151
|
Hirata E, Ishibashi K, Kohsaka S, Shinjo K, Kojima S, Kondo Y, Mano H, Yano S, Kiyokawa E, Sahai E. The Brain Microenvironment Induces DNMT1 Suppression and Indolence of Metastatic Cancer Cells. iScience 2020; 23:101480. [PMID: 32891059 PMCID: PMC7479628 DOI: 10.1016/j.isci.2020.101480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/27/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022] Open
Abstract
Brain metastasis is an ineffective process, and many cancer cells enter into an indolent state following extravasation in the brain. Single cell RNA sequencing of melanoma brain metastases reveals that non-proliferating brain metastatic melanoma cells exhibit a pattern of gene expression associated with inhibition of DNA methyltransferase 1 (DNMT1). The brain microenvironment, specifically the combination of reactive astrocytes and mechanically soft surroundings, suppressed DNMT1 expression in various cancer types and caused cell cycle delay. Somewhat unexpectedly, we find that DNMT1 suppression not only induces cell cycle delay but also activates pro-survival signals in brain metastatic cancer cells, including L1CAM and CRYAB. Our results demonstrate that transcriptional changes triggered by DNMT1 suppression is a key step for cancer cells to survive in the brain microenvironment and that they also restrict cancer cell proliferation. The dual consequences of DNMT1 suppression can explain the persistence of indolent cancer cells in the brain microenvironment.
Collapse
Affiliation(s)
- Eishu Hirata
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute of Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Seiji Yano
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Division of Medical Oncology, Cancer Research Institute of Kanazawa University, Kanazawa 920-0934, Japan
| | - Etsuko Kiyokawa
- Department of Oncologic Pathology, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
152
|
A TAZ-AXL-ABL2 Feed-Forward Signaling Axis Promotes Lung Adenocarcinoma Brain Metastasis. Cell Rep 2020; 29:3421-3434.e8. [PMID: 31825826 DOI: 10.1016/j.celrep.2019.11.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/14/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023] Open
Abstract
Brain metastases are a common consequence of advanced lung cancer, resulting in cranial neuropathies and increased mortality. Currently, there are no effective therapies to treat brain metastases due to a lack of actionable targets and a failure of systemic therapies to penetrate the blood-brain barrier (BBB). Here we identify an autocrine signaling axis required for lung adenocarcinoma brain metastasis, whereby nuclear accumulation of the TAZ transcriptional co-activator drives expression of a panel of transcripts enriched in brain metastases, including ABL2 and AXL, encoding for protein tyrosine kinases that engage in bidirectional signaling. Activation of ABL2 in turn promotes TAZ tyrosine phosphorylation and nuclear localization, establishing an autocrine AXL-ABL2-TAZ feed-forward signaling loop required for brain metastasis colonization. Notably, treatment with a BBB-penetrant ABL allosteric inhibitor or knockdown of ABL2, AXL, or TAZ markedly decreases brain metastases. These findings suggest that ABL and AXL inhibitors might be effective against brain metastases.
Collapse
|
153
|
Nintedanib and a bi-specific anti-VEGF/Ang2 nanobody selectively prevent brain metastases of lung adenocarcinoma cells. Clin Exp Metastasis 2020; 37:637-648. [PMID: 32918638 PMCID: PMC7666285 DOI: 10.1007/s10585-020-10055-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023]
Abstract
Brain metastases (BM) are an ever-increasing challenge in oncology, threatening quality of life and survival of many cancer patients. The majority of BM originate from lung adenocarcinoma, and stage III patients have a risk of 40–50% to develop BM in the first years of disease onset. As therapeutic options are limited, prevention of their occurrence is an attractive concept. Here we investigated whether Nintedanib (BIBF 1120), a tyrosine kinase inhibitor (TKI) targeting the VEGF pathway approved for lung adenocarcinoma, and the dual anti-VEGF-A/Ang2 nanobody BI836880 have the potential to prevent BM formation. A mouse model of brain metastasis from lung adenocarcinoma was used in which tumor cells were injected intracardially. Metastases formation occurred inside and outside of the brain and was followed by MRI, IVIS, and immunohistochemistry. BM were reduced in volume and number by both Nintedanib and the dual anti-VEGF-A/Ang2 nanobody, which translated into improved survival. Both compounds were able to normalize cerebral blood vessels at the site of brain metastatic lesions. Extracranial metastases, however, were not reduced, and meningeal metastases only partially. Interestingly, unspecific control IgG also lead to brain vessel normalization and reduction of brain and meningeal metastases. This data indicates a brain-specific group effect of antiangiogenic compounds with respect to metastasis prevention, most likely by preventing an early angiogenic switch. Thus, Nintedanib and BI836880 are promising candidates for future BM preventive study concepts in lung adenocarcinoma patients.
Collapse
|
154
|
Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Rep 2020; 28:1785-1798.e6. [PMID: 31412247 DOI: 10.1016/j.celrep.2019.07.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the deadliest skin cancer due to its high rate of metastasis, frequently to the brain. Brain metastases are incurable; therefore, understanding melanoma brain metastasis is of great clinical importance. We used a mouse model of spontaneous melanoma brain metastasis to study the interactions of melanomas with the brain microenvironment. We find that CXCL10 is upregulated in metastasis-associated astrocytes in mice and humans and is functionally important for the chemoattraction of melanoma cells. Moreover, CXCR3, the receptor for CXCL10, is upregulated in brain-tropic melanoma cells. Targeting melanoma expression of CXCR3 by nanoparticle-mediated siRNA delivery or by shRNA transduction inhibits melanoma cell migration and attenuates brain metastasis in vivo. These findings suggest that the instigation of pro-inflammatory signaling in astrocytes is hijacked by brain-metastasizing tumor cells to promote their metastatic capacity and that the CXCL10-CXCR3 axis may be a potential therapeutic target for the prevention of melanoma brain metastasis.
Collapse
|
155
|
Ngo B, Kim E, Osorio-Vasquez V, Doll S, Bustraan S, Liang RJ, Luengo A, Davidson SM, Ali A, Ferraro GB, Fischer GM, Eskandari R, Kang DS, Ni J, Plasger A, Rajasekhar VK, Kastenhuber ER, Bacha S, Sriram RK, Stein BD, Bakhoum SF, Snuderl M, Cotzia P, Healey JH, Mainolfi N, Suri V, Friedman A, Manfredi M, Sabatini DM, Jones DR, Yu M, Zhao JJ, Jain RK, Keshari KR, Davies MA, Vander Heiden MG, Hernando E, Mann M, Cantley LC, Pacold ME. Limited Environmental Serine and Glycine Confer Brain Metastasis Sensitivity to PHGDH Inhibition. Cancer Discov 2020; 10:1352-1373. [PMID: 32571778 PMCID: PMC7483776 DOI: 10.1158/2159-8290.cd-19-1228] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/15/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
A hallmark of metastasis is the adaptation of tumor cells to new environments. Metabolic constraints imposed by the serine and glycine-limited brain environment restrict metastatic tumor growth. How brain metastases overcome these growth-prohibitive conditions is poorly understood. Here, we demonstrate that 3-phosphoglycerate dehydrogenase (PHGDH), which catalyzes the rate-limiting step of glucose-derived serine synthesis, is a major determinant of brain metastasis in multiple human cancer types and preclinical models. Enhanced serine synthesis proved important for nucleotide production and cell proliferation in highly aggressive brain metastatic cells. In vivo, genetic suppression and pharmacologic inhibition of PHGDH attenuated brain metastasis, but not extracranial tumor growth, and improved overall survival in mice. These results reveal that extracellular amino acid availability determines serine synthesis pathway dependence, and suggest that PHGDH inhibitors may be useful in the treatment of brain metastasis. SIGNIFICANCE: Using proteomics, metabolomics, and multiple brain metastasis models, we demonstrate that the nutrient-limited environment of the brain potentiates brain metastasis susceptibility to serine synthesis inhibition. These findings underscore the importance of studying cancer metabolism in physiologically relevant contexts, and provide a rationale for using PHGDH inhibitors to treat brain metastasis.This article is highlighted in the In This Issue feature, p. 1241.
Collapse
Affiliation(s)
- Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Eugenie Kim
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
| | - Victoria Osorio-Vasquez
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
| | - Sophia Doll
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sophia Bustraan
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
| | - Roger J Liang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Alba Luengo
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shawn M Davidson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Grant M Fischer
- Departments of Translational Molecular Pathology, Melanoma Medical Oncology, Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Roozbeh Eskandari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diane S Kang
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, California
| | - Jing Ni
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Ariana Plasger
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | | | - Edward R Kastenhuber
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Sarah Bacha
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Roshan K Sriram
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Benjamin D Stein
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, New York
| | - Paolo Cotzia
- Department of Pathology, New York University Langone Health, New York, New York
| | - John H Healey
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Vipin Suri
- Raze Therapeutics, Cambridge, Massachusetts
| | | | | | - David M Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| | - Drew R Jones
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, New York
| | - Min Yu
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jean J Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Kayvan R Keshari
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Davies
- Departments of Translational Molecular Pathology, Melanoma Medical Oncology, Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute, Cambridge, Massachusetts
| | - Eva Hernando
- Department of Pathology, New York University Langone Health, New York, New York
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Health and Medical Sciences, NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Lewis C Cantley
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York.
| | - Michael E Pacold
- Department of Radiation Oncology, Perlmutter Cancer Center and NYU Langone Health, New York, New York.
| |
Collapse
|
156
|
Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 2020; 5:166. [PMID: 32843638 PMCID: PMC7447642 DOI: 10.1038/s41392-020-00280-x] [Citation(s) in RCA: 709] [Impact Index Per Article: 141.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
Accumulating evidence shows that cellular and acellular components in tumor microenvironment (TME) can reprogram tumor initiation, growth, invasion, metastasis, and response to therapies. Cancer research and treatment have switched from a cancer-centric model to a TME-centric one, considering the increasing significance of TME in cancer biology. Nonetheless, the clinical efficacy of therapeutic strategies targeting TME, especially the specific cells or pathways of TME, remains unsatisfactory. Classifying the chemopathological characteristics of TME and crosstalk among one another can greatly benefit further studies exploring effective treating methods. Herein, we present an updated image of TME with emphasis on hypoxic niche, immune microenvironment, metabolism microenvironment, acidic niche, innervated niche, and mechanical microenvironment. We then summarize conventional drugs including aspirin, celecoxib, β-adrenergic antagonist, metformin, and statin in new antitumor application. These drugs are considered as viable candidates for combination therapy due to their antitumor activity and extensive use in clinical practice. We also provide our outlook on directions and potential applications of TME theory. This review depicts a comprehensive and vivid landscape of TME from biology to treatment.
Collapse
Affiliation(s)
- Ming-Zhu Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Center for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
157
|
Taylor M, Williams J, Gleason JF. Effects of Multileaf Collimator Design and Function When Using an Optimized Dynamic Conformal Arc Approach for Stereotactic Radiosurgery Treatment of Multiple Brain Metastases With a Single Isocenter: A Planning Study. Cureus 2020; 12:e9833. [PMID: 32832305 PMCID: PMC7437117 DOI: 10.7759/cureus.9833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) or fractionated SRS (fSRS) are effective options for the treatment of brain metastases. When treating multiple metastases with a linear accelerator-based approach, a single isocenter allows for efficient treatment delivery. In this study, we present our findings comparing dosimetric parameters of Brainlab (Munich, Germany) Elements™ Multiple Brain Mets SRS (MME) software (version 1.5 versus version 2.0) for a variety of scenarios and patients. The impact of multileaf collimator design and function on plan quality within the software was also evaluated. Materials and methods Twenty previously treated patients with a total of 58 lesions (from one to seven lesions each) were replanned with an updated version of the multiple brain Mets software solution. For each plan, the mean conformity index (CI), mean gradient index (GI), the volume of normal brain receiving 12 Gy (V12), and mean brain dose were evaluated. Additionally, all v2.0 plans were further evaluated with jaw tracking for by Elekta (Stockholm, Sweden) and HD120™ multileaf collimator by Varian Medical Systems (Palo Alto, USA). Results The new software version demonstrated improvements for CI, GI and V12 (p <0.01). For the Elekta Agility™ multileaf collimator, jaw tracking improved all dosimetric parameters except for CI (p =0.178) and mean brain dose (p =0.93). For the Varian with HD120 multileaf collimator, all parameters improved. Conclusions The software enhancements in v2.0 of the software provided improvements in planning efficiency and dosimetric parameters. Differences in multileaf collimator design may provide an additional incremental benefit in a subset of clinical scenarios.
Collapse
Affiliation(s)
| | | | - John F Gleason
- Radiation Oncology, Alliance Cancer Care, Huntsville, USA
| |
Collapse
|
158
|
Kern R, Correa SC, Scandolara TB, Carla da Silva J, Pires BR, Panis C. Current advances in the diagnosis and personalized treatment of breast cancer: lessons from tumor biology. Per Med 2020; 17:399-420. [PMID: 32804054 DOI: 10.2217/pme-2020-0070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer treatment has advanced enormously in the last decade. Most of this is due to advances reached in the knowledge regarding tumor biology, mainly in the field of diagnosis and treatment. This review brings information about how the genomics-based information contributed to advances in breast cancer diagnosis and prognosis perspective, as well as presents how tumor biology discoveries fostered the main therapeutic approaches available to treat such patients, based on a personalized point of view.
Collapse
Affiliation(s)
- Rodrigo Kern
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Post-Graduation Program in Health-Applied Sciences, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil
| | - Stephany Christiane Correa
- Center for Bone Marrow Transplantation, Laboratory of Stem Cells, National Cancer Institute (INCA), Rio de Janeiro 20230-130, RJ, Brazil
| | - Thalita Basso Scandolara
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, RJ, Brazil
| | - Janaína Carla da Silva
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Post-Graduation Program in Health-Applied Sciences, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil
| | - Bruno Ricardo Pires
- Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro 20230-130, RJ, Brazil.,Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Carolina Panis
- Laboratory of Tumor Biology, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil.,Post-Graduation Program in Health-Applied Sciences, State University of West Paraná, Francisco Beltrão - Paraná 85601-970, Brazil
| |
Collapse
|
159
|
Recondo G, Mezquita L. Clinical efficacy, predictive biomarkers and response patterns of immunotherapy combinations for patients with cancer. Future Oncol 2020; 16:1659-1664. [PMID: 32783513 DOI: 10.2217/fon-2020-0707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Gonzalo Recondo
- Thoracic Unit, Medical Oncology, Center for Medical Education & Clinical Research (CEMIC), C1431FWO, Buenos Aires, Argentina
| | - Laura Mezquita
- Thoracic Unit, Medical Oncology Department, Hospital Clinic, 08036, Barcelona, Spain
| |
Collapse
|
160
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
161
|
Affiliation(s)
- Livia Garzia
- Cancer Research Program, RI-MUHC and Department of Orthopedic Surgery, McGill University, Montreal, Canada.
| | - Michael D Taylor
- Department of Neurosurgery, Hospital for Sick Children, Toronto, Canada.
| |
Collapse
|
162
|
Harati R, Mohammad MG, Tlili A, El-Awady RA, Hamoudi R. Loss of miR-101-3p Promotes Transmigration of Metastatic Breast Cancer Cells through the Brain Endothelium by Inducing COX-2/MMP1 Signaling. Pharmaceuticals (Basel) 2020; 13:144. [PMID: 32645833 PMCID: PMC7407639 DOI: 10.3390/ph13070144] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Brain metastases represent one of the incurable end stages in breast cancer (BC). Developing effective or preventive treatments is hampered by a lack of knowledge on the molecular mechanisms driving brain metastasis. Transmigration of BC cells through the brain endothelium is a key event in the pathogenesis of brain metastasis. In this study, we identified miR-101-3p as a critical micro-RNA able to reduce transmigration of BC cells through the brain endothelium. Our results revealed that miR-101-3p expression is downregulated in brain metastatic BC cells compared to less invasive variants, and varies inversely compared to the brain metastatic propensity of BC cells. Using a loss-and-gain of function approach, we found that miR-101-3p downregulation increased transmigration of BC cells through the brain endothelium in vitro by inducing COX-2 expression in cancer cells, whereas ectopic restoration of miR-101-3p exerted a metastasis-reducing effect. In regulatory experiments, we found that miR-101-3p mediated its effect by modulating COX-2-MMP1 signaling capable of degrading the inter-endothelial junctions (claudin-5 and VE-cadherin), key components of the brain endothelium. These findings suggest that miR-101-3p plays a critical role in the transmigration of breast cancer cells through the brain endothelium by modulating the COX-2-MMP1 signaling and thus may serve as a therapeutic target that can be exploited to prevent or suppress brain metastasis in human breast cancer.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, UAE;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, UAE; (M.G.M.); (R.H.)
| | - Mohammad G. Mohammad
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, UAE; (M.G.M.); (R.H.)
- Department of Medical Laboratories, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, UAE
| | - Abdelaziz Tlili
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, UAE;
| | - Raafat A. El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, UAE;
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, UAE; (M.G.M.); (R.H.)
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, UAE; (M.G.M.); (R.H.)
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, UAE
| |
Collapse
|
163
|
Seiler A, Sood AK, Jenewein J, Fagundes CP. Can stress promote the pathophysiology of brain metastases? A critical review of biobehavioral mechanisms. Brain Behav Immun 2020; 87:860-880. [PMID: 31881262 DOI: 10.1016/j.bbi.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/15/2019] [Accepted: 12/20/2019] [Indexed: 01/20/2023] Open
Abstract
Chronic stress can promote tumor growth and progression through immunosuppressive effects and bi-directional interactions between tumor cells and their microenvironment. β-Adrenergic receptor signaling plays a critical role in mediating stress-related effects on tumor progression. Stress-related mechanisms that modulate the dissemination of tumor cells to the brain have received scant attention. Brain metastases are highly resistant to chemotherapy and contribute considerably to morbidity and mortality in various cancers, occurring in up to 20% of patients in some cancer types. Understanding the mechanisms promoting brain metastasis could help to identify interventions that improve disease outcomes. In this review, we discuss biobehavioral, sympathetic, neuroendocrine, and immunological mechanisms by which chronic stress can impact tumor progression and metastatic dissemination to the brain. The critical role of the inflammatory tumor microenvironment in tumor progression and metastatic dissemination to the brain, and its association with stress pathways are delineated. We also discuss translational implications for biobehavioral and pharmacological interventions.
Collapse
Affiliation(s)
- Annina Seiler
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Josef Jenewein
- Clinic Zugersee, Center for Psychiatry and Psychotherapy, Oberwil-Zug, Switzerland
| | - Christopher P Fagundes
- Department of Psychology, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
164
|
Wingrove E, Liu ZZ, Patel KD, Arnal-Estapé A, Cai WL, Melnick MA, Politi K, Monteiro C, Zhu L, Valiente M, Kluger HM, Chiang VL, Nguyen DX. Transcriptomic Hallmarks of Tumor Plasticity and Stromal Interactions in Brain Metastasis. Cell Rep 2020; 27:1277-1292.e7. [PMID: 31018140 DOI: 10.1016/j.celrep.2019.03.085] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 11/06/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023] Open
Abstract
The brain is a major site of relapse for several cancers, yet deciphering the mechanisms of brain metastasis remains a challenge because of the complexity of the brain tumor microenvironment (TME). To define the molecular landscape of brain metastasis from intact tissue in vivo, we employ an RNA-sequencing-based approach, which leverages the transcriptome of xenografts and distinguishes tumor cell and stromal gene expression with improved sensitivity and accuracy. Our data reveal shifts in epithelial and neuronal-like lineage programs in malignant cells as they adapt to the brain TME and the reciprocal neuroinflammatory response of the stroma. We identify several transcriptional hallmarks of metastasis that are specific to particular regions of the brain, induced across multiple tumor types, and confirmed in syngeneic models and patient biopsies. These data may serve as a resource for exploring mechanisms of TME co-adaptation within, as well as across, different subtypes of brain metastasis.
Collapse
Affiliation(s)
- Emily Wingrove
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Zongzhi Z Liu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Kiran D Patel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Anna Arnal-Estapé
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Wesley L Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Mary-Ann Melnick
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Katerina Politi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cátia Monteiro
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Veronica L Chiang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Don X Nguyen
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
165
|
Deshpande K, Buchanan I, Martirosian V, Neman J. Clinical Perspectives in Brain Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037051. [PMID: 31615863 DOI: 10.1101/cshperspect.a037051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Brain metastases (BMs) are responsible for decline in neurological function, reduction in overall quality of life, and mortality from recurrent or untreatable lesions. Advances in diagnostics and imaging have led to increased detection of central nervous system (CNS) metastases in patients with progressive cancers. Improved control of extracranial systemic disease, and the limited ability of current therapeutics to cross the blood-brain barrier (BBB) also contribute to the increase in incidence of brain metastases, as tumor cells seek refuge in the brain. Surgery, chemotherapy, and/or radiation (whole-brain radiation therapy and stereotactic radiation surgery [WBRT/SRS]) are a clinically established treatment paradigm for patients with brain metastases. With the advent of genetic and molecular characterization of tumors and their immune microenvironment, clinical trials seek to include targeted drugs into the therapeutic regimen for eligible patients. Several challenges, like treatment of multiple CNS lesions, superior uptake of chemotherapy into the brain, and trials with multidisciplinary approaches, are now being clinically addressed.
Collapse
Affiliation(s)
- Krutika Deshpande
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Ian Buchanan
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Vahan Martirosian
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Josh Neman
- Department of Neurological Surgery, University of Southern California, Los Angeles, California 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90033, USA.,Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| |
Collapse
|
166
|
Varela-Vázquez A, Guitián-Caamaño A, Carpintero-Fernandez P, Fonseca E, Sayedyahossein S, Aasen T, Penuela S, Mayán MD. Emerging functions and clinical prospects of connexins and pannexins in melanoma. Biochim Biophys Acta Rev Cancer 2020; 1874:188380. [PMID: 32461135 DOI: 10.1016/j.bbcan.2020.188380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
Cellular communication through gap junctions and hemichannels formed by connexins and through channels made by pannexins allows for metabolic cooperation and control of cellular activity and signalling. These channel proteins have been described to be tumour suppressors that regulate features such as cell death, proliferation and differentiation. However, they display cancer type-dependent and stage-dependent functions and may facilitate tumour progression through junctional and non-junctional pathways. The accumulated knowledge and emerging strategies to target connexins and pannexins are providing novel clinical opportunities for the treatment of cancer. Here, we provide an updated overview of the role of connexins and pannexins in malignant melanoma. We discuss how targeting of these channel proteins may be used to potentiate antitumour effects in therapeutic settings, including through improved immune-mediated tumour elimination.
Collapse
Affiliation(s)
- Adrián Varela-Vázquez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Amanda Guitián-Caamaño
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Paula Carpintero-Fernandez
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Eduardo Fonseca
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain; Dermatology Deparment, University Hospital of A Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain
| | - Samar Sayedyahossein
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, Barcelona, Spain
| | - Silvia Penuela
- Department of Anatomy & Cell Biology, and Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A5C1, Canada
| | - María D Mayán
- CellCOM Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña, Xubias de Arriba, 84, 15006 A Coruña, Spain.
| |
Collapse
|
167
|
Schulz M, Michels B, Niesel K, Stein S, Farin H, Rödel F, Sevenich L. Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. iScience 2020; 23:101178. [PMID: 32480132 PMCID: PMC7262568 DOI: 10.1016/j.isci.2020.101178] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Brain-resident microglia and bone marrow-derived macrophages represent the most abundant non-cancerous cells in the brain tumor microenvironment with critical functions in disease progression and therapeutic response. To date little is known about genetic programs that drive disease-associated phenotypes of microglia and macrophages in brain metastases. Here we used cytometric and transcriptomic analyses to define cellular and molecular changes of the myeloid compartment at distinct stages of brain metastasis and in response to radiotherapy. We demonstrate that genetic programming of tumor education in myeloid cells occurs early during metastatic onset and remains stable throughout tumor progression. Bulk and single cell RNA sequencing revealed distinct gene signatures in brain-resident microglia and blood-borne monocytes/macrophages during brain metastasis and in response to therapeutic intervention. Our data provide a framework for understanding the functional heterogeneity of brain metastasis-associated myeloid cells based on their origin.
Collapse
Affiliation(s)
- Michael Schulz
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Birgitta Michels
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; Biological Sciences, Faculty 15, Goethe University Frankfurt, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katja Niesel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Henner Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Germany and German Cancer Research Center (DKFZ), Heidelberg, Germany; Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
168
|
Goldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, Chiang AC, Lilenbaum R, Wilson FH, Omay SB, Yu JB, Jilaveanu L, Tran T, Pavlik K, Rowen E, Gerrish H, Komlo A, Gupta R, Wyatt H, Ribeiro M, Kluger Y, Zhou G, Wei W, Chiang VL, Kluger HM. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol 2020; 21:655-663. [PMID: 32251621 PMCID: PMC7380514 DOI: 10.1016/s1470-2045(20)30111-x] [Citation(s) in RCA: 375] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND We did a phase 2 trial of pembrolizumab in patients with non-small-cell lung cancer (NSCLC) or melanoma with untreated brain metastases to determine the activity of PD-1 blockade in the CNS. Interim results were previously published, and we now report an updated analysis of the full NSCLC cohort. METHODS This was an open-label, phase 2 study of patients from the Yale Cancer Center (CT, USA). Eligible patients were at least 18 years of age with stage IV NSCLC with at least one brain metastasis 5-20 mm in size, not previously treated or progressing after previous radiotherapy, no neurological symptoms or corticosteroid requirement, and Eastern Cooperative Oncology Group performance status less than two. Modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria was used to evaluate CNS disease; systemic disease was not required for participation. Patients were treated with pembrolizumab 10 mg/kg intravenously every 2 weeks. Patients were in two cohorts: cohort 1 was for those with PD-L1 expression of at least 1% and cohort 2 was patients with PD-L1 less than 1% or unevaluable. The primary endpoint was the proportion of patients achieving a brain metastasis response (partial response or complete response, according to mRECIST). All treated patients were analysed for response and safety endpoints. This study is closed to accrual and is registered with ClinicalTrials.gov, NCT02085070. FINDINGS Between March 31, 2014, and May 21, 2018, 42 patients were treated. Median follow-up was 8·3 months (IQR 4·5-26·2). 11 (29·7% [95% CI 15·9-47·0]) of 37 patients in cohort 1 had a brain metastasis response. There were no responses in cohort 2. Grade 3-4 adverse events related to treatment included two patients with pneumonitis, and one each with constitutional symptoms, colitis, adrenal insufficiency, hyperglycaemia, and hypokalaemia. Treatment-related serious adverse events occurred in six (14%) of 42 patients and were pneumonitis (n=2), acute kidney injury, colitis, hypokalaemia, and adrenal insufficiency (n=1 each). There were no treatment-related deaths. INTERPRETATION Pembrolizumab has activity in brain metastases from NSCLC with PD-L1 expression at least 1% and is safe in selected patients with untreated brain metastases. Further investigation of immunotherapy in patients with CNS disease from NSCLC is warranted. FUNDING Merck and the Yale Cancer Center.
Collapse
Affiliation(s)
- Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA.
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Scott N Gettinger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Amit Mahajan
- Department of Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Roy S Herbst
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Anne C Chiang
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Rogerio Lilenbaum
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Frederick H Wilson
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - James B Yu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Lucia Jilaveanu
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Thuy Tran
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Kira Pavlik
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Elin Rowen
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Heather Gerrish
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Annette Komlo
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Richa Gupta
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Hailey Wyatt
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Matthew Ribeiro
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| | - Yuval Kluger
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Geyu Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Wei
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Veronica L Chiang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
169
|
Non-small-cell lung cancer brain metastases and PD-(L)1 immune checkpoint inhibitors. Lancet Oncol 2020; 21:607-608. [PMID: 32251624 DOI: 10.1016/s1470-2045(20)30207-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/23/2020] [Indexed: 11/23/2022]
|
170
|
Klotz R, Yu M. Insights into brain metastasis: Recent advances in circulating tumor cell research. Cancer Rep (Hoboken) 2020; 5:e1239. [PMID: 33372393 PMCID: PMC9124503 DOI: 10.1002/cnr2.1239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background How tumor cells disseminate to brain and establish brain metastasis remains partly an unsolved problem. This devastating complication of many cancers is initiated by a rare subset of the circulating tumor cells (CTCs) shed into the blood stream. Thus, the profiling of the molecular properties in these brain metastasis‐initiating CTCs is essential to uncover the mechanisms underlying brain metastasis. Recent Findings Important efforts to improve the enrichment and detection of CTCs enabled the detailed molecular and functional analysis of CTCs that drive brain metastasis. In this review, we highlight key findings on existing preclinical studies that provide insights toward a comprehensive picture of brain metastasis‐precursors in CTCs and the potential clinical implications. Conclusion A deeper understanding of the brain metastasis precursors should help to stratify high‐risk patients and improve preventive therapeutic strategies. Although all these preclinical evidences have yet to be translated into patients, they provide considerable hope to benefit patients with brain metastases in the future.
Collapse
Affiliation(s)
- Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California.,USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California
| |
Collapse
|
171
|
Brown DA, Lu VM, Himes BT, Burns TC, Quiñones-Hinojosa A, Chaichana KL, Parney IF. Breast brain metastases are associated with increased risk of leptomeningeal disease after stereotactic radiosurgery: a systematic review and meta-analysis. Clin Exp Metastasis 2020; 37:341-352. [DOI: 10.1007/s10585-020-10019-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
|
172
|
Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 2020; 18:1. [PMID: 31900168 PMCID: PMC6941297 DOI: 10.1186/s12967-019-02189-8] [Citation(s) in RCA: 288] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present review aimed to discuss contemporary scientific literature involving differences between the tumor microenvironment (TME) in melanoma, lung cancer, and breast cancer in their primary site and TME in brain metastases (BM). TME plays a fundamental role in the behavior of cancer. In the process of carcinogenesis, cells such as fibroblasts, macrophages, endothelial cells, natural killer cells, and other cells can perpetuate and progress carcinogenesis via the secretion of molecules. Oxygen concentration, growth factors, and receptors in TME initiate angiogenesis and are examples of the importance of microenvironmental conditions in the performance of neoplastic cells. The most frequent malignant brain tumors are metastatic in origin and primarily originate from lung cancer, breast cancer, and melanoma. Metastatic cancer cells have to adhere to and penetrate the blood-brain barrier (BBB). After traversing BBB, these cells have to survive by producing various cytokines, chemokines, and mediators to modify their new TME. The microenvironment of these metastases is currently being studied owing to the discovery of new therapeutic targets. In these three types of tumors, treatment is more effective in the primary tumor than in BM due to several factors, including BBB. Understanding the differences in the characteristics of the microenvironment surrounding the primary tumor and their respective metastasis might help improve strategies to comprehend cancer.
Collapse
Affiliation(s)
- Bernardo Cacho-Díaz
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| | - Donovan R García-Botello
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Talia Wegman-Ostrosky
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Gervith Reyes-Soto
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Elizabeth Ortiz-Sánchez
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Luis Alonso Herrera-Montalvo
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| |
Collapse
|
173
|
Nieder C, Mannsåker B, Yobuta R. Late Brain Oligometastases Diagnosed at Least 36 Months after Cancer Detection are Associated with Favorable Survival Outcome. Cureus 2020; 12:e6553. [PMID: 32042526 PMCID: PMC6996465 DOI: 10.7759/cureus.6553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objective The aim of this study was to investigate the impact of a long disease-free interval (at least 36 months from the first diagnosis of cancer) on survival in patients with brain oligometastases (maximum four lesions, no extracranial metastases). Methods This study involves a retrospective analysis in a group of 89 patients treated with different brain-directed approaches. Results We identified seven patients (8%) with an interval from cancer diagnosis to the development of brain metastases of at least 36 months. The median time interval was five months. The one-year survival rates were 80% (interval of at least 36 months) and 43% (shorter interval), respectively (p = 0.049). Correspondingly, a large difference in actuarial median survival was observed (39.9 months [95% confidence interval, 16.8-63.0 months] versus 9.7 months (95% confidence interval, 6.1-13.3 months). However, the two Kaplan-Meier curves were not statistically significantly different, p = 0.13. In addition to treatment-related differences, the two groups also differed with regard to the type of primary tumor (high versus low rates of non-small cell lung cancer) and gender. Conclusion Late dissemination was uncommon. The often applied strategy of effective local treatment for patients with brain-only oligometastases is warranted, especially if the disease-free interval had been at least 36 months. Larger studies are needed to fully understand the impact of confounding factors, such as gender and tumor biology.
Collapse
|
174
|
Abstract
Brain metastasis, which commonly arises in patients with lung cancer, breast cancer and melanoma, is associated with poor survival outcomes and poses distinct clinical challenges. The brain microenvironment, with its unique cell types, anatomical structures, metabolic constraints and immune environment, differs drastically from microenvironments of extracranial lesions, imposing a distinct and profound selective pressure on tumour cells that, in turn, shapes the metastatic process and therapeutic responses. Accordingly, the study of brain metastasis could uncover new therapeutic targets and identify novel treatment approaches to address the unmet clinical need. Moreover, such efforts could provide insight into the biology of primary brain tumours, which face similar challenges to brain metastases of extracranial origin, and vice versa. However, the paucity of robust preclinical models of brain metastasis has severely limited such investigations, underscoring the importance of developing improved experimental models that holistically encompass the metastatic cascade and/or brain microenvironment. In this Viewpoint, we asked four leading experts to provide their opinions on these important aspects of brain metastasis biology and management.
Collapse
Affiliation(s)
- Adrienne Boire
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | | | - Livia Garzia
- Research Institute of the McGill University Health Centre, Montreal, Québec, Canada.
| | | |
Collapse
|
175
|
Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer 2020; 20:26-41. [PMID: 31601988 PMCID: PMC8246629 DOI: 10.1038/s41568-019-0205-x] [Citation(s) in RCA: 1017] [Impact Index Per Article: 203.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2019] [Indexed: 02/06/2023]
Abstract
For a blood-borne cancer therapeutic agent to be effective, it must cross the blood vessel wall to reach cancer cells in adequate quantities, and it must overcome the resistance conferred by the local microenvironment around cancer cells. The brain microenvironment can thwart the effectiveness of drugs against primary brain tumours as well as brain metastases. In this Review, we highlight the cellular and molecular components of the blood-brain barrier (BBB), a specialized neurovascular unit evolved to maintain brain homeostasis. Tumours are known to compromise the integrity of the BBB, resulting in a vasculature known as the blood-tumour barrier (BTB), which is highly heterogeneous and characterized by numerous distinct features, including non-uniform permeability and active efflux of molecules. We discuss the challenges posed by the BBB and BTB for drug delivery, how multiple cell types dictate BBB function and the role of the BTB in disease progression and treatment. Finally, we highlight emerging molecular, cellular and physical strategies to improve drug delivery across the BBB and BTB and discuss their impact on improving conventional as well as emerging treatments, such as immune checkpoint inhibitors and engineered T cells. A deeper understanding of the BBB and BTB through the application of single-cell sequencing and imaging techniques, and the development of biomarkers of BBB integrity along with systems biology approaches, should enable new personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Costas D Arvanitis
- School of Mechanical Engineering, Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Gino B Ferraro
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
176
|
Chae WH, Niesel K, Schulz M, Klemm F, Joyce JA, Prümmer M, Brill B, Bergs J, Rödel F, Pilatus U, Sevenich L. Evaluating Magnetic Resonance Spectroscopy as a Tool for Monitoring Therapeutic Response of Whole Brain Radiotherapy in a Mouse Model for Breast-to-Brain Metastasis. Front Oncol 2019; 9:1324. [PMID: 31828043 PMCID: PMC6890861 DOI: 10.3389/fonc.2019.01324] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 11/13/2019] [Indexed: 01/06/2023] Open
Abstract
Brain metastases are the most common intracranial tumor in adults and are associated with poor patient prognosis and median survival of only a few months. Treatment options for brain metastasis patients remain limited and largely depend on surgical resection, radio- and/or chemotherapy. The development and pre-clinical testing of novel therapeutic strategies require reliable experimental models and diagnostic tools that closely mimic technologies that are used in the clinic and reflect histopathological and biochemical changes that distinguish tumor progression from therapeutic response. In this study, we sought to test the applicability of magnetic resonance (MR) spectroscopy in combination with MR imaging to closely monitor therapeutic efficacy in a breast-to-brain metastasis model. Given the importance of radiotherapy as the standard of care for the majority of brain metastases patients, we chose to monitor the post-irradiation response by magnetic resonance spectroscopy (MRS) in combination with MR imaging (MRI) using a 7 Tesla small animal scanner. Radiation was applied as whole brain radiotherapy (WBRT) using the image-guided Small Animal Radiation Research Platform (SARRP). Here we describe alterations in different metabolites, including creatine and N-acetylaspartate, that are characteristic for brain metastases progression and lactate, which indicates hypoxia, while choline levels remained stable. Radiotherapy resulted in normalization of metabolite levels indicating tumor stasis or regression in response to treatment. Our data indicate that the use of MR spectroscopy in addition to MRI represents a valuable tool to closely monitor not only volumetrical but also metabolic changes during tumor progression and to evaluate therapeutic efficacy of intervention strategies. Adapting the analytical technology in brain metastasis models to those used in clinical settings will increase the translational significance of experimental evaluation and thus contribute to the advancement of pre-clinical assessment of novel therapeutic strategies to improve treatment options for brain metastases patients.
Collapse
Affiliation(s)
- Woon Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Katja Niesel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Michael Schulz
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,Faculty of Biological Sciences, Goethe-University, Frankfurt, Germany
| | - Florian Klemm
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Boris Brill
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Judith Bergs
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Lisa Sevenich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
177
|
Lorger M, Andreou T, Fife C, James F. Immune Checkpoint Blockade - How Does It Work in Brain Metastases? Front Mol Neurosci 2019; 12:282. [PMID: 31824260 PMCID: PMC6881300 DOI: 10.3389/fnmol.2019.00282] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Immune checkpoints restrain the immune system following its activation and their inhibition unleashes anti-tumor immune responses. Immune checkpoint inhibitors revolutionized the treatment of several cancer types, including melanoma, and immune checkpoint blockade with anti-PD-1 and anti-CTLA-4 antibodies is becoming a frontline therapy in metastatic melanoma. Notably, up to 60% of metastatic melanoma patients develop metastases in the brain. Brain metastases (BrM) are also very common in patients with lung and breast cancer, and occur in ∼20-40% of patients across different cancer types. Metastases in the brain are associated with poor prognosis due to the lack of efficient therapies. In the past, patients with BrM used to be excluded from immune-based clinical trials due to the assumption that such therapies may not work in the context of "immune-specialized" environment in the brain, or may cause harm. However, recent trials in patients with BrM demonstrated safety and intracranial activity of anti-PD-1 and anti-CTLA-4 therapy. We here discuss how immune checkpoint therapy works in BrM, with focus on T cells and the cross-talk between BrM, the immune system, and tumors growing outside the brain. We discuss major open questions in our understanding of what is required for an effective immune checkpoint inhibitor therapy in BrM.
Collapse
Affiliation(s)
- Mihaela Lorger
- Institute of Medical Research at St. James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Tereza Andreou
- Institute of Medical Research at St. James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Christopher Fife
- Institute of Medical Research at St. James’s, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Fiona James
- Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
178
|
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575:299-309. [PMID: 31723286 DOI: 10.1038/s41586-019-1730-1] [Citation(s) in RCA: 1578] [Impact Index Per Article: 263.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022]
Abstract
The problem of resistance to therapy in cancer is multifaceted. Here we take a reductionist approach to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures. We propose four general solutions to drug resistance that are based on earlier detection of tumours permitting cancer interception; adaptive monitoring during therapy; the addition of novel drugs and improved pharmacological principles that result in deeper responses; and the identification of cancer cell dependencies by high-throughput synthetic lethality screens, integration of clinico-genomic data and computational modelling. These different approaches could eventually be synthesized for each tumour at any decision point and used to inform the choice of therapy.
Collapse
Affiliation(s)
- Neil Vasan
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | - José Baselga
- Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA.,AstraZeneca, Gaithersburg, MD, USA
| | - David M Hyman
- Memorial Sloan Kettering Cancer Center, New York, NY, USA. .,Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
179
|
Alattar AA, Bartek J, Chiang VL, Mohammadi AM, Barnett GH, Sloan A, Chen CC. Stereotactic Laser Ablation as Treatment of Brain Metastases Recurring after Stereotactic Radiosurgery: A Systematic Literature Review. World Neurosurg 2019; 128:134-142. [DOI: 10.1016/j.wneu.2019.04.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/22/2019] [Indexed: 12/21/2022]
|
180
|
Sprugnoli G, Monti L, Lippa L, Neri F, Mencarelli L, Ruffini G, Salvador R, Oliveri G, Batani B, Momi D, Cerase A, Pascual-Leone A, Rossi A, Rossi S, Santarnecchi E. Reduction of intratumoral brain perfusion by noninvasive transcranial electrical stimulation. SCIENCE ADVANCES 2019; 5:eaau9309. [PMID: 31453319 PMCID: PMC6693907 DOI: 10.1126/sciadv.aau9309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 07/10/2019] [Indexed: 05/04/2023]
Abstract
Malignant brain neoplasms have a poor prognosis despite aggressive treatments. Animal models and evidence from human bodily tumors reveal that sustained reduction in tumor perfusion via electrical stimulation promotes tumor necrosis, therefore possibly representing a therapeutic option for patients with brain tumors. Here, we demonstrate that transcranial electrical stimulation (tES) allows to safely and noninvasively reduce intratumoral perfusion in humans. Selected patients with glioblastoma or metastasis underwent tES, while perfusion was assessed using magnetic resonance imaging. Multichannel tES was applied according to personalized biophysical modeling, to maximize the induced electrical field over the solid tumor mass. All patients completed the study and tolerated the procedure without adverse effects, with tES selectively reducing the perfusion of the solid tumor. Results potentially open the door to noninvasive therapeutic interventions in brain tumors based on stand-alone tES or its combination with other available therapies.
Collapse
Affiliation(s)
- G. Sprugnoli
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - L. Monti
- Unit of Neuroimaging and Neurointervention, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - L. Lippa
- Unit of Neurosurgery, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - F. Neri
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - L. Mencarelli
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | | | | | - G. Oliveri
- Unit of Neurosurgery, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - B. Batani
- Unit of Neurosurgery, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - D. Momi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
| | - A. Cerase
- Unit of Neuroimaging and Neurointervention, “Santa Maria alle Scotte” Medical Center, Siena, Italy
| | - A. Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
- Institut Guttmann, Universitat Autonoma Barcelona, Barcelona, Spain
| | - A. Rossi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - S. Rossi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
- Department of Medicine, Surgery and Neuroscience, Human Physiology Section, Siena Medical School, Siena, Italy
| | - E. Santarnecchi
- Brain Investigation and Neuromodulation Laboratory, Department of Medicine, Surgery and Neuroscience, Unit of Neurology and Clinical Neurophysiology, Siena Medical School, Siena, Italy
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
181
|
Kasten BB, Udayakumar N, Leavenworth JW, Wu AM, Lapi SE, McConathy JE, Sorace AG, Bag AK, Markert JM, Warram JM. Current and Future Imaging Methods for Evaluating Response to Immunotherapy in Neuro-Oncology. Theranostics 2019; 9:5085-5104. [PMID: 31410203 PMCID: PMC6691392 DOI: 10.7150/thno.34415] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/20/2019] [Indexed: 12/28/2022] Open
Abstract
Imaging plays a central role in evaluating responses to therapy in neuro-oncology patients. The advancing clinical use of immunotherapies has demonstrated that treatment-related inflammatory responses mimic tumor growth via conventional imaging, thus spurring the development of new imaging approaches to adequately distinguish between pseudoprogression and progressive disease. To this end, an increasing number of advanced imaging techniques are being evaluated in preclinical and clinical studies. These novel molecular imaging approaches will serve to complement conventional response assessments during immunotherapy. The goal of these techniques is to provide definitive metrics of tumor response at earlier time points to inform treatment decisions, which has the potential to improve patient outcomes. This review summarizes the available immunotherapy regimens, clinical response criteria, current state-of-the-art imaging approaches, and groundbreaking strategies for future implementation to evaluate the anti-tumor and immune responses to immunotherapy in neuro-oncology applications.
Collapse
Affiliation(s)
- Benjamin B. Kasten
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Neha Udayakumar
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianmei W. Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna M. Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, United States
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jonathan E. McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna G. Sorace
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asim K. Bag
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
182
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 2019; 49:375-391. [PMID: 31063756 PMCID: PMC6506189 DOI: 10.1016/j.devcel.2019.04.012] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the most devastating stage of cancer progression and causes the majority of cancer-related deaths. Clinical observations suggest that most cancers metastasize to specific organs, a process known as "organotropism." Elucidating the underlying mechanisms may help identify targets and treatment strategies to benefit patients. This review summarizes recent findings on tumor-intrinsic properties and their interaction with unique features of host organs, which together determine organ-specific metastatic behaviors. Emerging insights related to the roles of metabolic changes, the immune landscapes of target organs, and variation in epithelial-mesenchymal transitions open avenues for future studies of metastasis organotropism.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
183
|
Fults DW, Taylor MD, Garzia L. Leptomeningeal dissemination: a sinister pattern of medulloblastoma growth. J Neurosurg Pediatr 2019; 23:613-621. [PMID: 30771762 DOI: 10.3171/2018.11.peds18506] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/21/2018] [Indexed: 01/29/2023]
Abstract
Leptomeningeal dissemination (LMD) is the defining pattern of metastasis for medulloblastoma. Although LMD is responsible for virtually 100% of medulloblastoma deaths, it remains the least well-understood part of medulloblastoma pathogenesis. The fact that medulloblastomas rarely metastasize outside the CNS but rather spread almost exclusively to the spinal and intracranial leptomeninges has fostered the long-held belief that medulloblastoma cells spread directly through the CSF, not the bloodstream. In this paper the authors discuss selected molecules for which experimental evidence explains how the effects of each molecule on cell physiology contribute mechanistically to LMD. A model of medulloblastoma LMD is described, analogous to the invasion-metastasis cascade of hematogenous metastasis of carcinomas. The LMD cascade is based on the molecular themes that 1) transcription factors launch cell programs that mediate cell motility and invasiveness and maintain tumor cells in a stem-like state; 2) disseminating medulloblastoma cells escape multiple death threats by subverting apoptosis; and 3) inflammatory chemokine signaling promotes LMD by creating an oncogenic microenvironment. The authors also review recent experimental evidence that challenges the belief that CSF spread is the sole mechanism of LMD and reveal an alternative scheme in which medulloblastoma cells can enter the bloodstream and subsequently home to the leptomeninges.
Collapse
Affiliation(s)
- Daniel W Fults
- 1Department of Neurosurgery, University of Utah School of Medicine and Huntsman Cancer Institute, Salt Lake City, Utah
| | - Michael D Taylor
- 2Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumour Research Center, and Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Ontario, Canada; and
| | - Livia Garzia
- 3Cancer Research Program, Research Institute of the McGill University Health Center and Department of Surgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
184
|
Kijewska M, Viski C, Turrell F, Fitzpatrick A, van Weverwijk A, Gao Q, Iravani M, Isacke CM. Using an in-vivo syngeneic spontaneous metastasis model identifies ID2 as a promoter of breast cancer colonisation in the brain. Breast Cancer Res 2019; 21:4. [PMID: 30642388 PMCID: PMC6332688 DOI: 10.1186/s13058-018-1093-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022] Open
Abstract
Background Dissemination of breast cancers to the brain is associated with poor patient outcome and limited therapeutic options. In this study we sought to identify novel regulators of brain metastasis by profiling mouse mammary carcinoma cells spontaneously metastasising from the primary tumour in an immunocompetent syngeneic host. Methods 4T1 mouse mammary carcinoma sublines derived from primary tumours and spontaneous brain and lung metastases in BALB/c mice were subject to genome-wide expression profiling. Two differentially expressed genes, Id2 and Aldh3a1, were validated in in-vivo models using mouse and human cancer cell lines. Clinical relevance was investigated in datasets of breast cancer patients with regards to distant metastasis-free survival and brain metastasis relapse-free survival. The role of bone morphogenetic protein (BMP)7 in regulating Id2 expression and promoting cell survival was investigated in two-dimensional and three-dimensional in-vitro assays. Results In the spontaneous metastasis model, expression of Id2 and Aldh3a1 was significantly higher in 4T1 brain-derived sublines compared with sublines from lung metastases or primary tumour. Downregulation of expression impairs the ability of cells to colonise the brain parenchyma whereas ectopic expression in 4T1 and human MDA-MB-231 cells promotes dissemination to the brain following intracardiac inoculation but has no impact on the efficiency of lung colonisation. Both genes are highly expressed in oestrogen receptor (ER)-negative breast cancers and, within this poor prognosis sub-group, increased expression correlates with reduced distant metastasis-free survival. ID2 expression also associates with reduced brain metastasis relapse-free survival. Mechanistically, BMP7, which is present at significantly higher levels in brain tissue compared with the lungs, upregulates ID2 expression and, after BMP7 withdrawal, this elevated expression is retained. Finally, we demonstrate that either ectopic expression of ID2 or BMP7-induced ID2 expression protects tumour cells from anoikis. Conclusions This study identifies ID2 as a key regulator of breast cancer metastasis to the brain. Our data support a model in which breast cancer cells that have disseminated to the brain upregulate ID2 expression in response to astrocyte-secreted BMP7 and this serves to support metastatic expansion. Moreover, elevated ID2 expression identifies breast cancer patients at increased risk of developing metastatic relapse in the brain. Electronic supplementary material The online version of this article (10.1186/s13058-018-1093-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Kijewska
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.,Present address: Oncology Cell Therapy DPU, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Carmen Viski
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Frances Turrell
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Antoinette van Weverwijk
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.,Present address: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Qiong Gao
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| |
Collapse
|
185
|
KiSS1 in regulation of metastasis and response to antitumor drugs. Drug Resist Updat 2019; 42:12-21. [DOI: 10.1016/j.drup.2019.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
|
186
|
Berghoff AS, Preusser M. New developments in brain metastases. Ther Adv Neurol Disord 2018; 11:1756286418785502. [PMID: 30034538 PMCID: PMC6048670 DOI: 10.1177/1756286418785502] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with brain metastases (BM) are a population of high clinical need for new therapeutic approaches due to, as yet, very impaired survival prognosis. However, only few clinical trials have specifically addressed this prognostically highly heterogeneous patient population. New developments in the treatment of BM patients aim to reduce the side effects of local therapies, for example, by redefining the indications for stereotactic radiosurgery and whole-brain radiotherapy (WBRT) or introducing new applications like hippocampal sparing WBRT. Furthermore, systemic therapies become a more important treatment approach in patients harboring targetable mutations, as recent BM-specific endpoints in several phase III trials have shown promising intracranial efficacy. In addition, immune-checkpoint inhibitors show promising intracranial efficacy, particularly in patients with melanoma and non-small lung cancer BM. Here, we provide a review on the recent new developments in the local and systemic therapy approaches in BM patients.
Collapse
Affiliation(s)
- Anna S. Berghoff
- Department of Medicine I, Medical University of
Vienna, Vienna, Austria Comprehensive Cancer Center, Medical University of
Vienna, Vienna, Austria
| | - Matthias Preusser
- Department of Medicine I and Comprehensive
Cancer Center CNS Unit (CCC-CNS), Medical University of Vienna, Waehringer
Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
187
|
Dankner M, Lajoie M, Moldoveanu D, Nguyen TT, Savage P, Rajkumar S, Huang X, Lvova M, Protopopov A, Vuzman D, Hogg D, Park M, Guiot MC, Petrecca K, Mihalcioiu C, Watson IR, Siegel PM, Rose AA. Dual MAPK Inhibition Is an Effective Therapeutic Strategy for a Subset of Class II BRAF Mutant Melanomas. Clin Cancer Res 2018; 24:6483-6494. [DOI: 10.1158/1078-0432.ccr-17-3384] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/28/2018] [Accepted: 06/06/2018] [Indexed: 11/16/2022]
|
188
|
Priego N, Zhu L, Monteiro C, Mulders M, Wasilewski D, Bindeman W, Doglio L, Martínez L, Martínez-Saez E, Ramón Y Cajal S, Megías D, Hernández-Encinas E, Blanco-Aparicio C, Martínez L, Zarzuela E, Muñoz J, Fustero-Torre C, Piñeiro-Yáñez E, Hernández-Laín A, Bertero L, Poli V, Sanchez-Martinez M, Menendez JA, Soffietti R, Bosch-Barrera J, Valiente M. STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nat Med 2018; 24:1024-1035. [PMID: 29892069 DOI: 10.1038/s41591-018-0044-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 03/28/2018] [Indexed: 12/26/2022]
Abstract
The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.
Collapse
Affiliation(s)
- Neibla Priego
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cátia Monteiro
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manon Mulders
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David Wasilewski
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wendy Bindeman
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Doglio
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,Centre for Developmental Neurobiology, King's College London, London, UK
| | - Liliana Martínez
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Martínez-Saez
- Pathology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Pathology Department, Vall d'Hebron Hospital, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Diego Megías
- Confocal Microscopy Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | - Lola Martínez
- Flow Cytometry Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Eduardo Zarzuela
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Muñoz
- ProteoRed-ISCIII. Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Coral Fustero-Torre
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Elena Piñeiro-Yáñez
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Aurelio Hernández-Laín
- Neuropathology Unit, Hospital Universitario 12 de Octubre Research Institute, Madrid, Spain
| | - Luca Bertero
- Medical Sciences Department, Division of Pathology, University and City of Health and Science University Hospital of Turin, Turin, Italy
| | - Valeria Poli
- Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Riccardo Soffietti
- Neuro-Oncology Department, University and City of Health and Science University Hospital of Turin, Turin, Italy
| | - Joaquim Bosch-Barrera
- Molecular Oncology Group, Girona Biomedical Research Institute (IDIBGI), Girona, Spain.,Department of Medical Sciences, Medical School, University of Girona, Girona, Spain.,Catalan Institute of Oncology (ICO), Dr. Josep Trueta University Hospital, Girona, Spain
| | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
| |
Collapse
|