151
|
Abstract
The identification of genes affecting sociality can give insights into the maintenance and development of sociality and personality. In this study, we used the combination of an advanced intercross between wild and domestic chickens with a combined QTL and eQTL genetical genomics approach to identify genes for social reinstatement, a social and anxiety-related behavior. A total of 24 social reinstatement QTL were identified and overlaid with over 600 eQTL obtained from the same birds using hypothalamic tissue. Correlations between overlapping QTL and eQTL indicated five strong candidate genes, with the gene TTRAP being strongly significantly correlated with multiple aspects of social reinstatement behavior, as well as possessing a highly significant eQTL.
Collapse
|
152
|
Harshaw C, Leffel JK, Alberts JR. Oxytocin and the warm outer glow: Thermoregulatory deficits cause huddling abnormalities in oxytocin-deficient mouse pups. Horm Behav 2018; 98:145-158. [PMID: 29277701 PMCID: PMC5828998 DOI: 10.1016/j.yhbeh.2017.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 11/18/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Oxytocin is a social and reproductive hormone that also plays critical roles in a range of homeostatic processes, including thermoregulation. Here, we examine the role of oxytocin (OT) as a mediator of brown adipose tissue (BAT) thermogenesis, cold-induced huddling, and thermotaxis in eight-day-old (PD8) OT 'knock out' (OTKO) mouse pups. We tested OTKO and wildtype (WT) pups in single- and mixed-genotype groups of six, exposing these to a period of ambient warmth (~35°C) followed by a period of cold (~21.5°C). Whether huddling exclusively with other OTKO or alongside WT pups, OTKO pups showed reduced BAT thermogenesis and were significantly cooler when cold-challenged. Huddles of OTKO pups were also significantly less cohesive than WT huddles during cooling, suggesting that thermoregulatory deficits contribute to contact abnormalities in OTKO pups. To further explore this issue, we examined thermotaxis in individuals and groups of four OTKO or WT pups placed on the cool end of a thermocline and permitted to freely locomote for 2h. When tested individually, male OTKO pups displayed abnormal thermotaxis, taking significantly longer to move up the thermocline and settling upon significantly lower temperatures than WT pups during the 2h test. OTKO mouse pups thus appear to have deficits in both thermogenesis and thermotaxis-the latter deficit being specific to males. Our results add to a growing body of work indicating that OT plays critical roles in thermoregulation and also highlight the entanglement of social and thermoregulatory processes in small mammals such as mice.
Collapse
Affiliation(s)
- Christopher Harshaw
- Department of Psychology, University of New Orleans, New Orleans, LA, United States; Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Joseph K Leffel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Jeffrey R Alberts
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN, United States
| |
Collapse
|
153
|
Hovey D, Henningsson S, Cortes DS, Bänziger T, Zettergren A, Melke J, Fischer H, Laukka P, Westberg L. Emotion recognition associated with polymorphism in oxytocinergic pathway gene ARNT2. Soc Cogn Affect Neurosci 2018; 13:173-181. [PMID: 29194499 PMCID: PMC5827350 DOI: 10.1093/scan/nsx141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/31/2017] [Accepted: 11/19/2017] [Indexed: 12/18/2022] Open
Abstract
The ability to correctly understand the emotional expression of another person is essential for social relationships and appears to be a partly inherited trait. The neuropeptides oxytocin and vasopressin have been shown to influence this ability as well as face processing in humans. Here, recognition of the emotional content of faces and voices, separately and combined, was investigated in 492 subjects, genotyped for 25 single nucleotide polymorphisms (SNPs) in eight genes encoding proteins important for oxytocin and vasopressin neurotransmission. The SNP rs4778599 in the gene encoding aryl hydrocarbon receptor nuclear translocator 2 (ARNT2), a transcription factor that participates in the development of hypothalamic oxytocin and vasopressin neurons, showed an association that survived correction for multiple testing with emotion recognition of audio-visual stimuli in women (n = 309). This study demonstrates evidence for an association that further expands previous findings of oxytocin and vasopressin involvement in emotion recognition.
Collapse
Affiliation(s)
- Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Henningsson
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana S Cortes
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Tanja Bänziger
- Department of Psychology, Mid Sweden University, Östersund, Sweden
| | - Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Melke
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Petri Laukka
- Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
154
|
Abstract
Social anxiety is a form of anxiety characterized by continuous fear of one or more social or performance situations. Although multiple treatment modalities (cognitive behavioral therapy, selective serotonin reuptake inhibitors/selective norepinephrine reuptake inhibitors, benzodiazepines) exist for social anxiety, they are effective for only 60% to 70% of patients. Thus, researchers have looked for other candidates for social anxiety treatment. Our review focuses on the peptide oxytocin as a potential therapeutic option for individuals with social anxiety. Animal research both in nonprimates and primates supports oxytocin's role in facilitation of prosocial behaviors and its anxiolytic effects. Human studies indicate significant associations between social anxiety and oxytocin receptor gene alleles, as well as social anxiety and oxytocin plasma levels. In addition, intranasal administration of oxytocin in humans has favorable effects on social anxiety symptomology. Other disorders, including autism, schizophrenia, and anorexia, have components of social anxiety in their pathophysiology. The therapeutic role of oxytocin for social dysfunction in these disorders is discussed.
Collapse
Affiliation(s)
- Candace Jones
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ingrid Barrera
- University of Miami Department of Psychiatry and Behavioral Sciences, Miami, Florida, USA
| | - Shaun Brothers
- University of Miami Department of Psychiatry and Behavioral Sciences, Miami, Florida, USA
| | - Robert Ring
- Drexel University Department of Pharmacology and Physiology, Philadelphia, Pennsylvania, USA
| | - Claes Wahlestedt
- University of Miami Department of Psychiatry and Behavioral Sciences, Miami, Florida, USA
| |
Collapse
|
155
|
Yohn CN, Leithead AB, Ford J, Gill A, Becker EA. Paternal Care Impacts Oxytocin Expression in California Mouse Offspring and Basal Testosterone in Female, but Not Male Pups. Front Behav Neurosci 2018. [PMID: 30210315 DOI: 10.3389/fnbeh.2018.00181/bibtex] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Natural variations in parenting are associated with differences in expression of several hormones and neuropeptides which may mediate lasting effects on offspring development, like regulation of stress reactivity and social behavior. Using the bi-parental California mouse, we have demonstrated that parenting and aggression are programmed, at least in part, by paternal behavior as adult offspring model the degree of parental behavior received in development and are more territorial following high as compared to low levels of care. Development of these behaviors may be driven by transient increases in testosterone following paternal retrievals and increased adult arginine vasopressin (AVP) immunoreactivity within the bed nucleus of the stria terminalis (BNST) among high-care (HC) offspring. It remains unclear, however, whether other neuropeptides, such as oxytocin (OT), which is sensitive to gonadal steroids, are similarly impacted by father-offspring interactions. To test this question, we manipulated paternal care (high and low care) and examined differences in adult offspring OT-immunoreactive (OT-ir) within social brain areas as well as basal T and corticosterone (Cort) levels. HC offspring had more OT-ir within the paraventricular nucleus (PVN) and supraoptic nucleus (SON) than low-care (LC) offspring. Additionally, T levels were higher among HC than LC females, but no differences were found in males. There were no differences in Cort indicating that our brief father-pup separations likely had no consequences on stress reactivity. Together with our previous work, our data suggest that social behavior may be programmed by paternal care through lasting influences on the neuroendocrine system.
Collapse
Affiliation(s)
- Christine N Yohn
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
- Department of Psychology, Rutgers University, Piscataway, NJ, United States
| | - Amanda B Leithead
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Julian Ford
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Alexander Gill
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| | - Elizabeth A Becker
- Department of Psychology, Saint Joseph's University, Philadelphia, PA, United States
| |
Collapse
|
156
|
Sanders MR, Hall SL. Trauma-informed care in the newborn intensive care unit: promoting safety, security and connectedness. J Perinatol 2018; 38:3-10. [PMID: 28817114 PMCID: PMC5776216 DOI: 10.1038/jp.2017.124] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022]
Abstract
Both babies and their parents may experience a stay in the newborn intensive care unit (NICU) as a traumatic or a 'toxic stress,' which can lead to dysregulation of the hypothalamic-pituitary-adrenal axis and ultimately to poorly controlled cortisol secretion. Toxic stresses in childhood or adverse childhood experiences (ACEs) are strongly linked to poor health outcomes across the lifespan and trauma-informed care is an approach to caregiving based on the recognition of this relationship. Practitioners of trauma-informed care seek to understand clients' or patients' behaviors in light of previous traumas they have experienced, including ACEs. Practitioners also provide supportive care that enhances the client's or patient's feelings of safety and security, to prevent their re-traumatization in a current situation that may potentially overwhelm their coping skills. This review will apply the principles of trauma-informed care, within the framework of the Polyvagal Theory as described by Porges, to care for the NICU baby, the baby's family and their professional caregivers, emphasizing the importance of social connectedness among all. The Polyvagal Theory explains how one's unconscious awareness of safety, danger or life threat (neuroception) is linked through the autonomic nervous system to their behavioral responses. A phylogenetic hierarchy of behaviors evolved over time, leveraging the mammalian ventral or 'smart' vagal nucleus into a repertoire of responses promoting mother-baby co-regulation and the sense of safety and security that supports health and well-being for both members of the dyad. Fostering social connectedness that is mutual and reciprocal among parents, their baby and the NICU staff creates a critical buffer to mitigate stress and improve outcomes of both baby and parents. Using techniques of trauma-informed care, as explained by the Polyvagal Theory, with both babies and their parents in the NICU setting will help to cement a secure relationship between the parent-infant dyad, redirecting the developmental trajectory toward long-term health and well-being of the baby and all family members.
Collapse
Affiliation(s)
- M R Sanders
- Division of Neonatology, Department of Pediatrics/Neonatology, Connecticut Children’s Medical Center, Hartford, CT, USA
- Department of Pediatrics, The University of Connecticut School of Medicine, Farmington, CT, USA
| | - S L Hall
- St. John’s Regional Medical Center, Oxnard, CA, USA
| |
Collapse
|
157
|
Caruso S, Mauro D, Scalia G, Palermo CI, Rapisarda AMC, Cianci A. Oxytocin plasma levels in orgasmic and anorgasmic women. Gynecol Endocrinol 2018; 34:69-72. [PMID: 28604123 DOI: 10.1080/09513590.2017.1336219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The study aimed to evaluate oxytocin (Oxt) serum levels before and after sexual intercourse in women affected by anorgasmia. The sample was constituted of 15 anorgasmic women and 16 orgasmic women. The Female Sexual Function Index (FSFI, cutoff ≤26.55) and the Female Sexual Distress Scale (FSDS, cutoff ≥15) questionnaires were used to assess sexual function and sexual distress, respectively. Serum Oxt levels were measured before sexual intercourse (T0) and 5 min after coital sexual activity (T1). Anorgasmic women had an unpleasant sexual experience (FSFI total score, 20.1 ± 1.2;) and were stressed (FSDS score, 19.4 ± 1.3), whereas orgasmic women were fully satisfied with their sexual activity (FSFI total score 28.7 ± 1.3; FSDS score 11.5 ± 1.8). At T0, anorgasmic women had lower levels of Oxt than orgasmic women, 1.8 ± 0.2 pg/mL versus 2.1 ± 0.5 pg/mL, respectively, [95% CI: (-0.58, -0.01); p < .04]. At T1, Oxt levels did not change in anorgasmic women (1.8 ± 0.2 pg/mL versus 2 ± 0.4 pg/mL, p = .09). Finally, orgasmic women had higher levels of Oxt than anorgasmic women, 4.6 ± 0.7 pg/mL versus 2 ± 0.4 pg/mL, respectively [95% CI: (-3.02, -2.17); p < .001]. The repetitive processes to experience the sexual body sensations could represent a survival behavior of species by attachment to a partner.
Collapse
Affiliation(s)
- Salvatore Caruso
- a Department of General Surgery and Medical Surgical Specialties , Gynecological Clinic, Policlinico Universitario , Catania , Italy
- b Research Group for Sexology, Policlinico Universitario , Catania , Italy
| | - Diletta Mauro
- a Department of General Surgery and Medical Surgical Specialties , Gynecological Clinic, Policlinico Universitario , Catania , Italy
- b Research Group for Sexology, Policlinico Universitario , Catania , Italy
| | - Guido Scalia
- c Department of Biomedical and Biotechnological Sciences , Clinical Virology, Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Presidio "Gaspare Rodolico", University of Catania , Catania , Italy
| | - Concetta Ilenia Palermo
- c Department of Biomedical and Biotechnological Sciences , Clinical Virology, Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Presidio "Gaspare Rodolico", University of Catania , Catania , Italy
| | - Agnese Maria Chiara Rapisarda
- a Department of General Surgery and Medical Surgical Specialties , Gynecological Clinic, Policlinico Universitario , Catania , Italy
- b Research Group for Sexology, Policlinico Universitario , Catania , Italy
| | - Antonio Cianci
- a Department of General Surgery and Medical Surgical Specialties , Gynecological Clinic, Policlinico Universitario , Catania , Italy
- b Research Group for Sexology, Policlinico Universitario , Catania , Italy
| |
Collapse
|
158
|
Conditional Deletion of Hippocampal CA2/CA3a Oxytocin Receptors Impairs the Persistence of Long-Term Social Recognition Memory in Mice. J Neurosci 2017; 38:1218-1231. [PMID: 29279308 DOI: 10.1523/jneurosci.1896-17.2017] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022] Open
Abstract
Oxytocin (OXT) receptors (OXTRs) are prominently expressed in hippocampal CA2 and CA3 pyramidal neurons, but little is known about its physiological function. As the functional necessity of hippocampal CA2 for social memory processing, we tested whether CA2 OXTRs may contribute to long-term social recognition memory (SRM) formation. Here, we found that conditional deletion of Oxtr from forebrain (Oxtr-/-) or CA2/CA3a-restricted excitatory neurons in adult male mice impaired the persistence of long-term SRM but had no effect on sociability and preference for social novelty. Conditional deletion of CA2/CA3a Oxtr showed no changes in anxiety-like behavior assessed using the open-field, elevated plus maze and novelty-suppressed feeding tests. Application of a highly selective OXTR agonist [Thr4,Gly7]-OXT to hippocampal slices resulted in an acute and lasting potentiation of excitatory synaptic responses in CA2 pyramidal neurons that relied on N-methyl-d-aspartate receptor activation and calcium/calmodulin-dependent protein kinase II activity. In addition, Oxtr-/- mice displayed a defect in the induction of long-term potentiation, but not long-term depression, at the synapses between the entorhinal cortex and CA2 pyramidal neurons. Furthermore, Oxtr deletion led to a reduced complexity of basal dendritic arbors of CA2 pyramidal neurons, but caused no alteration in the density of apical dendritic spines. Considering that the methodologies we have used to delete Oxtr do not rule out targeting the neighboring CA3a region, these findings suggest that OXTR signaling in the CA2/CA3a is crucial for the persistence of long-term SRM.SIGNIFICANCE STATEMENT Oxytocin receptors (OXTRs) are abundantly expressed in hippocampal CA2 and CA3 regions, but there are little known about their physiological function. Taking advantage of the conditional Oxtr knock-out mice, the present study highlights the importance of OXTR signaling in the induction of long-term potentiation at the synapses between the entorhinal cortex and CA2 pyramidal neurons and the persistence of long-term social recognition memory. Thus, OXTRs in the CA2/CA3a may provide a new target for therapeutic approaches to the treatment of social cognition deficits, which are often observed in patients with neuropsychiatric disorders.
Collapse
|
159
|
Raam T, McAvoy KM, Besnard A, Veenema AH, Sahay A. Hippocampal oxytocin receptors are necessary for discrimination of social stimuli. Nat Commun 2017; 8:2001. [PMID: 29222469 PMCID: PMC5722862 DOI: 10.1038/s41467-017-02173-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022] Open
Abstract
Oxytocin receptor (Oxtr) signaling in neural circuits mediating discrimination of social stimuli and affiliation or avoidance behavior is thought to guide social recognition. Remarkably, the physiological functions of Oxtrs in the hippocampus are not known. Here we demonstrate using genetic and pharmacological approaches that Oxtrs in the anterior dentate gyrus (aDG) and anterior CA2/CA3 (aCA2/CA3) of mice are necessary for discrimination of social, but not non-social, stimuli. Further, Oxtrs in aCA2/CA3 neurons recruit a population-based coding mechanism to mediate social stimuli discrimination. Optogenetic terminal-specific attenuation revealed a critical role for aCA2/CA3 outputs to posterior CA1 for discrimination of social stimuli. In contrast, aCA2/CA3 projections to aCA1 mediate discrimination of non-social stimuli. These studies identify a role for an aDG-CA2/CA3 axis of Oxtr expressing cells in discrimination of social stimuli and delineate a pathway relaying social memory computations in the anterior hippocampus to the posterior hippocampus to guide social recognition.
Collapse
Affiliation(s)
- Tara Raam
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.,Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathleen M McAvoy
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Alexa H Veenema
- Department of Psychology, Michigan State University, East Lansing, MI, 48824, USA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA. .,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA. .,Program in Neuroscience, Harvard Medical School, Boston, MA, 02115, USA. .,Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
160
|
Sorg H, Grambow E, Eckl E, Vollmar B. Oxytocin effects on experimental skin wound healing. Innov Surg Sci 2017; 2:219-232. [PMID: 31579755 PMCID: PMC6754027 DOI: 10.1515/iss-2017-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/14/2017] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Oxytocin (OXY) has significant effects on mammalian behavior. Next to its role in lactation and social interactions, it is described to support better wound healing as well. However, direct OXY effects on wound healing and the regeneration of the microvascular network are still not clarified. We therefore examined the effects of OXY and an OXY receptor antagonist [atosiban (ATO)] on skin wound healing, focusing on epithelialization and neovascularization. METHODS Skin wound healing has been assessed using intravital fluorescence microscopy in a model of full dermal thickness wounds in the dorsal skin fold chamber of hairless mice. Animals received repetitive low or high doses of OXY or ATO. Morphological and cellular characterization of skin tissue repair was performed by histology and in vitro cell assays. RESULTS The assessment of skin tissue repair using this therapy regimen showed that OXY and ATO had no major influence on epithelialization, neovascularization, wound cellularity, or inflammation. Moreover, OXY and ATO did neither stimulate nor deteriorate keratinocyte or fibroblast migration and proliferation. CONCLUSION In summary, this study is the first to demonstrate that OXY application does not impair skin wound healing or cell behavior. However, until now, the used transmitter system seems not to be clarified in detail, and it might be proposed that it is associated with the stress response of the organism to various stimuli.
Collapse
Affiliation(s)
- Heiko Sorg
- Institute for Experimental Surgery, University Medicine Rostock, Schillingallee 69a, 18057 Rostock, Germany
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus, Essen, Germany
| | - Eberhard Grambow
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Erik Eckl
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, University Medicine Rostock, Rostock, Germany
| |
Collapse
|
161
|
Ryan PJ, Ross SI, Campos CA, Derkach VA, Palmiter RD. Oxytocin-receptor-expressing neurons in the parabrachial nucleus regulate fluid intake. Nat Neurosci 2017; 20:1722-1733. [PMID: 29184212 PMCID: PMC5705772 DOI: 10.1038/s41593-017-0014-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
Brain regions that regulate fluid satiation are not well characterized, yet are essential for understanding fluid homeostasis. We found that oxytocin-receptor-expressing neurons in the parabrachial nucleus of mice (OxtrPBN neurons) are key regulators of fluid satiation. Chemogenetic activation of OxtrPBN neurons robustly suppressed noncaloric fluid intake, but did not decrease food intake after fasting or salt intake following salt depletion; inactivation increased saline intake after dehydration and hypertonic saline injection. Under physiological conditions, OxtrPBN neurons were activated by fluid satiation and hypertonic saline injection. OxtrPBN neurons were directly innervated by oxytocin neurons in the paraventricular hypothalamus (OxtPVH neurons), which mildly attenuated fluid intake. Activation of neurons in the nucleus of the solitary tract substantially suppressed fluid intake and activated OxtrPBN neurons. Our results suggest that OxtrPBN neurons act as a key node in the fluid satiation neurocircuitry, which acts to decrease water and/or saline intake to prevent or attenuate hypervolemia and hypernatremia. The authors show that oxytocin-receptor-expressing neurons in the parabrachial nucleus are key regulators of fluid homeostasis that suppress fluid intake when activated, but do not decrease food intake after fasting or salt intake after salt depletion.
Collapse
Affiliation(s)
- Philip J Ryan
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA. .,Department of Biochemistry, University of Washington, Seattle, Washington, USA. .,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.
| | - Silvano I Ross
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Carlos A Campos
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Victor A Derkach
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA. .,Department of Biochemistry, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
162
|
Ota M, Yoshida S, Nakata M, Yada T, Kunugi H. The effects of adjunctive intranasal oxytocin in patients with schizophrenia. Postgrad Med 2017; 130:122-128. [PMID: 29105546 DOI: 10.1080/00325481.2018.1398592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Both human and animal studies have suggested that oxytocin may have therapeutic potential in the treatment of schizophrenia. We evaluated the effects of intranasal oxytocin on cognition and its predictive factors in Japanese patients with schizophrenia. METHODS Subjects were 16 chronic schizophrenia patients who underwent intranasal oxytocin treatment for 3 months and were assessed for changes in severity of clinical symptoms and cognitions. Fifteen of the 16 subjects underwent 3-Tesla magnetic resonance imaging. RESULTS Oxytocin significantly reduced scores on the positive and negative syndrome scale, especially on the negative symptoms. As for cognition, there was an improvement of the verbal fluency. Furthermore, the change of the negative score in positive and negative syndrome scale showed a negative correlation with the gray matter volumes of the right insula and left cingulate cortex. CONCLUSIONS Our results indicate that daily administration of intranasal oxytocin may be effective for ameliorating clinical symptoms and cognitive functions in chronic schizophrenia patients, and this improvement may be related to the gray matter volume of the right insula and left cingulate cortex.
Collapse
Affiliation(s)
- Miho Ota
- a Department of Mental Disorder Research , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Japan
| | - Sumiko Yoshida
- b Department of Psychiatry , National Center Hospital of Neurology and Psychiatry , Kodaira , Japan
| | - Masanori Nakata
- c Department of Physiology, Division of Integrative Physiology , Jichi Medical University , Shimotsuke , Japan
| | - Toshihiko Yada
- c Department of Physiology, Division of Integrative Physiology , Jichi Medical University , Shimotsuke , Japan
| | - Hiroshi Kunugi
- a Department of Mental Disorder Research , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Japan
| |
Collapse
|
163
|
Kis A, Hernádi A, Miklósi B, Kanizsár O, Topál J. The Way Dogs ( Canis familiaris) Look at Human Emotional Faces Is Modulated by Oxytocin. An Eye-Tracking Study. Front Behav Neurosci 2017; 11:210. [PMID: 29163082 PMCID: PMC5671652 DOI: 10.3389/fnbeh.2017.00210] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/16/2017] [Indexed: 11/13/2022] Open
Abstract
Dogs have been shown to excel in reading human social cues, including facial cues. In the present study we used eye-tracking technology to further study dogs' face processing abilities. It was found that dogs discriminated between human facial regions in their spontaneous viewing pattern and looked most to the eye region independently of facial expression. Furthermore dogs played most attention to the first two images presented, afterwards their attention dramatically decreases; a finding that has methodological implications. Increasing evidence indicates that the oxytocin system is involved in dogs' human-directed social competence, thus as a next step we investigated the effects of oxytocin on processing of human facial emotions. It was found that oxytocin decreases dogs' looking to the human faces expressing angry emotional expression. More interestingly, however, after oxytocin pre-treatment dogs' preferential gaze toward the eye region when processing happy human facial expressions disappears. These results provide the first evidence that oxytocin is involved in the regulation of human face processing in dogs. The present study is one of the few empirical investigations that explore eye gaze patterns in naïve and untrained pet dogs using a non-invasive eye-tracking technique and thus offers unique but largely untapped method for studying social cognition in dogs.
Collapse
Affiliation(s)
- Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Anna Hernádi
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Orsolya Kanizsár
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - József Topál
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
164
|
Johnson ZV, Young LJ. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev 2017; 76:87-98. [PMID: 28434591 DOI: 10.1016/j.neubiorev.2017.01.034] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/15/2016] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
Oxytocin- and vasopressin-related systems are present in invertebrate and vertebrate bilaterian animals, including humans, and exhibit conserved neuroanatomical and functional properties. In vertebrates, these systems innervate conserved neural networks that regulate social learning and behavior, including conspecific recognition, social attachment, and parental behavior. Individual and species-level variation in central organization of oxytocin and vasopressin systems has been linked to individual and species variation in social learning and behavior. In humans, genetic polymorphisms in the genes encoding oxytocin and vasopressin peptides and/or their respective target receptors have been associated with individual variation in social recognition, social attachment phenotypes, parental behavior, and psychiatric phenotypes such as autism. Here we describe both conserved and variable features of central oxytocin and vasopressin systems in the context of social behavioral diversity, with a particular focus on neural networks that modulate social learning, behavior, and salience of sociosensory stimuli during species-typical social contexts.
Collapse
Affiliation(s)
- Zachary V Johnson
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
165
|
Okamoto Y, Ishitobi M, Wada Y, Kosaka H. The Potential of Nasal Oxytocin Administration for Remediation of Autism Spectrum Disorders. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2017; 15:564-77. [PMID: 27071789 PMCID: PMC5080861 DOI: 10.2174/1871527315666160413120845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/02/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022]
Abstract
Administration of oxytocin has been proposed as a treatment for the core symptoms of autism spectrum disorder (ASD), including social-communicative deficit. Previous clinical trials have investigated the efficacy and safety of oxytocin intranasal single-dose and long-term administration for individuals with ASD. All studies suggest that single-dose and long-term administration are well tolerated, and no severe adverse events have been reported. However, the efficacy of long-term oxytocin administration is controversial. Some studies have reported significant improvement of the core symptoms of ASD by long-term oxytocin administration, while other studies showed no such improvement. To elucidate the factors influencing the efficacy of oxytocin administration, it is necessary to examine the effects of administration schedules (e.g., dosage amount, frequency per day) and participant characteristics (e.g., age, sex, intellectual ability). In addition to doubts about the efficacy of particular methods of administration, questions remain about the mechanism of action of intranasal oxytocin on the central nervous system. Examination of changes in the neural underpinnings of social behavior and simultaneous oxytocin levels in blood or cerebrospinal fluid could prove important in elucidating the pharmacokinetics of intranasal oxytocin administration, which could be essential for establishing optimal oxytocin treatments for individuals with ASD.
Collapse
Affiliation(s)
| | | | | | - Hirotaka Kosaka
- Research Center for Child Mental Development, University of Fukui, Eiheiji, Fukui 910-1193, Japan.
| |
Collapse
|
166
|
Bienboire-Frosini C, Chabaud C, Cozzi A, Codecasa E, Pageat P. Validation of a Commercially Available Enzyme ImmunoAssay for the Determination of Oxytocin in Plasma Samples from Seven Domestic Animal Species. Front Neurosci 2017; 11:524. [PMID: 28983237 PMCID: PMC5613128 DOI: 10.3389/fnins.2017.00524] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/06/2017] [Indexed: 12/21/2022] Open
Abstract
The neurohormone oxytocin (OT) has a broad range of behavioral effects in mammals. It modulates a multitude of social behaviors, e.g., affiliative and sexual interactions. Consequently, the OT role in various animal species is increasingly explored. However, several issues have been raised regarding the peripheral OT measurement. Indeed, various methods have been described, leading to assay discrepancies and inconsistent results. This highlights the need for a recognized and reliable method to measure peripheral OT. Our aim was to validate a method combining a pre-extraction step, previously demonstrated as essential by several authors, and a commercially available enzyme immunoassay (EIA) for OT measurement, using plasma from seven domestic species (cat, dog, horse, cow, pig, sheep, and goat). The Oxytocin EIA kit (EnzoLifeSciences) was used to assay the solid-phase extracted samples following the manufacturer's instructions with slight modifications. For all species except dogs and cats, concentration factors were applied to work above the kit's sensitivity (15 pg/ml). To validate the method, the following performance characteristics were evaluated using Validation Samples (VS) at various concentrations in each species: extraction efficiency via spiking tests and intra- and inter-assay precision, allowing for the calculation of total errors. Parallelism studies to assess matrix effects could not be performed because of too low basal concentrations. Quantification ranges and associated precision profiles were established to account for the various OT plasma concentrations in each species. According to guidelines for bioanalytical validation of immunoassays, the measurements were sufficiently precise and accurate in each species to achieve a total error ≤30% in each VS sample. In each species, the inter-assay precision after 3 runs was acceptable, except in low concentration samples. The linearity under dilution of dogs and cats' samples was verified. Although matrix effects assessments are lacking, our results indicate that OT plasma levels can reliably be measured in several domestic animal species by the method described here. Studies involving samples with low OT plasma concentrations should pay attention to reproducibility issues. This work opens new perspectives to reliably study peripheral OT in a substantial number of domestic animal species in various behavioral contexts.
Collapse
|
167
|
Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons. Nat Commun 2017; 8:537. [PMID: 28912554 PMCID: PMC5599651 DOI: 10.1038/s41467-017-00675-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 07/19/2017] [Indexed: 11/08/2022] Open
Abstract
In addition to the regulation of social and emotional behaviors, the hypothalamic neuropeptide oxytocin has been shown to stimulate neurogenesis in adult dentate gyrus; however, the mechanisms underlying the action of oxytocin are still unclear. Taking advantage of the conditional knockout mouse model, we show here that endogenous oxytocin signaling functions in a non-cell autonomous manner to regulate survival and maturation of newly generated dentate granule cells in adult mouse hippocampus via oxytocin receptors expressed in CA3 pyramidal neurons. Through bidirectional chemogenetic manipulations, we also uncover a significant role for CA3 pyramidal neuron activity in regulating adult neurogenesis in the dentate gyrus. Retrograde neuronal tracing combined with immunocytochemistry revealed that the oxytocin neurons in the paraventricular nucleus project directly to the CA3 region of the hippocampus. Our findings reveal a critical role for oxytocin signaling in adult neurogenesis. Oxytocin (OXT) has been implicated in adult neurogenesis. Here the authors show that CA3 pyramidal cells in the adult mouse hippocampus express OXT receptors and receive inputs from hypothalamic OXT neurons; activation of OXT signaling in CA3 pyramidal cells promotes the survival and maturation of newborn neurons in the dentate gyrus in a non-cell autonomous manner.
Collapse
|
168
|
Schladt TM, Nordmann GC, Emilius R, Kudielka BM, de Jong TR, Neumann ID. Choir versus Solo Singing: Effects on Mood, and Salivary Oxytocin and Cortisol Concentrations. Front Hum Neurosci 2017; 11:430. [PMID: 28959197 PMCID: PMC5603757 DOI: 10.3389/fnhum.2017.00430] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022] Open
Abstract
The quantification of salivary oxytocin (OXT) concentrations emerges as a helpful tool to assess peripheral OXT secretion at baseline and after various challenges in healthy and clinical populations. Both positive social interactions and stress are known to induce OXT secretion, but the relative influence of either of these triggers is not well delineated. Choir singing is an activity known to improve mood and to induce feelings of social closeness, and may therefore be used to investigate the effects of positive social experiences on OXT system activity. We quantified mood and salivary OXT and cortisol (CORT) concentrations before, during, and after both choir and solo singing performed in a randomized order in the same participants (repeated measures). Happiness was increased, and worry and sadness as well as salivary CORT concentrations were reduced, after both choir and solo singing. Surprisingly, salivary OXT concentrations were significantly reduced after choir singing, but did not change in response to solo singing. Salivary OXT concentrations showed high intra-individual stability, whereas salivary CORT concentrations fluctuated between days within participants. The present data indicate that the social experience of choir singing does not induce peripheral OXT secretion, as indicated by unchanged salivary OXT levels. Rather, the reduction of stress/arousal experienced during choir singing may lead to an inhibition of peripheral OXT secretion. These data are important for the interpretation of future reports on salivary OXT concentrations, and emphasize the need to strictly control for stress/arousal when designing similar experiments.
Collapse
Affiliation(s)
- T Moritz Schladt
- Department of Behavioural and Molecular Neurobiology, University of RegensburgRegensburg, Germany
| | - Gregory C Nordmann
- Department of Behavioural and Molecular Neurobiology, University of RegensburgRegensburg, Germany
| | - Roman Emilius
- University Choir Regensburg, University of RegensburgRegensburg, Germany
| | - Brigitte M Kudielka
- Department of Medical Psychology, Psychological Diagnostics and Research Methodology, University of RegensburgRegensburg, Germany
| | - Trynke R de Jong
- Department of Behavioural and Molecular Neurobiology, University of RegensburgRegensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of RegensburgRegensburg, Germany
| |
Collapse
|
169
|
Rault JL, van den Munkhof M, Buisman-Pijlman FTA. Oxytocin as an Indicator of Psychological and Social Well-Being in Domesticated Animals: A Critical Review. Front Psychol 2017; 8:1521. [PMID: 28955264 PMCID: PMC5601408 DOI: 10.3389/fpsyg.2017.01521] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/22/2017] [Indexed: 12/15/2022] Open
Abstract
Oxytocin is often portrayed as a hormone specific to social behavior, reflective of positive welfare states, and linked to mental states. Research on oxytocin in domesticated animal species has been few to date but is rapidly increasing (in dog, pig, cattle, sheep), with direct implications for animal welfare. This review evaluates the evidence for the specificity of oxytocin as an indicator of: 1. Social, 2. Positive, and 3. Psychological well-being. Oxytocin has most often been studied in socially relevant paradigms, with a lack of non-social control paradigms. Oxytocin research appears biased toward investigating positive valence, with a lack of control in valence or arousal. Oxytocin actions are modulated by the environmental and social contexts, which are important factors to consider. Limited evidence supports that oxytocin's actions are linked to psychological states; nevertheless whether this is a direct effect of oxytocin per se remains to be demonstrated. Overall, it is premature to judge oxytocin's potential as an animal welfare indicator given the few and discrepant findings and a lack of standardization in methodology. We cover potential causes for discrepancies and suggest solutions through appropriate methodological design, oxytocin sampling or delivery, analysis and reporting. Of particular interest, the oxytocinergic system as a whole remains poorly understood. Appreciation for the differences that social contact and group living pose in domesticated species and the way they interact with humans should be key considerations in using oxytocin as a psychosocial indicator of well-being.
Collapse
Affiliation(s)
- Jean-Loup Rault
- Faculty of Veterinary and Agricultural Sciences, Animal Welfare Science Centre, University of MelbourneParkville, VIC, Australia.,Institute of Animal Husbandry and Animal Welfare, University of Veterinary MedicineVienna, Austria
| | | | - Femke T A Buisman-Pijlman
- Adelaide Medical School, University of AdelaideAdelaide, SA, Australia.,Robinson Research Institute, University of AdelaideAdelaide, SA, Australia
| |
Collapse
|
170
|
Temesi A, Thuróczy J, Balogh L, Miklósi Á. Increased Serum and Urinary Oxytocin Concentrations after Nasal Administration in Beagle Dogs. Front Vet Sci 2017; 4:147. [PMID: 28929104 PMCID: PMC5591891 DOI: 10.3389/fvets.2017.00147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/21/2017] [Indexed: 12/02/2022] Open
Abstract
In recent years more and more studies have revealed the effect of extraneous oxytocin on the social behavior of dogs. The distribution of administered oxytocin in different physiologically relevant compartments is important because this knowledge forms the basis for the timing of behavior tests after the administration. Most behavioral studies rely on the non-invasive intranasal application of oxytocin. The aim of this study was to determine the time course of intranasal administered oxytocin secretion into blood and urine and also establish a connection between intranasal received oxytocin and urinary cortisol in dogs. In our experiment, four dogs received three puffs, 12 IU intranasal oxytocin treatment, two dogs received three puffs intranasal placebo treatment. Blood and urine samples were collected immediately prior to the administration then regularly during 4 h. After nasal oxytocin application, the serum oxytocin concentration increased, reached a maximum 15 min after the treatment and then rapidly returned to baseline levels 45 min later. The peak urinary oxytocin concentration occurred between 45 and 60 min after administration and returned to baseline levels slowly. We found considerable differences among individuals in the secretion of oxytocin in both the serum and the urinary oxytocin concentration measurements. Our results confirm that intranasally administered oxytocin passes into the blood stream. The time course of intranasally administered oxytocin secretion is similar to the time course of intravenously administered oxytocin secretion, and the peak values are also similar in both the serum and the urinary oxytocin concentration measurements, although there are large individual differences.
Collapse
Affiliation(s)
- Andrea Temesi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | | - Lajos Balogh
- National Public Health Center, National Research Directorate for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| |
Collapse
|
171
|
Functional New World monkey oxytocin forms elicit an altered signaling profile and promotes parental care in rats. Proc Natl Acad Sci U S A 2017; 114:9044-9049. [PMID: 28784762 DOI: 10.1073/pnas.1711687114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The neurohormone oxytocin is a key player in the modulation of reproductive and social behavioral traits, such as parental care. Recently, a correlation between different forms of oxytocin and behavioral phenotypes has been described in the New World Monkeys (NWMs). Here, we demonstrate that, compared with the Leu8OXT found in most placental mammals, the Cebidae Pro8OXT and Saguinus Val3Pro8OXT taxon-specific variants act as equi-efficacious agonists for the Gq-dependent pathway but are weaker agonists for the β-arrestin engagement and subsequent endocytosis toward the oxytocin receptor (OXTR). Upon interaction with the AVPR1a, Pro8OXT and the common Leu8OXT yielded similar signaling profiles, being equally efficacious on Gq and β-arrestin, while Val3Pro8OXT showed reduced relative efficacy toward β-arrestin. Intranasal treatment with either of the variants increased maternal behavior and also promoted unusual paternal care in rats, as measured by pup-retrieval tests. We therefore suggest that Val3Pro8OXT and Pro8OXT are functional variants, which might have been evolutionarily co-opted as an essential part of the adaptive genetic repertoire that allowed the emergence of taxon-specific complex social behaviors, such as intense parental care in the Cebidae and the genus Saguinus.
Collapse
|
172
|
[Oxytocin and the mechanisms of alcohol dependence]. NEUROPSYCHIATRIE : KLINIK, DIAGNOSTIK, THERAPIE UND REHABILITATION : ORGAN DER GESELLSCHAFT ÖSTERREICHISCHER NERVENÄRZTE UND PSYCHIATER 2017. [PMID: 28639210 DOI: 10.1007/s40211-017-0229-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the crucial purposes of treating alcohol-dependent patients is to enhance their ability to stay abstinent after detoxification therapy. Anxiety and stress vulnerability are the main factors provoking alcohol craving and relapse. In the first months of abstinence, alcohol-dependent patients frequently show sleep disturbances, irritability and depression, indicating chronic activation of stress pathways. In addition, the loss of confidence in interpersonal interactions results in social withdrawal and reduced willingness to participate in therapeutic programs.Current research shows that the peptide hormone oxytocin exerts substantial anxiolytic effects and facilitates prosocial behavior. Oxytocin can be safely applied as intranasal preparation. Oxytocin acts by inhibiting the effects of the corticotropin-releasing factor on GABAergic interneurons in the amygdala and paraventricular nucleus of hypothalamus.Recent research strongly suggests that application of oxytocin may beneficially influence the mechanisms of relapse and craving by reduction of anxiety, stress vulnerability and social withdrawal in abstinent alcohol-dependent patients.This article reviews neurobiological mechanisms of oxytocin effects on stress-related pathways and discusses the potential use of oxytocin in the treatment of alcohol addiction.
Collapse
|
173
|
Florez Acevedo S, Cardenas Parra LF. Rol Modulador de la Oxitocina en la Interacción Social y el Estrés Social. UNIVERSITAS PSYCHOLOGICA 2017. [DOI: 10.11144/javeriana.upsy15-5.rmoi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
La Oxitocina es un neuropéptido conocido por facilitar funciones del sistema nervioso periférico, relacionadas específicamente con el sistema reproductivo. Sin embargo, en las últimas décadas se ha reconocido la función moduladora de la Oxitocina en el comportamiento social, a través de su liberación en el sistema nervioso central. Así mismo, estudios han mencionado que la Oxitocina es un potencial ansiolítico cuando un individuo ha sido sometido a estrés social. Por lo tanto, el objetivo de esta revisión es presentar una caracterización de la Oxitocina y su relación con distintas formas de interacción social y el estrés social; a través de los resultados presentados en distintos estudios, tanto en modelos animales como en humanos. Además, se intenta mostrar la importancia de continuar con el estudio de la Oxitocina, dados los posibles vacíos teóricos y experimentales existentes, teniendo en cuenta las potenciales cualidades ansiolíticas de esta hormona.
Collapse
|
174
|
Liu Y, Conboy I. Unexpected evolutionarily conserved rapid effects of viral infection on oxytocin receptor and TGF-β/pSmad3. Skelet Muscle 2017; 7:7. [PMID: 28506310 PMCID: PMC5433165 DOI: 10.1186/s13395-017-0125-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
Background shRNA lentiviral vectors are extensively used for gene knockdowns in mammalian cells, and non-target shRNAs typically are considered the proper experimental control for general changes caused by RNAi. However, the effects of non-target lentivirus controls on the modulation of cell signaling pathways remain largely unknown. In this study, we evaluated the effect of control lentiviral transduction on oxytocin receptor (OXTR) expression through the ERK/MAPK pathway in mouse and human skeletal muscle cells, on myogenic activity, and in vivo on mouse muscle regeneration. Furthermore, we mined published data for the influence of viral infections on OXTR levels in human populations and found that unrelated viral pathologies have a common consequence: diminished levels of OXTR. Methods We examined the change in OXTR mRNA expression upon transduction with control and Smad3-targeting viral vectors through real time RT-PCR and Western blotting, and confirmed with immunofluorescence. Changes in Smad3 and OXTR expression were examined both in vitro with mouse and human myoblasts and in vivo in mouse satellite cells. The general effects of viral infections on OXTR downregulation in humans were also examined by analyzing published Gene Expression Omnibus (GEO) datasets. The change in myoblast myogenic activity caused by the viral transduction (the percent of Pax7 + Ki67+ cells) was examined by immunofluorescence. Results Results shown in this work establish that lentiviral control vectors significantly downregulate OXTR expression at mRNA and protein levels and diminish key downstream effectors of OXTR, ERK signaling, reducing the myogenic proliferation of infected cells. This effect is evolutionarily conserved between mouse and human myogenic cells, and it manifests in satellite cells after control lentiviral transduction of mice in vivo. Furthermore, an examination of published datasets uncovered similar OXTR downregulation in humans that are afflicted with different viral infections. Additionally, cells transduced with Smad3-targeting shRNA downregulate OXTR even more than cells transduced with control viruses. Conclusions Our work suggests that experimental cohorts transduced with control viruses may not behave the same as un-transduced cells and animals, specifically that control viral vectors significantly change the intensity of key cell-signaling pathways, such as OXTR/ERK. Our results further demonstrate that lentiviral transduction significantly decreases myogenic proliferation and suggest that viral infections in general may play a role in decreasing muscle health and regeneration, a decline in metabolic health, and a lower sense of well-being, as these rely on effective OXTR signaling. Additionally, our data suggest pathway crosstalk between TGF-β/pSmad3 and OXTR, implying that sustained attenuation of the TGF-β/pSmad3 pathway will reduce pro-regenerative OXTR/pERK signaling. Electronic supplementary material The online version of this article (doi:10.1186/s13395-017-0125-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yutong Liu
- Department of Bioengineering and QB3 Institute, Univerisity of California, Berkeley, 174 Stanley Hall, Berkeley, CA, 94720, USA.
| | - Irina Conboy
- Department of Bioengineering and QB3 Institute, Univerisity of California, Berkeley, 174 Stanley Hall, Berkeley, CA, 94720, USA.
| |
Collapse
|
175
|
Chen J. Empathy for Distress in Humans and Rodents. Neurosci Bull 2017; 34:216-236. [PMID: 28493169 DOI: 10.1007/s12264-017-0135-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 01/10/2023] Open
Abstract
Empathy is traditionally thought to be a unique ability of humans to feel, understand, and share the emotional state of others. However, the notion has been greatly challenged by the emerging discoveries of empathy for pain or distress in rodents. Because empathy is believed to be fundamental to the formation of prosocial, altruistic, and even moral behaviors in social animals and humans, studies associated with decoding the neural circuits and unraveling the underlying molecular and neural mechanisms of empathy for pain or distress in rodents would be very important and encouraging. In this review, the author set out to outline and update the concept of empathy from the evolutionary point of view, and introduce up-to-date advances in the study of empathy and its neural correlates in both humans and rodents. Finally, the author highlights the perspectives and challenges for the further use of rodent models in the study of empathy for pain or distress.
Collapse
Affiliation(s)
- Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China. .,Key Laboratory of Brain Stress and Behavior, PLA, Xi'an, 710038, China. .,Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
176
|
Yang S, Dong X, Guo X, Han Y, Song H, Gao L, Dai W, Su Y, Zhang X. Serum Oxytocin Levels and an Oxytocin Receptor Gene Polymorphism (rs2254298) Indicate Social Deficits in Children and Adolescents with Autism Spectrum Disorders. Front Neurosci 2017; 11:221. [PMID: 28484366 PMCID: PMC5399030 DOI: 10.3389/fnins.2017.00221] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022] Open
Abstract
The neuropeptide oxytocin (OT) and its receptor (OXTR) have been predicted to be involved in the regulation of social functioning in autism spectrum disorders (ASD). Objective of the study was to investigate serum OT levels and the OXTR rs2254298 polymorphism in Chinese Han children and adolescents with ASD as well as to identify their social deficits relevant to the oxytocinergic system. We tested serum OT levels using ELISA in 55 ASD subjects and 110 typically developing (TD) controls as well as genotyped the OXTR rs2254298 polymorphism using PCR-RFLP in 100 ASD subjects and 232 TD controls. Autistic symptoms were assessed by the Autism Behavior Checklist (ABC) and the Childhood Autism Rating Scale (CARS). There were no significant associations between OXTR rs2254298 polymorphism and ASD, serum OT levels and age, as well as serum OT levels and intelligent quotient (IQ) in both ASD and TD groups. However, ASD subjects exhibited elevated serum OT levels compared to TD controls and positive correlations between serum OT levels and “adaptation to change score” in the CARS and CARS total scores. Moreover, in the ASD group, significant relationships were revealed between the single-nucleotide polymorphism (SNP) rs2254298 and serum OT levels, the category “stereotypes and object use” in the ABC and the category “adaptation to change” in the CARS. These findings indicated that individuals with ASD may exhibit a dysregulation in OT on the basis of changes in OXTR gene expression as well as environmentally induced alterations of the oxytocinergic system to determine their social deficits.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xiaopeng Dong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xuan Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yu Han
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Hanbing Song
- Department of Applied Science, The College of William and MaryWilliamsburg, VA, USA
| | - Lei Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Wei Dai
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Yuanyuan Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| | - Xin Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Tianjin Medical UniversityTianjin, China
| |
Collapse
|
177
|
Rigo P, De Pisapia N, Bornstein MH, Putnick DL, Serra M, Esposito G, Venuti P. Brain processes in women and men in response to emotive sounds. Soc Neurosci 2017; 12:150-162. [PMID: 26905380 PMCID: PMC5822002 DOI: 10.1080/17470919.2016.1150341] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Adult appropriate responding to salient infant signals is vital to child healthy psychological development. Here we investigated how infant crying, relative to other emotive sounds of infant laughing or adult crying, captures adults' brain resources. In a sample of nulliparous women and men, we investigated the effects of different sounds on cerebral activation of the default mode network (DMN) and reaction times (RTs) while listeners engaged in self-referential decision and syllabic counting tasks, which, respectively, require the activation or deactivation of the DMN. Sounds affect women and men differently. In women, infant crying deactivated the DMN during the self-referential decision task; in men, female adult crying interfered with the DMN during the syllabic counting task. These findings point to different brain processes underlying responsiveness to crying in women and men and show that cerebral activation is modulated by situational contexts in which crying occurs.
Collapse
Affiliation(s)
- Paola Rigo
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Nicola De Pisapia
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Marc H. Bornstein
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Diane L. Putnick
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Mauro Serra
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
- Division of Psychology, Nanyang Technological University, Singapore, Singapore
| | - Paola Venuti
- Department of Psychology and Cognitive Science, University of Trento, Trento, Italy
| |
Collapse
|
178
|
Zhou YT, He ZG, Liu TT, Feng MH, Zhang DY, Xiang HB. Neuroanatomical circuitry between kidney and rostral elements of brain: a virally mediated transsynaptic tracing study in mice. ACTA ACUST UNITED AC 2017; 37:63-69. [PMID: 28224417 DOI: 10.1007/s11596-017-1695-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Indexed: 12/13/2022]
Abstract
The identity of higher-order neurons and circuits playing an associative role to control renal function is not well understood. We identified specific neural populations of rostral elements of brain regions that project multisynaptically to the kidneys in 3-6 days after injecting a retrograde tracer pseudorabies virus (PRV)-614 into kidney of 13 adult male C57BL/6J strain mice. PRV-614 infected neurons were detected in a number of mesencephalic (e.g. central amygdala nucleus), telencephalic regions and motor cortex. These divisions included the preoptic area (POA), dorsomedial hypothalamus (DMH), lateral hypothalamus, arcuate nucleus (Arc), suprachiasmatic nucleus (SCN), periventricular hypothalamus (PeH), and rostral and caudal subdivision of the paraventricular nucleus of the hypothalamus (PVN). PRV-614/Tyrosine hydroxylase (TH) double-labeled cells were found within DMH, Arc, SCN, PeH, PVN, the anterodorsal and medial POA. A subset of neurons in PVN that participated in regulating sympathetic outflow to kidney was catecholaminergic or serotonergic. PRV-614 infected neurons within the PVN also contained arginine vasopressin or oxytocin. These data demonstrate the rostral elements of brain innervate the kidney by the neuroanatomical circuitry.
Collapse
Affiliation(s)
- Ye-Ting Zhou
- Department of Surgery, Shuyang Hospital, Shuyang, 223600, China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhangnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Ding-Yu Zhang
- Intensive Care Unit, Wuhan Medical Treatment Center, Wuhan, 430023, China.
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
179
|
de Visser EJ, Monfort SS, Goodyear K, Lu L, O'Hara M, Lee MR, Parasuraman R, Krueger F. A Little Anthropomorphism Goes a Long Way. HUMAN FACTORS 2017; 59:116-133. [PMID: 28146673 PMCID: PMC5477060 DOI: 10.1177/0018720816687205] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
OBJECTIVE We investigated the effects of exogenous oxytocin on trust, compliance, and team decision making with agents varying in anthropomorphism (computer, avatar, human) and reliability (100%, 50%). BACKGROUND Authors of recent work have explored psychological similarities in how people trust humanlike automation compared with how they trust other humans. Exogenous administration of oxytocin, a neuropeptide associated with trust among humans, offers a unique opportunity to probe the anthropomorphism continuum of automation to infer when agents are trusted like another human or merely a machine. METHOD Eighty-four healthy male participants collaborated with automated agents varying in anthropomorphism that provided recommendations in a pattern recognition task. RESULTS Under placebo, participants exhibited less trust and compliance with automated aids as the anthropomorphism of those aids increased. Under oxytocin, participants interacted with aids on the extremes of the anthropomorphism continuum similarly to placebos but increased their trust, compliance, and performance with the avatar, an agent on the midpoint of the anthropomorphism continuum. CONCLUSION This study provides the first evidence that administration of exogenous oxytocin affected trust, compliance, and team decision making with automated agents. These effects provide support for the premise that oxytocin increases affinity for social stimuli in automated aids. APPLICATION Designing automation to mimic basic human characteristics is sufficient to elicit behavioral trust outcomes that are driven by neurological processes typically observed in human-human interactions. Designers of automated systems should consider the task, the individual, and the level of anthropomorphism to achieve the desired outcome.
Collapse
Affiliation(s)
| | - Samuel S Monfort
- George Mason University, Fairfax, Virginia
- George Mason University, Fairfax, Virginia
| | - Kimberly Goodyear
- Brown University, Providence, Rhode Island
- George Mason University, Fairfax, Virginia
| | - Li Lu
- George Mason University, Fairfax, Virginia
- George Mason University, Fairfax, Virginia
| | - Martin O'Hara
- Virginia Hospital Center, Fairfax Hospital, Arlington, Virginia
- George Mason University, Fairfax, Virginia
| | - Mary R Lee
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
- George Mason University, Fairfax, Virginia
| | | | | |
Collapse
|
180
|
Cservenák M, Keller D, Kis V, Fazekas EA, Öllös H, Lékó AH, Szabó ÉR, Renner É, Usdin TB, Palkovits M, Dobolyi Á. A Thalamo-Hypothalamic Pathway That Activates Oxytocin Neurons in Social Contexts in Female Rats. Endocrinology 2017; 158:335-348. [PMID: 27841935 PMCID: PMC5413079 DOI: 10.1210/en.2016-1645] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022]
Abstract
Oxytocin is released from neurons in the paraventricular hypothalamic nucleus (PVN) in mothers upon suckling and during adult social interactions. However, neuronal pathways that activate oxytocin neurons in social contexts are not yet established. Neurons in the posterior intralaminar complex of the thalamus (PIL), which contain tuberoinfundibular peptide 39 (TIP39) and are activated by pup exposure in lactating mothers, provide a candidate projection. Innervation of oxytocin neurons by TIP39 neurons was examined by double labeling in combination with electron microscopy and retrograde tract-tracing. Potential classic neurotransmitters in TIP39 neurons were investigated by in situ hybridization histochemistry. Neurons activated after encounter with a familiar conspecific female in a familiar environment were mapped with the c-Fos technique. PVN and the supraoptic nucleus oxytocin neurons were closely apposed by an average of 2.0 and 0.4 TIP39 terminals, respectively. Asymmetric (presumed excitatory) synapses were found between TIP39 terminals and cell bodies of oxytocin neurons. In lactating rats, PIL TIP39 neurons were retrogradely labeled from the PVN. TIP39 neurons expressed vesicular glutamate transporter 2 but not glutamic acid decarboxylase 67. PIL contained a markedly increased number of c-Fos-positive neurons in response to social encounter with a familiar conspecific female. Furthermore, the PIL received ascending input from the spinal cord and the inferior colliculus. Thus, TIP39 neurons in the PIL may receive sensory input in response to social interactions and project to the PVN to innervate and excite oxytocin neurons, suggesting that the PIL-PVN projection contributes to the activation of oxytocin neurons in social contexts.
Collapse
Affiliation(s)
- Melinda Cservenák
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Dávid Keller
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Viktor Kis
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Emese A Fazekas
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | - Hanna Öllös
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
| | - András H Lékó
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Éva R Szabó
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| | - Éva Renner
- MTA-SE NAP Human Brain Tissue Bank Microdissection Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Ted B Usdin
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland
| | - Miklós Palkovits
- MTA-SE NAP Human Brain Tissue Bank Microdissection Laboratory, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Cell and Developmental Biology, Institute of Biology, Eötvös Loránd University, Budapest , Hungary
| |
Collapse
|
181
|
Herget U, Gutierrez-Triana JA, Salazar Thula O, Knerr B, Ryu S. Single-Cell Reconstruction of Oxytocinergic Neurons Reveals Separate Hypophysiotropic and Encephalotropic Subtypes in Larval Zebrafish. eNeuro 2017; 4:ENEURO.0278-16.2016. [PMID: 28317020 PMCID: PMC5356222 DOI: 10.1523/eneuro.0278-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/24/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022] Open
Abstract
Oxytocin regulates a diverse set of processes including stress, analgesia, metabolism, and social behavior. How such diverse functions are mediated by a single hormonal system is not well understood. Different functions of oxytocin could be mediated by distinct cell groups, yet it is currently unknown whether different oxytocinergic cell types exist that specifically mediate peripheral neuroendocrine or various central neuromodulatory processes via dedicated pathways. Using the Brainbow technique to map the morphology and projections of individual oxytocinergic cells in the larval zebrafish brain, we report here the existence of two main types of oxytocinergic cells: those that innervate the pituitary and those that innervate diverse brain regions. Similar to the situation in the adult rat and the adult midshipman, but in contrast to the situation in the adult trout, these two cell types are mutually exclusive and can be distinguished based on morphological and anatomical criteria. Further, our results reveal that complex oxytocinergic innervation patterns are already established in the larval zebrafish brain.
Collapse
Affiliation(s)
- Ulrich Herget
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Jose Arturo Gutierrez-Triana
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Oriana Salazar Thula
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Boris Knerr
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Soojin Ryu
- Developmental Genetics of the Nervous System, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
- Focus Program Translational Neuroscience, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
182
|
Walcott AT, Ryabinin AE. Alcohol's Effects on Pair-Bond Maintenance in Male Prairie Voles. Front Psychiatry 2017; 8:226. [PMID: 29204125 PMCID: PMC5698799 DOI: 10.3389/fpsyt.2017.00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/24/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol abuse can have devastating effects on social relationships. In particular, discrepant patterns of heavy alcohol consumption are associated with increased rates of separation and divorce. Previous studies have attempted to model these effects of alcohol using socially monogamous prairie voles. These studies showed that alcohol consumption can inhibit the formation of pair bonds in this species. While these findings indicated that alcohol's effects on social attachments can involve biological mechanisms, the formation of pair bonds does not properly model long-term human attachments. To overcome this caveat, this study explored whether discordant or concordant alcohol consumption between individuals within established pairs affects maintenance of pair bonds in male prairie voles. Male and female prairie voles were allowed to form a pair bond for 1 week. Following this 1-week cohabitation period, males received access to 10% continuous ethanol; meanwhile, their female partners had access to either alcohol and water or just water. When there was a discrepancy in alcohol consumption, male prairie voles showed a decrease in partner preference (PP). Conversely, when concordant drinking occurred, males showed no inhibition in PP. Further analysis revealed a decrease in oxytocin immunoreactivity in the paraventricular nucleus of alcohol-exposed males that was independent of the drinking status of their female partners. On the other hand, only discordant alcohol consumption resulted in an increase of FosB immunoreactivity in the periaqueductal gray of male voles, a finding suggesting a potential involvement of this brain region in the effects of alcohol on maintenance of pair bonds. Our studies provide the first evidence that alcohol has effects on established pair bonds and that partner drinking status plays a large role in these effects.
Collapse
Affiliation(s)
- Andre T Walcott
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
183
|
Johnson ZV, Walum H, Xiao Y, Riefkohl PC, Young LJ. Oxytocin receptors modulate a social salience neural network in male prairie voles. Horm Behav 2017; 87:16-24. [PMID: 27793769 PMCID: PMC5207344 DOI: 10.1016/j.yhbeh.2016.10.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/05/2016] [Accepted: 10/23/2016] [Indexed: 11/21/2022]
Abstract
Social behavior is regulated by conserved neural networks across vertebrates. Variation in the organization of neuropeptide systems across these networks is thought to contribute to individual and species diversity in network function during social contexts. For example, oxytocin (OT) is an ancient neuropeptide that binds to OT receptors (OTRs) in the brain and modulates social and reproductive behavior across vertebrate species, including humans. Central OTRs exhibit extraordinarily diverse expression patterns that are associated with individual and species differences in social behavior. In voles, OTR density in the nucleus accumbens (NAc)-a region important for social and reward learning-is associated with individual and species variation in social attachment behavior. Here we test whether OTRs in the NAc modulate a social salience network (SSN)-a network of interconnected brain nuclei thought to encode valence and incentive salience of sociosensory cues-during a social context in the socially monogamous male prairie vole. Using a selective OTR antagonist, we test whether activation of OTRs in the NAc during sociosexual interaction and mating modulates expression of the immediate early gene product Fos across nuclei of the SSN. We show that blockade of endogenous OTR signaling in the NAc during sociosexual interaction and mating does not strongly modulate levels of Fos expression in individual nodes of the network, but strongly modulates patterns of correlated Fos expression between the NAc and other SSN nuclei.
Collapse
Affiliation(s)
- Zachary V Johnson
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Hasse Walum
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Yao Xiao
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Paula C Riefkohl
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Larry J Young
- Silvio O. Conte Center for Oxytocin and Social Cognition, Center for Translational Social Neuroscience, Department of Psychiatry and Behavioral Sciences, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
184
|
Toepfer P, Heim C, Entringer S, Binder E, Wadhwa P, Buss C. Oxytocin pathways in the intergenerational transmission of maternal early life stress. Neurosci Biobehav Rev 2016; 73:293-308. [PMID: 28027955 DOI: 10.1016/j.neubiorev.2016.12.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/08/2016] [Accepted: 12/17/2016] [Indexed: 12/17/2022]
Abstract
Severe stress in early life, such as childhood abuse and neglect, constitutes a major risk factor in the etiology of psychiatric disorders and somatic diseases. Importantly, these long-term effects may impact the next generation. The intergenerational transmission of maternal early life stress (ELS) may occur via pre-and postnatal pathways, such as alterations in maternal-fetal-placental stress physiology, maternal depression during pregnancy and postpartum, as well as impaired mother-offspring interactions. The neuropeptide oxytocin (OT) has gained considerable attention for its role in modulating all of these assumed transmission pathways. Moreover, central and peripheral OT signaling pathways are highly sensitive to environmental exposures and may be compromised by ELS with implications for these putative transmission mechanisms. Together, these data suggest that OT pathways play an important role in the intergenerational transmission of maternal ELS in humans. By integrating recent studies on gene-environment interactions and epigenetic modifications in OT pathway genes, the present review aims to develop a conceptual framework of intergenerational transmission of maternal ELS that emphasizes the role of OT.
Collapse
Affiliation(s)
- Philipp Toepfer
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany
| | - Christine Heim
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; Department of Biobehavioral Health, Penn State University, 219 Biobehavioral Health Building University Park, PA, 16802, USA
| | - Sonja Entringer
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA
| | - Elisabeth Binder
- Max-Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, School of Medicine Atlanta, GA, 30307, USA
| | - Pathik Wadhwa
- UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA
| | - Claudia Buss
- Institute of Medical Psychology, Charité - Universitätsmedizin Berlin, Luisenstraße 57, 10117, Berlin, Germany; UC Irvine Development, Health and Disease Research Program, 333 The City Blvd. W, Suite 810, Orange, CA, 92868, USA.
| |
Collapse
|
185
|
Zhang JB, Chen L, Lv ZM, Niu XY, Shao CC, Zhang C, Pruski M, Huang Y, Qi CC, Song NN, Lang B, Ding YQ. Oxytocin is implicated in social memory deficits induced by early sensory deprivation in mice. Mol Brain 2016; 9:98. [PMID: 27964753 PMCID: PMC5155398 DOI: 10.1186/s13041-016-0278-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/01/2016] [Indexed: 12/04/2022] Open
Abstract
Early-life sensory input plays a crucial role in brain development. Although deprivation of orofacial sensory input at perinatal stages disrupts the establishment of the barrel cortex and relevant callosal connections, its long-term effect on adult behavior remains elusive. In this study, we investigated the behavioral phenotypes in adult mice with unilateral transection of the infraorbital nerve (ION) at postnatal day 3 (P3). Although ION-transected mice had normal locomotor activity, motor coordination, olfaction, anxiety-like behaviors, novel object memory, preference for social novelty and sociability, they presented deficits in social memory and spatial memory compared with control mice. In addition, the social memory deficit was associated with reduced oxytocin (OXT) levels in the hypothalamus and could be partially restored by intranasal administration of OXT. Thus, early sensory deprivation does result in behavioral alterations in mice, some of which may be associated with the disruption of oxytocin signaling.
Collapse
Affiliation(s)
- Jin-Bao Zhang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Ling Chen
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Zhu-Man Lv
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Xue-Yuan Niu
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Can-Can Shao
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Chan Zhang
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Michal Pruski
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.,School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Ying Huang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Cong-Cong Qi
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Ning-Ning Song
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Bing Lang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China.,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.,School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, Scotland, UK
| | - Yu-Qiang Ding
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China. .,Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Shanghai, 200092, People's Republic of China. .,Department of Anatomy and Neurobiology, Collaborative Innovation Center for Brain Science, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
186
|
Demirci E, Özmen S, Öztop DB. Relationship between Impulsivity and Serum Oxytocin in Male Children and Adolescents with Attention-Deficit and Hyperactivity Disorder: A Preliminary Study. Noro Psikiyatr Ars 2016; 53:291-295. [PMID: 28360801 DOI: 10.5152/npa.2015.10284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/11/2015] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Here we aimed to determine the relationship between oxytocin levels and impulsivity, which is an important aspect at Attention Deficit Hyperactivity Disorder (ADHD) clinics. METHODS The study population comprised 40 ADHD patients diagnosed based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime version, without other psychiatric disorders and chronic diseases aged between 8 and 15 years. The control group comprised 40 healthy, age-matched, male children and adolescents who voluntarily participated in the study. Patients and controls filled the Barratt impulsivity scale-11 (BIS-11). Ten cubic centimeters of blood was collected at 8 am for determining serum oxytocin levels. ELISA kits were used to measure serum oxytocin levels in a biochemistry laboratory. The obtained data were evaluated using appropriate statistical methods. RESULTS In this study, compared with the control group, the impulsivity scores were significantly higher and serum oxytocin levels were lower in the ADHD group (52.5±18.1 and 37.62±9.0, respectively, p<0.001). Serum oxytocin levels showed a negative correlation with impulsivity and attention subscale scores of BIS-11 in the ADHD group. CONCLUSION ADHD and impulsivity, which comprise an aspect of ADHD, may be associated with oxytocin. Serum oxytocin levels may contribute to inattention subtypes of impulsivity observed in ADHD.
Collapse
Affiliation(s)
- Esra Demirci
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri Turkey
| | - Sevgi Özmen
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri Turkey
| | - Didem Behice Öztop
- Department of Child and Adolescent Psychiatry, Erciyes University School of Medicine, Kayseri Turkey
| |
Collapse
|
187
|
Kourra CMBK, Cramer N. Converting disulfide bridges in native peptides to stable methylene thioacetals. Chem Sci 2016; 7:7007-7012. [PMID: 28451136 PMCID: PMC5355835 DOI: 10.1039/c6sc02285e] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/24/2016] [Indexed: 12/26/2022] Open
Abstract
Disulfide bridges play a crucial role in defining and rigidifying the three-dimensional structure of peptides. However, disulfides are inherently unstable in reducing environments. Consequently, the development of strategies aiming to circumvent these deficiencies - ideally with little structural disturbance - are highly sought after. Herein, we report a simple protocol converting the disulfide bond of peptides into highly stable methylene thioacetal. The transformation occurs under mild, biocompatible conditions, enabling the conversion of unprotected native peptides into analogues with enhanced stability. The developed protocol is applicable to a range of peptides and selective in the presence of a multitude of potentially reactive functional groups. The thioacetal modification annihilates the reductive lability and increases the serum, pH and temperature stability of the important peptide hormone oxytocin. Moreover, it is shown that the biological activities for oxytocin are retained.
Collapse
Affiliation(s)
- C M B K Kourra
- Laboratory of Asymmetric Catalysis and Synthesis , Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSA , BCH 4305 , CH-1015 Lausanne , Switzerland .
| | - N Cramer
- Laboratory of Asymmetric Catalysis and Synthesis , Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne , EPFL SB ISIC LCSA , BCH 4305 , CH-1015 Lausanne , Switzerland .
| |
Collapse
|
188
|
Oláh K, Elekes F, Turcsán B, Kis O, Topál J. Social Pre-treatment Modulates Attention Allocation to Transient and Stable Object Properties. Front Psychol 2016; 7:1619. [PMID: 27826267 PMCID: PMC5078729 DOI: 10.3389/fpsyg.2016.01619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence suggests that ostensive-communicative signals in social learning situations enable observers to focus their attention on the intrinsic features of an object (e.g., color) at the expense of ignoring transient object properties (e.g., location). Here we investigated whether off-line social cues, presented as social primes, have the same power to modulate attention allocation to stable and transient object properties as on-line ostensive-communicative cues. The first part of the experiment consisted of a pre-treatment phase, where adult male participants either received intensive social stimulation or were asked to perform non-social actions. Then, they participated in a change detection test, where they watched pairs of pictures depicting an array of five objects. On the second picture, a change occurred compared to the first picture. One object changed either its location (moving forward or backward) or was replaced by another object, and participants were required to indicate where the change had happened. We found that participants detected the change more successfully if it had happened in the location of the object; however, this difference was reduced following a socially intense pre-treatment phase. The results are discussed in relation to the claims of the natural pedagogy theory.
Collapse
Affiliation(s)
- Katalin Oláh
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary; Institute of Psychology, Eötvös Loránd UniversityBudapest, Hungary
| | - Fruzsina Elekes
- Institute of Psychology, Eötvös Loránd UniversityBudapest, Hungary; Cognitive Development Center, Central European UniversityBudapest, Hungary
| | - Borbála Turcsán
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary
| | - Orsolya Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of SciencesBudapest, Hungary; Department of Cognitive Science, Budapest University of Technology and EconomicsBudapest, Hungary
| | - József Topál
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences Budapest, Hungary
| |
Collapse
|
189
|
Daubenbüchel AMM, Hoffmann A, Eveslage M, Özyurt J, Lohle K, Reichel J, Thiel CM, Martens H, Geenen V, Müller HL. Oxytocin in survivors of childhood-onset craniopharyngioma. Endocrine 2016; 54:524-531. [PMID: 27585663 DOI: 10.1007/s12020-016-1084-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/09/2016] [Indexed: 01/15/2023]
Abstract
Quality of survival of childhood-onset craniopharyngioma patients is frequently impaired by hypothalamic involvement or surgical lesions sequelae such as obesity and neuropsychological deficits. Oxytocin, a peptide hormone produced in the hypothalamus and secreted by posterior pituitary gland, plays a major role in regulation of behavior and body composition. In a cross-sectional study, oxytocin saliva concentrations were analyzed in 34 long-term craniopharyngioma survivors with and without hypothalamic involvement or treatment-related damage, recruited in the German Childhood Craniopharyngioma Registry, and in 73 healthy controls, attending the Craniopharyngioma Support Group Meeting 2014. Oxytocin was measured in saliva of craniopharyngioma patients and controls before and after standardized breakfast and associations with gender, body mass index, hypothalamic involvement, diabetes insipidus, and irradiation were analyzed. Patients with preoperative hypothalamic involvement showed similar oxytocin levels compared to patients without hypothalamic involvement and controls. However, patients with surgical hypothalamic lesions grade 1 (anterior hypothalamic area) presented with lower levels (p = 0.017) of oxytocin under fasting condition compared to patients with surgical lesion of posterior hypothalamic areas (grade 2) and patients without hypothalamic lesions (grade 0). Craniopharyngioma patients' changes in oxytocin levels before and after breakfast correlated (p = 0.02) with their body mass index. Craniopharyngioma patients continue to secrete oxytocin, especially when anterior hypothalamic areas are not involved or damaged, but oxytocin shows less variation due to nutrition. Oxytocin supplementation should be explored as a therapeutic option in craniopharyngioma patients with hypothalamic obesity and/or behavioral pathologies due to lesions of specific anterior hypothalamic areas. Clinical trial number: KRANIOPHARYNGEOM 2000/2007(NCT00258453; NCT01272622).
Collapse
Affiliation(s)
- Anna M M Daubenbüchel
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, 26133 , Oldenburg, Germany
- University Medical Centre Groningen (UMCG), University of Groningen, 9712 , Groningen, The Netherlands
| | - Anika Hoffmann
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, 26133 , Oldenburg, Germany
| | - Maria Eveslage
- Institute of Biostatistics and Clinical Research, University of Münster, 48149 , Münster, Germany
| | - Jale Özyurt
- Biological Psychology Lab, Department of Psychology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University, 26129 , Oldenburg, Germany
| | - Kristin Lohle
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, 26133 , Oldenburg, Germany
| | - Julia Reichel
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, 26133 , Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Faculty of Medicine and Health Sciences, Carl von Ossietzky University, 26129 , Oldenburg, Germany
- Research Center Neurosensory Science and Cluster of Excellence "Hearing4all", Carl von Ossietzky University, 26129 , Oldenburg, Germany
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, University of Liege Liege-Sart Tilman, 4000 , Liege, Belgium
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology, University of Liege Liege-Sart Tilman, 4000 , Liege, Belgium
| | - Hermann L Müller
- Department of Pediatrics, Klinikum Oldenburg AöR, Medical Campus University Oldenburg, 26133 , Oldenburg, Germany.
| |
Collapse
|
190
|
Timur ZK, Akyildiz Demir S, Seyrantepe V. Lysosomal Cathepsin A Plays a Significant Role in the Processing of Endogenous Bioactive Peptides. Front Mol Biosci 2016; 3:68. [PMID: 27826550 PMCID: PMC5078471 DOI: 10.3389/fmolb.2016.00068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
Lysosomal serine carboxypeptidase Cathepsin A (CTSA) is a multifunctional enzyme with distinct protective and catalytic function. CTSA present in the lysosomal multienzyme complex to facilitate the correct lysosomal routing, stability and activation of with beta-galactosidase and alpha-neuraminidase. Beside CTSA has role in inactivation of bioactive peptides including bradykinin, substances P, oxytocin, angiotensin I and endothelin-I by cleavage of 1 or 2 amino acid(s) from C-terminal ends. In this study, we aimed to elucidate the regulatory role of CTSA on bioactive peptides in knock-in mice model of CTSAS190A . We investigated the level of bradykinin, substances P, oxytocin, angiotensin I and endothelin-I in the kidney, liver, lung, brain and serum from CTSAS190A mouse model at 3- and 6-months of age. Our results suggest CTSA selectively contributes to processing of bioactive peptides in different tissues from CTSAS190A mice compared to age matched WT mice.
Collapse
Affiliation(s)
- Zehra Kevser Timur
- Izmir Institute of Technology, Molecular Biology and Genetics Izmir, Turkey
| | | | - Volkan Seyrantepe
- Izmir Institute of Technology, Molecular Biology and Genetics Izmir, Turkey
| |
Collapse
|
191
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
192
|
Diaz-Castro J, Pulido-Moran M, Moreno-Fernandez J, Kajarabille N, de Paco C, Garrido-Sanchez M, Prados S, Ochoa JJ. Gender specific differences in oxidative stress and inflammatory signaling in healthy term neonates and their mothers. Pediatr Res 2016; 80:595-601. [PMID: 27331351 DOI: 10.1038/pr.2016.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 03/23/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gender is a crucial determinant of life span, but little is known about gender differences in free radical homeostasis and inflammatory signaling. The aim of the study was to determine gender-related differences concerning oxidative stress and inflammatory signaling of healthy neonates and mothers. METHODS Fifty-six mothers with normal gestational course and spontaneous delivery were selected. Blood samples were collected from the mother (at the beginning of delivery and start of expulsive period) and from neonate (from umbilical cord vein and artery). RESULTS The mothers of girls featured a higher total antioxidant status and lower plasma hydroperoxides than the mother of boys. Regarding the neonates, the girls featured a higher total antioxidant status and lower plasma membrane hydroperoxides in umbilical cord artery together with higher catalase, glutathione peroxidase, and superoxide dismutase activities. Lower levels of interleukin 6, tumor necrosis factor alpha, and prostaglandin E2 were observed in the mothers of girls and higher level of soluble tumor necrosis factor receptor II. In the neonates, lower levels of interleukin 6 and tumor necrosis factor alpha were observed in umbilical artery and higher soluble tumor necrosis factor receptor II in umbilical cord vein and artery of girls. CONCLUSION An association between gender, oxidative stress, and inflammation signaling exists, leading to a renewed interest in the neonate's sex as a potential risk factor to several alterations.
Collapse
Affiliation(s)
- Javier Diaz-Castro
- Department of Physiology, University of Granada, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain
| | - Mario Pulido-Moran
- Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology II, University of Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, University of Granada, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain
| | - Naroa Kajarabille
- Department of Physiology, University of Granada, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain
| | - Catalina de Paco
- Department Obstetrics and Gynecology, School of Medicine, University of Granada, Spain.,Service of Obstetrics and Gynecology, University Hospital San Cecilio, Granada, Spain
| | - Maria Garrido-Sanchez
- Department Obstetrics and Gynecology, School of Medicine, University of Granada, Spain.,Service of Obstetrics and Gynecology, University Hospital San Cecilio, Granada, Spain
| | - Sonia Prados
- Department Obstetrics and Gynecology, School of Medicine, University of Granada, Spain.,Service of Obstetrics and Gynecology, University Hospital San Cecilio, Granada, Spain
| | - Julio J Ochoa
- Department of Physiology, University of Granada, Granada, Spain.,Institute of Nutrition and Food Technology "José Mataix Verdú", University of Granada, Granada, Spain
| |
Collapse
|
193
|
Leng G, Sabatier N. Measuring Oxytocin and Vasopressin: Bioassays, Immunoassays and Random Numbers. J Neuroendocrinol 2016; 28:10.1111/jne.12413. [PMID: 27467712 PMCID: PMC5096068 DOI: 10.1111/jne.12413] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 12/26/2022]
Abstract
In this review, we consider the ways in which vasopressin and oxytocin have been measured since their first discovery. Two different ways of measuring oxytocin in widespread use currently give values in human plasma that differ by two orders of magnitude, and the values measured by these two methods in the same samples show no correlation. The notion that we should accept this seems absurd. Either one (or both) methods is not measuring oxytocin, or, by 'oxytocin', the scientists that use these different methods mean something very different. If these communities are to talk to each other, it is important to validate one method and invalidate the other, or else to establish exactly what each community understands by 'oxytocin'. A similar issue concerns vasopressin: again, different ways of measuring vasopressin give values in human plasma that differ by two orders of magnitude, and it appears that the same explanation for discrepant oxytocin measurements applies to discrepant vasopressin measurements. The first assays for oxytocin and vasopressin measured biological activity directly. When immunoassays were introduced, they encountered problems: high molecular weight factors in raw plasma interfered with the binding of antibodies to the hormones, leading to high and erroneous readings. When these interfering factors were removed by extraction of plasma samples, immunoassays gave measurements consistent with bioassays, with measures of turnover and with the sensitivity of target tissues to exogenous hormone. However, many recent papers use an enzyme-linked immunoassay to measure plasma levels without extracting the samples. Like the first radioimmunassays of unextracted plasma, this generates impossibly high and wholly erroneous measurements.
Collapse
Affiliation(s)
- G Leng
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | - N Sabatier
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
194
|
Chow LH, Chen YH, Wu WC, Chang EP, Huang EYK. Sex Difference in Oxytocin-Induced Anti-Hyperalgesia at the Spinal Level in Rats with Intraplantar Carrageenan-Induced Inflammation. PLoS One 2016; 11:e0162218. [PMID: 27606886 PMCID: PMC5015916 DOI: 10.1371/journal.pone.0162218] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/18/2016] [Indexed: 01/19/2023] Open
Abstract
Previously, we demonstrated intrathecal administration of oxytocin strongly induced anti-hyperalgesia in male rats. By using an oxytocin-receptor antagonist (atosiban), the descending oxytocinergic pathway was found to regulate inflammatory hyperalgesia in our previous study using male rats. The activity of this neural pathway is elevated during hyperalgesia, but whether this effect differs in a sex-dependent manner remains unknown. We conducted plantar tests on adult male and female virgin rats in which paw inflammation was induced using carrageenan. Exogenous (i.t.) application of oxytocin exerted no anti-hyperalgesic effect in female rats, except at an extremely high dose. Female rats exhibited similar extent of hyperalgesia to male rats did when the animals received the same dose of carrageenan. When atosiban was administered alone, the severity of hyperalgesia was not increased in female rats. Moreover, insulin-regulated aminopeptidase (IRAP) was expressed at higher levels in the spinal cords of female rats compared with those of male rats. Oxytocin-induced anti-hyperalgesia exhibits a sex-dependent difference in rats. This difference can partially result from the higher expression of IRAP in the spinal cords of female rats, because IRAP functions as an enzyme that degrades oxytocin. Our study confirms the existence of a sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats.
Collapse
Affiliation(s)
- Lok-Hi Chow
- Department of Anesthesiology, National Defense Medical Center, Taipei, Nei-Hu, Taiwan, ROC
- Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Anesthesiology, National Yang-Ming University, School of Medicine, Taipei, Taiwan, ROC
| | - Yuan-Hao Chen
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Nei-Hu, Taiwan, ROC
| | - Wan-Chuan Wu
- Department of Pharmacology, National Defense Medical Center, Nei-Hu, Taipei, Taiwan, ROC
| | - En-Pei Chang
- Department of Pharmacology, National Defense Medical Center, Nei-Hu, Taipei, Taiwan, ROC
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Nei-Hu, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
195
|
Gong L, Li J, Tang Y, Han T, Wei C, Yu X, Li J, Wang R, Ma X, Liu K, Geng L, Liu S, Yan B, Liu C. The antinociception of oxytocin on colonic hypersensitivity in rats was mediated by inhibition of mast cell degranulation via Ca(2+)-NOS pathway. Sci Rep 2016; 6:31452. [PMID: 27538454 PMCID: PMC4990927 DOI: 10.1038/srep31452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/18/2016] [Indexed: 12/17/2022] Open
Abstract
This study was conducted to investigate the effects of oxytocin (OT) on visceral hypersensitivity/pain and mast cell degranulation and the underlying mechanisms. We found that oxytocin receptor (OTR) was expressed in colonic mast cells in humans and rats, as well as in human mast cell line-1 (HMC-1), rat basophilic leukemia cell line (RBL-2H3) and mouse mastocytoma cell line (P815). OT decreased 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, colonic mast cell degranulation and histamine release after mast cell degranulation in rats. Also, OT attenuated the compound 48/80 (C48/80)-evoked histamine release in P815 cells and inward currents, responsible for the mast cell degranulation, in HMC-1, RBL-2H3 and P815 cells. Moreover, these protective effects of OT against visceral hypersensitivity and mast cell degranulation were eliminated by coadministration of OTR antagonist atosiban or a nonselective inhibitor of nitric oxide synthase (NOS), NG-Methyl-L-arginine acetate salt (L-NMMA). Notably, OT evoked a concentration-dependent increase of intracellular Ca(2+) in HMC-1, RBL-2H3 and P815 cells, which was responsible for the activation of neuronal NOS (NOS1) and endothelial NOS (NOS3). Our findings strongly suggest that OT might exert the antinociception on colonic hypersensitivity through inhibition of mast cell degranulation via Ca(2+)-NOS pathway.
Collapse
Affiliation(s)
- Liping Gong
- Department of Physiology, School of Medicine, Shandong University, China
| | - Jing Li
- Central Hospital of Zibo, Zibo, China
| | - Yan Tang
- Department of Physiology, School of Medicine, Shandong University, China
| | - Ting Han
- Department of Physiology, School of Medicine, Shandong University, China
| | | | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, China
| | - Jingxin Li
- Department of Physiology, School of Medicine, Shandong University, China
| | - Rong Wang
- Department of Physiology, School of Medicine, Shandong University, China
| | - Xuelian Ma
- Department of Physiology, School of Medicine, Shandong University, China
| | - Kejing Liu
- Department of Physiology, School of Medicine, Shandong University, China
| | - Lingyun Geng
- Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | - Bing Yan
- Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chuanyong Liu
- Department of Physiology, School of Medicine, Shandong University, China
- Provincial Key Lab of Mental Disorder, School of Medicine, Shandong University, China
| |
Collapse
|
196
|
Sasaki T, Hashimoto K, Oda Y, Ishima T, Yakita M, Kurata T, Kunou M, Takahashi J, Kamata Y, Kimura A, Niitsu T, Komatsu H, Hasegawa T, Shiina A, Hashimoto T, Kanahara N, Shimizu E, Iyo M. Increased Serum Levels of Oxytocin in 'Treatment Resistant Depression in Adolescents (TRDIA)' Group. PLoS One 2016; 11:e0160767. [PMID: 27536785 PMCID: PMC4990411 DOI: 10.1371/journal.pone.0160767] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE 'Treatment-resistant depression' is depression that does not respond to an adequate regimen of evidence-based treatment. Treatment-resistant depression frequently becomes chronic. Children with treatment-resistant depression might also develop bipolar disorder (BD). The objective of this study was to determine whether serum levels of oxytocin (OXT) in treatment-resistant depression in adolescents (TRDIA) differ from non-treatment-resistant depression in adolescents (non-TRDIA) or controls. We also investigated the relationships between serum OXT levels and the clinical symptoms, severity, and familial histories of adolescent depressive patients. METHODS We measured serum OXT levels: TRDIA (n = 10), non-TRDIA (n = 27), and age- and sex- matched, neurotypical controls (n = 25). Patients were evaluated using the Children's Depression Rating Scale-Revised (CDRS-R) and the Depression Self-Rating Scale for Children-Japanese Version (DSRS-C-J). The patients were also assessed retrospectively using the following variables: familial history of major depressive disorder and BD (1st degree or 2nd degree), history of disruptive mood dysregulation disorder, recurrent depressive disorder (RDD), history of antidepressant activation. RESULTS Serum levels of OXT among the TRDIA and non-TRDIA patients and controls differed significantly. Interestingly, the rates of a family history of BD (1st or 2nd degree), RDD and a history of antidepressant activation in our TRDIA group were significantly higher than those of the non-TRDIA group. CONCLUSIONS Serum levels of OXT may play a role in the pathophysiology of TRDIA.
Collapse
Affiliation(s)
- Tsuyoshi Sasaki
- Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yasunori Oda
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Madoka Yakita
- Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Tsutomu Kurata
- Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Masaru Kunou
- Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
- Departments of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Jumpei Takahashi
- Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
| | - Yu Kamata
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Kimura
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tomihisa Niitsu
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideki Komatsu
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tadashi Hasegawa
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Akihiro Shiina
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Tasuku Hashimoto
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
| | - Nobuhisa Kanahara
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Eiji Shimizu
- Departments of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaomi Iyo
- Department of Child Psychiatry, Chiba University Hospital, Chiba, Japan
- Departments of Psychiatry Chiba University Graduate School of Medicine, Chiba, Japan
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
- Division of Medical Treatment and Rehabilitation, Chiba University Center for Forensic Mental Health, Chiba, Japan
| |
Collapse
|
197
|
Paré P, Paixão-Côrtes VR, Tovo-Rodrigues L, Vargas-Pinilla P, Viscardi LH, Salzano FM, Henkes LE, Bortolini MC. Oxytocin and arginine vasopressin receptor evolution: implications for adaptive novelties in placental mammals. Genet Mol Biol 2016; 39:646-657. [PMID: 27505307 PMCID: PMC5127151 DOI: 10.1590/1678-4685-gmb-2015-0323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/28/2016] [Indexed: 11/28/2022] Open
Abstract
Oxytocin receptor (OXTR) and arginine vasopressin receptors
(AVPR1a, AVPR1b, and AVPR2) are paralogous genes
that emerged through duplication events; along the evolutionary timeline, owing to
speciation, numerous orthologues emerged as well. In order to elucidate the
evolutionary forces that shaped these four genes in placental mammals and to reveal
specific aspects of their protein structures, 35 species were selected. Specifically,
we investigated their molecular evolutionary history and intrinsic protein disorder
content, and identified the presence of short linear interaction motifs.
OXTR seems to be under evolutionary constraint in placental
mammals, whereas AVPR1a, AVPR1b, and AVPR2 exhibit
higher evolutionary rates, suggesting that they have been under relaxed or
experienced positive selection. In addition, we describe here, for the first time,
that the OXTR, AVPR1a, AVPR1b, and AVPR2 mammalian orthologues preserve their
disorder content, while this condition varies among the paralogues. Finally, our
results reveal the presence of short linear interaction motifs, indicating possible
functional adaptations related to physiological and/or behavioral taxa-specific
traits.
Collapse
Affiliation(s)
- Pamela Paré
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Vanessa R Paixão-Côrtes
- Programa de Pós-Graduação em Genética e Biodiversidade, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, BA, Brazil
| | - Luciana Tovo-Rodrigues
- Laboratório de Fisiologia da Reprodução Animal, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC, Brazil
| | - Pedro Vargas-Pinilla
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Henriques Viscardi
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Francisco Mauro Salzano
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luiz E Henkes
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Maria Catira Bortolini
- Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
198
|
Busnelli M, Kleinau G, Muttenthaler M, Stoev S, Manning M, Bibic L, Howell LA, McCormick PJ, Di Lascio S, Braida D, Sala M, Rovati GE, Bellini T, Chini B. Design and Characterization of Superpotent Bivalent Ligands Targeting Oxytocin Receptor Dimers via a Channel-Like Structure. J Med Chem 2016; 59:7152-66. [PMID: 27420737 DOI: 10.1021/acs.jmedchem.6b00564] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dimeric/oligomeric states of G-protein coupled receptors have been difficult to target. We report here bivalent ligands consisting of two identical oxytocin-mimetics that induce a three order magnitude boost in G-protein signaling of oxytocin receptors (OTRs) in vitro and a 100- and 40-fold gain in potency in vivo in the social behavior of mice and zebrafish. Through receptor mutagenesis and interference experiments with synthetic peptides mimicking transmembrane helices (TMH), we show that such superpotent behavior follows from the binding of the bivalent ligands to dimeric receptors based on a TMH1-TMH2 interface. Moreover, in this arrangement, only the analogues with a well-defined spacer length (∼25 Å) precisely fit inside a channel-like passage between the two protomers of the dimer. The newly discovered oxytocin bivalent ligands represent a powerful tool for targeting dimeric OTR in neurodevelopmental and psychiatric disorders and, in general, provide a framework to untangle specific arrangements of G-protein coupled receptor dimers.
Collapse
Affiliation(s)
- Marta Busnelli
- CNR, Institute of Neuroscience , Milan, Italy 20129.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité-Universitätsmedizin Berlin , Berlin, Germany 13353
| | - Markus Muttenthaler
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Australia 4072
| | - Stoytcho Stoev
- Department of Biochemistry and Cancer Biology, University of Toledo , Toledo, Ohio 43614, United States
| | - Maurice Manning
- Department of Biochemistry and Cancer Biology, University of Toledo , Toledo, Ohio 43614, United States
| | - Lucka Bibic
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Lesley A Howell
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Peter J McCormick
- School of Pharmacy, University of East Anglia , Norwich Research Park, Norwich, U.K. NR4 7TJ
| | - Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Daniela Braida
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Mariaelvina Sala
- CNR, Institute of Neuroscience , Milan, Italy 20129.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano , Milan, Italy 20133
| | - Tommaso Bellini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano , Milan, Italy 20129
| | - Bice Chini
- CNR, Institute of Neuroscience , Milan, Italy 20129
| |
Collapse
|
199
|
French JA, Taylor JH, Mustoe AC, Cavanaugh J. Neuropeptide diversity and the regulation of social behavior in New World primates. Front Neuroendocrinol 2016; 42:18-39. [PMID: 27020799 PMCID: PMC5030117 DOI: 10.1016/j.yfrne.2016.03.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Oxytocin (OT) and vasopressin (AVP) are important hypothalamic neuropeptides that regulate peripheral physiology, and have emerged as important modulators of brain function, particularly in the social realm. OT structure and the genes that ultimately determine structure are highly conserved among diverse eutherian mammals, but recent discoveries have identified surprising variability in OT and peptide structure in New World monkeys (NWM), with five new OT variants identified to date. This review explores these new findings in light of comparative OT/AVP ligand evolution, documents coevolutionary changes in the oxytocin and vasopressin receptors (OTR and V1aR), and highlights the distribution of neuropeptidergic neurons and receptors in the primate brain. Finally, the behavioral consequences of OT and AVP in regulating NWM sociality are summarized, demonstrating important neuromodulatory effects of these compounds and OT ligand-specific influences in certain social domains.
Collapse
Affiliation(s)
- Jeffrey A French
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Jack H Taylor
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Aaryn C Mustoe
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Jon Cavanaugh
- Program in Neuroscience and Behavior, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
200
|
Van Cappellen P, Way BM, Isgett SF, Fredrickson BL. Effects of oxytocin administration on spirituality and emotional responses to meditation. Soc Cogn Affect Neurosci 2016; 11:1579-87. [PMID: 27317929 DOI: 10.1093/scan/nsw078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/31/2016] [Indexed: 11/12/2022] Open
Abstract
The oxytocin (OT) system, critically involved in social bonding, may also impinge on spirituality, which is the belief in a meaningful life imbued with a sense of connection to a Higher Power and/or the world. Midlife male participants (N = 83) were randomly assigned to receive intranasal OT or placebo. In exploratory analyses, participants were also genotyped for polymorphisms in two genes critical for OT signaling, the oxytocin receptor gene (OXTR rs53576) and CD38 (rs6449182 and rs3796863). Results showed that intranasal OT increased self-reported spirituality on two separate measures and this effect remained significant a week later. It also boosted participants' experience of specific positive emotions during meditation, at both explicit and implicit levels. Furthermore, the effect of OT on spirituality was moderated by OT-related genotypes. These results provide the first experimental evidence that spirituality, endorsed by millions worldwide, appears to be supported by OT.
Collapse
Affiliation(s)
- Patty Van Cappellen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Baldwin M Way
- Department of Psychology, The Ohio State University, Columbus Ohio, OH, USA
| | - Suzannah F Isgett
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Barbara L Fredrickson
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|