151
|
Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Proc Natl Acad Sci U S A 2009; 106:16233-8. [PMID: 19805286 DOI: 10.1073/pnas.0908301106] [Citation(s) in RCA: 408] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Carbonic anhydrase (CA) IX is a plasma membrane-associated member of the alpha-CA enzyme family, which is involved in solid tumor acidification. It is a marker of tumor hypoxia and a prognostic factor in several human cancers. An aberrant increase in CA IX expression in chronic hypoxia and during development of various carcinomas contributes to tumorigenesis through at least two mechanisms: pH regulation and cell adhesion control. Here we report the X-ray structure of the catalytic domain of CA IX in complex with a classical, clinically used sulfonamide inhibitor, acetazolamide. The structure reveals a typical alpha-CA fold, which significantly differs from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the PG domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. A correlation between the three-dimensional structure and the physiological role of the enzyme is here suggested, based on the measurement of the pH profile of the catalytic activity for the physiological reaction, CO(2) hydration to bicarbonate and protons. On the basis of the structural differences observed between CA IX and the other membrane-associated alpha-CAs, further prospects for the rational drug design of isozyme-specific CA inhibitors are proposed, given that inhibition of this enzyme shows antitumor activity both in vitro and in vivo.
Collapse
|
152
|
Innocenti A, Pastorekova S, Pastorek J, Scozzafava A, De Simone G, Supuran CT. The proteoglycan region of the tumor-associated carbonic anhydrase isoform IX acts as anintrinsic buffer optimizing CO2 hydration at acidic pH values characteristic of solid tumors. Bioorg Med Chem Lett 2009; 19:5825-8. [PMID: 19751975 DOI: 10.1016/j.bmcl.2009.08.088] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/27/2009] [Accepted: 08/27/2009] [Indexed: 12/22/2022]
Abstract
The enzymatic activities of carbonic anhydrase (CA, EC 4.2.1.1) isozymes CA I, II, IX (catalytic domain (cdCA IX) and catalytic domain plus proteoglycan, flCA IX), XII and XIV were investigated as a function of pH for the CO2 hydration to bicarbonate and a proton. The cytosolic isoforms CA I and II as well as the catalytic domain of CA IX, together with the transmembrane isoforms CA XII and XIV showed sigmoid pH dependencies of k(cat)/KM, with a pKa of 6.90-7.10, showing thus optimal catalytic efficiency around pH 7. The full length CA IX had a similar shape of the pH dependency curve but with a pKa of 6.49, having thus maximal catalytic activity at pH values around 6.5, typical of hypoxic solid tumors in which CA IX is overexpressed. The proteoglycan domain of CA IX (present only in this transmembrane isoform) may thus act as an intrinsic buffer promoting efficient CO2 hydration at acidic pH values found in hypoxic tumors.
Collapse
Affiliation(s)
- Alessio Innocenti
- Universita degli Studi di Firenze, Laboratorio di Chimica Bioinorganica, Rm. 188, Via della, Lastruccia 3, I-50019, Sesto Fiorentino (Firenze), Italy
| | | | | | | | | | | |
Collapse
|
153
|
Nakao M, Ishii G, Nagai K, Kawase A, Kenmotsu H, Kon-No H, Hishida T, Nishimura M, Yoshida J, Ochiai A. Prognostic significance of carbonic anhydrase IX expression by cancer-associated fibroblasts in lung adenocarcinoma. Cancer 2009; 115:2732-43. [PMID: 19365853 DOI: 10.1002/cncr.24303] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cancer tissue is comprised of cancer cells and several types of stromal cells, including cancer-associated fibroblasts (CAFs). Carbonic anhydrase (CA) IX has been used as an endogenous hypoxia marker, and although its expression by cancer cells has been reported to be associated with a poor outcome in a board range of tumors, to the authors' knowledge, the biologic significance of its expression by CAFs remains unclear. METHODS The authors investigated CA IX expression by CAFs and cancer cells immunohistochemically in 158 consecutive resected cases of lung adenocarcinoma. RESULTS CA IX was expressed by CAFs in 39 (24.7%) of the 158 cases and by cancer cells in 40 (25.3%) cases. CA IX expression by CAFs was found to be significantly correlated with conventional prognostic factors, including pathologic tumor classification and lymph node involvement. A univariate analysis and the log-rank test demonstrated a significant association between CA IX expression by CAFs (P = .006 and P = .0052, respectively) and by cancer cells (P = .020 and P = .0179, respectively) with lower survival rate. A multivariate analysis of these 2 factors indicated a statistically significant association between CA IX expression by CAFs and a lower survival rate (hazards ratio [HR], 1.797; P = .032), but not between expression by cancer cells and lower survival rate (HR, 1.561; P = .102). CONCLUSIONS The findings of the current study indicate that CA IX expression by CAFs was a better predictor of outcome than CA IX expression by cancer cells and provides new insights into the biologic significance of CAFs in the hypoxic microenvironment of the lung adenocarcinoma.
Collapse
Affiliation(s)
- Masayuki Nakao
- Pathology Division, Research Center for Innovative Oncology, National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Yildirim H, Köçkar F. TGF-beta upregulates tumor-associated carbonic anhydrase IX gene expression in Hep3B cells. Cell Biol Int 2009; 33:1002-7. [PMID: 19540352 DOI: 10.1016/j.cellbi.2009.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 04/24/2009] [Accepted: 05/29/2009] [Indexed: 11/25/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a membrane-associated carbonic anhydrase (CA) that is overexpressed in a variety of tumor types and associated with increased metastasis, giving a poor prognosis. Transcriptional regulation of transmembrane protein CAIX is complex. We describe further characterization of the 1.2kb hCA9 promoter, and the effect of TGF-beta on the transcriptional activity and expression of hCAIX in Hep3B cells. Transcriptional activity of different promoter regions of hCA9 promoter showed the presence of negative regulatory region between -300bp and -500bp of hCAIX promoter. The -116/+38 region was enough for basal transcriptional activity in Hep3B cells. TGF-beta upregulates all promoter regions of hCA9 with the highest beig for -466/+38 that has a negatively regulated region. The transcriptional activation of hCA9 promoter by TGF-beta is consistent with hCAIX mRNA levels revealed by RT-PCR and hCAIX protein expression levels by flow cytometry in Hep3B cells.
Collapse
Affiliation(s)
- Hatice Yildirim
- Department of Biology, Faculty of Art and Science, Balikesir University, 10145 Balikesir, Turkey
| | | |
Collapse
|
155
|
Ebbesen P, Pettersen EO, Gorr TA, Jobst G, Williams K, Kieninger J, Wenger RH, Pastorekova S, Dubois L, Lambin P, Wouters BG, Van Den Beucken T, Supuran CT, Poellinger L, Ratcliffe P, Kanopka A, Görlach A, Gasmann M, Harris AL, Maxwell P, Scozzafava A. Taking advantage of tumor cell adaptations to hypoxia for developing new tumor markers and treatment strategies. J Enzyme Inhib Med Chem 2009; 24 Suppl 1:1-39. [PMID: 19005871 DOI: 10.1080/14756360902784425] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cancer cells in hypoxic areas of solid tumors are to a large extent protected against the action of radiation as well as many chemotherapeutic drugs. There are, however, two different aspects of the problem caused by tumor hypoxia when cancer therapy is concerned: One is due to the chemical reactions that molecular oxygen enters into therapeutically targeted cells. This results in a direct chemical protection against therapy by the hypoxic microenvironment, which has little to do with cellular biological regulatory processes. This part of the protective effect of hypoxia has been known for more than half a century and has been studied extensively. However, in recent years there has been more focus on the other aspect of hypoxia, namely the effect of this microenvironmental condition on selecting cells with certain genetic prerequisites that are negative with respect to patient prognosis. There are adaptive mechanisms, where hypoxia induces regulatory cascades in cells resulting in a changed metabolism or changes in extracellular signaling. These processes may lead to changes in cellular intrinsic sensitivity to treatment irrespective of oxygenation and, furthermore, may also have consequences for tissue organization. Thus, the adaptive mechanisms induced by hypoxia itself may have a selective effect on cells, with a fine-tuned protection against damage and stress of many kinds. It therefore could be that the adaptive mechanisms may take advantage of for new tumor labeling/imaging and treatment strategies. One of the Achilles' heels of hypoxia research has always been the exact measurements of tissue oxygenation as well as the control of oxygenation in biological tumor models. Thus, development of technology that can ease this control is vital in order to study mechanisms and perform drug development under relevant conditions. An integrated EU Framework project 2004-2009, termed EUROXY, demonstrates several pathways involved in transcription and translation control of the hypoxic cell phenotype and evidence of cross-talk with responses to pH and redox changes. The carbonic anhydrase isoenzyme CA IX was selected for further studies due to its expression on the surface of many types of hypoxic tumors. The effort has led to marketable culture flasks with sensors and incubation equipment, and the synthesis of new drug candidates against new molecular targets. New labeling/imaging methods for cancer diagnosing and imaging of hypoxic cancer tissue are now being tested in xenograft models and are also in early clinical testing, while new potential anti-cancer drugs are undergoing tests using xenografted tumor cancers. The present article describes the above results in individual consortium partner presentations.
Collapse
Affiliation(s)
- Peter Ebbesen
- Laboratory for Stem Cell Research, Aalborg University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Genis C, Sippel KH, Case N, Cao W, Avvaru BS, Tartaglia LJ, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Rosser CJ, McKenna R. Design of a carbonic anhydrase IX active-site mimic to screen inhibitors for possible anticancer properties. Biochemistry 2009; 48:1322-31. [PMID: 19170619 PMCID: PMC2713499 DOI: 10.1021/bi802035f] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently, a convincing body of evidence has accumulated suggesting that the overexpression of carbonic anhydrase isozyme IX (CA IX) in some cancers contributes to the acidification of the extracellular matrix, which in turn promotes the growth and metastasis of the tumor. These observations have made CA IX an attractive drug target for the selective treatment of certain cancers. Currently, there is no available X-ray crystal structure of CA IX, and this lack of availability has hampered the rational design of selective CA IX inhibitors. In light of these observations and on the basis of structural alignment homology, using the crystal structure of carbonic anhydrase II (CA II) and the sequence of CA IX, a double mutant of CA II with Ala65 replaced by Ser and Asn67 replaced by Gln has been constructed to resemble the active site of CA IX. This CA IX mimic has been characterized kinetically using (18)O-exchange and structurally using X-ray crystallography, alone and in complex with five CA sulfonamide-based inhibitors (acetazolamide, benzolamide, chlorzolamide, ethoxzolamide, and methazolamide), and compared to CA II. This structural information has been evaluated by both inhibition studies and in vitro cytotoxicity assays and shows a correlated structure-activity relationship. Kinetic and structural studies of CA II and CA IX mimic reveal chlorzolamide to be a more potent inhibitor of CA IX, inducing an active-site conformational change upon binding. Additionally, chlorzolamide appears to be cytotoxic to prostate cancer cells. This preliminary study demonstrates that the CA IX mimic may provide a useful model to design more isozyme-specific CA IX inhibitors, which may lead to development of new therapeutic treatments of some cancers.
Collapse
Affiliation(s)
- Caroli Genis
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Katherine H. Sippel
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Nicolette Case
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Wengang Cao
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Balendu Sankara Avvaru
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lawrence J. Tartaglia
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Chingkuang Tu
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - David N. Silverman
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Charles J. Rosser
- Department of Urology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
157
|
Chiche J, Ilc K, Laferrière J, Trottier E, Dayan F, Mazure NM, Brahimi-Horn MC, Pouysségur J. Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res 2009; 69:358-68. [PMID: 19118021 DOI: 10.1158/0008-5472.can-08-2470] [Citation(s) in RCA: 563] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acidosis of the tumor microenvironment is typical of a malignant phenotype, particularly in hypoxic tumors. All cells express multiple isoforms of carbonic anhydrase (CA), enzymes catalyzing the reversible hydration of carbon dioxide into bicarbonate and protons. Tumor cells express membrane-bound CAIX and CAXII that are controlled via the hypoxia-inducible factor (HIF). Despite the recognition that tumor expression of HIF-1alpha and CAIX correlates with poor patient survival, the role of CAIX and CAXII in tumor growth is not fully resolved. To understand the advantage that tumor cells derive from expression of both CAIX and CAXII, we set up experiments to either force or invalidate the expression of these enzymes. In hypoxic LS174Tr tumor cells expressing either one or both CA isoforms, we show that (a) in response to a "CO(2) load," both CAs contribute to extracellular acidification and (b) both contribute to maintain a more alkaline resting intracellular pH (pH(i)), an action that preserves ATP levels and cell survival in a range of acidic outside pH (6.0-6.8) and low bicarbonate medium. In vivo experiments show that ca9 silencing alone leads to a 40% reduction in xenograft tumor volume with up-regulation of ca12 mRNA levels, whereas invalidation of both CAIX and CAXII gives an impressive 85% reduction. Thus, hypoxia-induced CAIX and CAXII are major tumor prosurvival pH(i)-regulating enzymes, and their combined targeting shows that they hold potential as anticancer targets.
Collapse
Affiliation(s)
- Johanna Chiche
- Institute of Developmental Biology and Cancer Research University of Nice, Centre National de la Recherche Scientifique UMR 6543, Centre A. Lacassagne, 33 Avenue Valombrose, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Winum JY, Rami M, Scozzafava A, Montero JL, Supuran C. Carbonic anhydrase IX: a new druggable target for the design of antitumor agents. Med Res Rev 2008; 28:445-63. [PMID: 17880011 DOI: 10.1002/med.20112] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are a family of enzymes widespread in all life kingdoms. In mammals, isozyme CA IX is highly overexpressed in many cancer types being present in few normal tissues. Its expression is strongly induced by hypoxia present in many tumors, being regulated by the HIF transcription factor and correlated with a poor response to classical chemo- and radiotherapies. CA IX was recently shown to contribute to acidification of the tumor environment, by efficiently catalyzing the hydration of carbon dioxide to bicarbonate and protons with its extracellularly situated active site, leading both to the acquisition of metastasic phenotypes and to chemoresistance with weakly basic anticancer drugs. Inhibition of this enzymatic activity by specific and potent inhibitors was shown to revert these acidification processes, establishing a clear-cut role of CA IX in tumorigenesis. The development of a wide range of potent and selective CA IX inhibitors belonging to diverse chemical classes, such as membrane-impermeant, fluorescent or metal-containing such agents, could thus provide useful tools for highlighting the exact role of CA IX in hypoxic cancers, to control the pH (im)balance of tumor cells, and to develop novel diagnostic or therapeutic applications for the management of tumors. Indeed, both fluorescent inhibitors or positively charged, membrane impermeant sulfonamides have been recently developed as potent CA IX inhibitors and used as proof-of-concept tools for demonstrating that CA IX constitutes a novel and interesting target for the anticancer drug development.
Collapse
Affiliation(s)
- Jean-Yves Winum
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-UM1-UM2, Bâtiment de Recherche Max Mousseron, Ecole Nationale Supérieure de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex, France.
| | | | | | | | | |
Collapse
|
159
|
Pastorekova S, Ratcliffe PJ, Pastorek J. Molecular mechanisms of carbonic anhydrase IX-mediated pH regulation under hypoxia. BJU Int 2008; 101 Suppl 4:8-15. [DOI: 10.1111/j.1464-410x.2008.07642.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Thiry A, Supuran CT, Masereel B, Dogné JM. Recent Developments of Carbonic Anhydrase Inhibitors as Potential Anticancer Drugs. J Med Chem 2008; 51:3051-6. [DOI: 10.1021/jm701526d] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anne Thiry
- Drug Design and Discovery Center, FUNDP, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium, and Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Claudiu T. Supuran
- Drug Design and Discovery Center, FUNDP, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium, and Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Bernard Masereel
- Drug Design and Discovery Center, FUNDP, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium, and Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Jean-Michel Dogné
- Drug Design and Discovery Center, FUNDP, University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium, and Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
161
|
Järvelä S, Parkkila S, Bragge H, Kähkönen M, Parkkila AK, Soini Y, Pastorekova S, Pastorek J, Haapasalo H. Carbonic anhydrase IX in oligodendroglial brain tumors. BMC Cancer 2008; 8:1. [PMID: 18173856 PMCID: PMC2245965 DOI: 10.1186/1471-2407-8-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 01/04/2008] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carbonic anhydrase IX is a hypoxia-induced enzyme that has many biologically important functions, including its role in cell adhesion and invasion. METHODS This study was set out to investigate the role of CA IX in a series of 86 oligodendroglial brain tumors (71 primary and 15 recurrent; 48 pure oligodendrogliomas and 40 mixed oligoastrocytomas). RESULTS 80% of the tumors showed CA IX expression by immunohistochemistry. Tumors with moderate or strong CA IX expression had decreased level of cell proliferation compared to weak or no CA IX expression (median 2.9 vs. 5.8, p = 0.015). CA IX correlated with two antioxidative enzymes, manganese superoxide dismutase (MnSOD) and regulatory gammaglutamylcysteine synthetase (GLCL-R): CA IX expression was significantly higher in MnSOD-positive tumors (p = 0.008) and decreased in GLCL-R-positive tumors (p = 0.044). In Cox multivariate analysis CA IX expression, patient age and histological component (pure oligodendroglioma vs. mixed oligoastrocytoma) showed independent prognostic values (p = 0.009, p = 0.003 and p = 0.022, respectively), CA IX positivity predicting poorer outcome. CONCLUSION CA IX was proved to be an independent prognostic indicator in oligodendroglial brain tumors, and it also correlates reversely with cell proliferation. It may have a role in the biology of oligodendrogliomas, and most interestingly, as it is mainly expressed in tumor tissue, CA IX could serve as a target molecule for anticancer treatments.
Collapse
Affiliation(s)
- Sally Järvelä
- Department of Pathology, Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Takes RP, Rinaldo A, Pablo Rodrigo J, Devaney KO, Fagan JJ, Ferlito A. Can biomarkers play a role in the decision about treatment of the clinically negative neck in patients with head and neck cancer? Head Neck 2008; 30:525-38. [DOI: 10.1002/hed.20759] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
163
|
Holotnakova T, Ziegelhoffer A, Ohradanova A, Hulikova A, Novakova M, Kopacek J, Pastorek J, Pastorekova S. Induction of carbonic anhydrase IX by hypoxia and chemical disruption of oxygen sensing in rat fibroblasts and cardiomyocytes. Pflugers Arch 2007; 456:323-37. [DOI: 10.1007/s00424-007-0400-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 11/09/2007] [Accepted: 11/14/2007] [Indexed: 02/08/2023]
|
164
|
Barathova M, Takacova M, Holotnakova T, Gibadulinova A, Ohradanova A, Zatovicova M, Hulikova A, Kopacek J, Parkkila S, Supuran CT, Pastorekova S, Pastorek J. Alternative splicing variant of the hypoxia marker carbonic anhydrase IX expressed independently of hypoxia and tumour phenotype. Br J Cancer 2007; 98:129-36. [PMID: 18026188 PMCID: PMC2359689 DOI: 10.1038/sj.bjc.6604111] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CA IX is a hypoxia-induced, cancer-associated carbonic anhydrase isoform with functional involvement in pH control and cell adhesion. Here we describe an alternative splicing variant of the CA9 mRNA, which does not contain exons 8–9 and is expressed in tumour cells independently of hypoxia. It is also detectable in normal tissues in the absence of the full-length transcript and can therefore produce false-positive data in prognostic studies based on the detection of the hypoxia- and cancer-related CA9 expression. The splicing variant encodes a truncated CA IX protein lacking the C-terminal part of the catalytic domain. It shows diminished catalytic activity and is intracellular or secreted. When overexpressed, it reduces the capacity of the full-length CA IX protein to acidify extracellular pH of hypoxic cells and to bind carbonic anhydrase inhibitor. HeLa cells transfected with the splicing variant cDNA generate spheroids that do not form compact cores, suggesting that they fail to adapt to hypoxic stress. Our data indicate that the splicing variant can functionally interfere with the full-length CA IX. This might be relevant particularly under conditions of mild hypoxia, when the cells do not suffer from severe acidosis and do not need excessive pH control.
Collapse
Affiliation(s)
- M Barathova
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
The high metabolic rate required for tumor growth often leads to hypoxia in poorly-perfused regions. Hypoxia activates a complex gene expression program, mediated by hypoxia inducible factor 1 (HIF1alpha). One of the consequences of HIF1alpha activation is up-regulation of glycolysis and hence the production of lactic acid. In addition to the lactic acid-output, intracellular titration of acid with bicarbonate and the engagement of the pentose phosphate shunt release CO(2) from cells. Expression of the enzyme carbonic anhydrase 9 on the tumor cell surface catalyses the extracellular trapping of acid by hydrating cell-generated CO(2) into [see text] and H(+). These mechanisms contribute towards an acidic extracellular milieu favoring tumor growth, invasion and development. The lactic acid released by tumor cells is further metabolized by the tumor stroma. Low extracellular pH may adversely affect the intracellular milieu, possibly triggering apoptosis. Therefore, primary and secondary active transporters operate in the tumor cell membrane to protect the cytosol from acidosis. We review mechanisms regulating tumor intracellular and extracellular pH, with a focus on carbonic anhydrase 9. We also review recent evidence that may suggest a role for CA9 in coordinating pH(i) among cells of large, unvascularized cell-clusters.
Collapse
Affiliation(s)
- Pawel Swietach
- Department of Physiology, Anatomy and Genetics, Burdon Sanderson Cardiac Science Centre, Oxford OX1 3PT, UK
| | | | | |
Collapse
|
166
|
Dubois L, Douma K, Supuran CT, Chiu RK, van Zandvoort MAMJ, Pastoreková S, Scozzafava A, Wouters BG, Lambin P. Imaging the hypoxia surrogate marker CA IX requires expression and catalytic activity for binding fluorescent sulfonamide inhibitors. Radiother Oncol 2007; 83:367-73. [PMID: 17502120 DOI: 10.1016/j.radonc.2007.04.018] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Carbonic anhydrase (CA) IX expression is increased in response to hypoxia. Recently, sulfonamide based carbonic anhydrase inhibitors (CAI) showing specificity for CA IX have been designed. Aim was to investigate the CAI binding properties under normoxia, hypoxia and reoxygenation. MATERIAL AND METHODS Cells with varying CA IX expression were incubated with fluorescein labeled CAI (1mM) during normoxia, hypoxia (0.2%) and reoxygenation. CA IX expression levels were assessed using Western blotting. CAI binding was determined by immunostaining and flow cytometry. RESULTS CAI binding in hypoxic cells was significantly higher compared with normoxic cells and correlated with upregulated CA IX levels. Binding occurred within 15min of hypoxia, but was gradually lost upon reoxygenation. Interestingly, although CA IX levels remained high upon reoxygenation, CAI binding was dramatically reduced and no longer correlated with CA IX expression. Similarly, RCC4 cells, constitutively expressing CA IX, do not bind CAI under normoxic conditions. CONCLUSIONS Our results confirm and extend previous results showing that CAI binding occurs only under hypoxia. The inability of CAI to bind CA IX in RCC4 cells and following reoxygenation in other cells demonstrates that formation of the active site not only depends on HIF-1alpha-dependent gene activity, but also on the absence of oxygen per se.
Collapse
Affiliation(s)
- Ludwig Dubois
- Maastricht Radiation Oncology (MaastRO) Lab, Grow Research Institute, University of Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Dorai T, Sawczuk I, Pastorek J, Wiernik PH, Dutcher JP. Role of carbonic anhydrases in the progression of renal cell carcinoma subtypes: proposal of a unified hypothesis. Cancer Invest 2007; 24:754-79. [PMID: 17162558 DOI: 10.1080/07357900601062321] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Renal cell carcinoma (RCC) has the highest rate of occurrence within the US when compared with other countries. Recent advances in the basic research and molecular diagnostics of this malignancy have revealed that RCC is not a single disease, but it is a mixture of several types of malignancies with unique molecular mechanisms and pathological attributes. RCC is now divided into clear cell carcinoma (80% of all kidney cancers), papillary type 1 and papillary type 2 neoplasms (10-15% of all RCC patients) and RCC with chromophobic and oncocytic features, called the Birt-Hogg-Dube (BHD) subtype, in roughly 5% of all patients. Apart from these, neoplasms such as the tuberous sclerosis (TSC) syndrome may occur with a mixed pathological features with a renal presentation. In this review, molecular evidence, both direct and indirect, published so far on all these RCC subtypes have been analyzed to find out whether there is any common thread that could run through these disparate malignancies that happen to occur in a single organ, i.e., the kidney. We believe that the role played by the expression and certain non-traditional activities of the cabonic anhydrase (CA) family members, along with the differing levels of hypoxia induced within these tumors may be the most common denominators. Evidence is presented focusing on how the CA family members could participate in the genesis and progression of each and every one of these RCC subtypes and how their function could be influenced by hypoxia, activities of receptor type protein tyrosine kinases and certain other pre-disposing factors. These rationalizations point towards a unified hypothesis that may help explain the occurrence of all these RCC subtypes in a molecular manner. We hope that these analyses would a) stimulate further studies aimed toward a better understanding of the role played by carbonic anhydrases in RCC subtypes and b) would pave way to a better and rationally designed therapies to interfere with their function to benefit patients with RCC and possibly other cancers.
Collapse
Affiliation(s)
- Thambi Dorai
- Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, New York 10466, USA.
| | | | | | | | | |
Collapse
|
168
|
Lee S, Shin HJ, Han IO, Hong EK, Park SY, Roh JW, Shin KH, Kim TH, Kim JY. Tumor carbonic anhydrase 9 expression is associated with the presence of lymph node metastases in uterine cervical cancer. Cancer Sci 2007; 98:329-33. [PMID: 17233814 PMCID: PMC11159029 DOI: 10.1111/j.1349-7006.2007.00396.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tumor hypoxia has a pronounced effect on malignant progression and metastatic spread of human tumors. As carbonic anhydrases (CA) 9 and 12 are induced by the low-oxygen environment within tumors, we investigated the relationship between the expression of these two CA and the presence of metastatic lymph nodes (LN) in uterine cervical cancer. CA9/CA12 expression was evaluated histochemically in primary cervical cancer tissues of 73 patients who underwent laparoscopic LN staging and two patients with clinical staging before definitive radiotherapy at the National Cancer Center, Korea. We also evaluated CA9 expression in 33 patients with pathologically confirmed metastatic LN. CA9 expression in the primary tumors was significantly associated with LN metastasis (P = 0.03) and poorer disease-free survival (relative risk, 6.1; 95% confidence interval, 1.3-28.3, P = 0.02, multivariate analysis), whereas CA12 expression did not show such a relationship. In addition, 21 of 24 metastatic LN revealed similar CA9 expression (P = 0.001), suggesting that CA9-expressing tumor cells had a higher metastatic potential. CA9 was expressed in 45 of 75 (60%) primary tumors, with positive tumor cells observed predominantly in the area away from the blood vessels. In contrast, CA12 expression was observed in only 29 of 74 primary tumors (39%), without a specific pattern. These findings indicate that expression of CA9, but not CA12, in tumors is associated with the presence of LN metastases and poorer prognosis. Selective application of new treatment modalities based on CA9 expression to prevent LN metastases may improve overall treatment outcome in patients with uterine cervical cancer.
Collapse
Affiliation(s)
- Sun Lee
- Radiation Oncology, National Cancer Center, 809 Madu-dong, Ilsan-gu, Goyang-si, Gyeonggi-do, 411-769, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Pastorekova S, Parkkila S, Zavada J. Tumor-associated carbonic anhydrases and their clinical significance. Adv Clin Chem 2006. [PMID: 17131627 DOI: 10.1016/s0065-2423(06)42005-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbonic anhydrases (CAs) are physiologically important enzymes that catalyze a reversible conversion of carbon dioxide to bicarbonate and participate in ion transport and pH control. Two human isoenzymes, CA IX and CA XII, are overexpressed in cancer and contribute to tumor physiology. Particularly CA IX is confined to only few normal tissues but is ectopically induced in many tumor types mainly due to its strong transcriptional activation by hypoxia accomplished via HIF-1 transcription factor. Therefore, CA IX can serve as a surrogate marker of hypoxia and a prognostic indicator. CA IX appears implicated in cell adhesion and in balance of pH disturbances caused by tumor metabolism. Both tumor-related expression pattern and functional involvement in tumor progression make it a suitable target for anticancer treatment. Here we summarize a current knowledge on CA IX and CA XII, and discuss possibilities of their exploitation for cancer detection, diagnostics, and therapy.
Collapse
Affiliation(s)
- Silvia Pastorekova
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
170
|
Abstract
Carbonic anhydrase (CA) catalyzes the reversible hydration of CO(2). CA is expressed in most segments of the kidney. CAII and CAIV predominate in human and rabbit kidneys; in rodent kidneys, CAXII, and CAXIV are also present. CAIX is expressed by renal cell carcinoma (RCC). Most of these isoforms, except for rodent CAIV, have high turnover rates. CAII is a cytoplasmic enzyme, whereas the others are membrane-associated; CAIV is anchored by glycosylphosphatidylinositol linkage. Membrane polarity is apical for CAXIV, basolateral for CAXII, and apical and basolateral for CAIV. Luminal membrane CAs facilitate the dehydration of carbonic acid (H(2)CO(3)) that is formed when secreted protons combine with filtered bicarbonate. Basolateral CA enhances the efflux of bicarbonate via dehydration of H(2)CO(3). CAII and CAIV can associate with bicarbonate transporters (e.g., AE1, kNBC1, NBC3, and SCL26A6), and proton antiporter, NHE1 in a membrane protein complex called a transport metabolon. CAXII and CAXIV may also be associated with transporters in normal kidney and CAIX in RCCs. The multiplicity of CAs implicates their importance in acid-base and other solute transport along the nephron. For example, CAII on the cytoplasmic face and CAIV on the extracellular surface provide the 'push' and 'pull' for bicarbonate transport by supplying and dissipating substrate respectively.
Collapse
Affiliation(s)
- J M Purkerson
- Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York, USA
| | | |
Collapse
|
171
|
Kon-no H, Ishii G, Nagai K, Yoshida J, Nishimura M, Nara M, Fujii T, Murata Y, Miyamoto H, Ochiai A. Carbonic anhydrase IX expression is associated with tumor progression and a poor prognosis of lung adenocarcinoma. Lung Cancer 2006; 54:409-18. [PMID: 17030461 DOI: 10.1016/j.lungcan.2006.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/13/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
Carbonic anhydrase (CA) IX catalyzes the hydration of carbon dioxide into carbonic acid and participates in a variety of physiological and biological processes. The aim of this study was to evaluate the prognostic significance of CA IX expression in patients with lung adenocarcinoma. Standard immunohistochemical techniques were used to study CA IX expression in 134 patients who underwent curative resection for adenocarcinoma of the lung at our hospital between January 1995 and December 1996. We evaluated the correlations between CA IX expression levels on cancer cells and clinicopathological factors. CA IX expression was not observed in normal lung tissue or specimens from non-invasive adenocarcinomas. CA IX immunostaining was detected in 33 (24.6%) invasive adenocarcinoma cases. Poor differentiated histological phenotype (p=0.0015), pathological stage (p=0.0400), vascular invasion (p=0.0009) and lymphatic permeation (p=0.0050) were significantly related to CA IX expression. On univariate analysis, CA IX positive cases showed significantly shorter overall survival (p=0.0083) and disease-free survival (p=0.0122). In particular, the overall and disease-free survivals in stages I+II were significantly shorter in the CA IX positive than in the CA IX negative cases (p=0.0269 and 0.0011, respectively). Our results suggest that CA IX expression is strongly associated with tumor progression and indicates a poor prognosis for patients with stages I+II lung adenocarcinoma.
Collapse
Affiliation(s)
- Hidehiro Kon-no
- Pathology Division, Center for Innovative Oncology, National Cancer Hospital East, 6-5-1, Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Hynninen P, Vaskivuo L, Saarnio J, Haapasalo H, Kivelä J, Pastoreková S, Pastorek J, Waheed A, Sly WS, Puistola U, Parkkila S. Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours. Histopathology 2006; 49:594-602. [PMID: 17163844 DOI: 10.1111/j.1365-2559.2006.02523.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Carbonic anhydrase (CA) isozymes IX and XII have been suggested to play a role in oncogenic processes. The aim of the present study was to investigate CA IX and XII expression in patients with ovarian tumours. METHODS AND RESULTS A series of ovarian tumours was immunostained for CA IX and XII and the results were correlated with histopathological and clinical parameters. Most cases of borderline mucinous cystadenomas, mucinous cystadenocarcinomas and serous cystadenocarcinomas were moderately or strongly positive for CA IX. In malignant tumours, the staining was most prominent in hypoxic regions. Expression of CA XII was detected in all tumour categories, although the mean staining intensity was weaker than for CA IX in all groups except for clear cell carcinomas. CONCLUSIONS The wide expression of CA IX and XII in ovarian tumours suggests that these isozymes could represent potential targets in ovarian cancer therapy. The expression pattern of CA IX suggests that it could also serve as a useful histopathological marker protein for hypoxia in malignant ovarian tumours.
Collapse
MESH Headings
- Antigens, Neoplasm/metabolism
- Carbonic Anhydrase IX
- Carbonic Anhydrases/metabolism
- Cell Membrane/enzymology
- Cell Membrane/pathology
- Cystadenocarcinoma, Mucinous/enzymology
- Cystadenocarcinoma, Mucinous/mortality
- Cystadenocarcinoma, Mucinous/pathology
- Cystadenocarcinoma, Serous/enzymology
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/pathology
- Cystadenoma, Mucinous/enzymology
- Cystadenoma, Mucinous/mortality
- Cystadenoma, Mucinous/pathology
- Female
- Fluorescent Antibody Technique, Direct
- Humans
- Immunoenzyme Techniques
- Isoenzymes
- Ovarian Neoplasms/enzymology
- Ovarian Neoplasms/mortality
- Ovarian Neoplasms/pathology
- Survival Rate
Collapse
Affiliation(s)
- P Hynninen
- Department of Obstetrics and Gynaecology, Tampere University Hospital, University of Tampere, Tampere, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Thiry A, Dogné JM, Masereel B, Supuran CT. Targeting tumor-associated carbonic anhydrase IX in cancer therapy. Trends Pharmacol Sci 2006; 27:566-73. [PMID: 16996620 DOI: 10.1016/j.tips.2006.09.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 08/09/2006] [Accepted: 09/11/2006] [Indexed: 01/27/2023]
Abstract
Carbonic anhydrase isoform IX (CA IX) is highly overexpressed in many types of cancer. Its expression, which is regulated by the HIF-1 transcription factor, is strongly induced by hypoxia and correlates with a poor response to classical chemo- and radiotherapies. CA IX contributes to acidification of the tumor environment by efficiently catalyzing the hydration of carbon dioxide to bicarbonate and protons, thereby leading to acquisition of metastatic phenotypes and chemoresistance to weakly basic anticancer drugs. Inhibition of this enzymatic activity by specific inhibitors, such as the sulfonamide indisulam, reverts these processes, establishing a clear-cut role for CA IX in tumorigenesis. Thus, selective CA IX inhibitors could prove useful for elucidating the role of CA IX in hypoxic cancers, for controlling the pH imbalance in tumor cells and for developing diagnostic or therapeutic applications for tumor management. Indeed, fluorescent inhibitors and membrane-impermeant sulfonamides have recently been used as proof-of-concept tools, demonstrating that CA IX is an interesting target for anticancer drug development.
Collapse
Affiliation(s)
- Anne Thiry
- Drug Design and Discovery Center, University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
174
|
Kallio H, Pastorekova S, Pastorek J, Waheed A, Sly WS, Mannisto S, Heikinheimo M, Parkkila S. Expression of carbonic anhydrases IX and XII during mouse embryonic development. BMC DEVELOPMENTAL BIOLOGY 2006; 6:22. [PMID: 16719910 PMCID: PMC1526727 DOI: 10.1186/1471-213x-6-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/23/2006] [Indexed: 12/24/2022]
Abstract
BACKGROUND Of the thirteen active carbonic anhydrase (CA) isozymes, CA IX and XII have been linked to carcinogenesis. It has been suggested that these membrane-bound CAs participate in cancer cell invasion, which is facilitated by an acidic tumor cell environment. Since active cell migration is a characteristic feature of embryonic development, we set out to explore whether these isozymes are expressed in mouse embryos of different ages. The studies were focused on organogenesis stage. RESULTS Immunohistochemistry demonstrated that both CA IX and XII are present in several tissues of the developing mouse embryo during organogenesis. Staining for CA IX revealed a relatively wide distribution pattern with moderate signals in the brain, lung, pancreas and liver and weak signals in the kidney and stomach. The expression pattern of CA XII in the embryonic tissues was also relatively broad, although the intensity of immunostaining was weak in most tissues. The CA XII-positive tissues included the brain, where the most prominent staining was seen in the choroid plexus, and the stomach, pancreas, liver and kidney. CONCLUSION Membrane-bound CA isozymes IX and XII are expressed in various tissues during mouse organogenesis. These enzymes may regulate ion and pH homeostasis within the developing embryo.
Collapse
Affiliation(s)
- Heini Kallio
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Biokatu 8, FIN-33520 Tampere, Finland
| | - Silvia Pastorekova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - William S Sly
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Susanna Mannisto
- Children's Hospital and Program for Developmental and Reproductive Biology, University of Helsinki, Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital and Program for Developmental and Reproductive Biology, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Washington University, St. Louis, Missouri, USA
| | - Seppo Parkkila
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, Biokatu 8, FIN-33520 Tampere, Finland
- Department of Clinical Chemistry, University of Oulu, Oulu, Finland
| |
Collapse
|
175
|
Esbaugh AJ, Tufts BL. The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 2006; 154:185-98. [PMID: 16679072 DOI: 10.1016/j.resp.2006.03.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 03/14/2006] [Accepted: 03/20/2006] [Indexed: 01/12/2023]
Abstract
Carbonic anhydrase is a ubiquitous metalloenzyme that catalyzes the reversible hydration/dehydration of carbon dioxide. To date, 16 different CA isozymes have been identified in mammals, and several novel isozymes have also been identified in non-mammalian vertebrates. These isozymes are involved in many physiological processes; however, one of the most important roles is facilitating the transport and subsequent excretion of carbon dioxide. As such, CA isozymes are found at virtually every step of the process, including the metabolic site of CO(2) production (muscle), the circulating red blood cells, and the primary respiratory surface (gills/lungs). This review will examine the structural characteristics that are integral to CAs participation in respiration, as well as highlight the specific roles and tissues that the different CA isozymes are involved in.
Collapse
Affiliation(s)
- A J Esbaugh
- Department of Biology, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | |
Collapse
|
176
|
Haapasalo JA, Nordfors KM, Hilvo M, Rantala IJ, Soini Y, Parkkila AK, Pastoreková S, Pastorek J, Parkkila SM, Haapasalo HK. Expression of carbonic anhydrase IX in astrocytic tumors predicts poor prognosis. Clin Cancer Res 2006; 12:473-7. [PMID: 16428489 DOI: 10.1158/1078-0432.ccr-05-0848] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Carbonic anhydrase IX (CA IX) is a hypoxia-inducible enzyme, which is associated with neoplastic growth. Ectopic CA IX expression has been observed in several tumors, whose normal counterparts do not express this enzyme. Normal human brain tissue shows only slight or no expression of CA IX. EXPERIMENTAL DESIGN We describe CA IX expression in human diffusely infiltrating astrocytomas. The association of CA IX is evaluated with clinicopathologic and molecular factors including cell proliferation and apoptosis as well as the expression of p53 and epidermal growth factor receptor. RESULTS CA IX immunopositivity was observed in 284 cases of 362 (78%) tumors. The positive areas were often located in close proximity to necrotic regions (P < 0.001). The CA IX immunoreactivity showed strong association with tumor malignancy grades (P < 0.0001). CA IX showed no association with p53 expression nor did it correlate with epidermal growth factor receptor-amplification, apoptosis, or cell proliferation. CA IX intensity had significant prognostic value in univariate (P=0.0011, log-rank test) and multivariate survival analysis (P = 0.038, Cox analysis). CONCLUSIONS CA IX expression is common in diffusely infiltrating high-grade astrocytomas. Our results suggest that CA IX is a useful biomarker for predicting poor prognosis of astrocytic tumors. It may also be a promising target molecule for the improvement of therapeutic interventions in astrocytomas.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Apoptosis
- Astrocytoma/enzymology
- Astrocytoma/genetics
- Astrocytoma/pathology
- Biomarkers, Tumor/metabolism
- Brain Neoplasms/enzymology
- Brain Neoplasms/genetics
- Brain Neoplasms/pathology
- Carbonic Anhydrase IX
- Carbonic Anhydrases/genetics
- Carbonic Anhydrases/metabolism
- Cell Proliferation
- ErbB Receptors/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Male
- Middle Aged
- Neoplasm Recurrence, Local/enzymology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Survival Rate
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Joonas A Haapasalo
- Department of Pathology, Centre for Laboratory Medicine, Tampere University Hospital, FIN-33521 Tampere, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Clare BW, Supuran CT. A perspective on quantitative structure–activity relationships and carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol 2006; 2:113-37. [PMID: 16863473 DOI: 10.1517/17425255.2.1.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are wide-spread enzymes, present in mammals in at least 15 different isoforms. The 12 catalytically active isoforms play important physiological and pathophysiological functions and are strongly inhibited by aromatic/heterocyclic sulfonamides, sulfamides and sulfamates, among others. The catalytic and inhibition mechanisms of these enzymes are understood in great detail, and this greatly helped the design of potent inhibitors, some of which possess important clinical applications as antiglaucoma drugs, or in the management of some neuromuscular disorders. A recent discovery is connected with the involvement of CAs and their sulfonamide inhibitors in cancer: many potent CA inhibitors were shown to inhibit the growth of several tumour cell lines in vitro and in vivo, thus constituting interesting leads for developing novel antitumour therapies. The field of quantitative structure-activity relationship (QSAR), formalised by Hansch and others in the early 1960s, is the discovery of empirical relationships between the chemical structure of drugs and their biological activity. The emphasis is on empirical. Extending a QSAR to drugs other than those used to formulate it is always a new hypothesis, and although these extensions are often successful, it should be no cause for surprise if they break down in particular cases. With CA, as with other targets, the descriptor variables that have been used include topological indices, physical properties such as solvent partition coefficients and Hammett constants from reaction rate studies, and quantum theoretical parameters, such as orbital energies, atomic charges, polarisabilities and recently the orientation of nodes in pi-orbitals. This review deals only with the physical and quantum theoretical descriptors.
Collapse
Affiliation(s)
- Brian W Clare
- University of Western Australia, School of Biomedical and Chemical Science, Crawley, WA 6009, Australia.
| | | |
Collapse
|
178
|
Dorai T, Sawczuk IS, Pastorek J, Wiernik PH, Dutcher JP. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer 2006; 41:2935-47. [PMID: 16310354 DOI: 10.1016/j.ejca.2005.09.011] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 08/23/2005] [Accepted: 09/02/2005] [Indexed: 01/03/2023]
Abstract
Carbonic anhydrase IX (CA IX) is a membrane isoenzyme, the overexpression of which is associated with clear cell carcinoma of the kidney. Its overexpression is restricted mainly to cancer, as it is absent in corresponding normal tissues making it a potential cancer biomarker. Several recent studies have shown that CA IX, apart from its classical enzyme activity of reversibly hydrating carbon dioxide extracellularly to facilitate the net extrusion of protons from inside to outside the cell, it can also be a key player in the modulation of cell adhesion processes and participate in the regulation of cell proliferation in response to hypoxic environment to ultimately contribute to tumour progression. Here, we have shown that the sole tyrosine moiety of CA IX present in its intracellular domain can be phosphorylated in an epidermal growth factor dependent manner, suggesting that it can feed into the growth factor receptor dependent signalling pathways. Our studies suggest that the tyrosine phosphorylated CA IX can interact with the regulatory subunit of PI-3-Kinase, contributing to Akt activation. These studies have revealed a positive feed back loop that can form the basis of a vicious cycle that could contribute to the progression of clear cell renal carcinoma and poor prognosis. These studies show that CA IX signalling may be a part of both the hypoxia driven and hypoxia independent pathways that occur in the cancer cell. Finally, our studies emphasize the need for a more refined strategy using signal transduction therapeutics to inhibit the cell surface carbonic anhydrases for the management of this malignancy.
Collapse
Affiliation(s)
- Thambi Dorai
- Comprehensive Cancer Center, Our Lady of Mercy Medical Center, New York Medical College, Bronx, NY 10466-2697, USA.
| | | | | | | | | |
Collapse
|
179
|
Zatovicova M, Sedlakova O, Svastova E, Ohradanova A, Ciampor F, Arribas J, Pastorek J, Pastorekova S. Ectodomain shedding of the hypoxia-induced carbonic anhydrase IX is a metalloprotease-dependent process regulated by TACE/ADAM17. Br J Cancer 2006; 93:1267-76. [PMID: 16278664 PMCID: PMC2361518 DOI: 10.1038/sj.bjc.6602861] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Carbonic anhydrase IX (CA IX) is a transmembrane protein whose expression is strongly induced by hypoxia in a broad spectrum of human tumours. It is a highly active enzyme functionally involved in both pH control and cell adhesion. Its presence in tumours usually indicates poor prognosis. Ectodomain of CA IX is detectable in the culture medium and body fluids of cancer patients, but the mechanism of its shedding has not been thoroughly investigated. Here, we analysed several cell lines with natural and ectopic expression of CA IX to show that its ectodomain release is sensitive to metalloprotease inhibitor batimastat (BB-94) and that hypoxia maintains the normal rate of basal shedding, thus leading to concomitant increase in cell-associated and extracellular CA IX levels. Using CHO-M2 cells defective in shedding, we demonstrated that the basal CA IX ectodomain release does not require a functional TNFα-converting enzyme (TACE/ADAM17), whereas the activation of CA IX shedding by both phorbol-12-myristate-13-acetate and pervanadate is TACE-dependent. Our results suggest that the cleavage of CA IX ectodomain is a regulated process that responds to physiological factors and signal transduction stimuli and may therefore contribute to adaptive changes in the protein composition of tumour cells and their microenvironment.
Collapse
Affiliation(s)
- M Zatovicova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - O Sedlakova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - E Svastova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - A Ohradanova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - F Ciampor
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - J Arribas
- Medical Oncology Research Program, Vall d'Hebron University Hospital Research Institute, Barcelona 08035, Spain
| | - J Pastorek
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
| | - S Pastorekova
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic
- Center of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 05, Slovak Republic. E-mail:
| |
Collapse
|
180
|
Kowalewska M, Radziszewski J, Kulik J, Barathova M, Nasierowska-Guttmajer A, Bidziński M, Pastorek J, Pastorekova S, Siedlecki JA. Detection of carbonic anhydrase 9-expressing tumor cells in the lymph nodes of vulvar carcinoma patients by RT-PCR. Int J Cancer 2005; 116:957-62. [PMID: 15856466 DOI: 10.1002/ijc.21106] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regional lymph node status is an important prognostic factor for vulvar cancer. The goal of our study was to elaborate a reliable test for detecting micrometastases, undetectable by traditional methods, in the lymph nodes of vulvar squamous carcinoma patients. For this purpose, carbonic anhydrase-9 (CA9) was investigated as a cancer-related marker by RT-PCR. Firstly, primary carcinoma specimens were examined for CA9 expression by immunohistochemistry with M75 monoclonal antibody. All 19 tissues exhibited a variable degree of staining, which was mostly confined to the plasma membranes of tumor cells. Correspondingly, all primary tumor specimens and the control A-431 vulvar cancer cell line gave a positive signal in the nested RT-PCR assay designed to detect CA9-expressing cells with a high sensitivity. Analysis of 77 lymph node specimens from 20 patients revealed a full correlation between RT-PCR results and standard hematoxylin-eosin staining in 75% of samples, whereas 25% of specimens were negative by the standard method and positive for CA9 mRNA, accounting for 28% of all histologically negative lymph nodes. There were no false-negatives with RT-PCR. A positive inguinal lymph node with a negative sentinel node was observed in the same groin only once in 38 specimens. Our findings clearly indicate potential value of CA9 as a molecular marker for the assessment of regional lymph node status in vulvar cancer patients and support a possible utility of our RT-PCR assay in the detection of micrometastases.
Collapse
Affiliation(s)
- Magdalena Kowalewska
- Department of Molecular Biology, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Leppilampi M, Parkkila S, Karttunen T, Gut MO, Gros G, Sjöblom M. Carbonic anhydrase isozyme-II-deficient mice lack the duodenal bicarbonate secretory response to prostaglandin E2. Proc Natl Acad Sci U S A 2005; 102:15247-52. [PMID: 16217040 PMCID: PMC1257747 DOI: 10.1073/pnas.0508007102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Duodenal bicarbonate secretion (DBS) is accepted as the primary mucosal defense against acid discharged from the stomach and is impaired in patients with duodenal ulcer disease. The secretory response to luminal acid is the main physiological stimulus for DBS and involves mediation by PGE2 produced by mucosal cells. The aim of this investigation is to elucidate the role of carbonic anhydrases (CAs) II and IX in PGE2-mediated bicarbonate secretion in the murine duodenum. CA II- and IX-deficient mice and different combinations of their heterozygous and WT counterparts were studied. A 10-mm segment of the proximal duodenum with intact blood supply was isolated, and DBS was titrated by pH-stat (TitroLine-easy, Schott, Mainz, Germany). Mean arterial blood pressure (MAP) was continuously recorded, and blood acid/base balance and gastrointestinal morphology were analyzed. The duodenal segment spontaneously secreted HCO3(-) at a steady basal rate of 5.3 +/- 0.6 micromol x cm(-1) x h(-1). Perfusing the duodenal lumen for 20 min with 47 microM PGE2 caused a significant increase in DBS to 13.0 +/- 2.9 micromol x cm(-1) x h(-1), P < 0.0001. The DBS response to PGE2 was completely absent in Car2-/- mice, whereas basal DBS was normal. The CA IX-deficient mice with normal Car2 alleles showed a slight increase in DBS. Histological abnormalities were observed in the gastroduodenal epithelium in both CA II- and IX-deficient mice. Our data demonstrate a gastrointestinal phenotypic abnormality associated with CA II deficiency. The results show that the stimulatory effect of the duodenal secretagogue PGE2 completely depends on CA II.
Collapse
Affiliation(s)
- Mari Leppilampi
- Institute of Medical Technology, University of Tampere and Tampere University Hospital, FI-33520 Tampere, Finland
| | | | | | | | | | | |
Collapse
|
182
|
Cecchi A, Hulikova A, Pastorek J, Pastoreková S, Scozzafava A, Winum JY, Montero JL, Supuran CT. Carbonic anhydrase inhibitors. Design of fluorescent sulfonamides as probes of tumor-associated carbonic anhydrase IX that inhibit isozyme IX-mediated acidification of hypoxic tumors. J Med Chem 2005; 48:4834-41. [PMID: 16033263 DOI: 10.1021/jm0501073] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Sulfonamides inhibit the catalytic activity of carbonic anhydrases (CAs, EC 4.2.1.1), enzymes participating in the regulation of acid-base balance and ion transport in many tissues. Carbonic anhydrase IX (CA IX), a transmembrane isoform with predominant association with tumors and limited distribution in normal tissues, is strongly overexpressed by hypoxia. Hypoxia increases the catalytic performance of CA IX contributing to microenvironmental acidosis, which influences cancer progression and treatment outcome. CA IX represents a target for detection and therapy of hypoxic tumors. Sulfonamide CA IX selective inhibitors accumulate only in hypoxic cells containing CA IX, reversing acidification mediated by this enzyme. The design of fluorescent sulfonamides that preferentially inhibit the activity of CA IX, showing reduced penetration through the plasma membranes and binding to hypoxic cells expressing CA IX, is reported here. These inhibitors represent promising candidates for developing anticancer therapies based on tumor-associated CA isozyme inhibition and offer interesting tools for imaging and further investigation of hypoxic tumors.
Collapse
Affiliation(s)
- Alessandro Cecchi
- Polo Scientifico, Laboratorio di Chimica Bioinorganica, Rm. 188, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Kivela AJ, Parkkila S, Saarnio J, Karttunen TJ, Kivela J, Parkkila AK, Bartosova M, Mucha V, Novak M, Waheed A, Sly WS, Rajaniemi H, Pastorekova S, Pastorek J. Expression of von Hippel-Lindau tumor suppressor and tumor-associated carbonic anhydrases IX and XII in normal and neoplastic colorectal mucosa. World J Gastroenterol 2005; 11:2616-25. [PMID: 15849821 PMCID: PMC4305753 DOI: 10.3748/wjg.v11.i17.2616] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze possible relationships between CA IX/CA XII and pVHL expression in normal and neoplastic colorectal mucosa.
METHODS: Immunohistochemical staining of 42 tissue specimens obtained from 17 cancer patients was performed to evaluate the distribution and semi-quantitatively assess the levels of CA IX, CA XII and pVHL. VHL mRNAs from 14 fresh-frozen tumors was amplified by RT-PCR and subjected to sequencing. CA9 and CA12 mRNA levels were analyzed by semi-quantitative RT-PCR in comparison with VEGF as an indicator of hypoxia that uncouples the pVHL control.
RESULTS: Tumor tissues were associated with a borderline increase of CA IX staining signal and slight but significant decrease of CA XII immunoreactivity, whereas no association was found for pVHL. Sequence analysis of RT-PCR-amplified VHL mRNAs revealed no deletions/mutations, suggesting that they were VHL-competent. We did not observe any correlation between pVHL and CA IX/CA XII proteins as well as between VEGF and CA9 mRNAs, but the tumor-associated changes in mRNA levels of VEGF and CA12 showed a significant inverse relationship.
CONCLUSION: Our results indicate that CA9 and CA12 are regulated by different intratumoral factors and that lack of apparent relationship between the levels of CA IX/CA XII and pVHL cannot be fully assigned to uncoupling of negative regulatory function of pVHL by tumor hypoxia signified by induced VEGF transcription. The interplay between the functional pVHL and CA IX/CA XII in colorectal tumors seems rather complex and is not evident merely at the expression levels.
Collapse
Affiliation(s)
- Antti-J Kivela
- Department of Anatomy and Cell Biology, University of Oulu, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Kopacek J, Barathova M, Dequiedt F, Sepelakova J, Kettmann R, Pastorek J, Pastorekova S. MAPK pathway contributes to density- and hypoxia-induced expression of the tumor-associated carbonic anhydrase IX. ACTA ACUST UNITED AC 2005; 1729:41-9. [PMID: 15833446 DOI: 10.1016/j.bbaexp.2005.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 02/21/2005] [Accepted: 03/08/2005] [Indexed: 01/07/2023]
Abstract
Transcription of the CA9 gene coding for a tumor-associated carbonic anhydrase IX (CA IX) isoform is regulated by hypoxia via the hypoxia-inducible factor 1 (HIF-1) and by high cell density via the phosphatidylinositol-3-kinase (PI3K) pathway. We examined the role of the mitogen-activated protein kinase (MAPK) pathway in the control of CA9 gene expression. Inhibition of MAPK signaling by U0126 in HeLa cells led to reduced activity of the PR1-HRE-luc CA9 promoter construct and decreased CA IX protein levels in dense culture as well as in hypoxia. Similar reduction was obtained by expression of a dominant-negative ERK1 mutant and was also observed in U0126-treated HIF-1alpha-deficient Ka13 cells. Simultaneous treatment with the MAPK and PI3K inhibitors U0126 and LY 294002 had stronger effect than individual inhibition of these pathways. Taken together, our results suggest that besides the PI3K pathway, the MAPK cascade is involved in the regulation of CA9 gene expression under both hypoxia and high cell density.
Collapse
Affiliation(s)
- Juraj Kopacek
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
185
|
Scozzafava A, Mastrolorenzo A, Supuran CT. Modulation of carbonic anhydrase activity and its applications in therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.5.667] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
186
|
Svastová E, Hulíková A, Rafajová M, Zat'ovicová M, Gibadulinová A, Casini A, Cecchi A, Scozzafava A, Supuran CT, Pastorek J, Pastoreková S. Hypoxia activates the capacity of tumor-associated carbonic anhydrase IX to acidify extracellular pH. FEBS Lett 2005; 577:439-45. [PMID: 15556624 DOI: 10.1016/j.febslet.2004.10.043] [Citation(s) in RCA: 572] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 10/13/2004] [Accepted: 10/17/2004] [Indexed: 12/18/2022]
Abstract
Acidic extracellular pH (pHe) is a typical attribute of a tumor microenvironment, which has an impact on cancer development and treatment outcome. It was believed to result from an accumulation of lactic acid excessively produced by glycolysis. However, metabolic profiles of glycolysis-impaired tumors have revealed that CO2 is a significant source of acidity, thereby indicating a contribution of carbonic anhydrase (CA). The tumor-associated CA IX isoform is the best candidate, because its extracellular enzyme domain is highly active, expression is induced by hypoxia and correlates with poor prognosis. This study provides the first evidence for the role of CA IX in the control of pHe. We show that CA IX can acidify the pH of the culture medium in hypoxia but not in normoxia. This acidification can be perturbed by deletion of the enzyme active site and inhibited by CA IX-selective sulfonamides, which bind only to hypoxic cells containing CA IX. Our findings suggest that hypoxia regulates both expression and activity of CA IX in order to enhance the extracellular acidification, which may have important implications for tumor progression.
Collapse
Affiliation(s)
- Eliska Svastová
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Hoogsteen IJ, Marres HA, Wijffels KI, Rijken PF, Peters JP, van den Hoogen FJ, Oosterwijk E, van der Kogel AJ, Kaanders JH. Colocalization of Carbonic Anhydrase 9 Expression and Cell Proliferation in Human Head and Neck Squamous Cell Carcinoma. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.97.11.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Purpose: Tumor cells undergo a variety of biological changes under sustained hypoxic conditions, allowing cells to survive and retain their clonogenic potential. The purpose of this study is to relate the expression of the hypoxia marker carbonic anhydrase 9 (CA9) to the uptake of iododeoxyuridine (IdUrd), a marker of proliferation, in head and neck squamous cell carcinomas. Colocalization of IdUrd and CA9 may identify an important subpopulation of tumor cells that might be responsible for repopulation and disease progression.
Experimental Design: Expression of CA9, IdUrd labeling, and colocalization between IdUrd and CA9 was examined by immunohistochemistry in biopsies of head and neck squamous cell carcinomas. Biopsies were taken from 51 patients recruited between 1998 and 2001 after administration of the proliferation marker IdUrd.
Results: A large variation was observed between the tumors in CA9 expression (range 0-39%), IdUrd labeling (range 0-81%), and colocalization between IdUrd and CA9 [FId(CA9); range 0-53%]. FId(CA9), the fraction of IdUrd-labeled cells positive for CA9, was highest at an intermediate distance from the blood vessels (100-150 μm). IdUrd labeling was higher in T4 carcinomas relative to lower stage tumors (P = 0.04). High FId(CA9) correlated with the worst disease-free survival rates (P = 0.04).
Conclusions: Colocalization between IdUrd labeling and CA9 expression was observed in head and neck squamous cell carcinomas, suggesting the presence of a population of tumor cells under intermediate hypoxic conditions which still has proliferative capacity. The size of this subpopulation may be indicative of tumor aggressiveness and is associated with the worst disease-free survival rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Egbert Oosterwijk
- 3Urology, University Medical Center, St. Radboud, Nijmegen, the Netherlands
| | | | | |
Collapse
|
188
|
Hilvo M, Rafajová M, Pastoreková S, Pastorek J, Parkkila S. Expression of carbonic anhydrase IX in mouse tissues. J Histochem Cytochem 2004; 52:1313-22. [PMID: 15385577 DOI: 10.1177/002215540405201007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) is a unique member of the CA gene family. In contrast to the other isozymes, it has been implicated in regulation of cell proliferation, adhesion, and malignant cell invasion. In a recently described knockout mouse model for CA IX deficiency, the only phenotypic abnormalities were limited to the gastric mucosa, while no changes were observed in the other tissues known to express CA IX in rats and humans. Here we investigated the expression of CA IX mRNA and protein in mouse tissues. Immunohistochemical (IHC) analysis showed strong staining in the gastric mucosa. Moderate reactions were seen in the colon enterocytes and pancreatic acini. The expression pattern of CA IX was similar in certain human and rodent tissues, although some differences existed, especially in the gut epithelium. Reverse transcriptase PCR analyses surprisingly revealed strong signals for CA IX mRNA in the kidney and skeletal muscle, while the IHC and Western blotting showed no or weak signals for the corresponding protein. This result suggests a tight tissue-specific post-transcriptional control for CA IX expression, possibly related to the physiological demands.
Collapse
Affiliation(s)
- Mika Hilvo
- Institute of Medical Technology, University of Tampere, Biokatu 6, 33520 Tampere, Finland
| | | | | | | | | |
Collapse
|
189
|
Robertson N, Potter C, Harris AL. Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 2004; 64:6160-5. [PMID: 15342400 DOI: 10.1158/0008-5472.can-03-2224] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carbonic anhydrase IX (CAIX) is a membrane-associated carbonic anhydrase (CA), strongly induced by hypoxia. CAIX is overexpressed in a variety of tumor types and associated with increased metastasis and poor prognosis. An inhibitor of CAs, acetazolamide has been reported to inhibit invasion. We used RNA interference (RNAi) to examine the function of CAIX in MDA468 and MDA231 breast carcinoma cells, which express high levels of CAIX under hypoxia. Hypoxia-induced CA activity was completely blocked by specific RNAi (P < 0.01). RNAi-treated cells showed growth delay in dense monolayer culture and a 50% reduction in clonogenic survival under hypoxia. In the MDA468 cells, there was no effect of RNAi treatment on invasion. In a cell line that did not induce CAIX under hypoxia, RT112, we found no effect on the ability of cells transfected with CAIX to invade or migrate. Thus, CAIX plays an important role in the growth and survival of tumor cells under normoxia and hypoxia, making it a potential target for cancer therapy, but is not involved in invasion.
Collapse
Affiliation(s)
- Naomi Robertson
- Cancer Research UK, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | |
Collapse
|
190
|
Murray RZ, Jolly LA, Wood SA. The FAM deubiquitylating enzyme localizes to multiple points of protein trafficking in epithelia, where it associates with E-cadherin and beta-catenin. Mol Biol Cell 2004; 15:1591-9. [PMID: 14742711 PMCID: PMC379258 DOI: 10.1091/mbc.e03-08-0630] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 12/11/2003] [Accepted: 12/31/2003] [Indexed: 12/13/2022] Open
Abstract
Ubiquitylation is a necessary step in the endocytosis and lysosomal trafficking of many plasma membrane proteins and can also influence protein trafficking in the biosynthetic pathway. Although a molecular understanding of ubiquitylation in these processes is beginning to emerge, very little is known about the role deubiquitylation may play. Fat Facets in mouse (FAM) is substrate-specific deubiquitylating enzyme highly expressed in epithelia where it interacts with its substrate, beta-catenin. Here we show, in the polarized intestinal epithelial cell line T84, FAM localized to multiple points of protein trafficking. FAM interacted with beta-catenin and E-cadherin in T84 cells but only in subconfluent cultures. FAM extensively colocalized with beta-catenin in cytoplasmic puncta but not at sites of cell-cell contact as well as immunoprecipitating with beta-catenin and E-cadherin from a higher molecular weight complex ( approximately 500 kDa). At confluence FAM neither colocalized with, nor immunoprecipitated, beta-catenin or E-cadherin, which were predominantly in a larger molecular weight complex ( approximately 2 MDa) at the cell surface. Overexpression of FAM in MCF-7 epithelial cells resulted in increased beta-catenin levels, which localized to the plasma membrane. Expression of E-cadherin in L-cell fibroblasts resulted in the relocalization of FAM from the Golgi to cytoplasmic puncta. These data strongly suggest that FAM associates with E-cadherin and beta-catenin during trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Rachael Z Murray
- Child Health Research Institute, North Adelaide, SA 5006, Australia
| | | | | |
Collapse
|