151
|
Gao L, Morine Y, Yamada S, Saito Y, Ikemoto T, Tokuda K, Takasu C, Miyazaki K, Shimada M. Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant hepatocellular carcinoma cells. PLoS One 2021; 16:e0256755. [PMID: 34473785 PMCID: PMC8412368 DOI: 10.1371/journal.pone.0256755] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 08/15/2021] [Indexed: 12/30/2022] Open
Abstract
Background and aim As a multiple tyrosine kinase inhibitor, sorafenib is widely used to treat hepatocellular carcinoma (HCC), but patients frequently face resistance problems. Because the mechanism controlling sorafenib-resistance is not well understood, this study focused on the connection between tumor characteristics and the Nrf2 signaling pathway in a sorafenib-resistant HCC cell line. Methods A sorafenib-resistant HCC cell line (Huh7) was developed by increasing the dose of sorafenib in the culture medium until the target concentration was reached. Cell morphology, migration/invasion rates, and expression of stemness-related and ATP-binding cassette (ABC) transporter genes were compared between sorafenib-resistant Huh7 cells and parental Huh7 cells. Next, a small interfering RNA was used to knock down Nrf2 expression in sorafenib-resistant Huh7 cells, after which cell viability, stemness, migration, and ABC transporter gene expression were examined again. Results Proliferation, migration, and invasion rates of sorafenib-resistant Huh7 cells were significantly increased relative to the parental cells with or without sorafenib added to the medium. The expression levels of stemness markers and ABC transporter genes were up-regulated in sorafenib-resistant cells. After Nrf2 was knocked down in sorafenib-resistant cells, cell migration and invasion rates were reduced, and expression levels of stemness markers and ABC transporter genes were reduced. Conclusion Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant HCC cells.
Collapse
Affiliation(s)
- Luping Gao
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yuji Morine
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
- * E-mail:
| | - Shinichiro Yamada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yu Saito
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Tetsuya Ikemoto
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kazunori Tokuda
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Chie Takasu
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuki Miyazaki
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Mitsuo Shimada
- Department of Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
152
|
Fu J, Ni C, Ni H, Xu L, He Q, Pan H, Huang D, Sun Y, Luo G, Liu M, Yao M. Spinal Nrf2 translocation may inhibit neuronal NF-κB activation and alleviate allodynia in a rat model of bone cancer pain. J Neurochem 2021; 158:1110-1130. [PMID: 34254317 PMCID: PMC9292887 DOI: 10.1111/jnc.15468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 07/02/2021] [Indexed: 01/11/2023]
Abstract
Bone cancer pain (BCP) is a clinical pathology that urgently needs to be solved, but research on the mechanism of BCP has so far achieved limited success. Nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf2) has been shown to be involved in pain, but its involvement in BCP and the specific mechanism have yet to be examined. This study aimed to test the hypothesis that BCP induces the transfer of Nrf2 from the cytoplasm to the nucleus and further promotes nuclear transcription to activate heme oxygenase-1 (HO-1) and inhibit the activation of nuclear factor-kappa B (NF-κB) signalling, ultimately regulating the neuroinflammatory response. Von-Frey was used for behavioural analysis in rats with BCP, whereas western blotting, real-time quantitative PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect molecular expression changes, and immunofluorescence was used to detect cellular localization. We demonstrated that BCP induced increased Nrf2 nuclear protein expression with decreased cytoplasmic protein expression in the spinal cord. Further increases in Nrf2 nuclear protein expression can alleviate hyperalgesia and activate HO-1 to inhibit the expression of NF-κB nuclear protein and inflammatory factors. Strikingly, intrathecal administration of the corresponding siRNA reversed the above effects. In addition, the results of double immune labelling revealed that Nrf2 and NF-κB were coexpressed in spinal cord neurons of rats with BCP. In summary, these findings suggest that the entry of Nrf2 into the nucleus promotes the expression of HO-1, inhibiting activation of the NF-κB signalling pathway, reducing neuroinflammation and ultimately exerting an anti-nociceptive effect.
Collapse
Affiliation(s)
- Jie Fu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Hua‐Dong Ni
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Long‐Sheng Xu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Qiu‐Li He
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Huan Pan
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Dong‐Dong Huang
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Yan‐Bao Sun
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ge Luo
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming‐Juan Liu
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| | - Ming Yao
- Department of Anesthesiology and Pain Research CenterThe First Hospital of Jiaxing or The Affiliated Hospital of Jiaxing UniversityJiaxingChina
| |
Collapse
|
153
|
Exposure to footshock stress downregulates antioxidant genes and increases neuronal apoptosis in an Aβ(1-42) rat model of Alzheimer's disease. Neurochem Int 2021; 150:105170. [PMID: 34419526 DOI: 10.1016/j.neuint.2021.105170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a neuropsychiatric disorder that develops from exposure to trauma, mostly when normal psychological mechanisms fail. Studies have shown that people who have PTSD are susceptible to developing dementia, mostly Alzheimer's disease (AD), suggesting common underlying risk factors in the comorbidity. However, data elucidating links between these conditions is scarce. Here we show that footshock stress exacerbates AD-like pathology. To induce a trauma-like condition, the rats were exposed to multiple intense footshocks followed by a single reminder. This was followed by bilateral intrahippocampal lesions with amyloid-beta (Aβ) (1-42), to model AD-like pathology. We found that footshocks increased anxiety behavior and impaired fear memory extinction in Aβ(1-42) lesioned rats. We also found a reduced expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD (P) H: quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), and an increased expression of Kelch-like ECH-associated protein 1 (Keap1) in the amygdala and hippocampus. Furthermore, oxidative stress level was sustained, which was associated with increased apoptosis in the amygdala and hippocampus. Our finding suggests that AD-like pathology can induce oxidative changes in the amygdala and hippocampus, which can be exaggerated by footshock stress.
Collapse
|
154
|
Distinct Regulations of HO-1 Gene Expression for Stress Response and Substrate Induction. Mol Cell Biol 2021; 41:e0023621. [PMID: 34398680 DOI: 10.1128/mcb.00236-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is the key enzyme for heme catabolism and cytoprotection. Whereas HO-1 gene expression in response to various stresses has been investigated extensively, the precise mechanisms by which HO-1 gene expression is regulated by the HO-1 substrate heme remain elusive. To systematically examine whether stress-mediated induction and substrate-mediated induction of HO-1 utilize similar or distinct regulatory pathways, we developed an HO-1-DsRed-knock-in reporter mouse in which the HO-1 gene is floxed by loxP sites and the DsRed gene has been inserted. Myeloid lineage-specific recombination of the floxed locus led to fluorescence derived from expression of the HO-1-DsRed fusion protein in peritoneal macrophages. We also challenged general recombination of the locus and generated mice harboring heterozygous recombinant alleles, which enabled us to monitor HO-1-DsRed expression in the whole body in vivo and ex vivo. HO-1 inducers upregulated HO-1-DsRed expression in myeloid lineage cells isolated from the mice. Notably, analyses of peritoneal macrophages from HO-1-DsRed mice lacking NRF2, a major regulator of the oxidative/electrophilic stress response, led us to identify NRF2-dependent stress response-mediated HO-1 induction and NRF2-independent substrate-mediated HO-1 induction. Thus, the HO-1 gene is subjected to at least two distinct levels of regulation, and the available lines of evidence suggest that substrate induction in peritoneal macrophages is independent of CNC family-based regulation.
Collapse
|
155
|
Hou Y, Peng S, Song Z, Bai F, Li X, Fang J. Oat polyphenol avenanthramide-2c confers protection from oxidative stress by regulating the Nrf2-ARE signaling pathway in PC12 cells. Arch Biochem Biophys 2021; 706:108857. [PMID: 33781769 DOI: 10.1016/j.abb.2021.108857] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Accumulating evidence has demonstrated that cellular antioxidant systems play essential roles in retarding oxidative stress-related diseases, such as Parkinson's disease. Because nuclear factor erythroid 2-related factor 2 (Nrf2) is a chief regulator of cellular antioxidant systems, small molecules with Nrf2-activating ability may be promising neuroprotective agents. Avenanthramide-2c (Aven-2c), avenanthramide-2f (Aven-2f) and avenanthramide-2p (Aven-2p) are the most abundant avenanthramides in oats, and they have been documented to possess multiple pharmacological benefits. In this work, we synthesized these three compounds and evaluated their cytoprotective effect against oxidative stress-induced PC12 cell injuries. Aven-2c displayed the best protective potency among them. Aven-2c conferred protection on PC12 cells by scavenging free radicals and activating the Nrf2-ARE signaling pathway. Pretreatment of PC12 cells with Aven-2c efficiently enhanced Nrf2 nuclear accumulation and evoked the expression of a set of cytoprotective molecules. The mechanistic study also supports that Nrf2 activation is the molecular basis for the cellular action of Aven-2c. Collectively, this study demonstrates that Aven-2c is a potent Nrf2 agonist, shedding light on the potential usage of Aven-2c in the treatment of neuroprotective diseases.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zilong Song
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
156
|
Xu Y, Huang X, Luo Q, Zhang X. MicroRNAs Involved in Oxidative Stress Processes Regulating Physiological and Pathological Responses. Microrna 2021; 10:164-180. [PMID: 34279211 DOI: 10.2174/2211536610666210716153929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022]
Abstract
Oxidative stress influences several physiological and pathological cellular events, including cell differentiation, excessive growth, proliferation, apoptosis, and the inflammatory response. Therefore, oxidative stress is involved in the pathogenesis of various diseases, including pulmonary fibrosis, epilepsy, hypertension, atherosclerosis, Parkinson's disease, cardiovascular disease, and Alzheimer's disease. Recent studies have shown that several microRNAs (miRNAs) are involved in developing various diseases caused by oxidative stress and that miRNAs may be helpful to determine the inflammatory characteristics of immune responses during infection and disease. This review describes the known effects of miRNAs on reactive oxygen species to induce oxidative stress and the miRNA regulatory mechanisms involved in the uncoupling of Keap1-Nrf2 complexes. Finally, we summarized the functions of miRNAs in several antioxidant genes. Understanding the crosstalk between miRNAs and oxidative stress-inducing factors during physiological and pathological cellular events may have implications for designing more effective treatments for immune diseases.
Collapse
Affiliation(s)
- Yongjie Xu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Xunhe Huang
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, School of Life Science of Jiaying University, Guangdong Innovation Centre for Science and Technology of Wuhua Yellow Chicken, Meizhou 514015, China
| | - Qingbin Luo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science/ Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
157
|
Qin Y, Qiao Y, Wang D, Tang C, Yan G. Ferritinophagy and ferroptosis in cardiovascular disease: Mechanisms and potential applications. Biomed Pharmacother 2021; 141:111872. [PMID: 34246187 DOI: 10.1016/j.biopha.2021.111872] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 02/09/2023] Open
Abstract
Ferroptosis is a type of regulated cell death driven by iron dependent accumulation of cellular reactive oxygen species (ROS) when glutathione (GSH)-dependent lipid peroxidation repair systems are compromised. Nuclear receptor co-activator 4 (NCOA4)-mediated selective autophagy of ferritin, termed ferritinophagy, involves the regulation of ferroptosis. Emerging evidence has revealed that ferritinophagy and ferroptosis exert a significant role in the occurrence and development of cardiovascular disease. In the present review, we aimed to present a brief overview of ferritinophagy and ferroptosis focusing on the underlying mechanism and regulations involved. We summarize and discuss relevant research progress on the role of ferritinophagy and ferroptosis in cardiovascular diseases accompanied with potential applications of ferritinophagy and ferroptosis modulators in the treatment of ferroptosis-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yuhan Qin
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Yong Qiao
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Dong Wang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China
| | - Chengchun Tang
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| | - Gaoliang Yan
- Department of Cardiology, Zhongda hospital, School of Medicine, Southeast University, Dingjiaqiao 87, Gulou district, Nanjing 210009, PR China.
| |
Collapse
|
158
|
Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021; 30:30/160/210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD patients and a key modifiable factor, which requires timely identification and targeted holistic management strategies to improve outcomes and reduce the burden of disease.We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease, which are likely to be key to informing new management strategies.Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD, including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli (e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.Finally, we focus on current and new management strategies which may target these underlying mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.
Collapse
Affiliation(s)
- H Burke
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - T M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospitals Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
159
|
Katila N, Bhurtel S, Park PH, Choi DY. Metformin attenuates rotenone-induced oxidative stress and mitochondrial damage via the AKT/Nrf2 pathway. Neurochem Int 2021; 148:105120. [PMID: 34197898 DOI: 10.1016/j.neuint.2021.105120] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are now widely accepted as the major factors involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a commonly used environmental toxin also reproduces these principle pathological features of PD. Hence, it is used frequently to induce experimental PD in cells and animals. In this study, we evaluated the neuroprotective effects of metformin against rotenone-induced toxicity in SH-SY5Y cells. Metformin treatment clearly rescued these cells from rotenone-mediated cell death via the reduction of the cytosolic and mitochondrial levels of reactive oxygen species and restoration of mitochondrial function. Furthermore, metformin upregulated PGC-1α, the master regulator of mitochondrial biogenesis and key antioxidant molecules, including glutathione and superoxide dismutase. We demonstrated that the drug exerted its cytoprotective effects by activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase (HO)-1 pathway, which in turn, is dependent on AKT activation by metformin. Thus, our results implicate that metformin provides neuroprotection against rotenone by inhibiting oxidative stress in the cells by inducing antioxidant system via upregulation of transcription mediated by Nrf2, thereby restoring the rotenone-induced mitochondrial dysfunction and energy deficit in the cells.
Collapse
Affiliation(s)
- Nikita Katila
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Sunil Bhurtel
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
160
|
Wu X, Xu J, Cai Y, Yang Y, Liu Y, Cao S. Cytoprotection against Oxidative Stress by Methylnissolin-3- O-β-d-glucopyranoside from Astragalus membranaceus Mainly via the Activation of the Nrf2/HO-1 Pathway. Molecules 2021; 26:molecules26133852. [PMID: 34202670 PMCID: PMC8270303 DOI: 10.3390/molecules26133852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/09/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022] Open
Abstract
Astragalus membranaceus is a famous herb found among medicinal and food plants in East and Southeastern Asia. The Nrf2-ARE assay-guided separation of an extract from Jing liqueur led to the identification of a nontoxic Nrf2 activator, methylnissolin-3-O-β-d-glucopyranoside (MNG, a component of A. membranaceus). Nrf2 activation by MNG has not been reported before. Using Western Blot, RT-qPCR and imaging, we investigated the cytoprotective effect of MNG against hydrogen peroxide-induced oxidative stress. MNG induced the expression of Nrf2, HO-1 and NQO1, accelerated the translocation of Nrf2 into nuclei, and enhanced the phosphorylation of AKT. The MNG-induced expression of Nrf2, HO-1, and NQO1 were abolished by Nrf2 siRNA, while the MNG-induced expression of Nrf2 and HO-1 was abated and the AKT phosphorylation was blocked by LY294002 (a PI3K inhibitor). MNG reduced intracellular ROS generation. However, the protection of MNG against the H2O2 insult was reversed by Nrf2 siRNA with decreased cell viability. The enhancement of Nrf2 and HO-1 by MNG upon H2O2 injury was reduced by LY294002. These data showed that MNG protected EA.hy926 cells against oxidative damage through the Nrf2/HO-1 and at least partially the PI3K/Akt pathways.
Collapse
Affiliation(s)
- Xiaohua Wu
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
| | - Jian Xu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
| | - Yousheng Cai
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
- Institute of TCM and Natural Products, School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan 430071, China
| | - Yuejun Yang
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
| | - Yuancai Liu
- Hubei Provincial Key Laboratory of Quality and Safety of Traditional Chinese Medicine Health Food, Jing Brand Research Institute, Jing Brand Co., Ltd., Daye 435100, China; (J.X.); (Y.Y.)
- Correspondence: (Y.L.); (S.C.); Tel.: +86-71-4876-8056 (Y.L.); +1-808-981-8010 (S.C.)
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, Hilo, HI 96720, USA; (X.W.); (Y.C.)
- Correspondence: (Y.L.); (S.C.); Tel.: +86-71-4876-8056 (Y.L.); +1-808-981-8010 (S.C.)
| |
Collapse
|
161
|
The Pathways Underlying the Multiple Roles of p62 in Inflammation and Cancer. Biomedicines 2021; 9:biomedicines9070707. [PMID: 34206503 PMCID: PMC8301319 DOI: 10.3390/biomedicines9070707] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
p62 is a highly conserved, multi-domain, and multi-functional adaptor protein critically involved in several important cellular processes. Via its pronounced domain architecture, p62 binds to numerous interaction partners, thereby influencing key pathways that regulate tissue homeostasis, inflammation, and several common diseases including cancer. Via binding of ubiquitin chains, p62 acts in an anti-inflammatory manner as an adaptor for the auto-, xeno-, and mitophagy-dependent degradation of proteins, pathogens, and mitochondria. Furthermore, p62 is a negative regulator of inflammasome complexes. The transcription factor Nrf2 regulates expression of a bundle of ROS detoxifying genes. p62 activates Nrf2 by interaction with and autophagosomal degradation of the Nrf2 inhibitor Keap1. Moreover, p62 activates mTOR, the central kinase of the mTORC1 sensor complex that controls cell proliferation and differentiation. Through different mechanisms, p62 acts as a positive regulator of the transcription factor NF-κB, a central player in inflammation and cancer development. Therefore, p62 represents not only a cargo receptor for autophagy, but also a central signaling hub, linking several important pro- and anti-inflammatory pathways. This review aims to summarize knowledge about the molecular mechanisms underlying the roles of p62 in health and disease. In particular, different types of tumors are characterized by deregulated levels of p62. The elucidation of how p62 contributes to inflammation and cancer progression at the molecular level might promote the development of novel therapeutic strategies.
Collapse
|
162
|
Ahmed A, Misrani A, Tabassum S, Yang L, Long C. Minocycline inhibits sleep deprivation-induced aberrant microglial activation and Keap1-Nrf2 expression in mouse hippocampus. Brain Res Bull 2021; 174:41-52. [PMID: 34087360 DOI: 10.1016/j.brainresbull.2021.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 12/26/2022]
Abstract
Sleep deprivation (SD) is a hallmark of modern society and associated with many neuropsychiatric disorders, including depression and anxiety. However, the cellular and molecular mechanisms underlying SD-associated depression and anxiety remain elusive. Does the neuroinflammation play a role in mediating the effects of SD? In this study, we investigated SD-induced cellular and molecular alterations in the hippocampus and asked whether treatment with an anti-inflammatory drug, minocycline, could attenuate these alterations. We found that SD animals exhibit activated microglia and decreased levels of Keap1 and Nrf2 (antioxidant and anti-inflammatory factors) in the hippocampus. In vivo local field potential recordings show decreased theta and beta oscillations, but increased high gamma oscillations, as a result of SD. Behavioral analysis revealed increased immobility time in the forced swim and tail suspension tests, and decreased sucrose intake in SD mice, all indicative of depressive-like behavior. Moreover, open field test and elevated plus maze test results indicated that SD increases anxiety-like behavior. Interestingly, treatment with the microglial modulator minocycline prevented SD-induced microglial activation, restored Keap1 and Nrf2 levels, normalized neuronal oscillations, and alleviated depressive-like and anxiety-like behavior. The present study reveals that microglial activation and Keap1-Nrf2 signaling play a crucial role in SD-induced behavioral alteration, and that minocycline treatment has a protective effect on these alterations.
Collapse
Affiliation(s)
- Adeel Ahmed
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Afzal Misrani
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Sidra Tabassum
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, 510006, PR China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, 511400, PR China.
| |
Collapse
|
163
|
Chen X, Ma F, Zhai N, Gao F, Cao G. Long non‑coding RNA XIST inhibits osteoblast differentiation and promotes osteoporosis via Nrf2 hyperactivation by targeting CUL3. Int J Mol Med 2021; 48:137. [PMID: 34036379 PMCID: PMC8175064 DOI: 10.3892/ijmm.2021.4970] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/26/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis (OP) is a common skeletal disorder characterized by a low bone mass and the deterioration of bone structure. Long non‑coding (lnc)RNA X inactive‑specific transcript (XIST) is highly expressed in the serum and monocytes of patients with OP. Thus, the purpose of the present study was to explore the mechanisms underlying the role of XIST in the progression of OP. To establish animal models of OP, female rats underwent a bilateral ovariectomy. The bone mineral density of individual rats was measured using dual‑energy X‑ray absorptiometry. The combination of XIST and cullin‑3 (CUL3) was analyzed using a dual‑luciferase reporter assay. Bone histopathological changes were assessed by hematoxylin and eosin staining. Alkaline phosphatase activity was examined by ALP staining. Finally, a series of functional experiments were performed to examine the effects of XIST on cellular behaviors. In the present study, XIST promoted OP and inhibited bone formation by regulating the expression levels of CUL3 and nuclear factor erythroid 2‑related factor 2 (Nrf2) in the rats with OP. Moreover, XIST directly targeted CUL3 and negatively regulated its expression. Of note, CUL3 downregulation reversed the effects of XIST silencing on cell viability, differentiation and mineralization, as well as the expression of Nrf2 and CUL3 in MC3T3‑E1 cells. Collectively, XIST was demonstrated to inhibit the differentiation of osteoblasts and promote OP by inhibiting the degradation of Nrf2 via targeting CUL3.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Spinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Fengyu Ma
- Department of Spine Surgery, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Ning Zhai
- Imaging Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Feng Gao
- Department of Spinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Guijun Cao
- Department of Spinal Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
164
|
Liu K, Fan R, Zhou Z. Endoplasmic reticulum stress, chondrocyte apoptosis and oxidative stress in cartilage of broilers affected by spontaneous femoral head necrosis. Poult Sci 2021; 100:101258. [PMID: 34175798 PMCID: PMC8242058 DOI: 10.1016/j.psj.2021.101258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/20/2022] Open
Abstract
With the promotion of the intensive breeding model, the incidence of leg diseases has risen in fast-growing commercial broilers with higher body weight, seriously affecting their feed efficiency and causing animal welfare problems. Femoral head necrosis (FHN) is the most common leg disease in broilers. Previous studies reported that hormone-induced FHN is related to endoplasmic reticulum (ER) stress, apoptosis, and oxidative stress, but no detailed study has been conducted in broilers with spontaneous FHN. In the study, the articular cartilage of 5-wk-old Ross 308 broilers with spontaneous FHN was used to investigate the pathogenesis of the disease. According to the degree of femoral head injury, the birds participating in the experiment were divided into 3 groups, namely a control group, femoral head separation group and femoral head separation with growth plate lacerations group. The morphological changes in articular cartilage were observed by hematoxylin and eosin, toluidine blue, alcian blue and safranine O-solid green staining, and the expressions of genes related to cartilage homeostasis, ER stress, autophagy, apoptosis and oxidative stress was detected using Real-Time Quantitative PCR. In the results, the expression of aggrecan and collagen-2 mRNA levels decreased in the articular cartilage of spontaneous FHN broilers, and the same changes were observed in the tissue staining results, indicating the disordered nature of articular cartilage homeostasis. At the same time, FHN in broilers causes ER stress in articular chondrocytes and regulates oxidative stress by activating the nuclear factor erythroid 2-related factor 2/antioxidant response element pathway through protein kinase RNA-like ER kinase. Autophagy can be activated through the protein kinase RNA-like ER kinase-activating transcription factor-4 pathway, and apoptosis can even be activated through CCAAT-enhancer-binding protein homologous protein. Therefore, the secretory activity of articular chondrocytes in spontaneous FHN broilers is negatively affected, which leads to the disorder of cartilage homeostasis and results in FHN due to ER-stress-mediated chondrocyte apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Kangping Liu
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rubin Fan
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
165
|
Signals of pseudo-starvation unveil the amino acid transporter SLC7A11 as key determinant in the control of Treg cell proliferative potential. Immunity 2021; 54:1543-1560.e6. [PMID: 34004141 DOI: 10.1016/j.immuni.2021.04.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/30/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Human CD4+CD25hiFOXP3+ regulatory T (Treg) cells are key players in the control of immunological self-tolerance and homeostasis. Here, we report that signals of pseudo-starvation reversed human Treg cell in vitro anergy through an integrated transcriptional response, pertaining to proliferation, metabolism, and transmembrane solute carrier transport. At the molecular level, the Treg cell proliferative response was dependent on the induction of the cystine/glutamate antiporter solute carrier (SLC)7A11, whose expression was controlled by the nuclear factor erythroid 2-related factor 2 (NRF2). SLC7A11 induction in Treg cells was impaired in subjects with relapsing-remitting multiple sclerosis (RRMS), an autoimmune disorder associated with reduced Treg cell proliferative capacity. Treatment of RRMS subjects with dimethyl fumarate (DMF) rescued SLC7A11 induction and fully recovered Treg cell expansion. These results suggest a previously unrecognized mechanism that may account for the progressive loss of Treg cells in autoimmunity and unveil SLC7A11 as major target for the rescue of Treg cell proliferation.
Collapse
|
166
|
Horie Y, Suzuki T, Inoue J, Iso T, Wells G, Moore TW, Mizushima T, Dinkova-Kostova AT, Kasai T, Kamei T, Koshiba S, Yamamoto M. Molecular basis for the disruption of Keap1-Nrf2 interaction via Hinge & Latch mechanism. Commun Biol 2021; 4:576. [PMID: 33990683 PMCID: PMC8121781 DOI: 10.1038/s42003-021-02100-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
The Keap1-Nrf2 system is central for mammalian cytoprotection against various stresses and a drug target for disease prevention and treatment. One model for the molecular mechanisms leading to Nrf2 activation is the Hinge-Latch model, where the DLGex-binding motif of Nrf2 dissociates from Keap1 as a latch, while the ETGE motif remains attached to Keap1 as a hinge. To overcome the technical difficulties in examining the binding status of the two motifs during protein-protein interaction (PPI) simultaneously, we utilized NMR spectroscopy titration experiments. Our results revealed that latch dissociation is triggered by low-molecular-weight Keap1-Nrf2 PPI inhibitors and occurs during p62-mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study demonstrates that Keap1 utilizes a unique Hinge-Latch mechanism for Nrf2 activation upon challenge by non-electrophilic PPI-inhibiting stimuli, and provides critical insight for the pharmacological development of next-generation Nrf2 activators targeting the Keap1-Nrf2 PPI. Using NMR spectroscopy, Horie, Suzuki, Inoue et al. show that the dissociation of Keap1 from Nrf2, or the Hinge-Latch mechanism, is triggered by Keap1-Nrf2 inhibitors and occurs during p62- mediated Nrf2 activation, but not by electrophilic Nrf2 inducers. This study provides insights into the design of Nrf2 activators targeting the Keap1-Nrf2 interaction.
Collapse
Affiliation(s)
- Yuta Horie
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jin Inoue
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Tatsuro Iso
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Geoffrey Wells
- UCL School of Pharmacy, University College London, London, UK
| | - Terry W Moore
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, United States
| | - Tsunehiro Mizushima
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom.,Department Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takuma Kasai
- Laboratory for Cellular Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan.,PRESTO, JST, Kawaguchi, Japan
| | - Takashi Kamei
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan.
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan. .,The Advanced Research Center for Innovations in Next-Generation Medicine (INGEM), Tohoku University, Sendai, Japan.
| |
Collapse
|
167
|
Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Sahebkar A. Astaxanthin and Nrf2 signaling pathway: a novel target for new therapeutic approaches. Mini Rev Med Chem 2021; 22:312-321. [PMID: 33964864 DOI: 10.2174/1389557521666210505112834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/27/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Astaxanthin (AST) is a naturally occurring compound isolated from various sources such as fungi, plants, salmon, and crab. However, Haematococcus Pluvialis, a green alga, is the primary source of this beta carotenoid compound. AST has several favourable biological and pharmacological activities such as antioxidant, anti-inflammatory, anti-tumor, anti-diabetes, hepatoprotective and neuroprotective. Nevertheless, the exact molecular mechanisms of these protective effects of AST are unclear yet. The Nrf2 signaling pathway is one of the critical candidate signaling pathways that may be involved in these beneficial effects of AST. This signaling pathway is responsible for maintaining the redox balance in the physiologic state. Upon nuclear translocation, Nrf2 signaling activates antioxidant enzymes to reduce oxidative stress and protect cells against damage. In the current study, we have reviewed the effects of AST on the Nrf2 signaling pathway, which could potentially be developed as a novel therapeutic approach for the management of various diseases.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Zahra Ahmadi
- PhD student of Clinical Pathology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Habib Yaribeygi
- PhD student of Clinical Pathology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
168
|
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L, Rodrigo R. Targeting Ferroptosis against Ischemia/Reperfusion Cardiac Injury. Antioxidants (Basel) 2021; 10:antiox10050667. [PMID: 33922912 PMCID: PMC8145541 DOI: 10.3390/antiox10050667] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic heart disease is a leading cause of death worldwide. Primarily, ischemia causes decreased oxygen supply, resulting in damage of the cardiac tissue. Naturally, reoxygenation has been recognized as the treatment of choice to recover blood flow through primary percutaneous coronary intervention. This treatment is the gold standard therapy to restore blood flow, but paradoxically it can also induce tissue injury. A number of different studies in animal models of acute myocardial infarction (AMI) suggest that ischemia-reperfusion injury (IRI) accounts for up to 50% of the final myocardial infarct size. Oxidative stress plays a critical role in the pathological process. Iron is an essential mineral required for a variety of vital biological functions but also has potentially toxic effects. A detrimental process induced by free iron is ferroptosis, a non-apoptotic type of programmed cell death. Accordingly, efforts to prevent ferroptosis in pathological settings have focused on the use of radical trapping antioxidants (RTAs), such as liproxstatin-1 (Lip-1). Hence, it is necessary to develop novel strategies to prevent cardiac IRI, thus improving the clinical outcome in patients with ischemic heart disease. The present review analyses the role of ferroptosis inhibition to prevent heart IRI, with special reference to Lip-1 as a promising drug in this clinicopathological context.
Collapse
Affiliation(s)
- José Lillo-Moya
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Diego Muñoz-Salamanca
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
| | - Emiliano Panieri
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer“, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (L.S.)
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile; (J.L.-M.); (C.R.-S.); (D.M.-S.)
- Correspondence:
| |
Collapse
|
169
|
The Role of Toxic Metals and Metalloids in Nrf2 Signaling. Antioxidants (Basel) 2021; 10:antiox10050630. [PMID: 33918986 PMCID: PMC8142989 DOI: 10.3390/antiox10050630] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2), an emerging regulator of cellular resistance to oxidants, serves as one of the key defensive factors against a range of pathological processes such as oxidative damage, carcinogenesis, as well as various harmful chemicals, including metals. An increase in human exposure to toxic metals via air, food, and water has been recently observed, which is mainly due to anthropogenic activities. The relationship between environmental exposure to heavy metals, particularly cadmium (Cd), lead (Pb), mercury (Hg), and nickel (Ni), as well as metaloid arsenic (As), and transition metal chromium (Cr), and the development of various human diseases has been extensively investigated. Their ability to induce reactive oxygen species (ROS) production through direct and indirect actions and cause oxidative stress has been documented in various organs. Taking into account that Nrf2 signaling represents an important pathway in maintaining antioxidant balance, recent research indicates that it can play a dual role depending on the specific biological context. On one side, Nrf2 represents a potential crucial protective mechanism in metal-induced toxicity, but on the other hand, it can also be a trigger of metal-induced carcinogenesis under conditions of prolonged exposure and continuous activation. Thus, this review aims to summarize the state-of-the-art knowledge regarding the functional interrelation between the toxic metals and Nrf2 signaling.
Collapse
|
170
|
Pirolla NFF, Batista VS, Dias Viegas FP, Gontijo VS, McCarthy CR, Viegas C, Nascimento-Júnior NM. Alzheimer's Disease: Related Targets, Synthesis of Available Drugs, Bioactive Compounds Under Development and Promising Results Obtained from Multi-target Approaches. Curr Drug Targets 2021; 22:505-538. [PMID: 32814524 DOI: 10.2174/1389450121999200819144544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
We describe herein the therapeutic targets involved in Alzheimer's disease as well as the available drugs and their synthetic routes. Bioactive compounds under development are also exploited to illustrate some recent research advances on the medicinal chemistry of Alzheimer's disease, including structure-activity relationships for some targets. The importance of multi-target approaches, including some examples from our research projects, guides new perspectives in search of more effective drug candidates. This review comprises the period between 2001 and early 2020.
Collapse
Affiliation(s)
- Natália F F Pirolla
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Victor S Batista
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Flávia Pereira Dias Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Vanessa Silva Gontijo
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Caitlin R McCarthy
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| | - Claudio Viegas
- Laboratory of Research on Medicinal Chemistry (PeQuiM), Institute of Chemistry, Federal University of Alfenas, Alfenas-MG, 37133-840, Brazil
| | - Nailton M Nascimento-Júnior
- Laboratory of Medicinal Chemistry, Organic Synthesis, and Molecular Modelling (LaQMedSOMM), Institute of Chemistry, Department of Biochemistry and Organic Chemistry, Sao Paulo State University - UNESP, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14800-060, Araraquara-SP, Brazil
| |
Collapse
|
171
|
Yan T, Li F, Xiong W, Wu B, Xiao F, He B, Jia Y. Nootkatone improves anxiety- and depression-like behavior by targeting hyperammonemia-induced oxidative stress in D-galactosamine model of liver injury. ENVIRONMENTAL TOXICOLOGY 2021; 36:694-706. [PMID: 33270352 DOI: 10.1002/tox.23073] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Acute or chronic liver injury is closely related to hyperammonemia, which will result in oxidative stress and damage to nerve cells, and these factors are vital to the development of anxiety and depression. In this study, the effect of Nootkatone (NKT) on the anxiety- and depression-like behavioral changes in mice induced by liver injury was investigated. Liver injury was induced by D-galactosamine (D-GalN; 350 mg/kg) three times a week for 4 weeks. NKT (5 mg/kg or 10 mg/kg) was given as co-treatment daily for 4 weeks. NKT (5 mg/kg) co-treatment remarkably ameliorates D-GalN-induced anxiety- and depression-like behaviors as evident from the results of sucrose preference test, forced swimming test, tail suspension test, and novelty suppressed feeding test. Results showed that NKT could induce an elevation in serum alanine transaminase and aspartate transaminase level, alleviate the oxidative stress induced by hyperammonemia through activating Keap1/Nrf2/HO-1 antioxidant pathways, decrease the expression of inducible nitric oxide synthase and NOX2 in hippocampus and prefrontal cortex, enhance the vitality of superoxide dismutase, catalase, and glutathione levels in serum, liver, and brain, and significantly reduce the generation of malondialdehyde. At the same time, NKT also reduces the level of ammonia in serum and brain and upgrades the activity of glutamine synthetase in the hippocampus and prefrontal cortex. Taken together, the present results suggested that NKT has a significant antidepressant effect through modulation of oxidative stress induced by D-GalN administration.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Fuyuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Weilin Xiong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Bosai He
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
172
|
McCarty MF, Lerner A. Perspective: Low Risk of Parkinson's Disease in Quasi-Vegan Cultures May Reflect GCN2-Mediated Upregulation of Parkin. Adv Nutr 2021; 12:355-362. [PMID: 32945884 PMCID: PMC8009740 DOI: 10.1093/advances/nmaa112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction in dopaminergic neurons of the substantia nigra (SN) appears to be a key mediating feature of Parkinson's disease (PD), a complex neurodegenerative disorder of still unknown etiology. Parkin is an E3 ubiquitin ligase that promotes mitophagy of damaged depolarized mitochondria while also boosting mitochondrial biogenesis-thereby helping to maintain efficient mitochondrial function. Boosting Parkin expression in the SN with viral vectors is protective in multiple rodent models of PD. Conversely, homozygosity for inactivating mutations of Parkin results in early-onset PD. Moderate protein plant-based diets relatively low in certain essential amino acids have the potential to boost Parkin expression by activating the kinase GCN2, which in turn boosts the expression of ATF4, a factor that drives transcription of the Parkin gene. Protein-restricted diets also upregulate the expression of PINK1, a protein that binds to the outer membrane of depolarized mitochondria and then recruits and activates Parkin. This effect of protein restriction is mediated by the downregulation of the kinase activity of mammalian target of rapamycin complex 1; the latter suppresses PINK1 expression at the transcriptional level. During the 20th century, cultures in East Asia and sub-Sahara Africa consuming quasi-vegan diets were found to be at notably decreased risk of PD compared with the USA or Europe. It is proposed that such diets may provide protection from PD by boosting Parkin and PINK1 expression in the SN. Other measures that might be expected to upregulate protective mitophagy include supplemental N-acetylcysteine (precursor for hydrogen sulfide) and a diet rich in spermidine-a polyamine notably high in corn.
Collapse
Affiliation(s)
| | - Aaron Lerner
- Research Department, Rapaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
173
|
Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, Tao Y. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 2021; 29:2185-2208. [PMID: 33794363 DOI: 10.1016/j.ymthe.2021.03.022] [Citation(s) in RCA: 191] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is an iron- and lipid reactive oxygen species (ROS)-dependent form of programmed cell death that is distinct from other forms of regulatory cell death at the morphological, biological, and genetic levels. Emerging evidence suggests critical roles for ferroptosis in cell metabolism, the redox status, and various diseases, such as cancers, nervous system diseases, and ischemia-reperfusion injury, with ferroptosis-related proteins. Ferroptosis is inhibited in diverse cancer types and functions as a dynamic tumor suppressor in cancer development, indicating that the regulation of ferroptosis can be utilized as an interventional target for tumor treatment. Small molecules and nanomaterials that reprogram cancer cells to undergo ferroptosis are considered effective drugs for cancer therapy. Here, we systematically summarize the molecular basis of ferroptosis, the suppressive effect of ferroptosis on tumors, the effect of ferroptosis on cellular metabolism and the tumor microenvironment (TME), and ferroptosis-inducing agents for tumor therapeutics. An understanding of the latest progress in ferroptosis could provide references for proposing new potential targets for the treatment of cancers.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
174
|
Zhang X, Wang Y, Yang X, Liu M, Huang W, Zhang J, Song M, Shao B, Li Y. The nephrotoxicity of T-2 toxin in mice caused by oxidative stress-mediated apoptosis is related to Nrf2 pathway. Food Chem Toxicol 2021; 149:112027. [DOI: 10.1016/j.fct.2021.112027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/14/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
|
175
|
Zhang X, Thielert M, Li H, Cravatt BF. SPIN4 Is a Principal Endogenous Substrate of the E3 Ubiquitin Ligase DCAF16. Biochemistry 2021; 60:637-642. [PMID: 33636084 DOI: 10.1021/acs.biochem.1c00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DCAF16 is a substrate recognition component of Cullin-RING E3 ubiquitin ligases that can be targeted by electrophilic PROTACs (proteolysis targeting chimeras) to promote the nuclear-restricted degradation of proteins. The endogenous protein substates of DCAF16 remain unknown. In this study, we compared the protein content of DCAF16-wild type and DCAF16-knockout (KO) cells by untargeted mass spectrometry-based proteomics, identifying the Tudor domain-containing protein Spindlin-4 (SPIN4) as a protein with a level that was substantially increased in cells lacking DCAF16. Very few other proteomic changes were found in DCAF16-KO cells, pointing to a specific relationship between DCAF16 and SPIN4. Consistent with this hypothesis, we found that DCAF16 interacts with and ubiquitinates SPIN4, but not other related SPIN proteins, and identified a conserved lysine residue unique to SPIN4 that is involved in DCAF16 binding. Finally, we provide evidence that SPIN4 preferentially binds trimethylated histone H3K4 over other modified histone modifications. These results, taken together, indicate that DCAF16 and SPIN4 form a dedicated E3 ligase-substrate complex that regulates the turnover and presumed functions of SPIN4 in human cells.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| | - Marvin Thielert
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| | - Haoxin Li
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| | - Benjamin F Cravatt
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92307, United States
| |
Collapse
|
176
|
Abstract
The transcription factor NRF2 (nuclear factor erythroid 2-related factor 2) triggers homeostatic responses against a plethora of environmental or endogenous deviations in redox metabolism, inflammation, proteostasis, etc. Therefore, pharmacological activation of NRF2 is a promising therapeutic strategy for several chronic diseases that are underlined by low-grade oxidative inflammation and dysregulation of redox metabolism, such as neurodegenerative, cardiovascular, and metabolic diseases. While NRF2 activation is useful in inhibiting carcinogenesis, its inhibition is needed in constituted tumors where NRF2 provides a survival advantage in the challenging tumor niche. This review describes the electrophilic and non-electrophilic NRF2 activators with clinical projection in various chronic diseases. We also analyze the status of NRF2 inhibitors, which are for the moment in a proof-of-concept stage. Advanced in silico screening and medicinal chemistry are expected to provide new or repurposing small molecules with increased potential for fostering the development of targeted NRF2 modulators. The nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) is rapidly degraded by proteasomes under a basal condition in a Keap1-dependent manner. ROS oxidatively modifies Keap1 to release NRF2 and allow its nuclear translocation. Here it binds to the antioxidant response element to regulate gene transcription. An alternative mechanism controlling NRF2 stability is glycogen synthase kinase 3 (GSK-3)-induced phosphorylation. Indicated in blue are NRF2-activating and NRF2-inhibiting drugs.
Collapse
|
177
|
Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents. Transl Psychiatry 2021; 11:140. [PMID: 33627628 PMCID: PMC7904924 DOI: 10.1038/s41398-021-01261-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
The transcription factor erythroid 2-related factor 2 (Nrf2) and brain-derived neurotrophic factor (BDNF) play a key role in depression. However, the molecular mechanisms underlying the crosstalk between Nrf2 and BDNF in depression remain unclear. We examined whether Nrf2 regulates the transcription of Bdnf by binding to its exon I promoter. Furthermore, the role of Nrf2 and BDNF in the brain regions from mice with depression-like phenotypes was examined. Nrf2 regulated the transcription of Bdnf by binding to its exon I promoter. Activation of Nrf2 by sulforaphane (SFN) showed fast-acting antidepressant-like effects in mice by activating BDNF as well as by inhibiting the expression of its transcriptional repressors (HDAC2, mSin3A, and MeCP2) and revising abnormal synaptic transmission. In contrast, SFN did not affect the protein expression of BDNF and its transcriptional repressor proteins in the medial prefrontal cortex (mPFC) and hippocampus, nor did it reduce depression-like behaviors and abnormal synaptic transmission in Nrf2 knockout mice. In the mouse model of chronic social defeat stress (CSDS), protein levels of Nrf2 and BDNF in the mPFC and hippocampus were lower than those of control and CSDS-resilient mice. In contrast, the protein levels of BDNF transcriptional repressors in the CSDS-susceptible mice were higher than those of control and CSDS-resilient mice. These data suggest that Nrf2 activation increases the expression of Bdnf and decreases the expression of its transcriptional repressors, which result in fast-acting antidepressant-like actions. Furthermore, abnormalities in crosstalk between Nrf2 and BDNF may contribute to the resilience versus susceptibility of mice against CSDS.
Collapse
|
178
|
Inokuchi S, Yoshizumi T, Toshima T, Itoh S, Yugawa K, Harada N, Mori H, Fukuhara T, Matsuura Y, Mori M. Suppression of optineurin impairs the progression of hepatocellular carcinoma through regulating mitophagy. Cancer Med 2021; 10:1501-1514. [PMID: 33600074 PMCID: PMC7940236 DOI: 10.1002/cam4.3519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 12/28/2022] Open
Abstract
Autophagy removes damaged organelles to inhibit malignant transformation during tumor initiation. Once a cancer matures, it uses the autophagic pathway as an energy source. Optineurin (OPTN) is an autophagy adaptor protein that recruits microtubule‐associated protein 1 light chain 3, an autophagosome marker, to the autophagosome. Despite studies of the relation between cancer progression and autophagy adaptor proteins, there are no reports to our knowledge of a correlation between hepatocellular carcinoma (HCC) and OPTN. We aimed here to investigate the effects of OPTN expression on HCC progression through autophagy. Immunohistochemistry was used to measure the OPTN expression in the tissues of 141 Japanese patients with HCC. The effects of OPTN expression on HCC progression and mitophagy were assessed using an OPTN knockout (KO) cell line in vitro. We used this KO cell line to establish and exploit a mouse model of HCC to determine the effects of OPTN expression on tumor progression. Immunohistochemical analysis showed that patients with elevated expression of OPTN experienced shorter overall survival (OS) and recurrence‐free survival (RFS). OPTN KO cells proliferated relatively slower versus wild‐type (WT) cells in vitro. Western blot analysis showed that mitophagy was suppressed in OPTN KO cells, and ATP synthesis and beta‐oxidation were reduced. The mouse model of HCC showed that OPTN KO cells formed smaller tumors versus WT cells less 10 weeks after implantation. Overall, the present findings suggest that OPTN is a key mediator of mitophagy that contributes to HCC progression through mitochondrial energy production.
Collapse
Affiliation(s)
- Shoichi Inokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takeo Toshima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Mori
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Fukuoka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Fukuoka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Fukuoka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
179
|
Antioxidative Stress: Inhibiting Reactive Oxygen Species Production as a Cause of Radioresistance and Chemoresistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6620306. [PMID: 33628367 PMCID: PMC7884184 DOI: 10.1155/2021/6620306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 02/05/2023]
Abstract
Radiotherapy and chemotherapy are the most effective nonsurgical treatments for cancer treatment. They usually induce regulated cell death by increasing the level of reactive oxygen species (ROS) in tumour cells. However, as intracellular ROS concentration increases, many antioxidant pathways are concurrently upregulated by cancer cells to inhibit ROS production, ultimately leading to drug resistance. Understanding the mechanism of antioxidant stress in tumour cells provides a new research direction for overcoming therapeutic resistance. In this review, we address (1) how radiotherapy and chemotherapy kill tumour cells by increasing the level of ROS, (2) the mechanism by which ROS activate antioxidant pathways and the subsequent cellular mitigation of ROS in radiotherapy and chemotherapy treatments, and (3) the potential research direction for targeted treatment to overcome therapeutic resistance.
Collapse
|
180
|
Abdel-Wahhab MA, Hassan MA, El-Nekeety AA, Abdel-Azeim SH, Hassan NS, Jaswir I, Salleh HM. Zinc loaded whey protein nanoparticles mitigate the oxidative stress and modulate antioxidative gene expression in testicular tissues in rats. J Drug Deliv Sci Technol 2021; 61:102322. [DOI: 10.1016/j.jddst.2021.102322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
181
|
Liu Y, Li M, Du X, Huang Z, Quan N. Sestrin 2, a potential star of antioxidant stress in cardiovascular diseases. Free Radic Biol Med 2021; 163:56-68. [PMID: 33310138 DOI: 10.1016/j.freeradbiomed.2020.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
Abstract
Physiological reactive oxygen species (ROS) play an important role in cellular signal transduction. However, excessive ROS is an important pathological mechanism in most cardiovascular diseases (CVDs), such as myocardial aging, cardiomyopathy, ischemia/reperfusion injury (e.g., myocardial infarction) and heart failure. Programmed cell death, hypertrophy and fibrosis may be due to oxidative stress. Sestrin 2 (Sesn2), a stress-inducible protein associated with various stress conditions, is a potential antioxidant. Sesn2 can suppress the process of heart damage caused by oxidative stress, promote cell survival and play a key role in a variety of CVDs. This review discusses the effect of Sesn2 on the redox signal, mainly via participation in the signaling pathway of nuclear factor erythroid 2-related factor 2, activation of adenosine monophosphate-activated protein kinase and inhibition of mammalian target of rapamycin complex 1. It also discusses the effect of Sesn2's antioxidant activity on different CVDs. We speculate that Sesn2 plays an important role in CVDs by stimulating the process of antioxidation and promoting the adaptation of cells to stress conditions and/or the environment, opening a new avenue for related therapeutic strategies.
Collapse
Affiliation(s)
- Yunxia Liu
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Meina Li
- Department of Infection Control, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaoyu Du
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhehao Huang
- Department of Neurosurgery, The Third Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Nanhu Quan
- Department of Cardiovascular Center, First Hospital of Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
182
|
Dun Su, Wang X, Ma Y, Hao J, Jinshen Wang, Yongqu Lu, Yulin Liu, Xingfang Wang, Zhang L. Nrf2-induced miR-23a-27a-24-2 cluster modulates damage repair of intestinal mucosa by targeting the Bach1/HO-1 axis in inflammatory bowel diseases. Free Radic Biol Med 2021; 163:1-9. [PMID: 33301881 DOI: 10.1016/j.freeradbiomed.2020.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 01/11/2023]
Abstract
IBD is an idiopathic, chronic autoimmune disease associated with intense oxidative stress. As a master modulator of oxidative stress, Nrf2 has an important anti-inflammatory role in colitis by activating HO-1 transcription. Meanwhile, HO-1 expression is transcriptionally suppressed by Bach1. The Nrf2-activated HO-1 transcription depends on the inactivation of Bach1. However, how Bach1 is inactivated and how Nrf2, Bach1 and HO-1 participate in IBD remains elusive. We found that in response to inflammatory stimuli, Nrf2-induced transcription of miR-23a-27a-24-2 cluster directly inhibits Bach1 expression by binding to the 3'UTR and thereby relieved the Bach1-mediated suppression of HO-1. Besides, elevated miR-23a, miR-27a and miR-24-2 promotes the proliferation and wound healing through regulating Bach1/HO-1 expression in SW480 cell. Additionally, miR-23a, miR-27a and miR-24-2 exert a protective effect on the intestinal mucosa in DSS-induced colitis mouse model. In conclusion, our study revealed that the Nrf2/miR-23a-27a-24-2/Bach1/HO-1 regulatory axis promotes the damage repair of intestinal mucosa during the development of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Dun Su
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Xingwen Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jinghua Hao
- Department of Digestive System, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Jinshen Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yongqu Lu
- Department of General Surgery, Peking University Third Hospital, Beijing, 100000, China
| | - Yulin Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xingfang Wang
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Li Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
183
|
Xu Y, Thakur A, Zhang Y, Foged C. Inhaled RNA Therapeutics for Obstructive Airway Diseases: Recent Advances and Future Prospects. Pharmaceutics 2021; 13:pharmaceutics13020177. [PMID: 33525500 PMCID: PMC7912103 DOI: 10.3390/pharmaceutics13020177] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obstructive airway diseases, e.g., chronic obstructive pulmonary disease (COPD) and asthma, represent leading causes of morbidity and mortality worldwide. However, the efficacy of currently available inhaled therapeutics is not sufficient for arresting disease progression and decreasing mortality, hence providing an urgent need for development of novel therapeutics. Local delivery to the airways via inhalation is promising for novel drugs, because it allows for delivery directly to the target site of action and minimizes systemic drug exposure. In addition, novel drug modalities like RNA therapeutics provide entirely new opportunities for highly specific treatment of airway diseases. Here, we review state of the art of conventional inhaled drugs used for the treatment of COPD and asthma with focus on quality attributes of inhaled medicines, and we outline the therapeutic potential and safety of novel drugs. Subsequently, we present recent advances in manufacturing of thermostable solid dosage forms for pulmonary administration, important quality attributes of inhalable dry powder formulations, and obstacles for the translation of inhalable solid dosage forms to the clinic. Delivery challenges for inhaled RNA therapeutics and delivery technologies used to overcome them are also discussed. Finally, we present future prospects of novel inhaled RNA-based therapeutics for treatment of obstructive airways diseases, and highlight major knowledge gaps, which require further investigation to advance RNA-based medicine towards the bedside.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
| | - Yibang Zhang
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; (Y.X.); (A.T.); (Y.Z.)
- Correspondence: ; Tel.: +45-3533-6402
| |
Collapse
|
184
|
Pediococcus pentosaceus ZJUAF-4 relieves oxidative stress and restores the gut microbiota in diquat-induced intestinal injury. Appl Microbiol Biotechnol 2021; 105:1657-1668. [PMID: 33475796 DOI: 10.1007/s00253-021-11111-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 01/23/2023]
Abstract
Lactic acid bacteria (LAB) play a key role in promoting health and preventing diseases because of their beneficial effects, such as antimicrobial activities, modulating immune responses, maintaining the gut epithelial barrier and antioxidant capacity. However, the mechanisms with which LAB relieve oxidative stress and intestinal injury induced by diquat in vivo are poorly understood. In the present study, Pediococcus pentosaceus ZJUAF-4 (LAB, ZJUAF-4), a selected probiotics strain with strong antioxidant capacities, was appointed to evaluate the efficiency against oxidative stress in diquat-induced intestinal injury of mice. Alanine transaminase (ALT) and aspartate aminotransferase (AST) were analyzed to estimate the liver injury. The intestinal permeability was evaluated by 4 kDa fluorescein isothiocyanate (FITC)-dextran (FD4), D-lactate (DLA), and diamine oxidase (DAO) levels. Jejunum reactive oxygen species (ROS) production was examined by dihydroethidium (DHE) staining. Western blotting was used to detect the expression of nuclear factor (erythroid-derived-2)-like 2 (Nrf2) and its downstream genes in jejunum. The gut microbiota was analyzed by high-throughput sequencing method based on the 16S rRNA genes. The results showed that ZJUAF-4 pretreatment was found to protect the intestinal barrier function and maintain intestinal redox homeostasis under diquat stimulation. Moreover, oral administration of ZJUAF-4 increased the expression of Nrf2 and its downstream genes. High-throughput sequencing analysis indicated that ZJUAF-4 contributed to restoring the gut microbiota influenced by diquat. Our results suggested that ZJUAF-4 protected the intestinal barrier from oxidative stress-induced damage by modulating the Nrf2 pathway and gut microbiota, indicating that ZJUAF-4 may have potential applications in preventing and treating oxidative stress-related intestinal diseases. KEY POINTS: • ZJUAF-4 exerted protective effects against diquat-induced intestinal injury. • Activation of Nrf2 and its downstream targets towards oxidative stress. • ZJUAF-4 administration restoring gut microbiota.
Collapse
|
185
|
Ishitsuka Y, Roop DR, Ogawa T. "Structural imprinting" of the cutaneous immune effector function. Tissue Barriers 2021; 9:1851561. [PMID: 33270506 PMCID: PMC7849724 DOI: 10.1080/21688370.2020.1851561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 01/30/2023] Open
Abstract
Keratinization provides tolerance to desiccation and mechanical durability. Loricrin, which is an epidermal thiol-rich protein, efficiently stabilizes terminally differentiated keratinocytes and maintains redox homeostasis. The discovery of the largely asymptomatic loricrin knockout (LKO) phenotype decades ago was rather unpredicted. Nevertheless, when including redox-driven, NF-E2-related factor 2-mediated backup responses, LKO mice provide opportunities for the observation of altered or "quasi-normal" homeostasis. Specifically, given that the tissue structure, as well as the local metabolism, transmits immunological signals, we sought to dissect the consequence of truncated epidermal differentiation program from immunological perspectives. Through a review of the aggregated evidence, we have attempted to generate an integrated view of the regulation of the peripheral immune system, which possibly occurs within the squamous epithelial tissue with truncated differentiation. This synthesis might not only provide insights into keratinization but also lead to the identification of factors intrinsic to the epidermis that imprint the immune effector function.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tatsuya Ogawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
186
|
Cvetko F, Caldwell ST, Higgins M, Suzuki T, Yamamoto M, Prag HA, Hartley RC, Dinkova-Kostova AT, Murphy MP. Nrf2 is activated by disruption of mitochondrial thiol homeostasis but not by enhanced mitochondrial superoxide production. J Biol Chem 2021; 296:100169. [PMID: 33298526 PMCID: PMC7948991 DOI: 10.1074/jbc.ra120.016551] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/30/2022] Open
Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the expression of genes involved in antioxidant defenses to modulate fundamental cellular processes such as mitochondrial function and GSH metabolism. Previous reports proposed that mitochondrial reactive oxygen species production and disruption of the GSH pool activate the Nrf2 pathway, suggesting that Nrf2 senses mitochondrial redox signals and/or oxidative damage and signals to the nucleus to respond appropriately. However, until now, it has not been possible to disentangle the overlapping effects of mitochondrial superoxide/hydrogen peroxide production as a redox signal from changes to mitochondrial thiol homeostasis on Nrf2. Recently, we developed mitochondria-targeted reagents that can independently induce mitochondrial superoxide and hydrogen peroxide production mitoParaquat (MitoPQ) or selectively disrupt mitochondrial thiol homeostasis MitoChlorodinitrobenzoic acid (MitoCDNB). Using these reagents, here we have determined how enhanced generation of mitochondrial superoxide and hydrogen peroxide or disruption of mitochondrial thiol homeostasis affects activation of the Nrf2 system in cells, which was assessed by the Nrf2 protein level, nuclear translocation, and expression of its target genes. We found that selective disruption of the mitochondrial GSH pool and inhibition of its thioredoxin system by MitoCDNB led to Nrf2 activation, whereas using MitoPQ to enhance the production of mitochondrial superoxide and hydrogen peroxide alone did not. We further showed that Nrf2 activation by MitoCDNB requires cysteine sensors of Kelch-like ECH-associated protein 1 (Keap1). These findings provide important information on how disruption to mitochondrial redox homeostasis is sensed in the cytoplasm and signaled to the nucleus.
Collapse
Affiliation(s)
- Filip Cvetko
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Maureen Higgins
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Dundee, Scotland, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
187
|
Cai H, Liu Y, Men H, Zheng Y. Protective Mechanism of Humanin Against Oxidative Stress in Aging-Related Cardiovascular Diseases. Front Endocrinol (Lausanne) 2021; 12:683151. [PMID: 34177809 PMCID: PMC8222669 DOI: 10.3389/fendo.2021.683151] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Physiological reactive oxygen species (ROS) are important regulators of intercellular signal transduction. Oxidative and antioxidation systems maintain a dynamic balance under physiological conditions. Increases in ROS levels destroy the dynamic balance, leading to oxidative stress damage. Oxidative stress is involved in the pathogenesis of aging-related cardiovascular diseases (ACVD), such as atherosclerosis, myocardial infarction, and heart failure, by contributing to apoptosis, hypertrophy, and fibrosis. Oxidative phosphorylation in mitochondria is the main source of ROS. Increasing evidence demonstrates the relationship between ACVD and humanin (HN), an endogenous peptide encoded by mitochondrial DNA. HN protects cardiomyocytes, endothelial cells, and fibroblasts from oxidative stress, highlighting its protective role in atherosclerosis, ischemia-reperfusion injury, and heart failure. Herein, we reviewed the signaling pathways associated with the HN effects on redox signals, including Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2), chaperone-mediated autophagy (CMA), c-jun NH2 terminal kinase (JNK)/p38 mitogen-activated protein kinase (p38 MAPK), adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3). Furthermore, we discussed the relationship among HN, redox signaling pathways, and ACVD. Finally, we propose that HN may be a candidate drug for ACVD.
Collapse
|
188
|
Cardozo LFMF, Alvarenga LA, Ribeiro M, Dai L, Shiels PG, Stenvinkel P, Lindholm B, Mafra D. Cruciferous vegetables: rationale for exploring potential salutary effects of sulforaphane-rich foods in patients with chronic kidney disease. Nutr Rev 2020; 79:1204-1224. [DOI: 10.1093/nutrit/nuaa129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Sulforaphane (SFN) is a sulfur-containing isothiocyanate found in cruciferous vegetables (Brassicaceae) and a well-known activator of nuclear factor-erythroid 2-related factor 2 (Nrf2), considered a master regulator of cellular antioxidant responses. Patients with chronic diseases, such as diabetes, cardiovascular disease, cancer, and chronic kidney disease (CKD) present with high levels of oxidative stress and a massive inflammatory burden associated with diminished Nrf2 and elevated nuclear transcription factor-κB-κB expression. Because it is a common constituent of dietary vegetables, the salutogenic properties of sulforaphane, especially it’s antioxidative and anti-inflammatory properties, have been explored as a nutritional intervention in a range of diseases of ageing, though data on CKD remain scarce. In this brief review, the effects of SFN as a senotherapeutic agent are described and a rationale is provided for studies that aim to explore the potential benefits of SFN-rich foods in patients with CKD.
Collapse
Affiliation(s)
- Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Livia A Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lu Dai
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Lindholm
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
189
|
Abstract
Metabolic pathways and redox reactions are at the core of life. In the past decade(s), numerous discoveries have shed light on how metabolic pathways determine the cellular fate and function of lymphoid and myeloid cells, giving rise to an area of research referred to as immunometabolism. Upon activation, however, immune cells not only engage specific metabolic pathways but also rearrange their oxidation-reduction (redox) system, which in turn supports metabolic reprogramming. In fact, studies addressing the redox metabolism of immune cells are an emerging field in immunology. Here, we summarize recent insights revealing the role of reactive oxygen species (ROS) and the differential requirement of the main cellular antioxidant pathways, including the components of the thioredoxin (TRX) and glutathione (GSH) pathways, as well as their transcriptional regulator NF-E2-related factor 2 (NRF2), for proliferation, survival and function of T cells, B cells and macrophages.
Collapse
Affiliation(s)
- Jonathan Muri
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
190
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
191
|
Liu M, Jia S, Dong T, Zhao F, Xu T, Yang Q, Gong J, Fang M. Metabolomic and Transcriptomic Analysis of MCF-7 Cells Exposed to 23 Chemicals at Human-Relevant Levels: Estimation of Individual Chemical Contribution to Effects. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:127008. [PMID: 33325755 PMCID: PMC7741182 DOI: 10.1289/ehp6641] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Humans are constantly being exposed to various xenobiotics at relatively low concentrations. To date, limited evidence is available to ascertain whether a complex xenobiotic mixture at human-relevant levels causes any health effect. Moreover, there is no effective method to pinpoint the contribution of each chemical toward such an effect. OBJECTIVES This study aims to understand the responses of cells to a mixture containing 23 xenobiotics at human-relevant levels and develop a feasible method to decipher the chemical(s) that contribute significantly to the observed effect. METHODS We characterized the metabolome and transcriptome of breast cancer cells (MCF-7) before and after exposure to the mixture at human-relevant levels; preexposure levels were derived from existing large-scale biomonitoring data. A high-throughput metabolomics-based "leave-one-out" method was proposed to understand the relative contribution of each component by comparing the metabolome with and without the particular chemical in the mixture. RESULTS The metabolomic analysis suggested that the mixture altered metabolites associated with cell proliferation and oxidative stress. For the transcriptomes, gene ontology terms and pathways including "cell cycle," "cell proliferation," and "cell division" were significantly altered after mixture exposure. The mixture altered genes associated with pathways such as "genotoxicity" and "nuclear factor erythroid 2-related factor 2 (Nrf2)." Through joint pathways analysis, metabolites and genes were observed to be well-aligned in pyrimidine and purine metabolisms. The leave-one-out results showed that many chemicals made their contributions to specific metabolic pathways. The overall metabolome pattern of the absence of 2,4-dihyroxybenzophenone (DHB) or bisphenol A (BPA) showed great resemblance to controls, suggesting their higher relative contribution to the observed effect. DISCUSSION The omics results showed that exposure to the mixture at human-relevant levels can induce significant in vitro cellular changes. Also, the leave one out method offers an effective approach for deconvoluting the effects of the mixture. https://doi.org/10.1289/EHP6641.
Collapse
Affiliation(s)
- Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Shenglan Jia
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Ting Dong
- School of Environment, Jinan University, Guangdong, Guangzhou, P.R. China
| | - Fanrong Zhao
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Tengfei Xu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Qin Yang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Jicheng Gong
- College of Environmental Sciences and Engineering, Peking University, Beijing, P.R. China
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
- Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| |
Collapse
|
192
|
Identification and evaluation of a napyradiomycin as a potent Nrf2 activator: Anti-oxidative and anti-inflammatory activities. Bioorg Chem 2020; 105:104434. [DOI: 10.1016/j.bioorg.2020.104434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
|
193
|
Suzuki T, Hidaka T, Kumagai Y, Yamamoto M. Environmental pollutants and the immune response. Nat Immunol 2020; 21:1486-1495. [PMID: 33046888 DOI: 10.1038/s41590-020-0802-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022]
Abstract
Environmental pollution is one of the most serious challenges to health in the modern world. Pollutants alter immune responses and can provoke immunotoxicity. In this Review, we summarize the major environmental pollutants that are attracting wide-ranging concern and the molecular basis underlying their effects on the immune system. Xenobiotic receptors, including the aryl hydrocarbon receptor (AHR), sense and respond to a subset of environmental pollutants by activating the expression of detoxification enzymes to protect the body. However, chronic activation of the AHR leads to immunotoxicity. KEAP1-NRF2 is another important system that protects the body against environmental pollutants. KEAP1 is a sensor protein that detects environmental pollutants, leading to activation of the transcription factor NRF2. NRF2 protects the body from immunotoxicity by inducing the expression of genes involved in detoxification, antioxidant and anti-inflammatory activities. Intervening in these sensor-response systems could protect the body from the devastating immunotoxicity that can be induced by environmental pollutants.
Collapse
Affiliation(s)
- Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takanori Hidaka
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
194
|
Rai N, Dey S. Protective response of Sestrin under stressful conditions in aging. Ageing Res Rev 2020; 64:101186. [PMID: 32992045 DOI: 10.1016/j.arr.2020.101186] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
The aging at cellular level manifests itself in the form of uncontrolled formation of ROS, chronic inflammation, and increased susceptibility to cellular stress. Aging is often regarded as a risk factor for several diseases due to several age-associated pathological changes in cells. Sestrin (Sesn) is an important molecule for controlling normal cellular physiology and play a significant role in the progression of certain age-associated cellular pathologies. This review deals with the structure, function, regulation, signaling network, and the potential role of Sesn in age-associated cellular pathophysiology. The cellular response mediated by Sesn under stressful conditions and rescue mechanism is discussed. It would be interesting to find out the precise physiological role of Sesn in the regulation of cellular aging. The anti-aging activity of Sesn may benefit to prevent various age-associated diseases and have clinical utility in diagnostic and therapeutic intervention.
Collapse
Affiliation(s)
- Nitish Rai
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Science, New Delhi, 110029, India
| |
Collapse
|
195
|
Osama A, Zhang J, Yao J, Yao X, Fang J. Nrf2: a dark horse in Alzheimer's disease treatment. Ageing Res Rev 2020; 64:101206. [PMID: 33144124 DOI: 10.1016/j.arr.2020.101206] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), an age-dependent neurodegenerative disorder, is the main cause of dementia. Common hallmarks of AD include the amyloid β-peptide (Aβ) aggregation, high levels of hyperphosphorylated tau protein (p-tau) and failure in redox homeostasis. To date, all proposed drugs affecting Aβ and/or p-tau have been failed in clinical trials. A decline in the expression of the transcription factor Nrf2 (nuclear factor-erythroid 2-p45 derived factor 2) and its driven genes (NQO1, HO-1, and GCLC), and alteration of the Nrf2-related pathways have been observed in AD brains. Nrf2 plays a critical role in maintaining cellular redox homeostasis and regulating inflammation response. Nrf2 activation also provides cytoprotection against increasing pathologies including neurodegenerative diseases. These lines of evidence imply that Nrf2 activation may be a novel AD treatment option. Interestingly, recent studies have also demonstrated that Nrf2 interferes with several key pathogenic processes in AD including Aβ and p-tau pathways. The current review aims to provide insights into the role of Nrf2 in AD. Also, we discuss the progress and challenges regarding the Nrf2 activators for AD treatment.
Collapse
Affiliation(s)
- Alsiddig Osama
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Juan Yao
- School of pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
196
|
Khan H, Tundis R, Ullah H, Aschner M, Belwal T, Mirzaei H, Akkol EK. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146:111817. [PMID: 33069760 DOI: 10.1016/j.fct.2020.111817] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023]
Abstract
Neurodegenerative disorders are characterized by progressive loss of neurons. To date, no efficacious therapies exist for these disorders, and current therapies provide only symptomatic relief. The neuroprotective effects of natural compounds have been reported in several neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) amyotrophic lateral sclerosis (ALS), cerebral ischemia and brain tumors. Flavonoids are the most widely studied natural products for the prevention and treatment of neurodegenerative disorders. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) represents a complex gene regulated cytoprotective pathway. Several natural compounds have been identified as Nrf2 regulators in various chronic disorders, including carcinogenic, liver ailments, inflammatory conditions, neurodegeneration, diabetes and cardiotoxicities. The current review focuses on Nrf2 targeting by flavonoids in the prevention and treatment of neurodegenerative disorders, addressing the most contemporary information available on this timely subject.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences University of Calabria, Via P. Bucci 87036 Rende (CS), Italy.
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Tarun Belwal
- Centre for Biodiversity Conservation and Management, G.B. Plant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, India.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R, Iran.
| | - Esra Kupeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy Gazi University 06330, Etiler/Ankara Turkey.
| |
Collapse
|
197
|
Generation of potent Nrf2 activators via tuning the electrophilicity and steric hindrance of vinyl sulfones for neuroprotection. Bioorg Chem 2020; 107:104520. [PMID: 33323273 DOI: 10.1016/j.bioorg.2020.104520] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 01/18/2023]
Abstract
Oxidative stress is constantly involved in the etiopathogenesis of an ever-widening range of neurodegenerative diseases. As a consequence, effective repression of cellular oxidative stress to a redox homeostatic condition is a promising and feasible strategy to treat, or at least retard the progression of, such disorders. Nrf2, a primary orchestrator of cellular antioxidant response machine, is responsible for detoxifying and compensating for deleterious oxidative stress via transcriptional activation of a diverse array of antioxidant biomolecules. In the framework of our persistent interest in disclosing small molecules that interfere with cellular redox-regulating machinery, we report herein the synthesis, optimization, and biological assessment of 47 vinyl sulfone scaffold-bearing small molecules, most of which exhibit robust neuroprotective effect against H2O2-mediated lesions to PC12 cells. After initial screening, the most potent neuroprotective compounds 9b and 9c with marginal cytotoxicity were selected for the follow-up studies. Our results demonstrate that their neuroprotective effects are attributed to the up-regulation of a panel of antioxidant genes and corresponding gene products. Further mechanistic studies indicate that Nrf2 is indispensable for the cellular performances of 9b and 9c, arising from the fact that silence of Nrf2 gene drastically nullifies their protective action. Taken together, 9b and 9c discovered in this work merit further development as neuroprotective candidates for the treatment of oxidative stress-mediated pathological conditions.
Collapse
|
198
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
199
|
Qu Z, Sun J, Zhang W, Yu J, Zhuang C. Transcription factor NRF2 as a promising therapeutic target for Alzheimer's disease. Free Radic Biol Med 2020; 159:87-102. [PMID: 32730855 DOI: 10.1016/j.freeradbiomed.2020.06.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress is considered as one of the pathogenesis of Alzheimer's disease (AD) and plays an important role in the occurrence and development of AD. Nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulatory of oxidative stress defence. There is growing evidence indicating the relationship between NRF2 and AD. NRF2 activation mitigates multiple pathogenic processes involved in AD by upregulating antioxidative defense, inhibiting neuroinflammation, improving mitochondrial function, maintaining proteostasis, and inhibiting ferroptosis. In addition, several NRF2 activators are currently being evaluated as AD therapeutic agents in clinical trials. Thus, targeting NRF2 has been the focus of a new strategy for prevention and treatment of AD. In this review, the role of NRF2 in AD and the NRF2 activators advanced into clinical and preclinical studies will be summarized.
Collapse
Affiliation(s)
- Zhuo Qu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China
| | - Jiachen Sun
- School of Biotechnology and Food Science, Tianjin University of Commerce, 409 Guangrong Road, Tianjin, 300134, China
| | - Wannian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China
| | - Jianqiang Yu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China.
| | - Chunlin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, China; School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai, 200433, China.
| |
Collapse
|
200
|
Liu Z, Lv X, Song E, Song Y. Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol 2020; 407:115241. [DOI: 10.1016/j.taap.2020.115241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022]
|