in Sjogren's Syndrome. Adv Biol (Weinh) 2023; 7:e2300173. [PMID: 37409392 DOI: 10.1002/adbi.202300173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Sjogren's syndrome is an autoimmune disease in middle and old-aged women with a dry mucosal surface, which is caused by the dysfunction of secretory glands, such as the oral cavity, eyeballs, and pharynx. Pathologically, Sjogren's syndrome are characterized by lymphocyte infiltration into the exocrine glands and epithelial cell destruction caused by autoantibodies Ro/SSA and La/SSB. At present, the exact pathogenesis of Sjogren's syndrome is unclear. Evidence suggests epithelial cell death and the subsequent dysfunction of salivary glands as the main causes of xerostomia. This review summarizes the modes of salivary gland epithelial cell death and their role in Sjogren's syndrome progression. The molecular mechanisms involved in salivary gland epithelial cell death during Sjogren's syndrome as potential leads to treating the disease are also discussed.
Collapse
Affiliation(s)
- Jiannan Zhou
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Janak Lal Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Qianwen Liu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Shilin Hu
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Tingting Cao
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Nobumoto Watanabe
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Yongliang Huo
- Experimental Animal Center, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jiang Li
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| |
Collapse
|
168
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
169
|
Shao BZ, Liu MZ, Zhu DN, Yan H, Ke P, Wei W, Han T, Liu C. Depletion of β-arrestin-1 in macrophages enhances atherosclerosis in ApoE -/- mice. Int Immunopharmacol 2023; 125:111085. [PMID: 37866313 DOI: 10.1016/j.intimp.2023.111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Autophagy in atherosclerotic plaque macrophage contributes to the alleviation of atherosclerosis through the promotion of lipid metabolism. β-arrestins are multifunctional proteins participating various kinds of cellular signaling pathways. Here we aimed to determine the role of β-arrestin-1, an important member of β-arrestin family, in atherosclerosis, and whether autophagy was involved in this process. ApoE-/-β-arrestin-1fl/flLysM-Cre mice were created through bone marrow transplantation for the atherosclerosis model with conditional myeloid knocking out β-arrestin-1. Bone marrow-derived macrophages (BMDMs) were used for the in vitro studies. Oil red O staining was used to detect the lesional area. F4/80, Masson trichrome and picro-Sirius red staining were applied for the determination of plaque stability. Real-time PCR was used for the detection of levels of lipid metabolism-related receptors. Electron microscopy and tandem fluorescent mRFP-GFP-LC3 plasmid was applied to test autophagy level. We found that β-arrestin-1 was highly increased in expression in plaque macrophage on the occurrence of atherosclerosis. Conditional myeloid knocking out β-arrestin-1 largely promotes plaque formation and vulnerability. In murine macrophage with lipid loading, knocking down β-arrestin-1 enhanced foam cell formation and levels of plasma and cellular cholesterol, while overexpressing β-arrestin-1 led to the opposite effects. The alleviative effects induced by macrophage β-arrestin-1 in atherosclerosis were involved in autophagy, based on the reduction of autophagy level with the knocking down of macrophage β-arrestin-1 and administration of autophagy inhibitors which largely attenuated the decreasing effect on foam cell formation. Our results demonstrated for the first time that macrophage β-arrestin-1 protected against atherosclerosis through the induction of autophagy.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China
| | - Meng-Zhen Liu
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China
| | - Dan-Ni Zhu
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China
| | - Hui Yan
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China
| | - Ping Ke
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ting Han
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China
| | - Chong Liu
- Department of Pharmacy, Naval Medical University/Second Military Medical University, Shanghai 200433 China.
| |
Collapse
|
170
|
Cheng C, Wu Y, Huang Y, Xue Q, Wang Y, Liao F, Wang X, Miao C. Epigenetic modification and exosome effects on autophagy in osteoarthritis. Biochem Pharmacol 2023; 218:115930. [PMID: 37979704 DOI: 10.1016/j.bcp.2023.115930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Osteoarthritis (OA) is a degenerative disease that leads to joint pain and stiffness and is one of the leading causes of disability and pain worldwide. Autophagy is a highly conserved self-degradation process, and its abnormal function is closely related to human diseases, including OA. Abnormal autophagy regulates cell aging, matrix metalloproteinase metabolism, and reactive oxygen metabolism, which are key in the occurrence and development of OA. There is evidence that drugs directly or indirectly targeting autophagy significantly hinder the progress of OA. In addition, the occurrence and development of autophagy in OA are regulated by many factors, including epigenetic modification, exosomes, crucial autophagy molecules, and signaling pathway regulation. Autophagy, as a new therapeutic target for OA, has widely influenced the pathological mechanism of OA. However, determining how autophagy affects OA pathology and its use in the treatment and diagnosis of targets still need further research.
Collapse
Affiliation(s)
- Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yajie Wu
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Faxue Liao
- Department of Orthopaedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Xiaomei Wang
- Department of Humanistic Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
171
|
Zhang XW, Zhu XX, Tang DS, Lu JH. Targeting autophagy in Alzheimer's disease: Animal models and mechanisms. Zool Res 2023; 44:1132-1145. [PMID: 37963840 PMCID: PMC10802106 DOI: 10.24272/j.issn.2095-8137.2023.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disorder that leads to cognitive impairment and memory loss. Emerging evidence suggests that autophagy plays an important role in the pathogenesis of AD through the regulation of amyloid-beta (Aβ) and tau metabolism, and that autophagy dysfunction exacerbates amyloidosis and tau pathology. Therefore, targeting autophagy may be an effective approach for the treatment of AD. Animal models are considered useful tools for investigating the pathogenic mechanisms and therapeutic strategies of diseases. This review aims to summarize the pathological alterations in autophagy in representative AD animal models and to present recent studies on newly discovered autophagy-stimulating interventions in animal AD models. Finally, the opportunities, difficulties, and future directions of autophagy targeting in AD therapy are discussed.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 99078, China
| | - Xiang-Xing Zhu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, Guangdong 528225, China
| | - Dong-Sheng Tang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Gene Editing Technology Center of Guangdong Province, Foshan University, Foshan, Guangdong 528225, China. E-mail:
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao 99078, China. E-mail:
| |
Collapse
|
172
|
Tang X, Deng P, Jiang Y, Zhang L, He Y, Yang H. An Overview of Recent Advances in the Neuroprotective Potentials of Fisetin against Diverse Insults in Neurological Diseases and the Underlying Signaling Pathways. Biomedicines 2023; 11:2878. [PMID: 38001882 PMCID: PMC10669030 DOI: 10.3390/biomedicines11112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
The nervous system plays a leading role in the regulation of physiological functions and activities in the body. However, a variety of diseases related to the nervous system have a serious impact on human health. It is increasingly clear that neurological diseases are multifactorial pathological processes involving multiple cellular systems, and the onset of these diseases usually involves a diverse array of molecular mechanisms. Unfortunately, no effective therapy exists to slow down the progression or prevent the development of diseases only through the regulation of a single factor. To this end, it is pivotal to seek an ideal therapeutic approach for challenging the complicated pathological process to achieve effective treatment. In recent years, fisetin, a kind of flavonoid widely existing in fruits, vegetables and other plants, has shown numerous interesting biological activities with clinical potentials including anti-inflammatory, antioxidant and neurotrophic effects. In addition, fisetin has been reported to have diverse pharmacological properties and neuroprotective potentials against various neurological diseases. The neuroprotective effects were ascribed to its unique biological properties and multiple clinical pharmacological activities associated with the treatment of different neurological disorders. In this review, we summarize recent research progress regarding the neuroprotective potential of fisetin and the underlying signaling pathways of the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Peng Deng
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Yizhen Jiang
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| |
Collapse
|
173
|
Davis SE, Cirincione AB, Jimenez-Torres AC, Zhu J. The Impact of Neurotransmitters on the Neurobiology of Neurodegenerative Diseases. Int J Mol Sci 2023; 24:15340. [PMID: 37895020 PMCID: PMC10607327 DOI: 10.3390/ijms242015340] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases affect millions of people worldwide. Neurodegenerative diseases result from progressive damage to nerve cells in the brain or peripheral nervous system connections that are essential for cognition, coordination, strength, sensation, and mobility. Dysfunction of these brain and nerve functions is associated with Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and motor neuron disease. In addition to these, 50% of people living with HIV develop a spectrum of cognitive, motor, and/or mood problems collectively referred to as HIV-Associated Neurocognitive Disorders (HAND) despite the widespread use of a combination of antiretroviral therapies. Neuroinflammation and neurotransmitter systems have a pathological correlation and play a critical role in developing neurodegenerative diseases. Each of these diseases has a unique pattern of dysregulation of the neurotransmitter system, which has been attributed to different forms of cell-specific neuronal loss. In this review, we will focus on a discussion of the regulation of dopaminergic and cholinergic systems, which are more commonly disturbed in neurodegenerative disorders. Additionally, we will provide evidence for the hypothesis that disturbances in neurotransmission contribute to the neuronal loss observed in neurodegenerative disorders. Further, we will highlight the critical role of dopamine as a mediator of neuronal injury and loss in the context of NeuroHIV. This review will highlight the need to further investigate neurotransmission systems for their role in the etiology of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, 715 Sumter Street, Columbia, SC 29208, USA; (S.E.D.); (A.B.C.); (A.C.J.-T.)
| |
Collapse
|
174
|
Li J, Krause GJ, Gui Q, Kaushik S, Rona G, Zhang Q, Liang FX, Dhabaria A, Anerillas C, Martindale JL, Vasilyev N, Askenazi M, Ueberheide B, Nudler E, Gorospe M, Cuervo AM, Pagano M. A noncanonical function of SKP1 regulates the switch between autophagy and unconventional secretion. SCIENCE ADVANCES 2023; 9:eadh1134. [PMID: 37831778 PMCID: PMC10575587 DOI: 10.1126/sciadv.adh1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Intracellular degradation of proteins and organelles by the autophagy-lysosome system is essential for cellular quality control and energy homeostasis. Besides degradation, endolysosomal organelles can fuse with the plasma membrane and contribute to unconventional secretion. Here, we identify a function for mammalian SKP1 in endolysosomes that is independent of its established role as an essential component of the family of SCF/CRL1 ubiquitin ligases. We found that, under nutrient-poor conditions, SKP1 is phosphorylated on Thr131, allowing its interaction with V1 subunits of the vacuolar ATPase (V-ATPase). This event, in turn, promotes V-ATPase assembly to acidify late endosomes and enhance endolysosomal degradation. Under nutrient-rich conditions, SUMOylation of phosphorylated SKP1 allows its binding to and dephosphorylation by the PPM1B phosphatase. Dephosphorylated SKP1 interacts with SEC22B to promote unconventional secretion of the content of less acidified hybrid endosomal/autophagic compartments. Collectively, our study implicates SKP1 phosphorylation as a switch between autophagy and unconventional secretion in a manner dependent on cellular nutrient status.
Collapse
Affiliation(s)
- Jie Li
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gregory J. Krause
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qi Gui
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Susmita Kaushik
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qingyue Zhang
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Avantika Dhabaria
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikita Vasilyev
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Manor Askenazi
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Biomedical Hosting LLC, 33 Lewis Avenue, Arlington, MA 02474, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Proteomics Laboratory, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Laura and Isaac Perlmutter NYU Cancer Center, New York University Grossman School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
175
|
Chang YC, Gao Y, Lee JY, Langen J, Chang KT. Identification of secretory autophagy as a novel mechanism modulating activity-induced synaptic remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.560931. [PMID: 38328055 PMCID: PMC10849665 DOI: 10.1101/2023.10.06.560931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The ability of neurons to rapidly remodel their synaptic structure and strength in response to neuronal activity is highly conserved across species and crucial for complex brain functions. However, mechanisms required to elicit and coordinate the acute, activity-dependent structural changes across synapses are not well understood. Here, using an RNAi screen in Drosophila against genes affecting nervous system functions in humans, we uncouple cellular processes important for synaptic plasticity from synapse development. We find mutations associated with neurodegenerative and mental health disorders are 2-times more likely to affect activity-induced synaptic remodeling than synapse development. We further demonstrate that neuronal activity stimulates autophagy activation but diminishes degradative autophagy, thereby driving the pathway towards autophagy-based secretion. Presynaptic knockdown of Snap29, Sec22, or Rab8, proteins implicated in the secretory autophagy pathway, is sufficient to abolish activity-induced synaptic remodeling. This study uncovers secretory autophagy as a novel trans-synaptic signaling mechanism modulating structural plasticity.
Collapse
|
176
|
Belichenko VM, Bashirzade AA, Tenditnik MV, Dubrovina NI, Akopyan AA, Ovsyukova MV, Fedoseeva LA, Pupyshev AB, Aftanas LI, Amstislavskaya TG, Tikhonova MA. Comparative analysis of early neurodegeneration signs in a mouse model of Alzheimer's disease-like pathology induced by two types of the central (Intracerebroventricular vs. Intrahippocampal) administration of Aβ 25-35 oligomers. Behav Brain Res 2023; 454:114651. [PMID: 37657512 DOI: 10.1016/j.bbr.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Animal models of Alzheimer's disease (AD) induced by intracerebroventricular (ICV) or intrahippocampal (IH) administration of amyloid-beta (Aβ) are widely used in current research. It remains unclear whether these models provide similar outcomes or mimic pathological mechanisms of AD equally. The aim of the work was to compare two models induced by ICV or IH administration of Aβ25-35 oligomers to C57BL/6 mice. Parameters characterizing cognitive function (passive avoidance test), protein expression (IBA1, Aβ, LC3-II) and expression of genes for neuroinflammation (Aif1, Lcn2, Nrf2), autophagy (Atg8, Becn1, Park2), or markers of neurodegeneration (Cst3, Insr, Vegfa) were analyzed. Сognitive deficits, amyloid accumulation, and neuroinflammatory response in the brain evaluated by the microglial activation were similar in both models. Thus, both ways of Aβ administration appear to be equally suitable for modelling AD-like pathology in mice. Our findings strongly support the key role of Aβ load and neuroinflammatory response in the hippocampus and frontal cortex for the progression of AD-like pathology and development of cognitive deficits. There were certain minor differences between the models in the mRNA level of genes involved in the processes of neuroinflammation, neurodegeneration, and autophagy. Modulating effects of the central administration of Aβ25-35 on the mRNA expression of Aif1, Lcn2, Park2, and Vegfa genes in different brain structures were revealed. The effects occurred to be more pronounced with the ICV method compared with the IH method. These findings give insight into the processes at initial stages of Aβ-induced pathology depending on a primary location of Aβ oligomers in the brain.
Collapse
Affiliation(s)
- Victor M Belichenko
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Alim A Bashirzade
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Michael V Tenditnik
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Nina I Dubrovina
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Marina V Ovsyukova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Larisa A Fedoseeva
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia; Federal Research Center "Institute of Cytology and Genetics", Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Lyubomir I Aftanas
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM), 630117 Novosibirsk, Russia.
| |
Collapse
|
177
|
Liu Y, Tan L, Tan MS. Chaperone-mediated autophagy in neurodegenerative diseases: mechanisms and therapy. Mol Cell Biochem 2023; 478:2173-2190. [PMID: 36695937 DOI: 10.1007/s11010-022-04640-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 01/26/2023]
Abstract
Chaperone-mediated autophagy (CMA) is the selective degradation process of intracellular components by lysosomes, which is required for the degradation of aggregate-prone proteins and contributes to proteostasis maintenance. Proteostasis is essential for normal cell function and survival, and it is determined by the balance of protein synthesis and degradation. Because postmitotic neurons are highly susceptible to proteostasis disruption, CMA is vital for the nervous system. Since Parkinson's disease (PD) was first linked to CMA dysfunction, an increasing number of studies have shown that CMA loss, as seen during aging, occurs in the pathogenetic process of neurodegenerative diseases. Here, we review the molecular mechanisms of CMA, as well as the physiological function and regulation of this autophagy pathway. Following, we highlight its potential role in neurodegenerative diseases, and the latest advances and challenges in targeting CMA in therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| |
Collapse
|
178
|
Hill MA, Sykes AM, Mellick GD. ER-phagy in neurodegeneration. J Neurosci Res 2023; 101:1611-1623. [PMID: 37334842 DOI: 10.1002/jnr.25225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
There are many cellular mechanisms implicated in the initiation and progression of neurodegenerative disorders. However, age and the accumulation of unwanted cellular products are a common theme underlying many neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Niemann-Pick type C. Autophagy has been studied extensively in these diseases and various genetic risk factors have implicated disruption in autophagy homoeostasis as a major pathogenic mechanism. Autophagy is essential in the maintenance of neuronal homeostasis, as their postmitotic nature makes them particularly susceptible to the damage caused by accumulation of defective or misfolded proteins, disease-prone aggregates, and damaged organelles. Recently, autophagy of the endoplasmic reticulum (ER-phagy) has been identified as a novel cellular mechanism for regulating ER morphology and response to cellular stress. As neurodegenerative diseases are generally precipitated by cellular stressors such as protein accumulation and environmental toxin exposure the role of ER-phagy has begun to be investigated. In this review we discuss the current research in ER-phagy and its involvement in neurodegenerative diseases.
Collapse
Affiliation(s)
- Melissa A Hill
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alex M Sykes
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - George D Mellick
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
179
|
Yang Z, Shi H, Cai G, Jiang S, Hu Z, Wang Z. A Reactive Oxygen Species-Responsive Targeted Nanoscavenger to Promote Mitophagy for the Treatment of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302284. [PMID: 37322535 DOI: 10.1002/smll.202302284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/02/2023] [Indexed: 06/17/2023]
Abstract
Mitophagy modulators are proposed as potential therapeutic intervention that enhance neuronal health and brain homeostasis in Alzheimer's disease (AD). Nevertheless, the lack of specific mitophagy inducers, low efficacies, and the severe side effects of nonselective autophagy during AD treatment have hindered their application. In this study, the P@NB nanoscavenger is designed with a reactive-oxygen-species-responsive (ROS-responsive) poly(l-lactide-co-glycolide) core and a surface modified with the Beclin1 and angiopoietin-2 peptides. Notably, nicotinamide adenine dinucleotide (NAD+ ) and Beclin1, which act as mitophagy promoters, are quickly released from P@NB in the presence of high ROS levels in lesions to restore mitochondrial homeostasis and induce microglia polarization toward the M2-type, thereby enabling it to phagocytose amyloid-peptide (Aβ). These studies demonstrate that P@NB accelerates Aβ degradation and alleviates excessive inflammatory responses by restoring autophagic flux, which ameliorates cognitive impairment in AD mice. This multitarget strategy induces autophagy/mitophagy through synergy, thereby normalizing mitochondrial dysfunction. Therefore, the developed method provides a promising AD-therapy strategy.
Collapse
Affiliation(s)
- Zhimin Yang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Haoyuan Shi
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Guoen Cai
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Sujun Jiang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhiyuan Hu
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zihua Wang
- Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350122, China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
180
|
Chae CW, Yoon JH, Lim JR, Park JY, Cho JH, Jung YH, Choi GE, Lee HJ, Han HJ. TRIM16-mediated lysophagy suppresses high-glucose-accumulated neuronal Aβ. Autophagy 2023; 19:2752-2768. [PMID: 37357416 PMCID: PMC10472864 DOI: 10.1080/15548627.2023.2229659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
ABBREVIATIONS Aβ: amyloid β; AD: Alzheimer disease; AMPK: 5' adenosine monophosphate-activated protein kinase; CTSB: cathepsin B; CTSD: cathepsin D; DM: diabetes mellitus; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; iPSC-NDs: induced pluripotent stem cell-derived neuronal differentiated cells; LAMP1: lysosomal-associated membrane protein 1; LMP: lysosomal membrane permeabilization; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; p-MAPT/tau: phosphorylated microtubule associated protein tau; ROS: reactive oxygen species; STZ: streptozotocin; TFE3: transcription factor E3; TFEB: transcription factor EB; TRIM16: tripartite motif containing 16; UBE2QL1: ubiquitin conjugating enzyme E2 Q family like 1; VCP: valosin containing protein.
Collapse
Affiliation(s)
- Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Ji Hyeon Cho
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, South Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju, South Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
- Institute for Stem Cell and Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 FOUR Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, South Korea
| |
Collapse
|
181
|
Gouilly D, Rafiq M, Nogueira L, Salabert AS, Payoux P, Péran P, Pariente J. Beyond the amyloid cascade: An update of Alzheimer's disease pathophysiology. Rev Neurol (Paris) 2023; 179:812-830. [PMID: 36906457 DOI: 10.1016/j.neurol.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/02/2022] [Accepted: 12/02/2022] [Indexed: 03/13/2023]
Abstract
Alzheimer's disease (AD) is a multi-etiology disease. The biological system of AD is associated with multidomain genetic, molecular, cellular, and network brain dysfunctions, interacting with central and peripheral immunity. These dysfunctions have been primarily conceptualized according to the assumption that amyloid deposition in the brain, whether from a stochastic or a genetic accident, is the upstream pathological change. However, the arborescence of AD pathological changes suggests that a single amyloid pathway might be too restrictive or inconsistent with a cascading effect. In this review, we discuss the recent human studies of late-onset AD pathophysiology in an attempt to establish a general updated view focusing on the early stages. Several factors highlight heterogenous multi-cellular pathological changes in AD, which seem to work in a self-amplifying manner with amyloid and tau pathologies. Neuroinflammation has an increasing importance as a major pathological driver, and perhaps as a convergent biological basis of aging, genetic, lifestyle and environmental risk factors.
Collapse
Affiliation(s)
- D Gouilly
- Toulouse Neuroimaging Center, Toulouse, France.
| | - M Rafiq
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France
| | - L Nogueira
- Department of Cell Biology and Cytology, CHU Toulouse Purpan, France
| | - A-S Salabert
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France
| | - P Payoux
- Toulouse Neuroimaging Center, Toulouse, France; Department of Nuclear Medicine, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| | - P Péran
- Toulouse Neuroimaging Center, Toulouse, France
| | - J Pariente
- Toulouse Neuroimaging Center, Toulouse, France; Department of Cognitive Neurology, Epilepsy and Movement Disorders, CHU Toulouse Purpan, France; Center of Clinical Investigation, CHU Toulouse Purpan (CIC1436), France
| |
Collapse
|
182
|
Lu E, Tang Y, Chen J, Al Mamun A, Feng Z, Cao L, Zhang X, Zhu Y, Mo T, Chun C, Zhang H, Du J, Jiang C, Xiao J. Stub1 ameliorates ER stress-induced neural cell apoptosis and promotes locomotor recovery through restoring autophagy flux after spinal cord injury. Exp Neurol 2023; 368:114495. [PMID: 37495008 DOI: 10.1016/j.expneurol.2023.114495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Endoplasmic reticulum (ER) stress-induced apoptosis and autophagy flux blockade significantly contribute to neuronal pathology of spinal cord injury (SCI). Yet, the molecular interplay between these two distinctive pathways in mediating the pathology of SCI remains largely unexplored. Currently, we aimed at exploring the crucial role of Stub1 in maintaining ER homeostasis and regulating autophagic flux after SCI. Our results demonstrate that Stub1 reduces ER stress induced neuronal apoptosis, promotes axonal regeneration, inhibits glial scar formation and fosters functional recovery by restoring autophagic flux following SCI. Stub1 enhances autophagic flux following SCI by alleviating the permeabilization of lysosomal membrane through activating TFEB. Importantly, we showed that Stub1 promotes the activation of TFEB by targeting HDAC2 for ubiquitination and degradation. Furthermore, the neuroprotective effect of Stub1 on SCI was abrogated by chloroquine administration, underscoring the essential role of Stub1-mediated enhancement of autophagic flux in its protective effects against SCI. Collectively, our data highlights the vital role of Stub1 in regulating ER stress and autophagy flux after SCI, and propose its potential as a promising target for neuroprotective interventions in SCI.
Collapse
Affiliation(s)
- Ermei Lu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Yingdan Tang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiaojiao Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Abdullah Al Mamun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiyi Feng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Lin Cao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Treatment Center Li Huili Hospital, Ningbo, Zhejiang 315040, China
| | - Yunsen Zhu
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - Tingting Mo
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China
| | - ChangJu Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, South Korea
| | - Hongyu Zhang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jiqing Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chang Jiang
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China.
| | - Jian Xiao
- Department of Arthroplasty, The First People's Hospital of Wenling, The Affiliated Wenling Hospital of Wenzhou Medical University, Taizhou, Zhejiang 317500, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
183
|
Ma Q, Xin J, Peng Q, Li N, Sun S, Hou H, Ma G, Wang N, Zhang L, Tam KY, Dussmann H, Prehn JHM, Wang H, Ying Z. UBQLN2 and HSP70 participate in Parkin-mediated mitophagy by facilitating outer mitochondrial membrane rupture. EMBO Rep 2023; 24:e55859. [PMID: 37501540 PMCID: PMC10481660 DOI: 10.15252/embr.202255859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two aging-related neurodegenerative diseases that share common key features, including aggregation of pathogenic proteins, dysfunction of mitochondria, and impairment of autophagy. Mutations in ubiquilin 2 (UBQLN2), a shuttle protein in the ubiquitin-proteasome system (UPS), can cause ALS/FTD, but the mechanism underlying UBQLN2-mediated pathogenesis is still uncertain. Recent studies indicate that mitophagy, a selective form of autophagy which is crucial for mitochondrial quality control, is tightly associated with neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and ALS. In this study, we show that after Parkin-dependent ubiquitination of damaged mitochondria, UBQLN2 is recruited to poly-ubiquitinated mitochondria through the UBA domain. UBQLN2 cooperates with the chaperone HSP70 to promote UPS-driven degradation of outer mitochondrial membrane (OMM) proteins. The resulting rupture of the OMM triggers the autophagosomal recognition of the inner mitochondrial membrane receptor PHB2. UBQLN2 is required for Parkin-mediated mitophagy and neuronal survival upon mitochondrial damage, and the ALS/FTD pathogenic mutations in UBQLN2 impair mitophagy in primary cultured neurons. Taken together, our findings link dysfunctional mitophagy to UBQLN2-mediated neurodegeneration.
Collapse
Affiliation(s)
- Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- Department of Physiology & Medical Physics and FUTURE‐NEURO Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Jiaqi Xin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Qiang Peng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Shan Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Hongyu Hou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Guoqiang Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Nana Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Li Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear MedicineJiangsu Institute of Nuclear MedicineWuxiChina
| | - Kin Yip Tam
- Faculty of Health SciencesUniversity of MacauMacauChina
| | - Heiko Dussmann
- Department of Physiology & Medical Physics and FUTURE‐NEURO Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Jochen HM Prehn
- Department of Physiology & Medical Physics and FUTURE‐NEURO Research CentreRoyal College of Surgeons in IrelandDublinIreland
| | - Hongfeng Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| |
Collapse
|
184
|
Chen YX, Yang H, Wang DS, Yao YT, Chen TT, Tao L, Chen Y, Shen XC. Gastrodin relieves cognitive impairment by regulating autophagy via PI3K/AKT signaling pathway in vascular dementia. Biochem Biophys Res Commun 2023; 671:246-254. [PMID: 37307708 DOI: 10.1016/j.bbrc.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Vascular dementia (VaD), the second most common type of dementia, is attributed to lower cerebral blood flow. To date, there is still no available clinical treatment for VaD. The phenolic glucoside gastrodin (GAS) is known for its neuroprotective effects, but the role and mechanisms of action on VD remains unclear. In this study, we aim to investigate the neuroprotective role and underlying mechanisms of GAS on chronic cerebral hypoperfusion (CCH)-mediated VaD rats and hypoxia-induced injury of HT22 cells. The study showed that GAS relieved learning and memory deficits, ameliorated hippocampus histological lesions in VaD rats. Additionally, GAS down-regulated LC3II/I, Beclin-1 levels and up-regulated P62 level in VaD rats and hypoxia-injured HT22 cells. Notably, GAS rescued the phosphorylation of PI3K/AKT pathway-related proteins expression, which regulates autophagy. Mechanistic studies verify that YP-740, a PI3K agonist, significantly resulted in inhibition of excessive autophagy and apoptosis with no significant differences were observed in the YP-740 and GAS co-treatment. Meantime, we found that LY294002, a PI3K inhibitor, substantially abolished GAS-mediated neuroprotection. These results revealed that the effects of GAS on VaD are related to stimulating PI3K/AKT pathway-mediated autophagy, suggesting a potentially beneficial therapeutic strategy for VaD.
Collapse
Affiliation(s)
- Yong-Xin Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Hong Yang
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Da-Song Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Yu-Ting Yao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Ting-Ting Chen
- The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550003, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China.
| | - Xiang-Chun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guiyang, 550025, China.
| |
Collapse
|
185
|
Jiménez-Loygorri JI, Benítez-Fernández R, Viedma-Poyatos Á, Zapata-Muñoz J, Villarejo-Zori B, Gómez-Sintes R, Boya P. Mitophagy in the retina: Viewing mitochondrial homeostasis through a new lens. Prog Retin Eye Res 2023; 96:101205. [PMID: 37454969 DOI: 10.1016/j.preteyeres.2023.101205] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Mitochondrial function is key to support metabolism and homeostasis in the retina, an organ that has one of the highest metabolic rates body-wide and is constantly exposed to photooxidative damage and external stressors. Mitophagy is the selective autophagic degradation of mitochondria within lysosomes, and can be triggered by distinct stimuli such as mitochondrial damage or hypoxia. Here, we review the importance of mitophagy in retinal physiology and pathology. In the developing retina, mitophagy is essential for metabolic reprogramming and differentiation of retina ganglion cells (RGCs). In basal conditions, mitophagy acts as a quality control mechanism, maintaining a healthy mitochondrial pool to meet cellular demands. We summarize the different autophagy- and mitophagy-deficient mouse models described in the literature, and discuss the potential role of mitophagy dysregulation in retinal diseases such as glaucoma, diabetic retinopathy, retinitis pigmentosa, and age-related macular degeneration. Finally, we provide an overview of methods used to monitor mitophagy in vitro, ex vivo, and in vivo. This review highlights the important role of mitophagy in sustaining visual function, and its potential as a putative therapeutic target for retinal and other diseases.
Collapse
Affiliation(s)
- Juan Ignacio Jiménez-Loygorri
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Rocío Benítez-Fernández
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| | - Álvaro Viedma-Poyatos
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Juan Zapata-Muñoz
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain; Departament of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, 1700, Fribourg, Switzerland.
| |
Collapse
|
186
|
Zhang Z, Liu X, Yang Z, Mo X. Study on the protective effect of RNA-binding motif protein 3 in mild hypothermia oxygen-glucose deprivation/reoxygenation cell model. Cryobiology 2023; 112:104544. [PMID: 37211323 DOI: 10.1016/j.cryobiol.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/13/2023] [Accepted: 05/06/2023] [Indexed: 05/23/2023]
Abstract
Mild hypothermia is proven neuroprotective in clinical practice. While hypothermia leads to the decrease of global protein synthesis rate, it upregulates a small subset of protein including RNA-binding motif protein 3 (RBM3). In this study, we treated mouse neuroblastoma cells (N2a) with mild hypothermia before oxygen-glucose deprivation/reoxygenation (OGD/R) and discovered the decrease of apoptosis rate, down-regulation of apoptosis-associated protein and enhancement of cell viability. Overexpression of RBM3 via plasmid exerted similar effect while silencing RBM3 by siRNAs partially reversed the protective effect exerted by mild hypothermia pretreatment. The protein level of Reticulon 3(RTN3), a downstream gene of RBM3, also increased after mild hypothermia pretreatment. Silencing RTN3 weakened the protective effect of mild hypothermia pretreatment or RBM3 overexpression. Also, the protein level of autophagy gene LC3B increased after OGD/R or RBM3 overexpression while silencing RTN3 decreased this trend. Furthermore, immunofluorescence observed enhanced fluorescence signal of LC3B and RTN3 as well as a large number of overlaps after RBM3 overexpressing. In conclusion, RBM3 plays a cellular protective role by regulating apoptosis and viability via its downstream gene RTN3 in the hypothermia OGD/R cell model and autophagy may participate in it.
Collapse
Affiliation(s)
- Zhixuan Zhang
- Department of Cardiothoracic Surgery, Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, China; Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoxu Liu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhaocong Yang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
187
|
Kaur A, Singh N, Kaur H, Kakoty V, Sharma DS, Khursheed R, Babu MR, Harish V, Gupta G, Gulati M, Kumar P, Dureja H, Alharthi NS, Khan FR, Rehman ZU, Hakami MA, Patel M, Patel R, Zandi M, Vishwas S, Dua K, Singh SK. Neurodegenerative diseases and brain delivery of therapeutics: Bridging the gap using dendrimers. J Drug Deliv Sci Technol 2023; 87:104868. [DOI: 10.1016/j.jddst.2023.104868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
188
|
Panda SP, Singh V. The Dysregulated MAD in Mad: A Neuro-theranostic Approach Through the Induction of Autophagic Biomarkers LC3B-II and ATG. Mol Neurobiol 2023; 60:5214-5236. [PMID: 37273153 DOI: 10.1007/s12035-023-03402-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The word mad has historically been associated with the psyche, emotions, and abnormal behavior. Dementia is a common symptom among psychiatric disorders or mad (schizophrenia, depression, bipolar disorder) patients. Autophagy/mitophagy is a protective mechanism used by cells to get rid of dysfunctional cellular organelles or mitochondria. Autophagosome/mitophagosome abundance in autophagy depends on microtubule-associated protein light chain 3B (LC3B-II) and autophagy-triggering gene (ATG) which functions as an autophagic biomarker for phagophore production and quick mRNA disintegration. Defects in either LC3B-II or the ATG lead to dysregulated mitophagy-and-autophagy-linked dementia (MAD). The impaired MAD is closely associated with schizophrenia, depression, and bipolar disorder. The pathomechanism of psychosis is not entirely known, which is the severe limitation of today's antipsychotic drugs. However, the reviewed circuit identifies new insights that may be especially helpful in targeting biomarkers of dementia. Neuro-theranostics can also be achieved by manufacturing either bioengineered bacterial and mammalian cells or nanocarriers (liposomes, polymers, and nanogels) loaded with both imaging and therapeutic materials. The nanocarriers must cross the BBB and should release both diagnostic agents and therapeutic agents in a controlled manner to prove their effectiveness against psychiatric disorders. In this review, we highlighted the potential of microRNAs (miRs) as neuro-theranostics in the treatment of dementia by targeting autophagic biomarkers LC3B-II and ATG. Focus was also placed on the potential for neuro-theranostic nanocells/nanocarriers to traverse the BBB and induce action against psychiatric disorders. The neuro-theranostic approach can provide targeted treatment for mental disorders by creating theranostic nanocarriers.
Collapse
Affiliation(s)
- Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India.
| | - Vikrant Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh, Mathura, India
| |
Collapse
|
189
|
Grochowska KM, Sperveslage M, Raman R, Failla AV, Głów D, Schulze C, Laprell L, Fehse B, Kreutz MR. Chaperone-mediated autophagy in neuronal dendrites utilizes activity-dependent lysosomal exocytosis for protein disposal. Cell Rep 2023; 42:112998. [PMID: 37590146 DOI: 10.1016/j.celrep.2023.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
The complex morphology of neurons poses a challenge for proteostasis because the majority of lysosomal degradation machinery is present in the cell soma. In recent years, however, mature lysosomes were identified in dendrites, and a fraction of those appear to fuse with the plasma membrane and release their content to the extracellular space. Here, we report that dendritic lysosomes are heterogeneous in their composition and that only those containing lysosome-associated membrane protein (LAMP) 2A and 2B fuse with the membrane and exhibit activity-dependent motility. Exocytotic lysosomes dock in close proximity to GluN2B-containing N-methyl-D-aspartate-receptors (NMDAR) via an association of LAMP2B to the membrane-associated guanylate kinase family member SAP102/Dlg3. NMDAR-activation decreases lysosome motility and promotes membrane fusion. We find that chaperone-mediated autophagy is a supplier of content that is released to the extracellular space via lysosome exocytosis. This mechanism enables local disposal of aggregation-prone proteins like TDP-43 and huntingtin.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany.
| | - Marit Sperveslage
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Rajeev Raman
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Antonio V Failla
- UKE Microscopic Imaging Facility (umif), University Medical Center Eppendorf, 20251 Hamburg, Germany
| | - Dawid Głów
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Christian Schulze
- Institute of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Laura Laprell
- Institute of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Michael R Kreutz
- Leibniz Group "Dendritic Organelles and Synaptic Function," Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany; Research Group Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
| |
Collapse
|
190
|
Harraz MM. Selective dopaminergic vulnerability in Parkinson's disease: new insights into the role of DAT. Front Neurosci 2023; 17:1219441. [PMID: 37694119 PMCID: PMC10483232 DOI: 10.3389/fnins.2023.1219441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
One of the hallmarks of Parkinson's disease (PD) is the progressive loss of dopaminergic neurons and associated dopamine depletion. Several mechanisms, previously considered in isolation, have been proposed to contribute to the pathophysiology of dopaminergic degeneration: dopamine oxidation-mediated neurotoxicity, high dopamine transporter (DAT) expression density per neuron, and autophagy-lysosome pathway (ALP) dysfunction. However, the interrelationships among these mechanisms remained unclear. Our recent research bridges this gap, recognizing autophagy as a novel dopamine homeostasis regulator, unifying these concepts. I propose that autophagy modulates dopamine reuptake by selectively degrading DAT. In PD, ALP dysfunction could increase DAT density per neuron, and enhance dopamine reuptake, oxidation, and neurotoxicity, potentially contributing to the progressive loss of dopaminergic neurons. This integrated understanding may provide a more comprehensive view of aspects of PD pathophysiology and opens new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Maged M. Harraz
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
191
|
Kraus F, Goodall EA, Smith IR, Jiang Y, Paoli JC, Adolf F, Zhang J, Paulo JA, Schulman BA, Harper JW. PARK15/FBXO7 is dispensable for PINK1/Parkin mitophagy in iNeurons and HeLa cell systems. EMBO Rep 2023; 24:e56399. [PMID: 37334901 PMCID: PMC10398645 DOI: 10.15252/embr.202256399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/16/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023] Open
Abstract
The protein kinase PINK1 and ubiquitin ligase Parkin promote removal of damaged mitochondria via a feed-forward mechanism involving ubiquitin (Ub) phosphorylation (pUb), Parkin activation, and ubiquitylation of mitochondrial outer membrane proteins to support the recruitment of mitophagy receptors. The ubiquitin ligase substrate receptor FBXO7/PARK15 is mutated in an early-onset parkinsonian-pyramidal syndrome. Previous studies have proposed a role for FBXO7 in promoting Parkin-dependent mitophagy. Here, we systematically examine the involvement of FBXO7 in depolarization and mt UPR-dependent mitophagy in the well-established HeLa and induced-neurons cell systems. We find that FBXO7-/- cells have no demonstrable defect in: (i) kinetics of pUb accumulation, (ii) pUb puncta on mitochondria by super-resolution imaging, (iii) recruitment of Parkin and autophagy machinery to damaged mitochondria, (iv) mitophagic flux, and (v) mitochondrial clearance as quantified by global proteomics. Moreover, global proteomics of neurogenesis in the absence of FBXO7 reveals no obvious alterations in mitochondria or other organelles. These results argue against a general role for FBXO7 in Parkin-dependent mitophagy and point to the need for additional studies to define how FBXO7 mutations promote parkinsonian-pyramidal syndrome.
Collapse
Affiliation(s)
- Felix Kraus
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Ellen A Goodall
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Ian R Smith
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Yizhi Jiang
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Julia C Paoli
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Frank Adolf
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - Jiuchun Zhang
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
| | - Brenda A Schulman
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Molecular Machines and SignalingMax Planck Institute of BiochemistryMartinsriedGermany
| | - J Wade Harper
- Department of Cell Biology, Blavatnik InstituteHarvard Medical SchoolBostonMAUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| |
Collapse
|
192
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
193
|
Kim W, Tripathi M, Kim C, Vardhineni S, Cha Y, Kandi SK, Feitosa M, Kholiya R, Sah E, Thakur A, Kim Y, Ko S, Bhatia K, Manohar S, Kong YB, Sindhu G, Kim YS, Cohen B, Rawat DS, Kim KS. An optimized Nurr1 agonist provides disease-modifying effects in Parkinson's disease models. Nat Commun 2023; 14:4283. [PMID: 37463889 DOI: 10.1038/s41467-023-39970-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/05/2023] [Indexed: 07/20/2023] Open
Abstract
The nuclear receptor, Nurr1, is critical for both the development and maintenance of midbrain dopamine neurons, representing a promising molecular target for Parkinson's disease (PD). We previously identified three Nurr1 agonists (amodiaquine, chloroquine and glafenine) that share an identical chemical scaffold, 4-amino-7-chloroquinoline (4A7C), suggesting a structure-activity relationship. Herein we report a systematic medicinal chemistry search in which over 570 4A7C-derivatives were generated and characterized. Multiple compounds enhance Nurr1's transcriptional activity, leading to identification of an optimized, brain-penetrant agonist, 4A7C-301, that exhibits robust neuroprotective effects in vitro. In addition, 4A7C-301 protects midbrain dopamine neurons in the MPTP-induced male mouse model of PD and improves both motor and non-motor olfactory deficits without dyskinesia-like behaviors. Furthermore, 4A7C-301 significantly ameliorates neuropathological abnormalities and improves motor and olfactory dysfunctions in AAV2-mediated α-synuclein-overexpressing male mouse models. These disease-modifying properties of 4A7C-301 may warrant clinical evaluation of this or analogous compounds for the treatment of patients with PD.
Collapse
Affiliation(s)
- Woori Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Mohit Tripathi
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Chunhyung Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | | | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | | | - Melissa Feitosa
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Rohit Kholiya
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Eric Sah
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Anuj Thakur
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Yehan Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Sanghyeok Ko
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Kaiya Bhatia
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Sunny Manohar
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Young-Bin Kong
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Gagandeep Sindhu
- Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Yoon-Seong Kim
- Institute for Neurological Therapeutics, Rutgers University, Piscataway, NJ, 08854, USA
| | - Bruce Cohen
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - Diwan S Rawat
- Department of Chemistry, University of Delhi, Delhi, 110007, India.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
- Molecular Neurobiology Laboratory, Program in Neuroscience, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA.
| |
Collapse
|
194
|
Li FXZ, Liu JJ, Xu F, Shan SK, Zheng MH, Lei LM, Lin X, Guo B, Li CC, Wu F, Tang KX, Cao YC, Wu YY, Duan JY, Wu YL, He SY, Chen X, Yuan LQ. Cold exposure protects against medial arterial calcification development via autophagy. J Nanobiotechnology 2023; 21:226. [PMID: 37461031 PMCID: PMC10351118 DOI: 10.1186/s12951-023-01985-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
Medial arterial calcification (MAC), a systemic vascular disease different from atherosclerosis, is associated with an increased incidence of cardiovascular events. Several studies have demonstrated that ambient temperature is one of the most important factors affecting cardiovascular events. However, there has been limited research on the effect of different ambient temperatures on MAC. In the present study, we showed that cold temperature exposure (CT) in mice slowed down the formation of vitamin D (VD)-induced vascular calcification compared with room temperature exposure (RT). To investigate the mechanism involved, we isolated plasma-derived exosomes from mice subjected to CT or RT for 30 days (CT-Exo or RT-Exo, respectively). Compared with RT-Exo, CT-Exo remarkably alleviated the calcification/senescence formation of vascular smooth muscle cells (VSMCs) and promoted autophagy by activating the phosphorylation of AMP-activated protein kinase (p-AMPK) and inhibiting phosphorylation of mammalian target of rapamycin (p-mTOR). At the same time, CT-Exo promoted autophagy in β-glycerophosphate (β-GP)-induced VSMCs. The number of autophagosomes and the expression of autophagy-related proteins ATG5 and LC3B increased, while the expression of p62 decreased. Based on a microRNA chip microarray assay and real-time polymerase chain reaction, miR-320a-3p was highly enriched in CT-Exo as well as thoracic aortic vessels in CT mice. miR-320a-3p downregulation in CT-Exo using AntagomiR-320a-3p inhibited autophagy and blunted its anti-calcification protective effect on VSMCs. Moreover, we identified that programmed cell death 4 (PDCD4) is a target of miR-320a-3p, and silencing PDCD4 increased autophagy and decreased calcification in VSMCs. Treatment with CT-Exo alleviated the formation of MAC in VD-treated mice, while these effects were partially reversed by GW4869. Furthermore, the anti-arterial calcification protective effects of CT-Exo were largely abolished by AntagomiR-320a-3p in VD-induced mice. In summary, we have highlighted that prolonged cold may be a good way to reduce the incidence of MAC. Specifically, miR-320a-3p from CT-Exo could protect against the initiation and progression of MAC via the AMPK/mTOR autophagy pathway.
Collapse
Affiliation(s)
- Fu-Xing-Zi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jun-Jie Liu
- Department of Periodontal Division, Hunan Xiangya Stomatological Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Feng Wu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ke-Xin Tang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ye-Chi Cao
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yun-Yun Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Jia-Yue Duan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yan-Lin Wu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Si-Yang He
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi Chen
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
195
|
Li D, Peng X, He G, Liu J, Li X, Lin W, Fang J, Li X, Yang S, Yang L, Li H. Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death Dis 2023; 14:409. [PMID: 37422448 PMCID: PMC10329683 DOI: 10.1038/s41419-023-05929-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/07/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023]
Abstract
Cancer stem cells(CSCs) play a key role in regulating tumorigenesis, progression, as well as recurrence, and possess typical metabolic characteristics. Autophagy is a catabolic process that can aid cells to survive under stressful conditions such as nutrient deficiency and hypoxia. Although the role of autophagy in cancer cells has been extensively studied, CSCs possess unique stemness, and their potential relationship with autophagy has not been fully analyzed. This study summarizes the possible role of autophagy in the renewal, proliferation, differentiation, survival, metastasis, invasion, and treatment resistance of CSCs. It has been found that autophagy can contribute to the maintenance of CSC stemness, facilitate the tumor cells adapt to changes in the microenvironment, and promote tumor survival, whereas in some other cases autophagy acts as an important process involved in the deprivation of CSC stemness thus leading to tumor death. Mitophagy, which has emerged as another popular research area in recent years, has a great scope when explored together with stem cells. In this study, we have aimed to elaborate on the mechanism of action of autophagy in regulating the functions of CSCs to provide deeper insights for future cancer treatment.
Collapse
Affiliation(s)
- Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
196
|
Dedert C, Salih L, Xu F. Progranulin Protects against Hyperglycemia-Induced Neuronal Dysfunction through GSK3β Signaling. Cells 2023; 12:1803. [PMID: 37443837 PMCID: PMC10340575 DOI: 10.3390/cells12131803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Type II diabetes affects over 530 million individuals worldwide and contributes to a host of neurological pathologies. Uncontrolled high blood glucose (hyperglycemia) is a major factor in diabetic pathology, and glucose regulation is a common goal for maintenance in patients. We have found that the neuronal growth factor progranulin protects against hyperglycemic stress in neurons, and although its mechanism of action is uncertain, our findings identified Glycogen Synthase Kinase 3β (GSK3β) as being potentially involved in its effects. In this study, we treated mouse primary cortical neurons exposed to high-glucose conditions with progranulin and a selective pharmacological inhibitor of GSK3β before assessing neuronal health and function. Whole-cell and mitochondrial viability were both improved by progranulin under high-glucose stress in a GSK3β-dependent manner. This extended to autophagy flux, indicated by the expressions of autophagosome marker Light Chain 3B (LC3B) and lysosome marker Lysosome-Associated Membrane Protein 2A (LAMP2A), which were affected by progranulin and showed heterogeneous changes from GSK3β inhibition. Lastly, GSK3β inhibition attenuated downstream calcium signaling and neuronal firing effects due to acute progranulin treatment. These data indicate that GSK3β plays an important role in progranulin's neuroprotective effects under hyperglycemic stress and serves as a jumping-off point to explore progranulin's protective capabilities in other neurodegenerative models.
Collapse
Affiliation(s)
- Cass Dedert
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Lyuba Salih
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
| | - Fenglian Xu
- Department of Biology, College of Arts and Sciences, Saint Louis University, Saint Louis, MO 63103, USA; (C.D.); (L.S.)
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, Saint Louis, MO 63103, USA
- Department of Biomedical Engineering, School of Science and Engineering, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
197
|
Festa BP, Siddiqi FH, Jimenez-Sanchez M, Won H, Rob M, Djajadikerta A, Stamatakou E, Rubinsztein DC. Microglial-to-neuronal CCR5 signaling regulates autophagy in neurodegeneration. Neuron 2023; 111:2021-2037.e12. [PMID: 37105172 DOI: 10.1016/j.neuron.2023.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 02/13/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
In neurodegenerative diseases, microglia switch to an activated state, which results in excessive secretion of pro-inflammatory factors. Our work aims to investigate how this paracrine signaling affects neuronal function. Here, we show that activated microglia mediate non-cell-autonomous inhibition of neuronal autophagy, a degradative pathway critical for the removal of toxic, aggregate-prone proteins accumulating in neurodegenerative diseases. We found that the microglial-derived CCL-3/-4/-5 bind and activate neuronal CCR5, which in turn promotes mTORC1 activation and disrupts autophagy and aggregate-prone protein clearance. CCR5 and its cognate chemokines are upregulated in the brains of pre-manifesting mouse models for Huntington's disease (HD) and tauopathy, suggesting a pathological role of this microglia-neuronal axis in the early phases of these diseases. CCR5 upregulation is self-sustaining, as CCL5-CCR5 autophagy inhibition impairs CCR5 degradation itself. Finally, pharmacological or genetic inhibition of CCR5 rescues mTORC1 hyperactivation and autophagy dysfunction, which ameliorates HD and tau pathologies in mouse models.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Farah H Siddiqi
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Maria Jimenez-Sanchez
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Hyeran Won
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Matea Rob
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Alvin Djajadikerta
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - Eleanna Stamatakou
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), CB2 0XY Cambridge, UK.
| |
Collapse
|
198
|
Jun YW, Lee S, Ban BK, Lee JA, Gao FB. Non-muscle MYH10/myosin IIB recruits ESCRT-III to participate in autophagosome closure to maintain neuronal homeostasis. Autophagy 2023; 19:2045-2061. [PMID: 36849436 PMCID: PMC10283425 DOI: 10.1080/15548627.2023.2169309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 03/01/2023] Open
Abstract
Dysfunction of the endosomal sorting complex required for transport (ESCRT) has been linked to frontotemporal dementia (FTD) due in part to the accumulation of unsealed autophagosomes. However, the mechanisms of ESCRT-mediated membrane closure events on phagophores remain largely unknown. In this study, we found that partial knockdown of non-muscle MYH10/myosin IIB/zip rescues neurodegeneration in both Drosophila and human iPSC-derived cortical neurons expressing FTD-associated mutant CHMP2B, a subunit of ESCRT-III. We also found that MYH10 binds and recruits several autophagy receptor proteins during autophagosome formation induced by mutant CHMP2B or nutrient starvation. Moreover, MYH10 interacted with ESCRT-III to regulate phagophore closure by recruiting ESCRT-III to damaged mitochondria during PRKN/parkin-mediated mitophagy. Evidently, MYH10 is involved in the initiation of induced but not basal autophagy and also links ESCRT-III to mitophagosome sealing, revealing novel roles of MYH10 in the autophagy pathway and in ESCRT-related FTD pathogenesis.Abbreviations: ALS: amyotrophic lateral sclerosis; AP: autophagosome; Atg: autophagy-related; ESCRT: endosomal sorting complex required for transport; FTD: frontotemporal dementia.
Collapse
Affiliation(s)
- Yong-Woo Jun
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Soojin Lee
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Byung-Kwan Ban
- Department of Biotechnology and Biological Sciences, Hannam University, Yuseong-gu, Daejeon, Republic of Korea
| | - Jin-A Lee
- Department of Biotechnology and Biological Sciences, Hannam University, Yuseong-gu, Daejeon, Republic of Korea
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
199
|
Kaur S, Sharma N, Kumar V, Sharma D, Devi B, Kapil L, Singh C, Singh A. The Role of Mitophagy in Various Neurological Diseases as a Therapeutic Approach. Cell Mol Neurobiol 2023; 43:1849-1865. [PMID: 36326951 PMCID: PMC11412177 DOI: 10.1007/s10571-022-01302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
Abstract
Mitochondria are critical to multiple cellular processes, from the production of adenosine triphosphate (ATP), maintenance of calcium homeostasis, synthesis of key metabolites, and production of reactive oxygen species (ROS) to maintain necrosis, apoptosis, and autophagy. Therefore, proper clearance and regulation are essential to maintain various physiological processes carried out by the cellular mechanism, including mitophagy and autophagy, by breaking down the damaged intracellular connections under the influence of various genes and proteins and protecting against various neurodegenerative diseases such as Parkinson disease (PD), amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD), and Huntington disease (HD). In this review, we will discuss the role of autophagy, selective macroautophagy, or mitophagy, and its role in neurodegenerative diseases along with normal physiology. In addition, this review will provide a better understanding of the pathways involved in neuron autophagy and mitophagy and how mutations affect these pathways in the various genes involved in neurodegenerative diseases. Various new findings indicate that the pathways that remove dysfunctional mitochondria are impaired in these diseases, leading to the deposition of damaged mitochondria. Apart from that, we have also discussed the therapeutic strategies targeting autophagy and mitophagy in neurodegenerative diseases. The mitophagy cycle results in the degradation of damaged mitochondria and the biogenesis of new healthy mitochondria, also highlighting different stages at which a particular neurodegenerative disease could occur.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Neelam Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Bhawna Devi
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
200
|
Idera A, Sharkey LM, Kurauchi Y, Kadoyama K, Paulson HL, Katsuki H, Seki T. Wild-type and pathogenic forms of ubiquilin 2 differentially modulate components of the autophagy-lysosome pathways. J Pharmacol Sci 2023; 152:182-192. [PMID: 37257946 DOI: 10.1016/j.jphs.2023.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Missense mutations of ubiquilin 2 (UBQLN2) have been identified to cause X-linked amyotrophic lateral sclerosis (ALS). Proteasome-mediated protein degradation is reported to be impaired by ALS-associated mutations of UBQLN2. However, it remains unknown how these mutations affect autophagy-lysosome protein degradation, which consists of macroautophagy (MA), microautophagy (mA), and chaperone-mediated autophagy (CMA). Using a CMA/mA fluorescence reporter we found that overexpression of wild-type UBQLN2 impairs CMA. Conversely, knockdown of endogenous UBQLN2 increases CMA activity, suggesting that normally UBQLN2 negatively regulates CMA. ALS-associated mutant forms of UBQLN2 exacerbate this impairment of CMA. Using cells stably transfected with wild-type or ALS-associated mutant UBQLN2, we further determined that wild-type UBQLN2 increased the ratio of LAMP2A (a CMA-related protein) to LAMP1 (a lysosomal protein). This could represent a compensatory reaction to the impairment of CMA by wild-type UBQLN2. However, ALS-associated mutant UBQLN2 failed to show this compensation, exacerbating the impairment of CMA by mutant UBQLN2. We further demonstrated that ALS-associated mutant forms of UBQLN2 also impair MA, but wild-type UBQLN2 does not. These results support the view that ALS-associated mutant forms of UBQLN2 impair both CMA and MA which may contribute to the neurodegeneration observed in patients with UBQLN2-mediated ALS.
Collapse
Affiliation(s)
- Akiko Idera
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Yuki Kurauchi
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keiichi Kadoyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Japan
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Department of Pharmacology, Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, Japan.
| |
Collapse
|