151
|
Harwansh RK, Bahadur S. Herbal Medicine in Fighting Against COVID-19: New Battle with an Old Weapon. Curr Pharm Biotechnol 2021; 23:235-260. [PMID: 33749558 DOI: 10.2174/1389201022666210322124348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
World population has been suffering due to the outbreak of present pandemic situation of COVID-19. The disease has become life-threatening in a very short time with touching on most of the citizenry and economic systems globally. The novel virus, SARS-CoV-2 has been known as the causative agent of COVID-19. The SARS-CoV-2 is single stranded RNA virus having ~30 kb genomic components which are 70% identical to SARS-CoV. The main process of pathophysiology of COVID-19 has been associated with the interaction of a novel coronavirus with host cell receptor, angiotensin-converting enzyme-2 (ACE 2) by fusion. Therapeutic agents having serine protease inhibitors and ACE-2 blockers may be explored for the treatment by inhibiting the viral target such as Mpro, RdRp, PLpro and helicase. Herbal medicine has a wide array chemical entity with potential health benefits including antiviral activity which may be explored as alternative treatment of COVID-19. The herbal bioactives like catechins, andrographolide, hesperidin, biorobin, scutellarein, silvestrol, shikonin, tryptanthrin, vitexin quercetin, myricetin, caffeic acid, psoralidin, luteolin etc have showed potential inhibitory effect against SARS-CoV-2. Recent research reports indicate that the various plant secondary metabolites have shown the potential antiviral activities. The present review article highlights on the recent information on the mechanism of actions and applications of herbal medicine in the treatment of COVID-19.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406. India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406. India
| |
Collapse
|
152
|
Bernasconi A, Canakoglu A, Masseroli M, Pinoli P, Ceri S. A review on viral data sources and search systems for perspective mitigation of COVID-19. Brief Bioinform 2021; 22:664-675. [PMID: 33348368 PMCID: PMC7799334 DOI: 10.1093/bib/bbaa359] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/09/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
With the outbreak of the COVID-19 disease, the research community is producing unprecedented efforts dedicated to better understand and mitigate the effects of the pandemic. In this context, we review the data integration efforts required for accessing and searching genome sequences and metadata of SARS-CoV2, the virus responsible for the COVID-19 disease, which have been deposited into the most important repositories of viral sequences. Organizations that were already present in the virus domain are now dedicating special interest to the emergence of COVID-19 pandemics, by emphasizing specific SARS-CoV2 data and services. At the same time, novel organizations and resources were born in this critical period to serve specifically the purposes of COVID-19 mitigation while setting the research ground for contrasting possible future pandemics. Accessibility and integration of viral sequence data, possibly in conjunction with the human host genotype and clinical data, are paramount to better understand the COVID-19 disease and mitigate its effects. Few examples of host-pathogen integrated datasets exist so far, but we expect them to grow together with the knowledge of COVID-19 disease; once such datasets will be available, useful integrative surveillance mechanisms can be put in place by observing how common variants distribute in time and space, relating them to the phenotypic impact evidenced in the literature.
Collapse
|
153
|
Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 Infections in Animals: Reservoirs for Reverse Zoonosis and Models for Study. Viruses 2021; 13:494. [PMID: 33802857 PMCID: PMC8002747 DOI: 10.3390/v13030494] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
The recent SARS-CoV-2 pandemic has brought many questions over the origin of the virus, the threat it poses to animals both in the wild and captivity, and the risks of a permanent viral reservoir developing in animals. Animal experiments have shown that a variety of animals can become infected with the virus. While coronaviruses have been known to infect animals for decades, the true intermediate host of the virus has not been identified, with no cases of SARS-CoV-2 in wild animals. The screening of wild, farmed, and domesticated animals is necessary to help us understand the virus and its origins and prevent future outbreaks of both COVID-19 and other diseases. There is intriguing evidence that farmed mink infections (acquired from humans) have led to infection of other farm workers in turn, with a recent outbreak of a mink variant in humans in Denmark. A thorough examination of the current knowledge and evidence of the ability of SARS-CoV-2 to infect different animal species is therefore vital to evaluate the threat of animal to human transmission and reverse zoonosis.
Collapse
Affiliation(s)
- Tessa Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Shirley L. Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Alan D. Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
| | - Tom Solomon
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7BE, UK; (S.L.S.); (A.D.R.)
- Walton Centre NHS Foundation Trust, Liverpool L9 7LJ, UK
| | - Grant L. Hughes
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7TX, UK; (T.S.); (G.L.H.)
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Edward I. Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Department of Biological Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
154
|
Bhuiyan MSA, Amin Z, Bakar AMSA, Saallah S, Yusuf NHM, Shaarani SM, Siddiquee S. Factor Influences for Diagnosis and Vaccination of Avian Infectious Bronchitis Virus (Gammacoronavirus) in Chickens. Vet Sci 2021; 8:47. [PMID: 33809420 PMCID: PMC8001924 DOI: 10.3390/vetsci8030047] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious bronchitis virus (IBV) is a major economic problem in commercial chicken farms with acute multiple-system infection, especially in respiratory and urogenital systems. A live-attenuated and killed vaccine is currently immunized to control IBV infection; however, repeated outbreaks occur in both unvaccinated and vaccinated birds due to the choice of inadequate vaccine candidates and continuous emergence of novel infectious bronchitis (IB) variants and failure of vaccination. However, similar clinical signs were shown in different respiratory diseases that are essential to improving the diagnostic assay to detect IBV infections. Various risk factors involved in the failure of IB vaccination, such as various routes of application of vaccination, the interval between vaccinations, and challenge with various possible immunosuppression of birds are reviewed. The review article also highlights and updates factors affecting the diagnosis of IBV disease in the poultry industry with differential diagnosis to find the nature of infections compared with non-IBV diseases. Therefore, it is essential to monitor the common reasons for failed IBV vaccinations with preventive action, and proper diagnostic facilities for identifying the infective stage, leading to earlier control and reduced economic losses from IBV disease.
Collapse
Affiliation(s)
- Md. Safiul Alam Bhuiyan
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Zarina Amin
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Ag Muhammad Sagaf Abu Bakar
- Jabatan Perkhidmatan Veterinar Sabah, Makamal Diagnosa Veterinar Kota Kinabalu, Peti Surat No 59, Tanjung Aru 89457, Sabah, Malaysia;
| | - Suryani Saallah
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Noor Hydayaty Md. Yusuf
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| | - Sharifudin Md. Shaarani
- Food Biotechnology Program, Faculty of Science and Technology, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri, Malaysia;
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jln UMS, Kota Kinabalu 88400, Sabah, Malaysia; (M.S.A.B.); (Z.A.); (S.S.); (N.H.M.Y.)
| |
Collapse
|
155
|
Falkenberg S, Buckley A, Laverack M, Martins M, Palmer MV, Lager K, Diel DG. Experimental Inoculation of Young Calves with SARS-CoV-2. Viruses 2021; 13:441. [PMID: 33803455 PMCID: PMC8000368 DOI: 10.3390/v13030441] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
The host range of SARS-CoV-2 and the susceptibility of animal species to the virus are topics of great interest to the international scientific community. The angiotensin I converting enzyme 2 (ACE2) protein is the major receptor for the virus, and sequence and structural analysis of the protein has been performed to determine its cross-species conservation. Based on these analyses, cattle have been implicated as a potential susceptible species to SARS-CoV-2 and have been reported to have increased ACE2 receptor distribution in the liver and kidney, and lower levels in the lungs. The goal of the current study was to determine the susceptibility of cattle to SARS-CoV-2 utilizing inoculation routes that facilitated exposure to tissues with increased ACE2 receptor distribution. For this, colostrum-deprived calves approximately 6 weeks of age were inoculated via the intratracheal or intravenous routes. Nasal and rectal swab samples, as well as blood and urine samples, were collected over the course of the study to evaluate viral shedding, viremia, and seroconversion. Pyrexia was used as the primary criteria for euthanasia and tissue samples were collected during necropsy. Importantly, SARS-CoV-2 RNA was detected in only two nasal swab samples collected on days 3 and 10 post-inoculation (pi) in two calves; one calf in the intratracheal group and the other calf in the intravenous group, respectively. Additionally, the calf in the intratracheal group that was positive on the nasal swab on day 3 pi also had a positive tracheobronchial lymph node on day 9 pi. Viral nucleic acid load on these samples, based on PCR cycle threshold values, were low and infectious virus was not recovered from the samples. These results suggest that there was no productive replication of SARS-CoV-2 in calves following intratracheal and intravenous inoculation.
Collapse
Affiliation(s)
- Shollie Falkenberg
- Ruminant Disease and Immunology Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA
| | - Alexandra Buckley
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; (A.B.); (K.L.)
| | - Melissa Laverack
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| | - Mathias Martins
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| | - Mitchell V. Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA;
| | - Kelly Lager
- Virus and Prion Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, 1920 Dayton Avenue, P.O. Box 70, Ames, IA 50010, USA; (A.B.); (K.L.)
| | - Diego G. Diel
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, 240 Farrier Rd, Ithaca, NY 14853, USA; (M.L.); (M.M.); (D.G.D.)
| |
Collapse
|
156
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
157
|
Berezin V, Bogoyavlenskiy A, Alexyuk M, Alexyuk P. Plant Metabolites as Antiviral Preparations Against Coronaviruses. J Med Food 2021; 24:1028-1038. [PMID: 33689397 DOI: 10.1089/jmf.2020.0190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In 2019-2020, the Coronavirus (CoV) disease 2019 pandemic created a serious challenge for health care systems in several countries worldwide. A cure has not been developed yet and currently used treatment protocols are aimed at relieving clinical symptoms of the disease. This article presents a retrospective review of biologically active compounds of plant origin that can inhibit the reproduction of CoVs, which makes them potential candidates for creating medicinal antiviral preparations against severe acute respiratory syndrome CoV-2 infections. A literature review of articles from highly rated journals was performed using public databases. The search was carried out using keywords related to CoVs, targets for therapy, and plant as antiviral agents. Although inhibition of viral replication is often considered the common mechanism of antiviral activity exerted by most natural products, several plant-derived compounds show specific activity for particular target viruses. In this context, certain classes of plant preparations can serve as a basis for designing modern antiviral agents. In addition, a large number of plant compounds that are potentially active against CoVs are the main components of certain common dietary supplements that can be used to improve the resistance of a population against certain respiratory infections. In this review, we have attempted to characterize the main groups of biologically active plant compounds that have the potential to disrupt the key stages of CoV replication. It has been shown that the use of certain herbal preparations can change the course of infection.
Collapse
Affiliation(s)
- Vladimir Berezin
- Research and Production Center fоr Microbiology and Virology, Almaty, Kazakhstan
| | | | - Madina Alexyuk
- Research and Production Center fоr Microbiology and Virology, Almaty, Kazakhstan
| | - Pavel Alexyuk
- Research and Production Center fоr Microbiology and Virology, Almaty, Kazakhstan
| |
Collapse
|
158
|
Kevadiya BD, Machhi J, Herskovitz J, Oleynikov MD, Blomberg WR, Bajwa N, Soni D, Das S, Hasan M, Patel M, Senan AM, Gorantla S, McMillan J, Edagwa B, Eisenberg R, Gurumurthy CB, Reid SPM, Punyadeera C, Chang L, Gendelman HE. Pharmacotherapeutics of SARS-CoV-2 Infections. J Neuroimmune Pharmacol 2021; 16:12-37. [PMID: 33403500 PMCID: PMC7785334 DOI: 10.1007/s11481-020-09968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 01/31/2023]
Abstract
The COVID-19 pandemic has affected more than 38 million people world-wide by person to person transmission of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therapeutic and preventative strategies for SARS-CoV-2 remains a significant challenge. Within the past several months, effective treatment options have emerged and now include repurposed antivirals, corticosteroids and virus-specific antibodies. The latter has included convalescence plasma and monoclonal antibodies. Complete viral eradication will be achieved through an effective, safe and preventative vaccine. To now provide a comprehensive summary for each of the pharmacotherapeutics and preventative strategies being offered or soon to be developed for SARS-CoV-2.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maxim D Oleynikov
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Wilson R Blomberg
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Neha Bajwa
- Department of Pharmaceutical Sciences & Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Pb, India
| | - Dhruvkumar Soni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Srijanee Das
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 20095, China
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - JoEllyn McMillan
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | | | - Channabasavaiah B Gurumurthy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - St Patrick M Reid
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chamindie Punyadeera
- The School of Biomedical Sciences and the Institute of Health and Biomedical Innovation, Queensland University of Technology and the Translational Research Institute, Brisbane, Australia
| | - Linda Chang
- Departments of Diagnostic Radiology & Nuclear Medicine, and Neurology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
159
|
Farouk AE, Baig MH, Khan MI, Park T, Alotaibi SS, Dong JJ. Screening of inhibitors against SARS-CoV-2 spike protein and their capability to block the viral entry mechanism: A viroinformatics study. Saudi J Biol Sci 2021; 28:3262-3269. [PMID: 33654454 PMCID: PMC7908882 DOI: 10.1016/j.sjbs.2021.02.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/18/2020] [Accepted: 02/19/2021] [Indexed: 01/12/2023] Open
Abstract
SARS-CoV-2, previously named 2019 novel coronavirus (2019-nCoV), has been associated with the global pandemic of acute respiratory distress syndrome. First reported in December 2019 in the Wuhan province of China, this new RNA virus has several folds higher transmission among humans than its other family member (SARS-CoV and MERS-CoV). The SARS-CoV-2 spike receptor-binding domain (RBD) is the region mediating the binding of the virus to host cells via Angiotensin-converting enzyme 2 (ACE2), a critical step of viral. Here in this study, we have utilized in silico approach for the virtual screening of antiviral library extracted from the Asinex database against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein. Further, the molecules were ranked based on their binding affinity against RBD, and the top 15 molecules were selected. The affinity of these selected molecules to interrupt the ACE2-Spike interaction was also studied. It was found that the chosen molecules were demonstrating excellent binding affinity against spike protein, and these molecules were also very effectively interrupting the ACE2-RBD interaction. Furthermore, molecular dynamics (MD) simulation studies were utilized to investigate the top 3 selected molecules' stability in the ACE2-RBD complexes. To the best of our knowledge, this is the first study where molecules' inhibitory potential against the Receptor binding domain (RBD) of the S1 subunit of the SARS-CoV-2 spike glycoprotein and their inhibitory potential against the ACE2-Spike has been studied. We believe that these compounds can be further tested as a potential therapeutic option against COVID-19.
Collapse
Affiliation(s)
- Abd-ElAziem Farouk
- Department of Biotechnology, College of Science, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohd Imran Khan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Taehwan Park
- University-Industry Foundation, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
160
|
Decaro N, Lorusso A, Capua I. Erasing the Invisible Line to Empower the Pandemic Response. Viruses 2021; 13:v13020348. [PMID: 33672217 PMCID: PMC7926678 DOI: 10.3390/v13020348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
A challenging debate has arisen on the role of veterinary expertise in facing the SARS-CoV-2 pandemic. It seems totally unreasonable that in most countries, veterinary diagnostic and tracing forces were not deployed at the start to perform strategic tasks, which could have mitigated the outcome of this dramatic health emergency. Erasing the invisible line between human and veterinary virology will empower the response to future pandemics.
Collapse
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, 70010 Valenzano, Italy
- Correspondence: ; Tel.: +39-0804679832
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, 64100 Teramo, Italy;
| | - Ilaria Capua
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
161
|
Pagani G, Lai A, Bergna A, Rizzo A, Stranieri A, Giordano A, Paltrinieri S, Lelli D, Decaro N, Rusconi S, Gismondo MR, Antinori S, Lauzi S, Galli M, Zehender G. Human-to-Cat SARS-CoV-2 Transmission: Case Report and Full-Genome Sequencing from an Infected Pet and Its Owner in Northern Italy. Pathogens 2021; 10:pathogens10020252. [PMID: 33672421 PMCID: PMC7926546 DOI: 10.3390/pathogens10020252] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022] Open
Abstract
There have been previous reports of the human-to-cat transmission of SARS-CoV-2, but there are only a few molecular studies that have compared the whole genome of the virus in cats and their owners. We here describe a case of domestic SARS-CoV-2 transmission from a healthcare worker to his cat for which nasopharyngeal swabs of both the cat and its owner were used for full-genome analysis. The results indicate that quarantine measures should be extended to pets living in SARS-CoV-2-infected households.
Collapse
Affiliation(s)
- Gabriele Pagani
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Correspondence: ; Tel.: +39-02-3904-2451
| | - Alessia Lai
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Annalisa Bergna
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Alberto Rizzo
- Microbiology Unit, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (A.R.); (M.R.G.)
| | - Angelica Stranieri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Alessia Giordano
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Davide Lelli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER), 25124 Brescia, Italy;
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, 700010 Bari, Italy;
| | - Stefano Rusconi
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Maria Rita Gismondo
- Microbiology Unit, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (A.R.); (M.R.G.)
| | - Spinello Antinori
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Stefania Lauzi
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy; (A.S.); (A.G.); (S.P.); (S.L.)
| | - Massimo Galli
- Infectious Diseases Unit, 3rd Division, Luigi Sacco Hospital, ASST FBF-Sacco, 20157 Milan, Italy; (S.R.); (S.A.); (M.G.)
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| | - Gianguglielmo Zehender
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università Statale di Milano, 20157 Milan, Italy; (A.L.); (A.B.); (G.Z.)
| |
Collapse
|
162
|
Komiyama M. Molecular-level Anatomy of SARS-CoV-2 for the Battle against COVID-19 Pandemic. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210030] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
163
|
Calistri P, Decaro N, Lorusso A. SARS-CoV-2 Pandemic: Not the First, Not the Last. Microorganisms 2021; 9:microorganisms9020433. [PMID: 33669805 PMCID: PMC7923159 DOI: 10.3390/microorganisms9020433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 01/03/2023] Open
Abstract
The common trait among the betacoronaviruses that emerged during the past two decades (the severe acute respiratory syndrome coronavirus-SARS-CoV, the Middle East respiratory syndrome coronavirus-MERS-CoV, and the recent SARS coronavirus 2-SARS-CoV-2) is their probable animal origin, all deriving from viruses present in bat species. Bats have arisen the attention of the scientific community as reservoir of emerging viruses, given their wide geographical distribution, their biological diversity (around 1400 species, 21 different families and over 200 genera), and their peculiar ecological and physiological characteristics which seem to facilitate them in harbouring a high viral diversity. Several human activities may enable the viral spill-over from bats to humans, such as deforestation, land-use changes, increased livestock grazing or intensive production of vegetal cultures. In addition, the globalization of trade and high global human mobility allow these viruses to be disseminated in few hours in many parts of the World. In order to avoid the emergence of new pandemic threats in the future we need to substantially change our global models of social and economic development, posing the conservation of biodiversity and the preservation of natural ecosystems as a pillar for the protection of global human health.
Collapse
Affiliation(s)
- Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
- Correspondence:
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, 70129 Bari, Italy;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, 64100 Teramo, Italy;
| |
Collapse
|
164
|
Devaux CA, Lagier JC, Raoult D. New Insights Into the Physiopathology of COVID-19: SARS-CoV-2-Associated Gastrointestinal Illness. Front Med (Lausanne) 2021; 8:640073. [PMID: 33681266 PMCID: PMC7930624 DOI: 10.3389/fmed.2021.640073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Although SARS-CoV-2 is considered a lung-tropic virus that infects the respiratory tract through binding to the ACE2 cell-surface molecules present on alveolar lungs epithelial cells, gastrointestinal symptoms have been frequently reported in COVID-19 patients. What can be considered an apparent paradox is that these symptoms (e.g., diarrhea), sometimes precede the development of respiratory tract illness as if the breathing apparatus was not its first target during viral dissemination. Recently, evidence was reported that the gut is an active site of replication for SARS-CoV-2. This replication mainly occurs in mature enterocytes expressing the ACE2 viral receptor and TMPRSS4 protease. In this review we question how SARS-CoV-2 can cause intestinal disturbances, whether there are pneumocyte-tropic, enterocyte-tropic and/or dual tropic strains of SARS-CoV-2. We examine two major models: first, that of a virus directly causing damage locally (e.g., by inducing apoptosis of infected enterocytes); secondly, that of indirect effect of the virus (e.g., by inducing changes in the composition of the gut microbiota followed by the induction of an inflammatory process), and suggest that both situations probably occur simultaneously in COVID-19 patients. We eventually discuss the consequences of the virus replication in brush border of intestine on long-distance damages affecting other tissues/organs, particularly lungs.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Jean-Christophe Lagier
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Didier Raoult
- Aix-Marseille University, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
165
|
Decaro N, Balboni A, Bertolotti L, Martino PA, Mazzei M, Mira F, Pagnini U. SARS-CoV-2 Infection in Dogs and Cats: Facts and Speculations. Front Vet Sci 2021; 8:619207. [PMID: 33644148 PMCID: PMC7902482 DOI: 10.3389/fvets.2021.619207] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Balboni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Luigi Bertolotti
- Department of Veterinary Science, University of Torino, Turin, Italy
| | | | - Maurizio Mazzei
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Francesco Mira
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
166
|
Animal Coronaviruses and SARS-COV-2 in Animals, What Do We Actually Know? Life (Basel) 2021; 11:life11020123. [PMID: 33562645 PMCID: PMC7914637 DOI: 10.3390/life11020123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022] Open
Abstract
Coronaviruses (CoVs) are a well-known group of viruses in veterinary medicine. We currently know four genera of Coronavirus, alfa, beta, gamma, and delta. Wild, farmed, and pet animals are infected with CoVs belonging to all four genera. Seven human respiratory coronaviruses have still been identified, four of which cause upper-respiratory-tract diseases, specifically, the common cold, and the last three that have emerged cause severe acute respiratory syndromes, SARS-CoV-1, MERS-CoV, and SARS-CoV-2. In this review we briefly describe animal coronaviruses and what we actually know about SARS-CoV-2 infection in farm and domestic animals.
Collapse
|
167
|
Zarandi PK, Zinatizadeh MR, Zinatizadeh M, Yousefi MH, Rezaei N. SARS-CoV-2: From the pathogenesis to potential anti-viral treatments. Biomed Pharmacother 2021; 137:111352. [PMID: 33550050 PMCID: PMC7969672 DOI: 10.1016/j.biopha.2021.111352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The world is witnessing the spread of one of the members of Coronaviruses (CoVs) family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the 21st century. Considering the short time spent after its prevalence, limited information is known about the effect of the virus mechanism on different organs of the body; meanwhile the lack of specific treatment and vaccine for this virus has exposed millions of people to a big challenge. Areas covered The review article aims to describe the general and particular characteristics of CoVs, their classification, genome structure, host cell infection, cytokine storm, anti-viral treatments, and inhibition of COVID-19-related ER-mitochondrial stress. In addition, it refers to drugs such as Chloroquine/Hydroxychloroquine, Lopinavir/Ritonavir, darunavir, ribavirin, remdesivir, and favipiravir, which have undergone clinical trials for coronavirus disease 2019 (COVID-19) treatment. This analysis was derived from an extensive scientific literature search including Pubmed, ScienceDirect, and Google Scholar performed. Expert opinion The effectiveness rate and complications of these drugs can reveal new insights into the potential therapeutic goals for the disease. Moreover, lifestyle change can effectively prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maryam Zinatizadeh
- Department of Anesthesiology, Semnan Branch, Islamic Azad University, Shahrood, Iran
| | - Mohammad Hadi Yousefi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
168
|
Kumar S, Singh R, Kumari N, Karmakar S, Behera M, Siddiqui AJ, Rajput VD, Minkina T, Bauddh K, Kumar N. Current understanding of the influence of environmental factors on SARS-CoV-2 transmission, persistence, and infectivity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6267-6288. [PMID: 33387315 PMCID: PMC7776306 DOI: 10.1007/s11356-020-12165-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/17/2020] [Indexed: 04/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a significant public health emergency in recent times. It is a respiratory illness caused by the novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which was initially reported in late December 2019. In a span of 6 months, this pandemic spread across the globe leading to high morbidity and mortality rates. Soon after the identification of the causative virus, questions concerning the impact of environmental factors on the dissemination and transmission of the virus, its persistence in environmental matrices, and infectivity potential begin to emerge. As the environmental factors could have far-reaching consequences on infection dissemination and severity, it is essential to understand the linkage between these factors and the COVID-19 outbreak. In order to improve our current understanding over this topic, the present article summarizes topical and substantial observations made regarding the influences of abiotic environmental factors such as climate, temperature, humidity, wind speed, air, and water quality, solid surfaces/interfaces, frozen food, and biotic factors like age, sex, gender, blood type, population density, behavioural characteristics, etc. on the transmission, persistence, and infectivity of this newly recognized SARS-CoV-2 virus. Further, the potential pathways of virus transmission that could pose risk to population health have been discussed, and the critical areas have been identified which merits urgent research for the assessment and management of the COVID-19 outbreak. Where possible, the knowledge gaps requiring further investigation have been highlighted.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India.
| | - Nisha Kumari
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Susmita Karmakar
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Monalisha Behera
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, 305817, Rajasthan, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, PO Box 2440, Saudi Arabia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, 344090, Russia
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, 835205, Jharkhand, India
| | - Narendra Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| |
Collapse
|
169
|
Diagnostic Value of Detecting Feline Coronavirus RNA and Spike Gene Mutations in Cerebrospinal Fluid to Confirm Feline Infectious Peritonitis. Viruses 2021; 13:v13020186. [PMID: 33513683 PMCID: PMC7912268 DOI: 10.3390/v13020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cats with neurologic feline infectious peritonitis (FIP) are difficult to diagnose. Aim of this study was to evaluate the diagnostic value of detecting feline coronavirus (FCoV) RNA and spike (S) gene mutations in cerebrospinal fluid (CSF). METHODS The study included 30 cats with confirmed FIP (six with neurological signs) and 29 control cats (eleven with neurological signs) with other diseases resulting in similar clinical signs. CSF was tested for FCoV RNA by 7b-RT-qPCR in all cats. In RT-qPCR-positive cases, S-RT-qPCR was additionally performed to identify spike gene mutations. RESULTS Nine cats with FIP (9/30, 30%), but none of the control cats were positive for FCoV RNA in CSF. Sensitivity of 7b-RT-qPCR in CSF was higher for cats with neurological FIP (83.3%; 95% confidence interval (95% CI) 41.8-98.9) than for cats with non-neurological FIP (16.7%; 95% CI 6.1-36.5). Spike gene mutations were rarely detected. CONCLUSIONS FCoV RNA was frequently present in CSF of cats with neurological FIP, but only rarely in cats with non-neurological FIP. Screening for spike gene mutations did not enhance specificity in this patient group. Larger populations of cats with neurological FIP should be explored in future studies.
Collapse
|
170
|
Decaro N, Mari V, Lanave G, Lorusso E, Lucente MS, Desario C, Colaianni ML, Elia G, Ferringo F, Alfano F, Buonavoglia C. Mutation analysis of the spike protein in Italian feline infectious peritonitis virus and feline enteric coronavirus sequences. Res Vet Sci 2021; 135:15-19. [PMID: 33418186 DOI: 10.1016/j.rvsc.2020.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Feline coronavirus (FCoV) exists as two different genotypes, FCoV type I and II, each including two biotypes, feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV), the latter being a virulent variant originating from the former virus. Recently, two amino acid substitutions, M1058L and S1060A, within the spike protein have been associated to the FECV/FIPV virulence change. In this study, we have analysed the frequency of detection of such mutations in FIPV and FECV strains circulating in Italian cats and obtained information about their evolutionary relationships with reference isolates. A total of 40 FCoV strains, including 19 strains from effusions or tissue samples of FIP cats and 21 strains from faecal samples of non-FIP cats, were analysed. Mutation M1058L was detected in 16/18 FCoV-I and 1/1 FCoV-II strains associated with FIP, while change S1060A was presented by two FIPV strains. By phylogenetic analysis, FCoV sequences clustered according to the genotype but not according to the biotype, with FECV/FIPV strains recovered from the same animal being closely related. Further studies are needed to better define the genetic signatures associated with the FECV/FIPV virulence shift.
Collapse
Affiliation(s)
- N Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy.
| | - V Mari
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - G Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - E Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - M S Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - C Desario
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - M L Colaianni
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, via Manfredonia 20, 71121 Foggia, FG, Italy
| | - G Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - F Ferringo
- Istituto Zooprofilattico Sperimentale di Puglia e Basilicata, via Manfredonia 20, 71121 Foggia, FG, Italy
| | - F Alfano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, 80055 Portici, NA, Italy
| | - C Buonavoglia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
171
|
Dos Santos M, Ferreira AVF, da Silva JO, Nogueira LM, Machado JM, Francisco MFC, da Paz MC, Giunchetti RC, Galdino AS. Patents Related to Pathogenic Human Coronaviruses. Recent Pat Biotechnol 2021; 15:12-24. [PMID: 33504319 DOI: 10.2174/1872208315666210127085404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Coronaviruses have caused outbreaks of respiratory disease since the beginning of the 21st century, representing a significant threat to public health. Together, the severe acute respiratory syndrome coronavirus (SARS-CoV), the respiratory syndrome coronavirus (MERS-CoV), and, more recently, the novel coronavirus (SARS-CoV-2) have caused a large number of deaths around the world. Thus, investments in research and the development of strategies aimed at diagnosing, treating, and preventing these infections are urgently needed. OBJECTIVE The objective of this study was to analyze the patents that address pathogenic coronaviruses in Google Patents databases in the last year (2019-2020). METHODS The search strategy was carried out in April 2020, based on the keywords "SARS", "SARS-CoV", "MERS", "MERS-CoV", "SARS-CoV-2" and "COVID-19. Out of the patents examined, 25 were selected for a short description in this study. RESULTS A total of 191 patents were analyzed, 149 of which were related to SARS-CoV, and 29 and 12 were related to MERS-CoV and SARS- CoV2, respectively. The patents addressed the issues of diagnosis, therapeutic agents, prevention and control, along with other applications. CONCLUSION Several promising strategies have been documented in intellectual property databases favoring the need for further studies on the pathogenesis and optimization of the diagnosis and therapeutic treatment for these emerging infections.
Collapse
Affiliation(s)
- Michelli Dos Santos
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - André V F Ferreira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - Jonatas O da Silva
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - Laís M Nogueira
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - Juliana M Machado
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - Mariana F C Francisco
- Laboratório de Nano- Biotecnologia & Bioativos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - Mariana C da Paz
- Laboratório de Nano- Biotecnologia & Bioativos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| | - Rodolfo C Giunchetti
- Laboratório de Biologia das Interações Celulares, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Alexsandro S Galdino
- Laboratório de Biotecnologia de Microrganismos, Universidade Federal de São João Del-Rei, Sebastião Gonçalves Coelho, 400, 355901-296, Divinópolis, MG, Brazil
| |
Collapse
|
172
|
Teixeira AIP, Cantarino L. Severe acute respiratory syndrome coronavirus 2 in cats: a systematic review. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2021; 43:e000421. [PMID: 35749089 PMCID: PMC9179199 DOI: 10.29374/2527-2179.bjvm000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
The epidemiological role of cats in the coronavirus disease pandemic remains unclear despite of several studies that have been conducted to understand it, in other words it is not yet known whether the cat would be able to transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans. Taking that into account, the objective of this study was to conduct a systematic review to identify what is known and not known on this topic. Our results revealed that cats can be infected through an airborne (perhaps oral, too) route and that the clinical development of the infection in cats is parallel to that in humans. The majority of infected cats remained asymptomatic, and more severe clinical cases described occurred only in animals with comorbidities. In addition to infection, cats achieved seroconversion with detectable titers. However, the epidemiological role of cats in relation to transmission routes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains unclear and needs to be studied further. We emphasize that, regardless of the conclusion regarding the epidemiological role of cats, this reinforces the concepts of ONE HEALTH to be incorporated into the studies and practices of epidemiological surveillance of infectious diseases, with multidisciplinary teams, to achieve an understanding of the transmission of diseases with zoonotic potential.
Collapse
Affiliation(s)
| | - Ligia Cantarino
- Veterinarian, DSc., Faculdade de Agronomia e Veterinária, UNB, Brasília, DF, Brazil.
- Correspondence Ligia Cantarino Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília - UnB Campus Universitário Darcy Ribeiro, s/n CEP 70910-900 - Brasília (DF), Brasil E-mail:
| |
Collapse
|
173
|
Farasani A. Genetic analysis of the 2019 coronavirus pandemic with from real-time reverse transcriptase polymerase chain reaction. Saudi J Biol Sci 2021; 28:911-916. [PMID: 33199970 PMCID: PMC7658593 DOI: 10.1016/j.sjbs.2020.11.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/17/2022] Open
Abstract
Corona viruses (CoV) are known to cause extreme pandemics in the globe. The year 2020 will be a pandemic with the spread of the novel coronavirus (SARS-CoV-2) across the globe. Coronavirus 2019 (COVID-19) has been a part of our scary life for more than a quarter of a year in 2020. The Wuhan market and China have been the most commonly used terms in the world for at least a quarter of 2020. A zoonotic coronavirus has entered organisms to affect organisms for the third season in several centuries. CoV is a global pandemic prompted a drastic and rapid reconfiguration of society. CoV have extraordinary broad genomes of about 30 kilobases of RNA. There is no genetic relationship between the SARS-CoV, MERS and SARS-CoV-2. For health care strategies and for anticipating and preventing potential outbreaks, adequate description of the international spread of COVID-19 virus is imperative. The WHO has declared COVID-19 as endemic to pandemic in the first trimester of 2020. The biggest issues for diagnosis COVID-19 is not established apart from Real-time reverse transcriptase polymerase chain reaction (RT-PCR). In order to monitor the COVID-19 pandemic, testing of active SARS-CoV-2 infections is a fundamental public health method. The vast use of SARS-CoV-2 RT-PCR tests around the world has led to increased availability of test kits, which is also a major bottleneck. The technique RT-PCR was generally agreed in the present scenario to detect SARS-CoV-2 in the human body. This review discusses about the importance of molecular technique for diagnosing the pandemic disease of 2019. In conclusion, RT-PCR was found to be an apt technique for identification of SARS-CoV-2.
Collapse
Affiliation(s)
- Abdullah Farasani
- Address: Biomedical Research Unit, Medical Research Center, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia.
| |
Collapse
|
174
|
Konwar M, Sarma D. Advances in developing small molecule SARS 3CL pro inhibitors as potential remedy for corona virus infection. Tetrahedron 2021; 77:131761. [PMID: 33230349 PMCID: PMC7674993 DOI: 10.1016/j.tet.2020.131761] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/06/2020] [Accepted: 11/09/2020] [Indexed: 01/08/2023]
Abstract
Originated in China, coronavirus disease 2019 (COVID-19)- the highly contagious and fatal respiratory disease caused by SARS-CoV-2 has already infected more than 29 million people worldwide with a mortality rate of 3.15% (according to World Health Organization's (WHO's) report, September 2020) and the number is exponentially increasing with no remedy whatsoever discovered till date. But it is not the first time this infectious viral disease has appeared, in 2002 SARS-CoV infected more than 8000 individuals of which 9.6% patients died and in 2012 approximately 35% of MERS-CoV infected patients have died. Literature reports indicate that a chymotripsin-like cystein protease (3CLpro) is responsible for the replication of the virus inside the host cell. Therefore, design and synthesis of 3CLpro inhibitor molecules play a great impact in drug development against this COVID-19 pandemic. In this review, we are discussing the anti-SARS effect of some small molecule 3CLpro inhibitors with their various binding modes of interactions to the target protein.
Collapse
Affiliation(s)
- Manashjyoti Konwar
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
- Department of Chemistry, Dibru College, Dibrugarh, 786003, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
175
|
Rehman MFU, Fariha C, Anwar A, Shahzad N, Ahmad M, Mukhtar S, Farhan Ul Haque M. Novel coronavirus disease (COVID-19) pandemic: A recent mini review. Comput Struct Biotechnol J 2020; 19:612-623. [PMID: 33398233 PMCID: PMC7773542 DOI: 10.1016/j.csbj.2020.12.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19, caused by a novel coronavirus, was declared as a global pandemic by WHO more than five months ago, and we are still experiencing a state of global emergency. More than 74.30 million confirmed cases of the COVID-19 have been reported globally so far, with an average fatality rate of almost 3.0%. Seven different types of coronaviruses had been detected from humans; three of them have resulted in severe outbreaks, i.e., MERS-CoV, SARS-CoV, and SARS-CoV-2. Phylogenetic analysis of the genomes suggests that the possible occurrence of recombination between SARS-like-CoVs from pangolin and bat might have led to the origin of SARS-CoV-2 and the COVID-19 outbreak. Coronaviruses are positive-sense, single-stranded RNA viruses and harbour a genome (30 kb) consisting of two terminal untranslated regions and twelve putative functional open reading frames (ORFs), encoding for non-structural and structural proteins. There are sixteen putative non-structural proteins, including proteases, RNA-dependent RNA polymerase, helicase, other proteins involved in the transcription and replication of SARS-CoV-2, and four structural proteins, including spike protein (S), envelope (E), membrane (M), and nucleocapsid (N). SARS-CoV-2 infection, with a heavy viral load in the body, destroys the human lungs through cytokine storm, especially in elderly persons and people with immunosuppressed disorders. A number of drugs have been repurposed and employed, but still, no specific antiviral medicine has been approved by the FDA to treat this disease. This review provides a current status of the COVID-19, epidemiology, an overview of phylogeny, mode of action, diagnosis, and possible treatment methods and vaccines.
Collapse
Affiliation(s)
| | - Chaudhary Fariha
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Aqsa Anwar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Munir Ahmad
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Salma Mukhtar
- School of Biological Sciences, University of the Punjab, Lahore 54000, Pakistan
| | | |
Collapse
|
176
|
Hydrogel particles improve detection of SARS-CoV-2 RNA from multiple sample types. Sci Rep 2020; 10:22425. [PMID: 33380736 PMCID: PMC7773739 DOI: 10.1038/s41598-020-78771-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023] Open
Abstract
Here we present a rapid and versatile method for capturing and concentrating SARS-CoV-2 from contrived transport medium and saliva samples using affinity-capture magnetic hydrogel particles. We demonstrate that the method concentrates virus from 1 mL samples prior to RNA extraction, substantially improving detection of virus using real-time RT-PCR across a range of viral titers (100–1,000,000 viral copies/mL) and enabling detection of virus using the 2019 nCoV CDC EUA Kit down to 100 viral copies/mL. This method is compatible with commercially available nucleic acid extraction kits (i.e., from Qiagen) and a simple heat and detergent method that extracts viral RNA directly off the particle, allowing a sample processing time of 10 min. We furthermore tested our method in transport medium diagnostic remnant samples that previously had been tested for SARS-CoV-2, showing that our method not only correctly identified all positive samples but also substantially improved detection of the virus in low viral load samples. The average improvement in cycle threshold value across all viral titers tested was 3.1. Finally, we illustrate that our method could potentially be used to enable pooled testing, as we observed considerable improvement in the detection of SARS-CoV-2 RNA from sample volumes of up to 10 mL.
Collapse
|
177
|
You HL, Lin MC, Lee CH. Comparison of the Roche cobas 6800 SARS-CoV-2 test and the Taiwan CDC protocol for the molecular diagnosis of COVID-19. Biomed J 2020; 44:101-104. [PMID: 33736952 PMCID: PMC7771907 DOI: 10.1016/j.bj.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 11/18/2022] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has caused significant challenges throughout the world and a rapid, reliable diagnostic test is in high demand. Real-time reverse transcription polymerase chain reaction (RT-PCR) was one of the most quickly established methods of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection and is considered to be the gold standard. In this report, we share our experience of using two different testing platforms: the cobas 6800 SARS-CoV-2 test, an automated system that was recently granted Emergency Use Authorization by the FDA, and a laboratory-developed test based on the protocol from the Taiwan Centers for Disease Control (CDC). There was an overall 96.2% agreement between the two platforms. However, the positive agreement between the two platforms was only 80.0%. We found 3 instances of discordance between the two systems and this emphasized the need for timely diagnosis with a reliable testing platform.
Collapse
Affiliation(s)
- Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Meng-Chih Lin
- Division of Chest Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Hsiang Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
178
|
Di Giallonardo F, Duchene S, Puglia I, Curini V, Profeta F, Cammà C, Marcacci M, Calistri P, Holmes EC, Lorusso A. Genomic Epidemiology of the First Wave of SARS-CoV-2 in Italy. Viruses 2020; 12:E1438. [PMID: 33327566 PMCID: PMC7765063 DOI: 10.3390/v12121438] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Italy was one of the first countries to experience a major epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with >1000 cases confirmed by 1 March 2020. However, virus genome sequence data is sparse and there has been only limited investigation of virus transmission across the country. Here, we provide the most extensive study to date of the genomic epidemiology of SARS-CoV-2 in Italy covering the first wave of infection. We generated 191 new full-length genomes, largely sampled from central Italy (Abruzzo), before, during, and after the enforcement of a nationwide "lockdown" (8 March-3 June). These were combined with 460 published SARS-CoV-2 sequences sampled across Italy. Phylogenetic analysis including global sequence data revealed multiple independent introductions into Italy, with at least 124 instances of sequence clusters representing longer chains of transmission. Eighteen of these transmission clusters emerged before the nation-wide lockdown was implemented on 8 March, and an additional 18 had evidence for transmission between different Italian regions. Extended transmission periods between infections of up to 104 days were observed in five clusters. In addition, we found seven clusters that persisted throughout the lockdown period. Overall, we show how importations were an important driver of the first wave of SARS-CoV-2 in Italy.
Collapse
Affiliation(s)
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3010, Australia;
| | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
| | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, 70010 Valenzano, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
| | - Edward C. Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life & Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney 2006, Australia;
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale, 64100 Teramo, Italy; (I.P.); (V.C.); (F.P.); (C.C.); (M.M.); (P.C.); (A.L.)
| |
Collapse
|
179
|
Onishchenko GG, Sizikova TE, Lebedev VN, Borisevich SV. Analysis of Promising Approaches to COVID-19 Vaccine Development. ACTA ACUST UNITED AC 2020. [DOI: 10.30895/2221-996x-2020-20-4-216-227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of confirmed COVID-19 cases worldwide amounted to 50 million at the beginning of November 2020. This is clearly not enough for the formation of herd immunity, which will prevent repeated outbreaks of the disease. Quarantine measures can only curb the spread of the disease to some extent, therefore specific preventive measures are needed to create collective immunity to COVID-19.The underlying principle of collective immunity is indirect protection of the whole of the population by immunising a certain part of it. Vaccination is the most effective approach to prevention of epidemic outbreaks. The aim of the study was to analyse promising approaches to the development of vaccines against novel coronavirus COVID-19 infection. The paper summarises data on development studies and clinical trials of COVID-19 vaccines conducted in different countries. It analyses the pros and cons of different platforms for vaccine development (attenuated vaccines, inactivated vaccines, subunit vaccines, DNA and RNA vaccines, recombinant vector vaccines). The paper presents a potential design of novel vaccines. It was concluded that COVID-19 vaccines might be developed both for immunising high-risk groups and for mass immunisation. An optimal solution for the second task would be to develop human or monkey adenovirus vector-based vaccines whose mass production has already been unveiled.
Collapse
|
180
|
Zappulli V, Ferro S, Bonsembiante F, Brocca G, Calore A, Cavicchioli L, Centelleghe C, Corazzola G, De Vreese S, Gelain ME, Mazzariol S, Moccia V, Rensi N, Sammarco A, Torrigiani F, Verin R, Castagnaro M. Pathology of Coronavirus Infections: A Review of Lesions in Animals in the One-Health Perspective. Animals (Basel) 2020; 10:E2377. [PMID: 33322366 PMCID: PMC7764021 DOI: 10.3390/ani10122377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are worldwide distributed RNA-viruses affecting several species, including humans, and causing a broad spectrum of diseases. Historically, they have not been considered a severe threat to public health until two outbreaks of COVs-related atypical human pneumonia derived from animal hosts appeared in 2002 and in 2012. The concern related to CoVs infection dramatically rose after the COVID-19 global outbreak, for which a spill-over from wild animals is also most likely. In light of this CoV zoonotic risk, and their ability to adapt to new species and dramatically spread, it appears pivotal to understand the pathophysiology and mechanisms of tissue injury of known CoVs within the "One-Health" concept. This review specifically describes all CoVs diseases in animals, schematically representing the tissue damage and summarizing the major lesions in an attempt to compare and put them in relation, also with human infections. Some information on pathogenesis and genetic diversity is also included. Investigating the lesions and distribution of CoVs can be crucial to understand and monitor the evolution of these viruses as well as of other pathogens and to further deepen the pathogenesis and transmission of this disease to help public health preventive measures and therapies.
Collapse
Affiliation(s)
- Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Animal Medicine, Productions and Health, University of Padua, Legnaro, 35020 Padua, Italy
| | - Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Calore
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Giorgia Corazzola
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Steffen De Vreese
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Laboratory of Applied Bioacoustics, Technical University of Catalunya, BarcelonaTech, Vilanova i la Geltrù, 08800 Barcelona, Spain
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Valentina Moccia
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Nicolò Rensi
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Filippo Torrigiani
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, 35020 Padua, Italy; (V.Z.); (F.B.); (G.B.); (A.C.); (L.C.); (C.C.); (G.C.); (S.D.V.); (M.E.G.); (S.M.); (V.M.); (N.R.); (A.S.); (F.T.); (R.V.); (M.C.)
| |
Collapse
|
181
|
Hall JS, Knowles S, Nashold SW, Ip HS, Leon AE, Rocke T, Keller S, Carossino M, Balasuriya U, Hofmeister E. Experimental challenge of a North American bat species, big brown bat (Eptesicus fuscus), with SARS-CoV-2. Transbound Emerg Dis 2020; 68:3443-3452. [PMID: 33295095 DOI: 10.1111/tbed.13949] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
The recently emerged novel coronavirus, SARS-CoV-2, is phylogenetically related to bat coronaviruses (CoVs), specifically SARS-related CoVs from the Eurasian bat family Rhinolophidae. As this human pandemic virus has spread across the world, the potential impacts of SARS-CoV-2 on native North American bat populations are unknown, as is the ability of North American bats to serve as reservoirs or intermediate hosts able to transmit the virus to humans or to other animal species. To help determine the impacts of the pandemic virus on North American bat populations, we experimentally challenged big brown bats (Eptesicus fuscus) with SARS-CoV-2 under BSL-3 conditions. We inoculated the bats both oropharyngeally and nasally, and over the ensuing three weeks, we measured infectivity, pathology, virus concentrations in tissues, oral and rectal virus excretion, virus transmission, and clinical signs of disease. We found no evidence of SARS-CoV-2 infection in any examined bat, including no viral excretion, no transmission, no detectable virus in tissues, and no signs of disease or pathology. Based on our findings, it appears that big brown bats are resistant to infection with the SARS-CoV-2. The potential susceptibility of other North American bat species to SARS-CoV-2 remains to be investigated.
Collapse
Affiliation(s)
- Jeffrey S Hall
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Susan Knowles
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Sean W Nashold
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Hon S Ip
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Ariel E Leon
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Tonie Rocke
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Saskia Keller
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA.,Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Mariano Carossino
- Louisiana National Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Udeni Balasuriya
- Louisiana National Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Erik Hofmeister
- U.S. Geological Survey National Wildlife Health Center, Madison, WI, USA
| |
Collapse
|
182
|
Yu H, Sun T, Feng J. Complications and Pathophysiology of COVID-19 in the Nervous System. Front Neurol 2020; 11:573421. [PMID: 33343486 PMCID: PMC7746805 DOI: 10.3389/fneur.2020.573421] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/03/2020] [Indexed: 12/28/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global public health threat. Majority of the patients with COVID-19 have fever, cough, and fatigue. Critically ill patients can develop dyspnea and acute respiratory distress syndrome. In addition to respiratory symptoms, neurological damage also occurs in some patients. However, the mechanisms by which SARS-CoV-2 invades the nervous system have not been elucidated yet. In order to provide some reference for designing optimal therapeutic strategies, we have discussed the complications and potential mechanisms of COVID-19 in the nervous system in this review.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
183
|
Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, Smith SL, Anderson ER, Prince T, Patterson GT, Lorusso E, Lucente MS, Lanave G, Lauzi S, Bonfanti U, Stranieri A, Martella V, Solari Basano F, Barrs VR, Radford AD, Agrimi U, Hughes GL, Paltrinieri S, Decaro N. Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun 2020; 11:6231. [PMID: 33277505 PMCID: PMC7718263 DOI: 10.1038/s41467-020-20097-0] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 01/20/2023] Open
Abstract
SARS-CoV-2 emerged from animals and is now easily transmitted between people. Sporadic detection of natural cases in animals alongside successful experimental infections of pets, such as cats, ferrets and dogs, raises questions about the susceptibility of animals under natural conditions of pet ownership. Here, we report a large-scale study to assess SARS-CoV-2 infection in 919 companion animals living in northern Italy, sampled at a time of frequent human infection. No animals tested PCR positive. However, 3.3% of dogs and 5.8% of cats had measurable SARS-CoV-2 neutralizing antibody titers, with dogs from COVID-19 positive households being significantly more likely to test positive than those from COVID-19 negative households. Understanding risk factors associated with this and their potential to infect other species requires urgent investigation.
Collapse
Affiliation(s)
- E I Patterson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - G Elia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - A Grassi
- I-VET srl, Laboratorio di Analisi Veterinarie, Via Ettore Majorana, 10 - 25020, Flero, BS, Italy
| | - A Giordano
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - C Desario
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - M Medardo
- La Vallonèa Veterinary Diagnostic Laboratory, via G. Sirtori 9, 20017, Passirana di Rho, MI, Italy
| | - S L Smith
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - E R Anderson
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - T Prince
- NIHR Health Protection Unit in Emerging and Zoonotic Infections, Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - G T Patterson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - E Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - M S Lucente
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - G Lanave
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - S Lauzi
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - U Bonfanti
- La Vallonèa Veterinary Diagnostic Laboratory, via G. Sirtori 9, 20017, Passirana di Rho, MI, Italy
| | - A Stranieri
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - V Martella
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy
| | - F Solari Basano
- Arcoblu s.r.l., via Alessandro Milesi 5, 20133, Milan, Italy
| | - V R Barrs
- City University's Jockey Club College of Veterinary Medicine and Life Sciences, 5/F, Block 1A, To Yuen Building, 31 To Yuen Street, Kowloon, Hong Kong
| | - A D Radford
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Chester High Road, Neston, CH64 7TE, UK
| | - U Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - G L Hughes
- Centre for Neglected Tropical Disease, Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - S Paltrinieri
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Milan, Via dell'Università 6, 26900, Lodi, Italy
| | - N Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Strada Prov. per Casamassima Km 3, 70010, Valenzano, BA, Italy.
| |
Collapse
|
184
|
Konishi T. Principal component analysis of coronaviruses reveals their diversity and seasonal and pandemic potential. PLoS One 2020; 15:e0242954. [PMID: 33270726 PMCID: PMC7714145 DOI: 10.1371/journal.pone.0242954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022] Open
Abstract
Coronaviruses and influenza viruses have similarities and differences. In order to comprehensively compare them, their genome sequencing data were examined by principal component analysis. Coronaviruses had fewer variations than a subclass of influenza viruses. In addition, differences among coronaviruses that infect a variety of hosts were also small. These characteristics may have facilitated the infection of different hosts. Although many of the coronaviruses were conservative, those repeatedly found among humans showed annual changes. If SARS-CoV-2 changes its genome like the Influenza H type, it will repeatedly spread every few years. In addition, the coronavirus family has many other candidates for new pandemics.
Collapse
Affiliation(s)
- Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan
| |
Collapse
|
185
|
Thippareddi H, Balamurugan S, Patel J, Singh M, Brassard J. Coronaviruses - Potential human threat from foodborne transmission? Lebensm Wiss Technol 2020; 134:110147. [PMID: 32921811 PMCID: PMC7473465 DOI: 10.1016/j.lwt.2020.110147] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
The COVID-19 pandemic has worldwide impact in terms of number of illnesses, deaths and long-term sequelae. While the main route for the spread of the SARS-CoV-2 virus is person to person from respiratory droplets, survival of the virus in the air and its ability to infect subsequently have raised concerns. COVID-19 outbreaks in meat and other food processing plants raise concern for potential foodborne spread. We focus on the survival of the virus in the food subjected to various unit operations during processing, storage and distribution and the risk to consumers. While the risk of contamination of food products is possibly due to survival of the virus in the air in food processing operations if preventive measures are not followed, survival of the virus on fresh foods is dependent on the intrinsic and extrinsic properties of the specific foods and antimicrobial interventions used during production. Even if the virus remains infective on contaminated foods, maintenance of infectivity after ingestion of food and subsequent invasion of tissue has not been reported. An alternate route of infection from contaminated foods can be during handling of foods and subsequent spread of the virus to other surfaces such as face, nose, leading to infection. However, due to the extensive treatments foods receive during processing, often inhospitable environs of the food products and further food preparation prior to consumption significantly reduce the risk of transmission of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
| | - S. Balamurugan
- Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario, N1G 5C9, Canada
| | - Jitendra Patel
- Environmental Microbial and Food Safety Laboratory, USDA-ARS, 10300 Baltimore Ave., BARC-East, Beltsville, MD, 20705, USA
| | - Manpreet Singh
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA, 30602, USA
| | - Julie Brassard
- Agriculture and Agri-Food Canada, Saint-Hyacinthe Research and Development Centre, 3600 Casavant Boulevard West, Saint-Hyacinthe, Quebec, J2S 8E3, Canada,Corresponding author
| |
Collapse
|
186
|
Identification of Persuasive Antiviral Natural Compounds for COVID-19 by Targeting Endoribonuclease NSP15: A Structural-Bioinformatics Approach. Molecules 2020; 25:molecules25235657. [PMID: 33271751 PMCID: PMC7729992 DOI: 10.3390/molecules25235657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is a positive-stranded RNA virus that bundles its genomic material as messenger-sense RNA in infectious virions and replicates these genomes through RNA intermediates. Several virus-encoded nonstructural proteins play a key role during the viral life cycle. Endoribonuclease NSP15 is vital for the replication and life cycle of the virus, and is thus considered a compelling druggable target. Here, we performed a combination of multiscoring virtual screening and molecular docking of a library of 1624 natural compounds (Nuclei of Bioassays, Ecophysiology and Biosynthesis of Natural Products (NuBBE) database) on the active sites of NSP15 (PDB:6VWW). After sequential high-throughput screening by LibDock and GOLD, docking optimization by CDOCKER, and final scoring by calculating binding energies, top-ranked compounds NuBBE-1970 and NuBBE-242 were further investigated via an indepth molecular-docking and molecular-dynamics simulation of 60 ns, which revealed that the binding of these two compounds with active site residues of NSP15 was sufficiently strong and stable. The findings strongly suggest that further optimization and clinical investigations of these potent compounds may lead to effective SARS-CoV-2 treatment.
Collapse
|
187
|
Tabish TA, Hamblin MR. Multivalent nanomedicines to treat COVID-19: A slow train coming. NANO TODAY 2020; 35:100962. [PMID: 32922510 PMCID: PMC7473256 DOI: 10.1016/j.nantod.2020.100962] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Accepted: 08/25/2020] [Indexed: 05/05/2023]
Abstract
The high transmission rate and serious consequences of the unprecedented COVID-19 pandemic make it challenging and urgent to identify viral pathogens and understand their intrinsic resistance mechanisms, to pave the way for new approaches to combat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Multivalent interactions are responsible for performing a broad range of biological functions in normal cells, such as cell-cell communication and adhesion. Multivalency underlies the reversibility of ligand-receptor interactions during infections. Previous studies into multivalent nanomedicines used against viruses, have revealed their ability, not only to probe the molecular processes of viral infections, but also to target pathogen-host cell binding with minimal collateral damage to normal cells. Nanomedicines are comparable in size to viruses and to cell receptor complexes (that mediate viral uptake), and can function as safe and accurate armoured vehicles to facilitate the transport of anti-viral drugs. Multivalent nanomedicines can be designed to avoid binding to extracellular serum proteins, and ultimately lead to destruction of the viruses. This brief perspective highlights the potential of innovative smart and safe multivalent nanomedicines that could target multiple viral factors involved in infections at cellular levels. For instance it is possible to target viral spike protein mediated entry pathways, as well as viral replication and cell lysis. Nanomedicine-based approaches could open new opportunities for anti-coronavirus therapies.
Collapse
Affiliation(s)
- Tanveer A Tabish
- UCL Cancer Institute, University College London, London, WC1E 6DD, UK
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| |
Collapse
|
188
|
Barek MA, Aziz MA, Islam MS. Impact of age, sex, comorbidities and clinical symptoms on the severity of COVID-19 cases: A meta-analysis with 55 studies and 10014 cases. Heliyon 2020; 6:e05684. [PMID: 33344791 PMCID: PMC7737518 DOI: 10.1016/j.heliyon.2020.e05684] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/14/2020] [Accepted: 12/04/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Severe acute respiratory coronavirus 2 (SARS-CoV-2) cases are overgrowing globally and now become a pandemic. A meta-analysis was conducted to evaluate the impact of age, sex, comorbidities, and clinical characteristics on the severity of COVID-19 to help diagnose and evaluate the current outbreak in clinical decision-making. METHODS PubMed, ScienceDirect, and BMC were searched to collect data about demographic, clinical characteristics, and comorbidities of COVID-19 patients. Meta-analysis was conducted with Review Manager 5.3. Publication bias was assessed using Egger's test and Begg-Mazumdar's rank correlation. RESULTS Fifty-five studies were included in this meta-analysis, including 10014 patients with SARS-CoV-2 infection. Male cases and cases with an age of ≥50 years (OR = 2.41, p < 0.00001; RR = 3.36, p = 0.0002, respectively) were severely affected by SARS-CoV-2. Patients having age≥65 years are not associated (p = 0.110) with the severity of COVID-19. Presence of at least one comorbidity or hypertension, diabetes, cerebrovascular disease, cardiovascular diseases, respiratory disease, malignancy, chronic kidney disease and chronic liver diseases individually increased the severity of COVID-19 cases significantly (OR = 3.13, p < 0.00001; OR = 2.35, p < 0.00001; OR = 2.42, p < 0.00001; OR = 3.78, p < 0.00001; OR = 3.33, p < 0.00001; OR = 2.58, p < 0.00001; OR = 2.32, p < 0.00001; OR = 2.27, p = 0.0007; OR = 1.70, p = 0.003, respectively). Clinical manifestation such as fever, cough, fatigue, anorexia, dyspnea, chest tightness, hemoptysis, diarrhea and abdominal pain (OR = 1.68, p = 0.0001; OR = 1.41, p = 0.004; OR = 1.26, p = 0.03; OR = 2.38, p < 0.0001; OR = 4.30, p < 0.00001; OR = 2.11, p = 0.002; OR = 4.93, p < 0.0001; OR = 1.35, p = 0.03; OR = 2.38, p = 0.008, respectively) were significantly associated with the severity of cases. No association of severity was found with myalgia, pharyngalgia, nausea, vomiting, headache, dizziness and sore throat (p > 0.05). No publication bias was found in case of age (≥50 years, age≥65 years), comorbidities and clinical manifestations. CONCLUSIONS Males patients and elderly or older patients (age ≥50 years) are at higher risk of developing severity, whereas comorbidities and clinical manifestations could significantly affect the prognosis and severity of COVID-19.
Collapse
Affiliation(s)
- Md. Abdul Barek
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md. Abdul Aziz
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| |
Collapse
|
189
|
Lorusso A, Calistri P, Mercante MT, Monaco F, Portanti O, Marcacci M, Cammà C, Rinaldi A, Mangone I, Di Pasquale A, Iommarini M, Mattucci M, Fazii P, Tarquini P, Mariani R, Grimaldi A, Morelli D, Migliorati G, Savini G, Borrello S, D'Alterio N. A "One-Health" approach for diagnosis and molecular characterization of SARS-CoV-2 in Italy. One Health 2020; 10:100135. [PMID: 32313828 PMCID: PMC7166304 DOI: 10.1016/j.onehlt.2020.100135] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 01/08/2023] Open
Abstract
The current pandemic is caused by a novel coronavirus (CoV) called SARS-CoV-2 (species Severe acute respiratory syndrome-related coronavirus, subgenus Sarbecovirus, genus Betacoronavirus, family Coronaviridae). In Italy, up to the 2nd of April 2020, overall 139,422 confirmed cases and 17,669 deaths have been notified, while 26,491 people have recovered. Besides the overloading of hospitals, another issue to face was the capacity to perform thousands of tests per day. In this perspective, to support the National Health Care System and to minimize the impact of this rapidly spreading virus, the Italian Ministry of Health involved the Istituti Zooprofilattici Sperimentali (IZSs), Veterinary Public Health Institutes, in the diagnosis of SARS-CoV-2 by testing human samples. The Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise is currently testing more than 600 samples per day and performing whole genome sequencing from positive samples. Sequence analysis of these samples suggested that different viral variants may be circulating in Italy, and so in Abruzzo region. CoVs, and related diseases, are well known to veterinarians since decades. The experience that veterinarians operating within the Public Health system gained in the control and characterization of previous health issues of livestock and poultry including avian flu, bluetongue, foot and mouth disease, responsible for huge economic losses, is certainly of great help to minimize the impact of this global crisis.
Collapse
Affiliation(s)
- Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Ottavio Portanti
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Cesare Cammà
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Antonio Rinaldi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Iolanda Mangone
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Adriano Di Pasquale
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | | | | | - Paolo Fazii
- Reparto di Microbiologia e Virologia clinica, Ospedale Civile Spirito Santo, Pescara, Italy
| | | | - Rinalda Mariani
- UOC Malattie Infettive Ospedale SS Filippo e Nicola, Avezzano (L' Aquila), Italy
| | | | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| | - Silvio Borrello
- Direzione Generale della Sanita' Animale e dei Farmaci Veterinari, Ministero della Salute, Roma, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise “G. Caporale”, Teramo, Italy
| |
Collapse
|
190
|
Gao S, Zhang L. ACE2 partially dictates the host range and tropism of SARS-CoV-2. Comput Struct Biotechnol J 2020; 18:4040-4047. [PMID: 33282147 PMCID: PMC7700767 DOI: 10.1016/j.csbj.2020.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
COVID-19, which is caused by SARS-CoV-2, has been declared a global pandemic. Although effective strategies have been applied to treat the disease, much is still unknown about this novel virus. SARS-CoV-2 enters host cells through ACE2, which is a component of the angiotensin-regulating system. Binding of the SARS-CoV-2 S protein to ACE2 is a prerequisite for SARS-CoV-2 infection. Many studies have indicated a close relationship between ACE2 expression and SARS-CoV-2 infection. The structural basis of receptor recognition by SARS-CoV-2 has been analyzed in detail. The diversification of the ACE2 sequence due to ACE2 polymorphisms and alternative splicing has to a large extent affected the susceptibility of different species. Differential ACE2 expression makes specific populations more prone to be infected, and ACE2 also plays a role in the broad tropism of SARS-CoV-2 in human organs and tissues. In this review, we comprehensively summarize how the ACE2 expression profile affects the host range and tropism of SARS-CoV-2, which will provide mechanistic insights into the susceptibilities and outcomes of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Shan Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Ji’nan 250014, Shandong, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
| | - Leiliang Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University, Ji’nan 250014, Shandong, China
- Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250062, Shandong, China
- Key Lab for Biotech-Drugs of National Health Commission, Ji’nan 250062, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji’nan 250062, Shandong, China
| |
Collapse
|
191
|
Di Teodoro G, Valleriani F, Puglia I, Monaco F, Di Pancrazio C, Luciani M, Krasteva I, Petrini A, Marcacci M, D'Alterio N, Curini V, Iorio M, Migliorati G, Di Domenico M, Morelli D, Calistri P, Savini G, Decaro N, Holmes EC, Lorusso A. SARS-CoV-2 replicates in respiratory ex vivo organ cultures of domestic ruminant species. Vet Microbiol 2020; 252:108933. [PMID: 33278734 PMCID: PMC7685048 DOI: 10.1016/j.vetmic.2020.108933] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/15/2020] [Indexed: 01/14/2023]
Abstract
Replication and tropism of SARS-CoV-2 in cattle, sheep, and pigs using EVOCs, were investigated. Respiratory tissues of cattle and sheep, but not those of pigs, are able to sustain viral replication. A SARS-CoV-2 isolate harbouring mutation D614 G in the S protein has greater replication capabilities. SARS-CoV-2 binds to ACE2-expressing cells of the respiratory tract of cattle and sheep.
There is strong evidence that severe acute respiratory syndrome 2 virus (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, originated from an animal reservoir. However, the exact mechanisms of emergence, the host species involved, and the risk to domestic and agricultural animals are largely unknown. Some domestic animal species, including cats, ferrets, and minks, have been demonstrated to be susceptible to SARS-CoV-2 infection, while others, such as pigs and chickens, are not. Importantly, the susceptibility of ruminants to SARS-CoV-2 is unknown, even though they often live in close proximity to humans. We investigated the replication and tissue tropism of two different SARS-CoV-2 isolates in the respiratory tract of three farm animal species - cattle, sheep, and pigs - using respiratory ex vivo organ cultures (EVOCs). We demonstrate that the respiratory tissues of cattle and sheep, but not of pigs, sustain viral replication in vitro of both isolates and that SARS-CoV-2 is associated to ACE2-expressing cells of the respiratory tract of both ruminant species. Intriguingly, a SARS-CoV-2 isolate containing an amino acid substitution at site 614 of the spike protein (mutation D614G) replicated at higher magnitude in ex vivo tissues of both ruminant species, supporting previous results obtained using human cells. These results suggest that additional in vivo experiments involving several ruminant species are warranted to determine their potential role in the epidemiology of this virus.
Collapse
Affiliation(s)
| | | | - Ilaria Puglia
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Federica Monaco
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | | | - Mirella Luciani
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Ivanka Krasteva
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Antonio Petrini
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy; Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Nicola D'Alterio
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Valentina Curini
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Mariangela Iorio
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Giacomo Migliorati
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Marco Di Domenico
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Daniela Morelli
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Paolo Calistri
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy.
| |
Collapse
|
192
|
Ghosh S, Malik YS. Drawing Comparisons between SARS-CoV-2 and the Animal Coronaviruses. Microorganisms 2020; 8:E1840. [PMID: 33238451 PMCID: PMC7700164 DOI: 10.3390/microorganisms8111840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/01/2020] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
The COVID-19 pandemic, caused by a novel zoonotic coronavirus (CoV), SARS-CoV-2, has infected 46,182 million people, resulting in 1,197,026 deaths (as of 1 November 2020), with devastating and far-reaching impacts on economies and societies worldwide. The complex origin, extended human-to-human transmission, pathogenesis, host immune responses, and various clinical presentations of SARS-CoV-2 have presented serious challenges in understanding and combating the pandemic situation. Human CoVs gained attention only after the SARS-CoV outbreak of 2002-2003. On the other hand, animal CoVs have been studied extensively for many decades, providing a plethora of important information on their genetic diversity, transmission, tissue tropism and pathology, host immunity, and therapeutic and prophylactic strategies, some of which have striking resemblance to those seen with SARS-CoV-2. Moreover, the evolution of human CoVs, including SARS-CoV-2, is intermingled with those of animal CoVs. In this comprehensive review, attempts have been made to compare the current knowledge on evolution, transmission, pathogenesis, immunopathology, therapeutics, and prophylaxis of SARS-CoV-2 with those of various animal CoVs. Information on animal CoVs might enhance our understanding of SARS-CoV-2, and accordingly, benefit the development of effective control and prevention strategies against COVID-19.
Collapse
Affiliation(s)
- Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre 334, Saint Kitts and Nevis
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, India;
| |
Collapse
|
193
|
Amoroso MG, Lucifora G, Degli Uberti B, Serra F, De Luca G, Borriello G, De Domenico A, Brandi S, Cuomo MC, Bove F, Riccardi MG, Galiero G, Fusco G. Fatal Interstitial Pneumonia Associated with Bovine Coronavirus in Cows from Southern Italy. Viruses 2020; 12:v12111331. [PMID: 33228210 PMCID: PMC7699522 DOI: 10.3390/v12111331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
An outbreak of winter dysentery, complicated by severe respiratory syndrome, occurred in January 2020 in a high production dairy cow herd located in a hilly area of the Calabria region. Of the 52 animals belonging to the farm, 5 (9.6%) died with severe respiratory distress, death occurring 3–4 days after the appearance of the respiratory signs (caught and gasping breath). Microbiological analysis revealed absence of pathogenic bacteria whilst Real-time PCR identified the presence of RNA from Bovine Coronavirus (BCoV) in several organs: lungs, small intestine (jejunum), mediastinal lymph nodes, liver and placenta. BCoV was therefore hypothesized to play a role in the lethal pulmonary infection. Like the other CoVs, BCoV is able to cause different syndromes. Its role in calf diarrhea and in mild respiratory disease is well known: we report instead the involvement of this virus in a severe and fatal respiratory disorder, with symptoms and disease evolution resembling those of Severe Acute Respiratory Syndromes (SARS).
Collapse
Affiliation(s)
- Maria Grazia Amoroso
- Unit of Virology, Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (B.D.U.); (F.S.); (G.D.L.); (S.B.); (G.F.)
- Correspondence:
| | - Giuseppe Lucifora
- Section of Vibo Valentia, Experimental Zooprophylactic Institute of Southern Italy, Contrada Piano di Bruno, 89852 Mileto, Italy;
| | - Barbara Degli Uberti
- Unit of Virology, Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (B.D.U.); (F.S.); (G.D.L.); (S.B.); (G.F.)
| | - Francesco Serra
- Unit of Virology, Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (B.D.U.); (F.S.); (G.D.L.); (S.B.); (G.F.)
| | - Giovanna De Luca
- Unit of Virology, Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (B.D.U.); (F.S.); (G.D.L.); (S.B.); (G.F.)
| | - Giorgia Borriello
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.B.); (M.C.C.); (F.B.); (M.G.R.); (G.G.)
| | - Alessandro De Domenico
- Freelance Veterinary, Ordine dei Veterinari di Vibo Valentia, 89900 Vibo Valentia, Italy;
| | - Sergio Brandi
- Unit of Virology, Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (B.D.U.); (F.S.); (G.D.L.); (S.B.); (G.F.)
| | - Maria Concetta Cuomo
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.B.); (M.C.C.); (F.B.); (M.G.R.); (G.G.)
| | - Francesca Bove
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.B.); (M.C.C.); (F.B.); (M.G.R.); (G.G.)
| | - Marita Georgia Riccardi
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.B.); (M.C.C.); (F.B.); (M.G.R.); (G.G.)
| | - Giorgio Galiero
- Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (G.B.); (M.C.C.); (F.B.); (M.G.R.); (G.G.)
| | - Giovanna Fusco
- Unit of Virology, Department of Animal Health, Experimental Zooprophylactic Institute of Southern Italy, Via Salute 2, 80055 Portici, Italy; (B.D.U.); (F.S.); (G.D.L.); (S.B.); (G.F.)
| |
Collapse
|
194
|
Kalvatchev N, Sirakov I. Respiratory viruses crossing the species barrier and emergence of new human coronavirus infectious disease. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1843539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Nikolay Kalvatchev
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Ivo Sirakov
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
195
|
Tilocca B, Britti D, Urbani A, Roncada P. Computational Immune Proteomics Approach to Target COVID-19. J Proteome Res 2020; 19:4233-4241. [PMID: 32914632 PMCID: PMC7640973 DOI: 10.1021/acs.jproteome.0c00553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 12/28/2022]
Abstract
Progress of the omics platforms widens their application to diverse fields, including immunology. This enables a deeper level of knowledge and the provision of a huge amount of data for which management and fruitful integration with the past evidence requires a steadily growing computational effort. In light of this, immunoinformatics emerges as a new discipline placed in between the traditional lab-based investigations and the computational analysis of the biological data. Immunoinformatics make use of tailored bioinformatics tools and data repositories to facilitate the analysis of data from a plurality of disciplines and help drive novel research hypotheses and in silico screening investigations in a fast, reliable, and cost-effective manner. Such computational immunoproteomics studies may as well prepare and guide lab-based investigations, representing valuable technology for the investigation of novel pathogens, to tentatively evaluate specificity of diagnostic products, to forecast on potential adverse effects of vaccines and to reduce the use of animal models. The present manuscript provides an overview of the COVID-19 pandemic and reviews the state of the art of the omics technologies employed in fighting SARS-CoV-2 infections. A comprehensive description of the immunoinformatics approaches and its potential role in contrasting COVID-19 pandemics is provided.
Collapse
Affiliation(s)
- Bruno Tilocca
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Domenico Britti
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| | - Andrea Urbani
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Università Cattolica del
Sacro Cuore, Roma 00168, Italy
- Dipartimento
di Scienze di laboratorio e infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli, Roma 00168, Italy
| | - Paola Roncada
- Department
of Health Sciences, University “Magna
Graecia” of Catanzaro, Catanzaro 88100, Italy
| |
Collapse
|
196
|
Genetic analysis of SARS-CoV-2 isolates collected from Bangladesh: Insights into the origin, mutational spectrum and possible pathomechanism. Comput Biol Chem 2020; 90:107413. [PMID: 33221119 PMCID: PMC7641529 DOI: 10.1016/j.compbiolchem.2020.107413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
As the coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), rages across the world, killing hundreds of thousands and infecting millions, researchers are racing against time to elucidate the viral genome. Some Bangladeshi institutes are also in this race, sequenced a few isolates of the virus collected from Bangladesh. Here, we present a genomic analysis of these isolates. The analysis revealed that SARS-CoV-2 isolates sequenced from Dhaka and Chittagong were the lineage of Europe and India, respectively. Our analysis identified a total of 42 mutations, including three large deletions, half of which were synonymous. Most of the missense mutations in Bangladeshi isolates found to have weak effects on the pathogenesis. Some mutations may lead the virus to be less pathogenic than the other countries. Molecular docking analysis to evaluate the effect of the mutations on the interaction between the viral spike proteins and the human ACE2 receptor, though no significant difference was observed. This study provides some preliminary insights into the origin of Bangladeshi SARS-CoV-2 isolates, mutation spectrum and its possible pathomechanism, which may give an essential clue for designing therapeutics and management of COVID-19 in Bangladesh.
Collapse
|
197
|
Zeng Q, Li G, Ji F, Ma S, Zhang G, Xu J, Lin W, Xu G, Zhang G, Li G, Cui G, Liu N, Zeng F, Ai Z, Xu G, Liu N, Liang J, Zhang M, Li C, Zhang Z, Wang Z, Li Z, Yu Z. Clinical course and treatment efficacy of COVID-19 near Hubei Province, China: A multicentre, retrospective study. Transbound Emerg Dis 2020; 67:2971-2982. [PMID: 32531138 PMCID: PMC7307118 DOI: 10.1111/tbed.13674] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 01/08/2023]
Abstract
Currently, COVID-19 has been reported in nearly all countries globally. To date, little is known about the viral shedding duration, clinical course and treatment efficacy of COVID-19 near Hubei Province, China. This multicentre, retrospective study was performed in 12 hospitals in Henan and Shaanxi Provinces from 20 January to 8 February 2020. Clinical outcomes were followed up until 26 March 2020. The viral shedding duration, full clinical course and treatment efficacy were analysed in different subgroups of patients. A total of 149 COVID-19 patients were enrolled. The median age was 42 years, and 61.1% (91) were males. Of them, 133 (89.3%) had fever, 131 of 144 (91%) had pneumonia, 27 (18.1%) required intensive care unit (ICU) management, 3 (2%) were pregnant, and 3 (2%) died. Two premature newborns were negative for SARS-CoV-2. In total, the median SARS-CoV-2 shedding period and clinical course were 12 (IQR: 9-17; mean: 13.4, 95% CI: 12.5, 14.2) and 20 (IQR: 16-24; mean: 21.2, 95% CI: 20.1, 22.3) days, respectively, and ICU patients had longer median viral shedding periods (21 [17-24] versus 11 [9-15]) and clinical courses (30 [22-33] vs. 19 [15.8-22]) than non-ICU patients (both p < .0001). SARS-CoV-2 clearances occurred at least 2 days before fatality in 3 non-survivors. Current treatment with any anti-viral agent or combination did not present the benefit of shortening viral shedding period and clinical course (all p > .05) in real-life settings. In conclusion, the viral shedding duration and clinical course in Henan and Shaanxi Provinces were shorter than those in Hubei Province, and current anti-viral therapies were ineffective for shortening viral shedding duration and clinical course in real-world settings. These findings expand our knowledge of the SARS-CoV-2 infection and may be helpful for management of the epidemic outbreak of COVID-19 worldwide. Further studies concerning effective anti-viral agents and vaccines are urgently needed.
Collapse
Affiliation(s)
- Qing‐Lei Zeng
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Guang‐Ming Li
- Department of Infectious DiseasesThe Sixth People’s Hospital of Zhengzhou CityZhengzhouHenan ProvinceChina
| | - Fanpu Ji
- Department of Infectious DiseasesThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvinceChina
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
| | - Shu‐Huan Ma
- Department of Infectious DiseasesThe Sixth People’s Hospital of Zhengzhou CityZhengzhouHenan ProvinceChina
| | - Guo‐Fan Zhang
- The Department of Infectious DiseasesThe First Affiliated Hospital of Nanyang Medical CollegeNanyangHenan ProvinceChina
| | - Jiang‐Hai Xu
- The Department of Infectious DiseasesThe Fifth People’s Hospital of Anyang CityAnyangHenan ProvinceChina
| | - Wan‐Bao Lin
- The Department of Infectious DiseasesXinyang Central HospitalXinyangHenan ProvinceChina
| | - Guang‐Hua Xu
- The Department of Infectious DiseasesThe Affiliated Hospital of Yan’an UniversityYan’anShaanxi ProvinceChina
| | - Guo‐Qiang Zhang
- The Department of Infectious DiseasesLuoyang Central HospitalLuoyangHenan ProvinceChina
| | - Guo‐Tao Li
- The Department of Infectious DiseasesLuoyang Central HospitalLuoyangHenan ProvinceChina
| | - Guang‐Lin Cui
- Department of Clinical LaboratoryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Na Liu
- The Department of Infectious DiseasesThe Affiliated Hospital of Yan’an UniversityYan’anShaanxi ProvinceChina
| | - Fan‐Jun Zeng
- The Department of Infectious DiseasesShangcheng People’s HospitalShangchengHenan ProvinceChina
| | - Zhi‐Guo Ai
- The Department of Infectious DiseasesShangcheng People’s HospitalShangchengHenan ProvinceChina
| | - Guang‐Feng Xu
- The Department of Infectious DiseasesXiayi People’s HospitalXiayiHenan ProvinceChina
| | - Na Liu
- The Department of Infectious DiseasesSheqi People’s HospitalSheqiHenan ProvinceChina
| | - Jie Liang
- The Department of Infectious DiseasesQixian People’s HospitalQixianHenan ProvinceChina
| | - Min‐Min Zhang
- Department of Infectious DiseasesThe Sixth People’s Hospital of Zhengzhou CityZhengzhouHenan ProvinceChina
| | - Cheng Li
- Department of Infectious DiseasesThe Sixth People’s Hospital of Zhengzhou CityZhengzhouHenan ProvinceChina
| | - Zhi‐Hao Zhang
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Ze‐Shuai Wang
- Department of Pulmonary and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Zongfang Li
- Key Laboratory of Environment and Genes Related to DiseasesMinistry of Education of ChinaXi'an Jiaotong UniversityXi'anShaanxi ProvinceChina
- National and Local Joint Engineering Research Center of Biodiagnosis and BiotherapyThe Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’anShaanxi ProvinceChina
| | - Zu‐Jiang Yu
- Department of Infectious DiseasesThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| |
Collapse
|
198
|
Mahmood Shah SM. Pandemics and prayer: The impact of cattle markets and animal sacrifices during the muslim Eid festival on
COVID
‐19 transmission and public health. Int J Health Plann Manage 2020; 35:1620-1622. [PMID: 32815575 PMCID: PMC7461448 DOI: 10.1002/hpm.3040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/11/2022] Open
|
199
|
A COVID-19 Hotspot Area: Activities and Epidemiological Findings. Microorganisms 2020; 8:microorganisms8111711. [PMID: 33142840 PMCID: PMC7692759 DOI: 10.3390/microorganisms8111711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
By late March 2020, Villa Caldari, a small village of the municipality of Ortona (Abruzzo region), was registering an incidence rate of COVID-19 cases ten times greater than the overall municipality and was declared a hotspot area. Twenty-two days later, epidemiological investigation and sampling were performed, to evaluate SARS-CoV-2 circulation and the presence of SARS-CoV-2 antibodies. Overall, 681 nasopharyngeal swabs and 667 blood samples were collected. Only one resident of the village resulted in being positive for RNA viral shedding, while 73 were positive for SARS-CoV-2 antibodies. The overall seroprevalence was 10.9%. The difference between the seroprevalence of infection in asymptomatic and symptomatic individuals was significant (χ2 = 14.50 p-value = 0.0001). Amongst the residents positive for antibodies, fatigue and/or muscle pain, fever and anosmia were the most experienced symptoms, whose most frequent onset was observed during the first two weeks of March. Familial and habit-related clusters were highlighted. Nevertheless, the investigations showed a low SARS-CoV-2 circulation in the village at the time of the sampling, demonstrating virus transmission could be limited when strict emergency measures are followed. Given the favorable results, the emergency measures were then lifted.
Collapse
|
200
|
Luís ME, Hipólito-Fernandes D, Mota C, Maleita D, Xavier C, Maio T, Cunha JP, Tavares Ferreira J. A Review of Neuro-Ophthalmological Manifestations of Human Coronavirus Infection. Eye Brain 2020; 12:129-137. [PMID: 33154692 PMCID: PMC7608548 DOI: 10.2147/eb.s268828] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/05/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Human coronavirus (HCoVs) are a group of viruses with recognized neurotropic and neuroinvasive capabilities. The reports on the neurological and ocular findings are increasing day after day and several central and peripheral neurological manifestations are already described. However, none specifically describes the neuro-ophthalmological manifestation of HCoVs. This is the first article specifically reviewing neuro-ophthalmological manifestations of HCoVs infection. Methods PubMed and Google Scholar databases were searched using the keywords: coronaviridae, coronavirus, COVID-19, SARS-CoV-2, SARS-CoV-1, MERS, ocular, ophthalmology, ophthalmological, neuro-ophthalmology, neurological, manifestations. A manual search through the reference lists of relevant articles was also performed. There were no restrictions concerning language or study type and publications not yet printed but available online were considered. Results Coronavirus eye involvement is not frequent and includes mostly a typical viral follicular conjunctivitis. Recently, retinal anatomical alterations were described using optic coherence tomography. Neuro-ophthalmological symptoms and signs can appear isolated or associated with neurological syndromes. The manifestations include headache, ocular pain, visual impairment, diplopia, and cranial nerve palsies secondary to Miller Fisher syndrome, Guillain-Barré syndrome, or encephalitis, and nystagmus. Conclusion Neurological and neuro-ophthalmological syndromes, symptoms, and signs should not be neglected and a complete ophthalmological examination of these patients should be performed to fully describe ocular manifestations related to HCoVs. We believe that major ocular and neuro-ophthalmological manifestations reports lack due to safety issues concerning detailed ophthalmological examination; on the other hand, in a large number of cases, the presence of life-threatening coronavirus disease hinders ocular examination and ophthalmologist’s visit to the intensive care unit.
Collapse
Affiliation(s)
- Maria Elisa Luís
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | | | - Catarina Mota
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Diogo Maleita
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Catarina Xavier
- Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal
| | - Tiago Maio
- Ophthalmology Department, Hospital Pedro Hispano, Matosinhos, Portugal
| | - João Paulo Cunha
- Ophthalmology Department, Hospital CUF Cascais, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa do Instituto Politécnico de Lisboa, Lisbon, Portugal
| | - Joana Tavares Ferreira
- Ophthalmology Department, Hospital CUF Cascais, Lisbon, Portugal.,Escola Superior de Tecnologia da Saúde de Lisboa do Instituto Politécnico de Lisboa, Lisbon, Portugal.,Neuro-Ophthalmology Department, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal.,Centro de Estudos das Ciências da Visão, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|