151
|
Lu WC, Chiu CS, Chan YJ, Mulio AT, Li PH. Recent Research on Different Parts and Extracts of Opuntia dillenii and Its Bioactive Components, Functional Properties, and Applications. Nutrients 2023; 15:2962. [PMID: 37447287 DOI: 10.3390/nu15132962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Opuntia dillenii (O. dillenii) is a plant belonging to the Cactaceae family that is abundant in tropical and subtropical regions worldwide. O. dillenii is consumed as a local delicacy and has no other current use. To understand the nutritional value of O. dillenii in human health and its application in the food, cosmetic, and drug industries, this review summarizes information on the chemical compounds (pure α-pyrone compounds, flavonoids, phenolic acids, polysaccharides, minerals, fatty acids, and betalains) and biological properties (anti-diabetic, anti-hyperglycemic, antihyperlipidemic, anti-atherosclerotic, anti-inflammatory, analgesic, antimicrobial, antifungal, antiviral, anti-spermatogenic, anticancer, antilarval, anti-angiogenic, and antioxidant) of extracts from each part of the plant (fruit juice, fruit peel, cladode, and seeds) (aqueous, ethanolic, and methanolic), and seed oil. In addition, data related to the recent applications of O. dillenii in various industries (e.g., edible coatings, food supplements, cosmetics, nanoparticles, and wastewater treatment) are provided.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City 60077, Taiwan
| | - Chien-Shan Chiu
- Department of Dermatology, Taichung Veterans General Hospital, Taichung City 40705, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua 51591, Taiwan
| | | | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung City 43301, Taiwan
| |
Collapse
|
152
|
Ruiz-García I, Ortíz-Flores R, Badía R, García-Borrego A, García-Fernández M, Lara E, Martín-Montañez E, García-Serrano S, Valdés S, Gonzalo M, Tapia-Guerrero MJ, Fernández-García JC, Sánchez-García A, Muñoz-Cobos F, Calderón-Cid M, El-Bekay R, Covas MI, Rojo-Martínez G, Olveira G, Romero-Zerbo SY, Bermúdez-Silva FJ. Rich oleocanthal and oleacein extra virgin olive oil and inflammatory and antioxidant status in people with obesity and prediabetes. The APRIL study: A randomised, controlled crossover study. Clin Nutr 2023; 42:1389-1398. [PMID: 37421852 DOI: 10.1016/j.clnu.2023.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Oleocanthal and oleacein are olive oil phenolic compounds with well known anti-inflammatory and anti-oxidant properties. The main evidence, however, is provided by experimental studies. Few human studies have examined the health benefits of olive oils rich in these biophenols. Our aim was to assess the health properties of rich oleocanthal and oleacein extra virgin olive oil (EVOO), compared to those of common olive oil (OO), in people with prediabetes and obesity. METHODS Randomised, double-blind, crossover trial done in people aged 40-65 years with obesity (BMI 30-40 kg/m2) and prediabetes (HbA1c 5.7-6.4%). The intervention consisted in substituting for 1 month the oil used for food, both raw and cooked, by EVOO or OO. No changes in diet or physical activity were recommended. The primary outcome was the inflammatory status. Secondary outcomes were the oxidative status, body weight, glucose handling and lipid profile. An ANCOVA model adjusted for age, sex and treatment administration sequence was used for the statistical analysis. RESULTS A total of 91 patients were enrolled (33 men and 58 women) and finished the trial. A decrease in interferon-γ was observed after EVOO treatment, reaching inter-treatment differences (P = 0.041). Total antioxidant status increased and lipid and organic peroxides decreased after EVOO treatment, the changes reaching significance compared to OO treatment (P < 0.05). Decreases in weight, BMI and blood glucose (p < 0.05) were found after treatment with EVOO and not with OO. CONCLUSIONS Treatment with EVOO rich in oleocanthal and oleacein differentially improved oxidative and inflammatory status in people with obesity and prediabetes.
Collapse
Affiliation(s)
- Ignacio Ruiz-García
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Rodolfo Ortíz-Flores
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Rocío Badía
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | | | - María García-Fernández
- Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Estrella Lara
- Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Elisa Martín-Montañez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Sara García-Serrano
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Sergio Valdés
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Montserrat Gonzalo
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - María-José Tapia-Guerrero
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - José-Carlos Fernández-García
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Alicia Sánchez-García
- Departamento de Fitoquímica de los Alimentos, Instituto de la Grasa - CSIC, Sevilla, Spain
| | - Francisca Muñoz-Cobos
- Centro de Salud El Palo, Consejería de Salud y Familias, Junta de Andalucía, Málaga, Spain
| | | | - Rajaa El-Bekay
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | | | - Gemma Rojo-Martínez
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain
| | - Gabriel Olveira
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Medicina y Dermatología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Silvana-Yanina Romero-Zerbo
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| | - Francisco-Javier Bermúdez-Silva
- UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Málaga, Spain; Departamento de Fisiología Humana, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
153
|
Ang WS, Law JWF, Letchumanan V, Hong KW, Wong SH, Ab Mutalib NS, Chan KG, Lee LH, Tan LTH. A Keystone Gut Bacterium Christensenella minuta-A Potential Biotherapeutic Agent for Obesity and Associated Metabolic Diseases. Foods 2023; 12:2485. [PMID: 37444223 DOI: 10.3390/foods12132485] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
A new next-generation probiotic, Christensenella minuta was first discovered in 2012 from healthy human stool and described under the phylum Firmicutes. C. minuta is a subdominant commensal bacterium with highly heritable properties that exhibits mutual interactions with other heritable microbiomes, and its relative abundance is positively correlated with the lean host phenotype associated with a low BMI index. It has been the subject of numerous studies, owing to its potential health benefits. This article reviews the evidence from various studies of C. minuta interventions using animal models for managing metabolic diseases, such as obesity, inflammatory bowel disease, and type 2 diabetes, characterized by gut microbiota dysbiosis and disruption of host metabolism. Notably, more studies have presented the complex interaction between C. minuta and host metabolism when it comes to metabolic health. Therefore, C. minuta could be a potential candidate for innovative microbiome-based biotherapy via fecal microbiota transplantation or oral administration. However, the detailed underlying mechanism of action requires further investigation.
Collapse
Affiliation(s)
- Wei-Shan Ang
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Jodi Woan-Fei Law
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Next-Generation Precision Medicine and Therapeutics Research Group (NMeT), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Pathogen Resistome Virulome and Diagnostic Research Group (PathRiD), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Kar Wai Hong
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Nurul Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Gan Chan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Innovative Bioprospection Development Research Group (InBioD), Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| |
Collapse
|
154
|
Liu T, Zhuang Z, Wang D. Paeoniflorin mitigates high glucose-induced lifespan reduction by inhibiting insulin signaling in Caenorhabditis elegans. Front Pharmacol 2023; 14:1202379. [PMID: 37405055 PMCID: PMC10315627 DOI: 10.3389/fphar.2023.1202379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
In organisms, high glucose can cause several aspects of toxicity, including the lifespan reduction. Paeoniflorin is the major component of Paeoniaceae plants. Nevertheless, the possible effect of paeoniflorin to suppress high glucose toxicity in reducing lifespan and underlying mechanism are largely unclear. Thus, in this study, we examined the possible effect of paeoniflorin in suppressing high glucose (50 mM)-induced lifespan reduction and the underlying mechanism in Caenorhabditis elegans. Administration with 16-64 mg/L paeoniflorin could prolong the lifespan in glucose treated nematodes. Accompanied with this beneficial effect, in glucose treated nematodes, expressions of daf-2 encoding insulin receptor and its downstream kinase genes (age-1, akt-1, and akt-2) were decreased and expression of daf-16 encoding FOXO transcriptional factor was increased by 16-64 mg/L paeoniflorin administration. Meanwhile, the effect of paeoniflorin in extending lifespan in glucose treated nematodes was enhanced by RNAi of daf-2, age-1, akt-1, and akt-2 and inhibited by RNAi of daf-16. In glucose treated nematodes followed by paeoniflorin administration, the increased lifespan caused by daf-2 RNAi could be suppressed by RNAi of daf-16, suggesting that DAF-2 acted upstream of DAF-16 to regulate pharmacological effect of paeoniflorin. Moreover, in glucose treated nematodes followed by paeoniflorin administration, expression of sod-3 encoding mitochondrial Mn-SOD was inhibited by daf-16 RNAi, and the effect of paeoniflorin in extending lifespan in glucose treated nematodes could be suppressed by sod-3 RNAi. Molecular docking analysis indicated the binding potential of paeoniflorin with DAF-2, AGE-1, AKT-1, and AKT-2. Therefore, our results demonstrated the beneficial effect of paeoniflorin administration in inhibiting glucose-induced lifespan reduction by suppressing signaling cascade of DAF-2-AGE-1-AKT-1/2-DAF-16-SOD-3 in insulin signaling pathway.
Collapse
Affiliation(s)
- Tianwen Liu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
- Medical School, Southeast University, Nanjing, China
| | - Ziheng Zhuang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, China
| | - Dayong Wang
- Medical School, Southeast University, Nanjing, China
| |
Collapse
|
155
|
Liang B, Chen SW, Li YY, Zhang SX, Zhang Y. Comprehensive analysis of endoplasmic reticulum stress-related mechanisms in type 2 diabetes mellitus. World J Diabetes 2023; 14:820-845. [PMID: 37383594 PMCID: PMC10294059 DOI: 10.4239/wjd.v14.i6.820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/27/2022] [Accepted: 04/04/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is closely related to a wide range of cellular functions and is a key component to maintain and restore metabolic health. Type 2 diabetes mellitus (T2DM) is a serious threat to human health, but the ER stress (ERS)-related mechanisms in T2DM have not been fully elucidated.
AIM To identify potential ERS-related mechanisms and crucial biomarkers in T2DM.
METHODS We conducted gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in myoblast and myotube form GSE166502, and obtained the differentially expressed genes (DEGs). After intersecting with ERS-related genes, we obtained ERS-related DEGs. Finally, functional analyses, immune infiltration, and several networks were established.
RESULTS Through GSEA and GSVA, we identified several metabolic and immune-related pathways. We obtained 227 ERS-related DEGs and constructed several important networks that help to understand the mechanisms and treatment of T2DM. Finally, memory CD4+ T cells accounted for the largest proportion of immune cells.
CONCLUSION This study revealed ERS-related mechanisms in T2DM, which might contribute to new ideas and insights into the mechanisms and treatment of T2DM.
Collapse
Affiliation(s)
- Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Shu-Wen Chen
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Yuan-Yuan Li
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Shun-Xiao Zhang
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| | - Yan Zhang
- Department of Endocrinology, Shanghai Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai 200000, China
| |
Collapse
|
156
|
Chen Y, Yang C, You N, Zhang J. Relationship between Helicobacter pylori and glycated hemoglobin: a cohort study. Front Cell Infect Microbiol 2023; 13:1196338. [PMID: 37360526 PMCID: PMC10288807 DOI: 10.3389/fcimb.2023.1196338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Background Helicobacter pylori (H. pylori) has increasingly been shown to be related to extragastric diseases. Glycated hemoglobin A1c (HbA1c), an indicator of glycemic control, is closely linked to the event of diabetes. The purpose of this research was to analyze the association between H. pylori and HbA1c through a cohort study. Methods The population who underwent multiple physical checkups in the physical examination center of Taizhou Hospital was included. All of them underwent urea breath test, serological examination and physical parameter measurement. Multiple regression was used for analyzing the influencing factors of HbA1c. In addition, the result of HbA1c on H. pylori infection was studied by restricted cubic spline (RCS) analysis. The triglyceride glucose (TyG) index represents the level of insulin resistance (IR) in the population. The population was classified on the basis of primary and last H. pylori infection, therefore, the variations of HbA1c and TyG index among totally different teams were investigated. Results Multiple regression demonstrated that H. pylori was an influential factor in HbA1c. RCS analysis showed a nonlinear relationship between HbA1c and H. pylori infection. When HbA1c>5.7%, the chance of H. pylori infection was considerably enlarged. Additionally, long-term H. pylori infection increased HbA1c levels, while HbA1c levels decreased after H. pylori eradication. Similarly, long-term H. pylori infection also increased the TyG index. Conclusion Prediabetes increases the danger of H. pylori infection, long-term H. pylori infection increases HbA1c and IR levels, and wipeout of H. pylori could have a positive impact for glycemic control in the population.
Collapse
Affiliation(s)
- Yi Chen
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Chaoyu Yang
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ningning You
- Departments of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jinshun Zhang
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
157
|
Sang M, Cho M, Lim S, Min IS, Han Y, Lee C, Shin J, Yoon K, Yeo WH, Lee T, Won SM, Jung Y, Heo YJ, Yu KJ. Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. SCIENCE ADVANCES 2023; 9:eadh1765. [PMID: 37256939 PMCID: PMC10413647 DOI: 10.1126/sciadv.adh1765] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023]
Abstract
Continuous glucose monitoring (CGM) allows patients with diabetes to manage critical disease effectively and autonomously and prevent exacerbation. A painless, wireless, compact, and minimally invasive device that can provide CGM is essential for monitoring the health conditions of freely moving patients with diabetes. Here, we propose a glucose-responsive fluorescence-based highly sensitive biodegradable microneedle CGM system. These ultrathin and ultralight microneedle sensor arrays continuously and precisely monitored glucose concentration in the interstitial fluid with minimally invasive, pain-free, wound-free, and skin inflammation-free outcomes at various locations and thicknesses of the skin. Bioresorbability in the body without a need for device removal after use was a key characteristic of the microneedle glucose sensor. We demonstrated the potential long-term use of the bioresorbable device by applying the tether-free CGM system, thus confirming the successful detection of glucose levels based on changes in fluorescence intensity. In addition, this microneedle glucose sensor with a user-friendly designed home diagnosis system using mobile applications and portable accessories offers an advance in CGM and its applicability to other bioresorbable, wearable, and implantable monitoring device technology.
Collapse
Affiliation(s)
- Mingyu Sang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Myeongki Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Selin Lim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - In Sik Min
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuna Han
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Chanwoo Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jongwoon Shin
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kukro Yoon
- NanoBio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
| | - Woon-Hong Yeo
- Bio-Interfaced Translational Nanoengineering Group, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Taeyoon Lee
- NanoBio Device Laboratory, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemungu, Seoul 03722, Republic of Korea
| | - Sang Min Won
- Flexible Electronic System Research Group, Department of Electrical and Computer Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Youngmee Jung
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yun Jung Heo
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
- Integrated Education Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, 1732 Deogyeong-daero, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
158
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
159
|
Vemula SL, Aramadaka S, Mannam R, Sankara Narayanan R, Bansal A, Yanamaladoddi VR, Sarvepalli SS. The Impact of Hypothyroidism on Diabetes Mellitus and Its Complications: A Comprehensive Review. Cureus 2023; 15:e40447. [PMID: 37456384 PMCID: PMC10349367 DOI: 10.7759/cureus.40447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Diabetes mellitus (DM) is one of the most prevalent metabolic disorders in the world and is characterized by excessive blood glucose levels, which lead to deranged carbohydrate, protein, and lipid metabolisms. At its core, DM is an impairment of insulin metabolism, leading to a plethora of clinical features. The thyroid gland is another vital cog in the wheel of the endocrine system, and the hormones synthesized by it are heavily involved in the control of the body's metabolism. Hypothyroidism is a state in which thyroid hormones are deficient due to various factors and is characterized by a metabolically hypoactive state. Together, insulin, implicated in DM, and thyroid hormones engage in an intricate dance and serve to regulate the body's metabolism. It is imperative to explore the relationship between these two common endocrine disorders to understand their clinical association and mold treatments specific to patients in which they coexist. Both type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) have been shown to have an increased association with hypothyroidism, especially in patients with risk factors including female sex, hyperlipidemia, obesity, and anemia. This review also explores DM's macrovascular and microvascular complications and their association with hypothyroidism. It is of great use to screen for hypothyroidism in diabetic patients. Specific protocols, especially for patients at an elevated risk, provide improved quality of life to patients affected by this highly prevalent disease.
Collapse
Affiliation(s)
- Shree Laya Vemula
- Department of Internal Medicine, Anam Chenchu Subba Reddy (ACSR) Government Medical College, Nellore, IND
| | | | - Raam Mannam
- Department of General Surgery, Narayana Medical College, Nellore, IND
| | | | - Arpit Bansal
- Department of Internal Medicine, Narayana Medical College, Nellore, IND
| | | | | |
Collapse
|
160
|
Alidu H, Dapare PPM, Quaye L, Amidu N, Bani SB, Banyeh M. Insulin Resistance in relation to Hypertension and Dyslipidaemia among Men Clinically Diagnosed with Type 2 Diabetes. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8873226. [PMID: 37274075 PMCID: PMC10238133 DOI: 10.1155/2023/8873226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 05/19/2023] [Indexed: 06/06/2023]
Abstract
Pathophysiologically, type 2 diabetes can result from insulin resistance or insulin insufficiency alone. It is unclear whether relative insulin shortage or pronounced insulin resistance is linked to poor cardiometabolic problems like obesity. Therefore, the objective of this study was to evaluate the relationship between insulin resistance (IR), hypertension, and dyslipidaemia, in men with type 2 diabetes mellitus. One hundred and twenty-one (121) type 2 diabetic men participated in this cross-sectional study, which was conducted between September 2018 and September 2019. Sociodemographic information was collected using a self-designed questionnaire. Anthropometric data were also taken and blood samples collected for estimation of insulin, glucose, and lipid concentrations. HOMA-IR was calculated from the fasting insulin and glucose values, and a HOMA - IR ≥ 2 was considered to indicate insulin resistance. Of the 121 participants, 39.7% were classified as insulin-resistant. Levels of total cholesterol (4.82 ± 1.2 mmol/L; p = 0.007 vs. 4.25 ± 1.1 mmol/L), LDL cholesterol (3.17 ± 0.9 mmol/L; p = 0.001 vs. 2.52 ± 0.8 mmol/L), and TC/HDL-C ratio (3.93 ± 0.9; p = 0.042 vs. 3.58 ± 0.9) and the prevalence of abnormal LDL-C (14.6%; p = 0.015 vs. 2.7%) and elevated BP (83.3%; p = 0.048 vs. 67.1%) were higher in the insulin-resistant group. LDL cholesterol (AUC = 0.670; p = 0.001) better classified subjects as being insulin-resistant compared to other lipid markers. The odds of insulin resistance in dyslipidaemia were not statistically significant after adjusting for obesity. The link between insulin resistance and dyslipidaemia and hypertension in male diabetics may thus be mediated by obesity.
Collapse
Affiliation(s)
- Huseini Alidu
- Department of Medical Laboratory Science, University of Health and Allied Sciences, Ho, Ghana
| | | | - Lawrence Quaye
- Department of Biomedical Laboratory Science, University for Development Studies, Tamale, Ghana
| | - Nafiu Amidu
- Department of Biomedical Laboratory Science, University for Development Studies, Tamale, Ghana
| | - Simon Bannison Bani
- Department of Biomedical Laboratory Science, University for Development Studies, Tamale, Ghana
| | - Moses Banyeh
- Department of Biomedical Laboratory Science, University for Development Studies, Tamale, Ghana
| |
Collapse
|
161
|
Wei J, Wang Z, Han T, Chen J, Ou Y, Wei L, Zhu X, Wang K, Yan Z, Han YP, Zheng X. Extracellular vesicle-mediated intercellular and interorgan crosstalk of pancreatic islet in health and diabetes. Front Endocrinol (Lausanne) 2023; 14:1170237. [PMID: 37305058 PMCID: PMC10248434 DOI: 10.3389/fendo.2023.1170237] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetes mellitus (DM) is a systemic metabolic disease with high mortality and morbidity. Extracellular vesicles (EVs) have emerged as a novel class of signaling molecules, biomarkers and therapeutic agents. EVs-mediated intercellular and interorgan crosstalk of pancreatic islets plays a crucial role in the regulation of insulin secretion of β-cells and insulin action in peripheral insulin target tissues, maintaining glucose homeostasis under physiological conditions, and it's also involved in pathological changes including autoimmune response, insulin resistance and β-cell failure associated with DM. In addition, EVs may serve as biomarkers and therapeutic agents that respectively reflect the status and improve function and viability of pancreatic islets. In this review, we provide an overview of EVs, discuss EVs-mediated intercellular and interorgan crosstalk of pancreatic islet under physiological and diabetic conditions, and summarize the emerging applications of EVs in the diagnosis and treatment of DM. A better understanding of EVs-mediated intercellular and interorgan communication of pancreatic islets will broaden and enrich our knowledge of physiological homeostasis maintenance as well as the development, diagnosis and treatment of DM.
Collapse
Affiliation(s)
- Junlun Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institute, Stockholm, Sweden
| | - Tingrui Han
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaoting Chen
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Wei
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyue Zhu
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Yan
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Ping Han
- The Center for Growth, Metabolism and Aging, The College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
162
|
Toyomura T, Watanabe M, Wake H, Nishinaka T, Hatipoglu OF, Takahashi H, Nishibori M, Mori S. Glycolaldehyde-derived advanced glycation end products promote macrophage proliferation via the JAK-STAT signaling pathway. Mol Biol Rep 2023:10.1007/s11033-023-08509-y. [PMID: 37227674 DOI: 10.1007/s11033-023-08509-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are heterogeneous proinflammatory molecules produced by a non-enzymatic glycation reaction between reducing sugars (and their metabolites) and biomolecules with amino groups, such as proteins. Although increases in and the accumulation of AGEs have been implicated in the onset and exacerbation of lifestyle- or age-related diseases, including diabetes, their physiological functions have not yet been elucidated in detail. METHODS AND RESULTS The present study investigated the cellular responses of the macrophage cell line RAW264.7 stimulated by glycolaldehyde-derived AGEs (Glycol-AGEs) known as representative toxic AGEs. The results obtained showed that Glycol-AGEs significantly promoted the proliferation of RAW264.7 cells at a low concentration range (1-10 µg/mL) in a concentration-dependent manner. On the other hand, neither TNF-α production nor cytotoxicity were induced by the same concentrations of Glycol-AGEs. The increases observed in cell proliferation by low concentrations of Glycol-AGEs were also detected in receptor triple knockout (RAGE-TLR4-TLR2 KO) cells as well as in wild-type cells. Increases in cell proliferation were not affected by various kinase inhibitors, including MAP kinase inhibitors, but were significantly suppressed by JAK2 and STAT5 inhibitors. In addition, the expression of some cell cycle-related genes was up-regulated by the stimulation with Glycol-AGEs. CONCLUSIONS These results suggest a novel physiological role for AGEs in the promotion of cell proliferation via the JAK-STAT pathway.
Collapse
Affiliation(s)
- Takao Toyomura
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Masahiro Watanabe
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Hidenori Wake
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Takashi Nishinaka
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Omer Faruk Hatipoglu
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Hideo Takahashi
- Department of Pharmacology, Faculty of Medicine, Kindai University, Osaka-Sayama, 589-8511, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Shuji Mori
- Department of Pharmacology, School of Pharmacy, Shujitsu University, Nishigawara, Naka-ku, Okayama, 703-8516, Japan.
| |
Collapse
|
163
|
Guttapadu R, Korla K, Uk S, Annam V, Ashok P, Chandra N. Identification of Probucol as a candidate for combination therapy with Metformin for Type 2 diabetes. NPJ Syst Biol Appl 2023; 9:18. [PMID: 37221264 DOI: 10.1038/s41540-023-00275-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Type 2 Diabetes (T2D) is often managed with metformin as the drug of choice. While it is effective overall, many patients progress to exhibit complications. Strategic drug combinations to tackle this problem would be useful. We constructed a genome-wide protein-protein interaction network capturing a global perspective of perturbations in diabetes by integrating T2D subjects' transcriptomic data. We computed a 'frequently perturbed subnetwork' in T2D that captures common perturbations across tissue types and mapped the possible effects of Metformin onto it. We then identified a set of remaining T2D perturbations and potential drug targets among them, related to oxidative stress and hypercholesterolemia. We then identified Probucol as the potential co-drug for adjunct therapy with Metformin and evaluated the efficacy of the combination in a rat model of diabetes. We find Metformin-Probucol at 5:0.5 mg/kg effective in restoring near-normal serum glucose, lipid, and cholesterol levels.
Collapse
Affiliation(s)
- Ranjitha Guttapadu
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Kalyani Korla
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Safnaz Uk
- Department of Pharmacology, K.L.E. University's College of Pharmacy, Bangalore, Karnataka, 560010, India
| | - Vamseedhar Annam
- Department of Pathology, Rajarajeshwari Medical College and Hospital, Bangalore, Karnataka, 560074, India
| | - Purnima Ashok
- Department of Pharmacology, K.L.E. University's College of Pharmacy, Bangalore, Karnataka, 560010, India
| | - Nagasuma Chandra
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, 560012, India.
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, 560012, India.
| |
Collapse
|
164
|
Lv Q, Wu X, Guan Y, Lin J, Sun Y, Hu M, Xiao P, He C, Jiang B. Integration of network pharmacology, transcriptomics and molecular docking reveals two novel hypoglycemic components in snow chrysanthemum. Biomed Pharmacother 2023; 163:114818. [PMID: 37182513 DOI: 10.1016/j.biopha.2023.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023] Open
Abstract
Our previous studies uncovered the glucose-lowering properties of snow chrysanthemum tea, however, the active ingredients and underlying mechanisms were yet to be uncovered. Flavonoids are the most active and abundant components in snow chrysanthemum tea. In this study, we treated leptin-deficient diabetic ob/ob or high-fat diet (HFD)-induced C57BL/6 J obese mice with or without total flavonoids of snow chrysanthemum (TFSC) for 14 weeks. Results indicated that TFSC ameliorated dyslipidemia and fatty liver, thereby reducing hyperlipidemia. Further mechanism experiments, including RNA-seq and experimental validation, revealed TFSC improved glycolipid metabolism primarily by activating the AMPK/Sirt1/PPARγ pathway. Additionally, by integrating UPLC, network pharmacology, transcriptomics, and experimental validation, we identified two novel hypoglycemic compounds, sulfuretin and leptosidin, in TFSC. Treatment with 12.5 μmol/L sulfuretin obviously stimulated cellular glucose consumption, and sulfuretin (3.125, 6.25 and 12.5 μmol/L) significantly mitigated glucose uptake damage and reliably facilitated glucose consumption in insulin-resistant HepG2 cells. Remarkably, sulfuretin interacted with the ligand-binding pocket of PPARγ via three hydrogen bond interactions with the residues LYS-367, GLN-286 and TYR-477. Furthermore, a concentration of 12.5 μmol/L sulfuretin effectively upregulated the expression of PPARγ, exhibiting a comparable potency to a renowned PPARγ agonist at 20 μmol/L. Taken together, our findings have identified two new hypoglycemic compounds and revealed their mechanisms, which significantly expands people's understanding of the active components in snow chrysanthemum that have hypoglycemic effects.
Collapse
Affiliation(s)
- Qiuyue Lv
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Xinyan Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yuwen Guan
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Jinrong Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Yuhua Sun
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Mengying Hu
- Xinjiang Key Laboratory for Uighur Medicines, Xinjiang Institute of Materia Medica, Urumqi 830004, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China
| | - Chunnian He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| | - Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
| |
Collapse
|
165
|
Chen L, He L, Zheng W, Liu Q, Ren Y, Kong W, Zeng T. High triglyceride glucose-body mass index correlates with prehypertension and hypertension in east Asian populations: A population-based retrospective study. Front Cardiovasc Med 2023; 10:1139842. [PMID: 37180805 PMCID: PMC10166815 DOI: 10.3389/fcvm.2023.1139842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023] Open
Abstract
Background There is compelling evidence for an association between triglyceride glucose-body mass index (TyG-BMI) and cardiovascular disease (CVD). However, data on the relationship between TyG-BMI and prehypertension (pre-HTN) or hypertension (HTN) remains scant. The aim of this study was to characterize the association between TyG-BMI and pre-HTN or HTN risk, and to assess the ability of TyG-BMI in predicting pre-HTN and HTN in Chinese and Japanese populations. Methods A total of 214,493 participants were included in this study. The participants were divided into 5 groups based on quintiles of TyG-BMI index at baseline (Q1, Q2, Q3 Q4 and Q5). Logistic regression analysis was then employed to assess the relationship between TyG-BMI quintiles and pre-HTN or HTN. Results were presented as odds ratios (ORs) and 95% confidence intervals (CIs). Results Our restricted cubic spline analysis showed that TyG-BMI was linearly correlated with both pre-HTN and HTN. Multivariate logistic regression analysis indicated that TyG-BMI was independently correlated with pre-HTN [ORs and 95% CIs were 1.011 (1.011-1.012), 1.021 (1.02-1.023), 1.012 (1.012-1.012), respectively] and HTN [ORs and 95% CIs were 1.021 (1.02-1.021), 1.031 (1.028-1.033), 1.021 (1.02-1.021), respectively] in Chinese or Japanese individuals or both groups after adjusting for all variates. In addition, subgroup analyses showed that the relationship between TyG-BMI and pre-HTN or HTN was independent of age, sex, BMI, country, smoking and drinking status. Across all study populations, the areas under the TyG-BMI curve predicting pre-HTN and HTN were 0.667 and 0.762, respectively, resulting in cut-off values of 189.7 and 193.7, respectively. Conclusion Our analyses showed that TyG-BMI was independently correlated with both pre-HTN and HTN. Besides, TyG-BMI showed superior predictive power in predicting pre-HTN and HTN compared to TyG or BMI alone.
Collapse
Affiliation(s)
- Lu Chen
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Linfeng He
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Wenbin Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuying Liu
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Ren
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Kong
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
166
|
Ito A, Matsui Y, Takeshita M, Katashima M, Goto C, Kuriki K. Gut microbiota-mediated associations of green tea and catechin intakes with glucose metabolism in individuals without type 2 diabetes mellitus: a four-season observational study with mediation analysis. Arch Microbiol 2023; 205:191. [PMID: 37059897 PMCID: PMC10104920 DOI: 10.1007/s00203-023-03522-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
This four-season observational study aimed to examine the mediating role of the gut microbiota in the associations between green tea and catechin intakes and glucose metabolism in individuals without type 2 diabetes mellitus (T2DM). In each of the 4 seasons, 85 individuals without T2DM (56 male [65.9%]; mean [standard deviation] age: 43.3 [9.4] years) provided blood samples, stool samples, 3-day weighed dietary records, and green tea samples. Catechin intake was estimated by analyzing the tea samples. Linear mixed-effects model analysis showed that green tea intake was negatively associated with fasting blood glucose and insulin levels, even after considering the seasonal variations. Of the gut microbial species associated with green tea intake, the mediation analysis revealed that Phocaeicola vulgatus mediated the association between green tea intake and fasting blood glucose levels. These findings indicate that green tea can improve glucose metabolism by decreasing the abundance of P. vulgatus that is associated with elevated blood glucose levels in individuals without T2DM.
Collapse
Affiliation(s)
- Aoi Ito
- Laboratory of Public Health, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, Japan
| | - Yuji Matsui
- R&D - Health & Wellness Products Research, Kao Corporation, Tokyo, Japan
| | - Masao Takeshita
- R&D - Health & Wellness Products Research, Kao Corporation, Tokyo, Japan
| | | | - Chiho Goto
- Department of Health and Nutrition, Nagoya Bunri University, Aichi, Japan
| | - Kiyonori Kuriki
- Laboratory of Public Health, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, Japan.
- Laboratory of Public Health, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
167
|
Gastaldi G, Lucchini B, Thalmann S, Alder S, Laimer M, Brändle M, Wiesli P, Lehmann R. Swiss recommendations of the Society for Endocrinology and Diabetes (SGED/SSED) for the treatment of type 2 diabetes mellitus (2023). Swiss Med Wkly 2023; 153:40060. [PMID: 37011604 DOI: 10.57187/smw.2023.40060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
As a first step, the authors emphasise lifestyle changes (increased physical activity, stopping smoking), blood pressure control, and lowering cholesterol). The initial medical treatment should always be a combination treatment with metformin and a sodium-glucose transporter 2 (SGLT-2) inhibitor or a glucagon-like 1 peptide (GLP-1) receptor agonist. Metformin is given first and up-titrated, followed by SGLT-2 inhibitors or GLP-1 receptor agonists. In persons with type 2 diabetes, if the initial double combination is not sufficient, a triple combination (SGLT-2 inhibitor, GLP-1 receptor agonist, and metformin) is recommended. This triple combination has not been officially tested in cardiovascular outcome trials, but there is more and more real-world experience in Europe and in the USA that proves that the triple combination with metformin, SGLT-2 inhibitor, and GLP-1 receptor agonist is the best treatment to reduce 3-point MACE, total mortality, and heart failure as compared to other combinations. The treatment with sulfonylurea is no longer recommended because of its side effects and higher mortality compared to the modern treatment with SGLT-2 inhibitors and GLP-1 receptor agonists. If the triple combination is not sufficient to reduce the HbA1c to the desired target, insulin treatment is necessary. A quarter of all patients with type 2 diabetes (sometimes misdiagnosed) require insulin treatment. If insulin deficiency is the predominant factor at the outset of type 2 diabetes, the order of medications has to be reversed: insulin first and then cardio-renal protective medications (SGLT-2 inhibitors, GLP-1 receptor agonists).
Collapse
Affiliation(s)
- Giacomo Gastaldi
- Endocrinology and Diabetes, University Hospital Geneva, Geneva, Switzerland
| | - Barbara Lucchini
- Endocrinology and Diabetes, Regional Hospital Locarno, Locarno, Switzerland
| | | | | | - Markus Laimer
- Endocrinology and Diabetes, University Hospital Berne, Berne, Switzerland
| | - Michael Brändle
- Internal Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Peter Wiesli
- Internal Medicine and Endocrinology and Diabetes, Cantonal Hospital Frauenfeld, Frauenfeld, Switzerland
| | - Roger Lehmann
- Endocrinology, Diabetes and Clinical Nutrition, University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
168
|
Kinoshita A, Nagata T, Furuya F, Nishizawa M, Mukai E. White-skinned sweet potato (Ipomoea batatas L.) acutely suppresses postprandial blood glucose elevation by improving insulin sensitivity in normal rats. Heliyon 2023; 9:e14719. [PMID: 37025833 PMCID: PMC10070533 DOI: 10.1016/j.heliyon.2023.e14719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Long-term administration of Ipomoea batatas L. (white-skinned sweet potato, WSSP) has been reported to help manage type 2 diabetes mellitus (T2DM) in humans and animals; however, the mechanisms of blood glucose regulation by WSSP remain unclear. Therefore, we aimed to investigate the acute effects of WSSP on blood glucose homeostasis under normal conditions and the underlying mechanisms. Three fractions of WSSP (≤10, 10-50, and >50 kDa) were obtained via ultracentrifugation. Rats were subjected to an oral glucose tolerance test (OGTT) after a single administration of WSSP. The insulin tolerance test (ITT) and pyruvate tolerance test (PTT) were performed to evaluate insulin sensitivity and gluconeogenesis, respectively. Single WSSP administration markedly reduced blood glucose levels as revealed by the OGTT. Serum insulin levels were not increased by WSSP treatment. Blood glucose levels during ITT were significantly reduced due to WSSP treatment. WSSP treatment activated the phosphorylation of Akt, thereby activating insulin signaling in the skeletal muscles and liver. The ≤10 kDa fraction considerably reduced blood glucose levels per the OGTT and ITT. In contrast, gluconeogenesis in PTT and the expression of key enzymes in hepatocytes were suppressed by the >50 kDa fraction. This study demonstrated that WSSP acutely reduced postprandial blood glucose levels by improving insulin sensitivity in skeletal muscles in normal rats, which was attributed to constituents with a molecular weight of ≤10 kDa. Moreover, WSSP treatment suppressed gluconeogenesis in the liver, for which constituents of >50 kDa were responsible. Thus, WSSP can acutely regulate blood glucose homeostasis via multiple mechanisms. Since postprandial hyperglycemia leads to the onset of T2DM, WSSP, as a functional food, may possess potential active compounds that prevent T2DM.
Collapse
|
169
|
Chen N, Lu B, Fu Y. Autophagic Clearance of Lipid Droplets Alters Metabolic Phenotypes in a Genetic Obesity-Diabetes Mouse Model. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:119-129. [PMID: 37197643 PMCID: PMC10110819 DOI: 10.1007/s43657-022-00080-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 05/19/2023]
Abstract
Lipid droplets (LDs) are intracellular organelles that store neutral lipids, and their aberrant accumulation is associated with many diseases including metabolic disorders such as obesity and diabetes. Meanwhile, the potential pathological contributions of LDs in these diseases are unclear, likely due to a lack of chemical biology tools to clear LDs. We recently developed LD-clearance small molecule compounds, Lipid Droplets·AuTophagy TEthering Compounds (LD·ATTECs), that are able to induce autophagic clearance of LDs in cells and in the liver of db/db (C57BL/6J Leprdb/Leprdb) mouse model, which is a widely used genetic model for obesity-diabetes. Meanwhile, the potential effects on the metabolic phenotype remain to be elucidated. Here, using the metabolic cage assay and the blood glucose assay, we performed phenotypic characterization of the effects of the autophagic degradation of LDs by LD·ATTECs in the db/db mouse model. The study reveals that LD·ATTECs increased the oxygen uptake of mice and the release of carbon dioxide, enhanced the heat production of animals, partially enhanced the exercise during the dark phase, decreased the blood glucose level and improved insulin sensitivity. Collectively, the study characterized the metabolic phenotypes induced by LD·ATTECs in an obesity-diabetes mouse model, revealing novel functional impacts of autophagic clearance of LDs and providing insights into LD biology and obesity-diabetes pathogenesis from the phenotypic perspective.
Collapse
Affiliation(s)
- Ningxie Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
170
|
Cheng X, Jia X, Wang C, Zhou S, Chen J, Chen L, Chen J. Hyperglycemia induces PFKFB3 overexpression and promotes malignant phenotype of breast cancer through RAS/MAPK activation. World J Surg Oncol 2023; 21:112. [PMID: 36973739 PMCID: PMC10044395 DOI: 10.1186/s12957-023-02990-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common tumor in women worldwide. Diabetes mellitus is a global chronic metabolic disease with increasing incidence. Diabetes mellitus has been reported to positively regulate the development of many tumors. However, the specific mechanism of hyperglycemic environment regulating breast cancer remains unclear. PFKFB3 (6-phosphofructose-2-kinase/fructose-2, 6-bisphosphatase 3) is a key regulatory factor of the glycolysis process in diabetes mellitus, as well as a promoter of breast cancer. So, we want to explore the potential link between PFKFB3 and the poor prognosis of breast cancer patients with hyperglycemia in this study. METHODS Cell culture was utilized to construct different-glucose breast cancer cell lines. Immunohistochemistry was adopted to analyze the protein level of PFKFB3 in benign breast tissues, invasive ductal carcinoma with diabetes and invasive ductal carcinoma without diabetes. The Kaplan-Meier plotter database and GEO database (GSE61304) was adopted to analyze the survival of breast cancer patients with different PFKFB3 expression. Western blot was adopted to analyze the protein level of PFKFB3, epithelial-mesenchymal transition (EMT)-related protein and extracellular regulated protein kinases (ERK) in breast cancer cells. Gene Set Cancer Analysis (GSCA) was utilized to investigate the potential downstream signaling pathways of PFKFB3. TargetScan and OncomiR were utilized to explore the potential mechanism of PFKFB3 overexpression by hyperglycemia. Transfections (including siRNAs and miRNA transfection premiers) was utilized to restrain or mimic the expression of the corresponding RNA. Cell functional assays (including cell counting, MTT, colony formation, wound-healing, and cell migration assays) were utilized to explore the proliferation and migration of breast cancer cells. RESULTS In this study, we demonstrated that the expression of PFKFB3 in breast cancer complicated with hyperglycemia was higher than that in breast cancer with euglycemia through cell experiment in vitro and histological experiment. PFKFB3 overexpression decreased the survival period of breast cancer patients and was correlated with a number of clinicopathological parameters of breast cancer complicated with diabetes. PFKFB3 promoted the proliferation and migration of breast cancer in a hyperglycemic environment and might be regulated by miR-26. In addition, PFKFB3 stimulated epithelial-mesenchymal transition of breast cancer in a hyperglycemic environment. In terms of downstream mechanism exploration, we predicted and verified the cancer-promoting effect of PFKFB3 in breast cancer complicated with hyperglycemia through RAS/MAPK pathway. CONCLUSIONS In conclusion, PFKFB3 could be overexpressed by hyperglycemia and might be a potential therapeutic target for breast cancer complicated with diabetes.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Xiupeng Jia
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Chunnian Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Shangyan Zhou
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Jiayi Chen
- Department of Experimental Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Lei Chen
- Department of Cytopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Jinping Chen
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
171
|
Mirrafiei A, Hasanzadeh M, Sheikhhossein F, Majdi M, Djafarian K, Shab-Bidar S. Association of main meal quality index with the odds of metabolic syndrome in Iranian adults: a cross-sectional study. BMC Nutr 2023; 9:55. [PMID: 36945062 PMCID: PMC10031905 DOI: 10.1186/s40795-023-00711-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 03/14/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is a common global issue linked to the quality of one's eating occasions. The current cross-sectional study evaluates the association between a novel index, the Main Meal Quality Index (MMQI), and MetS among Iranian adults. METHODS A total of 824 men and women were recruited, and a 24-hour dietary recall assessed the dietary intake of the participants. Lunch was selected as the main meal based on energy density. The MMQI score was calculated based on ten components of dietary intake, with a higher score indicating more adherence to the index, with the final scores ranging from 0 to 100 points. The associations were assessed using binary logistic regression. RESULTS The mean age was 42.2 years and the range of the calculated MMQI was 22 to 86 (mean in total participants: 56.62, mean in women: 56.82, mean in men: 55.64). The total prevalence of MetS in the sample was 34%. After adjustments for potential confounders, the participants at the top quartile of MMQI had a lower odds ratio for hypertriglyceridemia and low high-density lipoprotein (HDL) level, and a higher odds ratio for hypertension, hyperglycemia, abdominal obesity, and MetS. The sex-specific analysis also did not show any significant associations between adherence to MMQI and MetS and its components. CONCLUSION Overall, MMQI is not associated with MetS and its components in a sample of Iranian men and women. More research is needed to examine MMQI and its possible association with current health-related problems including MetS.
Collapse
Affiliation(s)
- Amin Mirrafiei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), 14167-53955, Tehran, Iran
| | - Mohaddeseh Hasanzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), 14167-53955, Tehran, Iran
- Nutritional Health Team (NHT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), 14167-53955, Tehran, Iran
| | - Maryam Majdi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), 14167-53955, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), 14167-53955, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), 14167-53955, Tehran, Iran.
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), No 44, Hojjat-dost Alley, Naderi St., Keshavarz Blvd, P. O. Box 14155/6117, Tehran, Iran.
| |
Collapse
|
172
|
Alqudah A, Athamneh RY, Qnais E, Gammoh O, Oqal M, AbuDalo R, Alshaikh HA, AL-Hashimi N, Alqudah M. The Emerging Importance of Cirsimaritin in Type 2 Diabetes Treatment. Int J Mol Sci 2023; 24:ijms24065749. [PMID: 36982822 PMCID: PMC10059674 DOI: 10.3390/ijms24065749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Cirsimaritin is a dimethoxy flavon that has different biological activities such as antiproliferative, antimicrobial, and antioxidant activities. This study aims to investigate the anti-diabetic effects of cirsimaritin in a high-fat diet and streptozotocin-(HFD/STZ)-induced rat model of type 2 diabetes mellitus (T2D). Rats were fed HFD, followed by a single low dose of STZ (40 mg/kg). HFD/STZ diabetic rats were treated orally with cirsimaritin (50 mg/kg) or metformin (200 mg/kg) for 10 days before terminating the experiment and collecting plasma, soleus muscle, adipose tissue, and liver for further downstream analysis. Cirsimaritin reduced the elevated levels of serum glucose in diabetic rats compared to the vehicle control group (p < 0.001). Cirsimaritin abrogated the increase in serum insulin in the treated diabetic group compared to the vehicle control rats (p < 0.01). The homeostasis model assessment of insulin resistance (HOMA-IR) was decreased in the diabetic rats treated with cirsimaritin compared to the vehicle controls. The skeletal muscle and adipose tissue protein contents of GLUT4 (p < 0.01 and p < 0.05, respectively) and pAMPK-α1 (p < 0.05) were upregulated following treatment with cirsimaritin. Cirsimaritin was able to upregulate GLUT2 and AMPK protein expression in the liver (p < 0.01, <0.05, respectively). LDL, triglyceride, and cholesterol were reduced in diabetic rats treated with cirsimaritin compared to the vehicle controls (p < 0.001). Cirsimaritin reduced MDA, and IL-6 levels (p < 0.001), increased GSH levels (p < 0.001), and reduced GSSG levels (p < 0.001) in diabetic rats compared to the vehicle control. Cirsimaritin could represent a promising therapeutic agent to treat T2D.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
- Correspondence:
| | - Rabaa Y. Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa 13110, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Rawan AbuDalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | | - Nabil AL-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
173
|
Alfuzosin ameliorates diabetes by boosting PGK1 activity in diabetic mice. Life Sci 2023; 317:121491. [PMID: 36758669 DOI: 10.1016/j.lfs.2023.121491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
AIMS Diabetes mellitus (DM) has become a global problem, causing a huge economic burden. The purpose of this study is to find a new potential method and mechanism for the treatment of DM. MAIN METHODS The oxidation, glycation and insulin resistance cell models were built to screen the potential anti-diabetic chemicals. Then the DM mice were induced by the combination of high-fat diet (HFD) and intraperitoneal injection of streptozotocin (50 mg/kg) for five days. The alfuzosin (1.2 mg/kg) was administered by intraperitoneal injection once daily for sequential 12 weeks. Fasting blood glucose, blood lipid, oxidative stress and key markers of glucose metabolism were detected. PGK1/AKT/GLUT4 pathway related proteins were analyzed by Western blot. KEY FINDINGS Alfuzosin ameliorated oxidative stress, glycative stress and insulin resistance in HepG2 cells. Further, in a high-fat diet/streptozotocin (HFD/STZ)-induced diabetic mouse model, alfuzosin reduced fasting blood glucose, improved insulin sensitivity. Mechanically, alfuzosin activated PGK1 directly to stimulate the protein kinase B (AKT) signaling pathway, thus facilitating glucose uptake as well as improving insulin resistance. SIGNIFICANCE The present finding has shed a new light on the treatment of DM and provides validation for PGK1 as a therapeutic target for DM.
Collapse
|
174
|
Xiao Y, Wang Y, Ryu J, Liu W, Zou H, Zhang R, Yan Y, Dai Z, Zhang D, Sun LZ, Liu F, Zhou Z, Dong LQ. Upregulated TGF-β1 contributes to hyperglycaemia in type 2 diabetes by potentiating glucagon signalling. Diabetologia 2023; 66:1142-1155. [PMID: 36917279 DOI: 10.1007/s00125-023-05889-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-stimulated hepatic gluconeogenesis contributes to endogenous glucose production during fasting. Recent studies suggest that TGF-β is able to promote hepatic gluconeogenesis in mice. However, the physiological relevance of serum TGF-β levels to human glucose metabolism and the mechanism by which TGF-β enhances gluconeogenesis remain largely unknown. As enhanced gluconeogenesis is a signature feature of type 2 diabetes, elucidating the molecular mechanisms underlying TGF-β-promoted hepatic gluconeogenesis would allow us to better understand the process of normal glucose production and the pathophysiology of this process in type 2 diabetes. This study aimed to investigate the contribution of upregulated TGF-β1 in human type 2 diabetes and the molecular mechanism underlying the action of TGF-β1 in glucose metabolism. METHODS Serum levels of TGF-β1 were measured by ELISA in 74 control participants with normal glucose tolerance and 75 participants with type 2 diabetes. Human liver tissue was collected from participants without obesity and with or without type 2 diabetes for the measurement of TGF-β1 and glucagon signalling. To investigate the role of Smad3, a key signalling molecule downstream of the TGF-β1 receptor, in mediating the effect of TGF-β1 on glucagon signalling, we generated Smad3 knockout mice. Glucose levels in Smad3 knockout mice were measured during prolonged fasting and a glucagon tolerance test. Mouse primary hepatocytes were isolated from Smad3 knockout and wild-type (WT) mice to investigate the underlying molecular mechanisms. Smad3 phosphorylation was detected by western blotting, levels of cAMP were detected by ELISA and levels of protein kinase A (PKA)/cAMP response element-binding protein (CREB) phosphorylation were detected by western blotting. The dissociation of PKA subunits was measured by immunoprecipitation. RESULTS We observed higher levels of serum TGF-β1 in participants without obesity and with type 2 diabetes than in healthy control participants, which was positively correlated with HbA1c and fasting blood glucose levels. In addition, hyperactivation of the CREB and Smad3 signalling pathways was observed in the liver of participants with type 2 diabetes. Treating WT mouse primary hepatocytes with TGF-β1 greatly potentiated glucagon-stimulated PKA/CREB phosphorylation and hepatic gluconeogenesis. Mechanistically, TGF-β1 treatment induced the binding of Smad3 to the regulatory subunit of PKA (PKA-R), which prevented the association of PKA-R with the catalytic subunit of PKA (PKA-C) and led to the potentiation of glucagon-stimulated PKA signalling and gluconeogenesis. CONCLUSIONS/INTERPRETATION The hepatic TGF-β1/Smad3 pathway sensitises the effect of glucagon/PKA signalling on gluconeogenesis and synergistically promotes hepatic glucose production. Reducing serum levels of TGF-β1 and/or preventing hyperactivation of TGF-β1 signalling could be a novel approach for alleviating hyperglycaemia in type 2 diabetes.
Collapse
Affiliation(s)
- Yang Xiao
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yanfei Wang
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Endocrinology, The First People's Hospital of Foshan, Foshan, China
| | - Jiyoon Ryu
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Wei Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Division of Biliopancreatic Surgery and Bariatric Surgery, Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hailan Zou
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Zhang
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yin Yan
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Deling Zhang
- Department of Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Lu-Zhe Sun
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Feng Liu
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Metabolic Syndrome Research Center, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Lily Q Dong
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
175
|
Salama M, Biggs BK, Creo A, Prissel R, Al Nofal A, Kumar S. Adolescents with Type 2 Diabetes: Overcoming Barriers to Effective Weight Management. Diabetes Metab Syndr Obes 2023; 16:693-711. [PMID: 36923685 PMCID: PMC10010139 DOI: 10.2147/dmso.s365829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
The prevalence of type 2 diabetes (T2DM) among children and adolescents has remarkably increased in the last two decades, particularly among ethnic minorities. Management of T2DM is challenging in the adolescent population due to a constellation of factors, including biological, socioeconomic, cultural, and psychological barriers. Weight reduction is an essential component in management of T2DM as weight loss is associated with improvement in insulin sensitivity and glycemic status. A family centered and culturally appropriate approach offered by a multidisciplinary team is crucial to address the biological, psychosocial, cultural, and financial barriers to weight management in youth with T2DM. Lifestyle interventions and pharmacotherapy have shown modest efficacy in achieving weight reduction in adolescents with T2DM. Bariatric surgery is associated with excellent weight reduction and remission of T2DM in youth. Emerging therapies for weight reduction in youth include digital technologies, newer GLP-1 agonists and endoscopic procedures.
Collapse
Affiliation(s)
- Mostafa Salama
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Bridget K Biggs
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ana Creo
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rose Prissel
- Division of Endocrinology and Nutrition, Mayo Clinic, Rochester, MN, USA
| | - Alaa Al Nofal
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Seema Kumar
- Division of Pediatric Endocrinology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
176
|
Discovery of the new alpha-glucosidase inhibitor with therapeutic potential in type 2 diabetes mellitus by a novel high-throughput virtual screening and free energy evaluation. J Mol Graph Model 2023; 121:108447. [PMID: 36913808 DOI: 10.1016/j.jmgm.2023.108447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes can cause a variety of complications, significantly affecting people's health. Given their ability to suppress carbohydrate digestion, alpha-glucosidase inhibitors are effective treatments for diabetes. However, the current approved glucosidase inhibitors' side effects of abdominal discomfort limit their use. We used the compound Pg3R from the natural fruit berry as a reference, screening against a large database of 22 million compounds to identify potential health-friendly alpha-glucosidase inhibitors. Ligand-based screening enables us to identify 3968 ligands that exhibit structural similarity compared to the natural compound. These lead hits were used for LeDock, and their binding free energies were evaluated by MM/GBSA. Among the top-scoring candidates, ZINC263584304 exhibited the strongest binding affinity to alpha-glucosidase, with a "low-fat" structural characteristic. Its recognition mechanism was further investigated by microsecond MD simulations and free energy landscapes, exhibiting novel conformational changes during the binding process. Our study provided a novel alpha-glucosidase inhibitor with the potential to treat type 2 diabetes.
Collapse
|
177
|
Erfanian S, Mir H, Abdoli A, Roustazadeh A. Association of gastric inhibitory polypeptide receptor (GIPR) gene polymorphism with type 2 diabetes mellitus in iranian patients. BMC Med Genomics 2023; 16:44. [PMID: 36882778 PMCID: PMC9990261 DOI: 10.1186/s12920-023-01477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Gastric inhibitory polypeptide receptor (GIPR) encodes a G-protein coupled receptor for gastric inhibitory polypeptide (GIP), which was demonstrated to stimulate insulin secretion. Relation of GIPR gene variation to impaired insulin response has been suggested in previous studies. However, little information is available regarding GIPR polymorphisms and type 2 diabetes mellitus (T2DM). Hence, the aim of the study was to investigate single nucleotide polymorphisms (SNPs) in the promoter and coding regions of GIPR in Iranian T2DM patients. MATERIALS AND METHODS Two hundred subjects including 100 healthy and 100 T2DM patients were recruited in the study. Genotypes and allele frequency of rs34125392, rs4380143 and rs1800437 in the promoter, 5' UTR and coding region of GIPR were investigated by RFLP-PCR and Nested-PCR. RESULTS Our finding indicated that rs34125392 genotype distribution was statistically different between T2DM and healthy groups (P = 0.043). In addition, distribution of T/- + -/- versus TT was significantly different between the both groups (P = 0.021). Moreover, rs34125392 T/- genotype increased the risk of T2DM (OR = 2.68, 95%CI = 1.203-5.653, P = 0.015). However, allele frequency and genotype distributions of rs4380143 and rs1800437 were not statistically different between the groups (P > 0.05). Multivariate analysis showed that the tested polymorphisms had no effect on biochemical variables. CONCLUSION We concluded that GIPR gene polymorphism is associated with T2DM. In addition; rs34125392 heterozygote genotype may increase the risk of T2DM. More studies with large sample size in other populations are recommended to show the ethnical relation of these polymorphisms to T2DM.
Collapse
Affiliation(s)
- Saiedeh Erfanian
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran.,Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hamed Mir
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Abdoli
- Department of Parasitology, School of medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran. .,Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran. .,Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran. .,Ostad motahhari Blvd, Jahrom University of Medical Sciences, 74148-46199, Jahrom, Iran.
| |
Collapse
|
178
|
Wu Y, Wu S, Li F, Zeng T, Luo X. Association between serum S100A11 levels and glucose metabolism in diabetic process. Diabetol Metab Syndr 2023; 15:36. [PMID: 36872321 PMCID: PMC9987151 DOI: 10.1186/s13098-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/19/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a prevalent non-communicable metabolic disease, and S100A11 is a newly identified gene closely related to metabolism. The association of S100A11 with diabetes is unclear. This study aimed to assess the relationship between S100A11 and markers of glucose metabolism in patients with different glucose tolerance and gender. METHODS This study included 97 participants. Baseline data were obtained, and the serum levels of S100A11 and metabolic markers (glycated hemoglobin [HbA1c], insulin release test, and oral glucose tolerance test) were measured. Linear and nonlinear correlations between serum S100A11 levels and HOMA-IR, HOMA of β, HbA1c, insulin sensitivity index (ISI), corrected insulin response (CIR), and oral disposition index (DIo) were analyzed. The expression of S100A11 was also detected in mice. RESULTS Serum S100A11 levels increased in patients with impaired glucose tolerance (IGT) of both genders. S100A11 mRNA and protein expression increased in obese mice. There were nonlinear correlations between S10011 levels and CIR, FPI, HOMA-IR, whole-body ISI in the IGT group. S100A11 was nonlinearly correlated with HOMA-IR, hepatic ISI, FPG, FPI, and HbA1c in the DM group. In the male group, S100A11 was linearly correlated with HOMA-IR and nonlinearly correlated with DIo (derived from hepatic ISI) and HbA1c. In the female population, S100A11 was nonlinearly correlated with CIR. CONCLUSIONS Serum S100A11 levels were highly expressed in patients with IGT and in the liver of obese mice. In addition, there were linear and nonlinear correlations between S100A11 and markers of glucose metabolism, demonstrating that S100A11 has a role in diabetes. Trial registration ChiCTR1900026990.
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China
| | - Shaobo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Fang Li
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China
| | - Ting Zeng
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China
| | - Xiaohe Luo
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, 404100, China.
| |
Collapse
|
179
|
Abstract
Diabetes mellitus is the ninth leading cause of mortality worldwide. It is a complex disease that manifests as chronic hyperglycemia. Glucose exposure causes biochemical changes at the proteome level as reflected in accumulation of glycated proteins. A prominent example is hemoglobin A1c (HbA1c), a glycated protein widely accepted as a diabetic indicator. Another emerging biomarker is glycated albumin which has demonstrated utility in situations where HbA1c cannot be used. Other proteins undergo glycation as well thus impacting cellular function, transport and immune response. Accordingly, these glycated counterparts may serve as predictors for diabetic complications and thus warrant further inquiry. Fortunately, modern proteomics has provided unique analytic capability to enable improved and more comprehensive exploration of glycating agents and glycated proteins. This review broadly covers topics from epidemiology of diabetes to modern analytical tools such as mass spectrometry to facilitate a better understanding of diabetes pathophysiology. This serves as an attempt to connect clinically relevant questions with findings of recent proteomic studies to suggest future avenues of diabetes research.
Collapse
Affiliation(s)
- Aleks Shin
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Shawn Connolly
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States
| | - Kuanysh Kabytaev
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, United States.
| |
Collapse
|
180
|
Abhilasha A, Mitra P, Suri S, Saxena I, Shukla R, Shukla KK, Sharma P. Increased expression of serum IL-18 and IL-18R in newly diagnosed type 2 diabetes mellitus. Minerva Endocrinol (Torino) 2023; 48:35-41. [PMID: 33103874 DOI: 10.23736/s2724-6507.20.03271-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a heterogeneous metabolic disorder in which genetic, sedentary lifestyle, obesity, and environmental factors come together to produce insulin resistance in target tissues, leading to hyperglycemia. Evidence reveals that inflammation may play an essential role in the pathogenesis of T2DM. Interleukin-18 (IL-18), a proinflammatory cytokine, plays a crucial role in the acute and chronic inflammatory process. The association of IL-18 levels with IL-18R expression in T2DM has not been investigated so far. The aim of this study was to compare the peripheral changes in serum IL-18 levels and its receptor (IL18R) expression in newly diagnosed T2DM and healthy controls. METHODS A total of 35 newly diagnosed type 2 diabetic cases and 35 non-diabetic controls were enrolled after obtaining informed consent. Venous whole blood was taken under aseptic conditions. Biochemical parameters were estimated in an auto-analyzer. Serum IL-18 levels were calculated using ELISA, whereas IL-18R expression was determined via RT-PCR. GAPDH was used as an internal control. RESULTS When compared to non-diabetic controls, the serum IL-18 levels were significantly higher in T2DM patients (P=0.010) along with a significant upregulation of IL18R (P=0.0018). Serum IL-18 levels in T2DM and non-diabetic controls were 669.5 (445) and 498.3 (404.9) pg/mL respectively, and IL-18R showed a fold change of 10.33. CONCLUSIONS Both serum IL-18 and its receptor IL-18R is significantly higher in newly diagnosed T2DM patients.
Collapse
Affiliation(s)
- Abhilasha Abhilasha
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Smriti Suri
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Indu Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Gorakhpur, India
| | - Ravindra Shukla
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences, Jodhpur, India
| | - Kamla Kant Shukla
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India -
| |
Collapse
|
181
|
Azarova I, Polonikov A, Klyosova E. Molecular Genetics of Abnormal Redox Homeostasis in Type 2 Diabetes Mellitus. Int J Mol Sci 2023; 24:4738. [PMID: 36902173 PMCID: PMC10003739 DOI: 10.3390/ijms24054738] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.
Collapse
Affiliation(s)
- Iuliia Azarova
- Department of Biological Chemistry, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| | - Alexey Polonikov
- Laboratory of Statistical Genetics and Bioinformatics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, 3 Karl Marx Street, 305041 Kursk, Russia
| | - Elena Klyosova
- Laboratory of Biochemical Genetics and Metabolomics, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, 18 Yamskaya Street, 305041 Kursk, Russia
| |
Collapse
|
182
|
Azimian L, Weerasuriya NM, Munasinghe R, Song S, Lin CY, You L. Investigating the effects of Ceylon cinnamon water extract on HepG2 cells for Type 2 diabetes therapy. Cell Biochem Funct 2023; 41:254-267. [PMID: 36779418 DOI: 10.1002/cbf.3778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 02/14/2023]
Abstract
Cinnamon and its extracts have been used as herbal remedies for many ailments, including for reducing insulin resistance and diabetes complications. Type 2 diabetes mellitus (T2DM) is a rapidly growing health concern around the world. Although many drugs are available for T2DM treatment, side effects and costs can be considerable, and there is increasing interest in natural products for managing chronic health conditions. Cinnamon may decrease the expression of genes associated with T2DM risk. The purpose of this study was to evaluate the effects of cinnamon water extract (CWE) compared with metformin on T2DM-related gene expression. HepG2 human hepatoma cells, widely used in drug metabolism and hepatotoxicity studies, were treated with different concentrations of metformin or CWE for 24 or 48 h. Cell viability was assessed by MTT (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and glucose uptake was compared in untreated and CWE- or metformin-treated cells under high-glucose conditions. Finally, total RNA was extracted and analyzed by RNA sequencing (RNA-seq), and bioinformatics analyses were performed to compare the transcriptional effects of CWE and metformin. We found cell viability was better in cells treated with CWE than in metformin-treated cells, demonstrating that CWE was not toxic at tested doses. CWE significantly increased glucose uptake in HepG2 cells, to the same degree as metformin (1.4-fold). RNA-seq data revealed CWE and metformin both induced significantly increased (1.3- to 1.4-fold) glucose uptake gene expression compared with untreated controls. Transcriptional differences between CWE and metformin were not significant. The effects of 0.125 mg mL-1 CWE on gene expression were comparable to 1.5 mg mL-1 (9.5 mM) metformin. In addition, gene expression at 0.125 mg mL-1 CWE was comparable to 1.5 mg mL-1 (9.5 mM) metformin. Our results reveal that CWE's effects on cell viability, glucose uptake, and gene expression in HepG2 cells are comparable to those of metformin, suggesting CWE may be an effective dietary supplement for mitigating T2DM-related metabolic dysfunction.
Collapse
Affiliation(s)
- Leila Azimian
- Department of Mechanical and Industrial Engineering, The University of Toronto, Toronto, Ontario, Canada
| | | | | | - Suzie Song
- Department of Mechanical and Industrial Engineering, The University of Toronto, Toronto, Ontario, Canada
| | - Chun-Yu Lin
- Institute of Biomedical Engineering, The University of Toronto, Toronto, Ontario, Canada
| | - Lidan You
- Department of Mechanical and Industrial Engineering, The University of Toronto, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
183
|
Falode JA, Ajayi OI, Isinkaye TV, Adeoye AO, Ajiboye BO, Brai BIC, ADEOYE, Basiru Olaitan, AJIBOYE, BRAI BIC. Justicia carnea extracts ameliorated hepatocellular damage in streptozotocin-induced type 1 diabetic male rats via decrease in oxidative stress, inflammation and increasing other risk markers. Biomarkers 2023; 28:177-189. [PMID: 36511112 DOI: 10.1080/1354750x.2022.2157487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IntroductionDiabetes mellitus is still a raging disease not fully subdued globally, especially in Africa. Our study aims to evaluate the anti-diabetic potentials of Justicia carnea extracts [crude (JCC), free (JFP) and bound phenol (JBP) fractions], in streptozotocin (STZ)-induced type-1 diabetes in male albino rats.Materials and MethodsAbout thirty (30) animals were induced for type 1 diabetes with STZ; thereafter, treatment began for 14 days, after which the animals were euthanized, blood/serum was collected, the liver was removed and divided into two portions, for biochemical and histopathological analyses. Standard procedures were used to evaluate the liver biomarkers, like alanine transaminase (ALT), fructose-1,6-bisphosphatase, glucose-6- phosphatase, hexokinase activities, albumin, bilirubin, hepatic glucose concentrations; antioxidant status and pro- and anti-inflammatory cytokines were similarly assessed.ResultsThese results revealed that the extracts ameliorated the harmful effects of STZ-induced diabetes in the liver by enhancing the activities of liver-based biomarkers, reducing the concentrations of pro-inflammatory cytokines and increasing the anti-inflammatory cytokine.DiscussionThe results agreed with previous research, and the free phenol fraction showed excellent results compared to othersConclusionThese suggested that J. carnea could serve as an alternative remedy in ameliorating liver complications linked to oxidative damage and inflammation in STZ-induced type-1 diabetes.
Collapse
Affiliation(s)
- John Adeolu Falode
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Oluwaseun Igbekele Ajayi
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Tolulope Victoria Isinkaye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Akinwunmi Oluwaseun Adeoye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan Ajiboye
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I C Brai
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory, Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - ADEOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Basiru Olaitan
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - AJIBOYE
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Bartholomew I. C. BRAI
- Biomembranes and Molecular Pharmacology and Toxicology Laboratory Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
184
|
Promising Role of the Scutellaria baicalensis Root Hydroxyflavone-Baicalein in the Prevention and Treatment of Human Diseases. Int J Mol Sci 2023; 24:ijms24054732. [PMID: 36902160 PMCID: PMC10003701 DOI: 10.3390/ijms24054732] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).
Collapse
|
185
|
Di Giuseppe G, Ciccarelli G, Soldovieri L, Capece U, Cefalo CMA, Moffa S, Nista EC, Brunetti M, Cinti F, Gasbarrini A, Pontecorvi A, Giaccari A, Mezza T. First-phase insulin secretion: can its evaluation direct therapeutic approaches? Trends Endocrinol Metab 2023; 34:216-230. [PMID: 36858875 DOI: 10.1016/j.tem.2023.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023]
Abstract
Our work is aimed at unraveling the role of the first-phase insulin secretion in the natural history of type 2 diabetes mellitus (T2DM) and its interrelationship with insulin resistance and with β cell function and mass. Starting from pathophysiology, we investigate the impact of impaired secretion on glucose homeostasis and explore postmeal hyperglycemia as the main clinical feature, underlining its relevance in the management of the disease. We also review dietary and pharmacological approaches aimed at improving early secretory defects and restoring residual β cell function. Furthermore, we discuss possible approaches to detect early secretory defects in clinical practice. By providing a journey through human and animal data, we attempt a unification of the recent evidence in an effort to offer a new outlook on β cell secretion.
Collapse
Affiliation(s)
- Gianfranco Di Giuseppe
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Gea Ciccarelli
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Laura Soldovieri
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Chiara M A Cefalo
- Department of Clinical and Molecular Medicine, University of Rome - Sapienza, Rome, Italy
| | - Simona Moffa
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Enrico C Nista
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Michela Brunetti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Cinti
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Giaccari
- Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy; Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Teresa Mezza
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy; Digestive Disease Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
186
|
The Mechanism of Hyperglycemia-Induced Renal Cell Injury in Diabetic Nephropathy Disease: An Update. Life (Basel) 2023; 13:life13020539. [PMID: 36836895 PMCID: PMC9967500 DOI: 10.3390/life13020539] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Diabetic Nephropathy (DN) is a serious complication of type I and II diabetes. It develops from the initial microproteinuria to end-stage renal failure. The main initiator for DN is chronic hyperglycemia. Hyperglycemia (HG) can stimulate the resident and non-resident renal cells to produce humoral mediators and cytokines that can lead to functional and phenotypic changes in renal cells and tissues, interference with cell growth, interacting proteins, advanced glycation end products (AGEs), etc., ultimately resulting in glomerular and tubular damage and the onset of kidney disease. Therefore, poor blood glucose control is a particularly important risk factor for the development of DN. In this paper, the types and mechanisms of DN cell damage are classified and summarized by reviewing the related literature concerning the effect of hyperglycemia on the development of DN. At the cellular level, we summarize the mechanisms and effects of renal damage by hyperglycemia. This is expected to provide therapeutic ideas and inspiration for further studies on the treatment of patients with DN.
Collapse
|
187
|
Martín-Saladich Q, Simó R, Aguadé-Bruix S, Simó-Servat O, Aparicio-Gómez C, Hernández C, Ramirez-Serra C, Pizzi MN, Roque A, González Ballester MA, Herance JR. Insights into Insulin Resistance and Calcification in the Myocardium in Type 2 Diabetes: A Coronary Artery Analysis. Int J Mol Sci 2023; 24:ijms24043250. [PMID: 36834662 PMCID: PMC9959651 DOI: 10.3390/ijms24043250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Type 2 diabetes (T2D) is responsible for high incidence of cardiovascular (CV) complications leading to heart failure. Coronary artery region-specific metabolic and structural assessment could provide deeper insight into the extent of the disease and help prevent adverse cardiac events. Therefore, in this study, we aimed at investigating such myocardial dynamics for the first time in insulin-sensitive (mIS) and insulin-resistant (mIR) T2D patients. We targeted global and region-specific variations using insulin sensitivity (IS) and coronary artery calcifications (CACs) as CV risk factor in T2D patients. IS was computed using myocardial segmentation approaches at both baseline and after an hyperglycemic-insulinemic clamp (HEC) on [18F]FDG-PET images using the standardized uptake value (SUV) (ΔSUV = SUVHEC - SUVBASELINE) and calcifications using CT Calcium Scoring. Results suggest that some communicating pathways between response to insulin and calcification are present in the myocardium, whilst differences between coronary arteries were only observed in the mIS cohort. Risk indicators were mostly observed for mIR and highly calcified subjects, which supports previously stated findings that exhibit a distinguished exposure depending on the impairment of response to insulin, while projecting added potential complications due to arterial obstruction. Moreover, a pattern relating calcification and T2D phenotypes was observed suggesting the avoidance of insulin treatment in mIS but its endorsement in mIR subjects. The right coronary artery displayed more ΔSUV, whilst plaque was more present in the circumflex. However, differences between phenotypes, and therefore CV risk, were associated to left descending artery (LAD) translating into higher CACs regarding IR, which could explain why insulin treatment was effective for LAD at the expense of higher likelihood of plaque accumulation. Personalized approaches to assess T2D may lead to more efficient treatments and risk-prevention strategies.
Collapse
Affiliation(s)
- Queralt Martín-Saladich
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- BCN Medtech, Department of Information and Communication Technologies, Pompeu Fabra University, 08018 Barcelona, Spain
| | - Rafael Simó
- Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Santiago Aguadé-Bruix
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
| | - Olga Simó-Servat
- Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carolina Aparicio-Gómez
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
| | - Cristina Hernández
- Diabetes and Metabolism Research Group, VHIR, Department of Endocrinology, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Clara Ramirez-Serra
- Clinical Biochemistry Research Group, Vall d’Hebron Research Institute (VHIR), Biochemical Core Facilities, Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
| | - María Nazarena Pizzi
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Cardiology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Albert Roque
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Department of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
- Radiology Department, Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Miguel A. González Ballester
- BCN Medtech, Department of Information and Communication Technologies, Pompeu Fabra University, 08018 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence: (M.A.G.B.); (J.R.H.); Tel.: +34-(93)-542-2000 (ext. 2083) (M.A.G.B.); +34-(93)-489-3000 (ext. 4946) (J.R.H.)
| | - José Raul Herance
- Medical Molecular Imaging Research Group, Nuclear Medicine, Radiology and Cardiology Departments, Vall d’Hebron Research Institute (VHIR), Vall d’Hebron University Hospital, Autonomous University Barcelona, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.A.G.B.); (J.R.H.); Tel.: +34-(93)-542-2000 (ext. 2083) (M.A.G.B.); +34-(93)-489-3000 (ext. 4946) (J.R.H.)
| |
Collapse
|
188
|
Liu H, Ju A, Dong X, Luo Z, Tang J, Ma B, Fu Y, Luo Y. Young and undamaged recombinant albumin alleviates T2DM by improving hepatic glycolysis through EGFR and protecting islet β cells in mice. J Transl Med 2023; 21:89. [PMID: 36747238 PMCID: PMC9903539 DOI: 10.1186/s12967-023-03957-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Albumin is the most abundant protein in serum and serves as a transporter of free fatty acids (FFA) in blood vessels. In type 2 diabetes mellitus (T2DM) patients, the reduced serum albumin level is a risk factor for T2DM development and progression, although this conclusion is controversial. Moreover, there is no study on the effects and mechanisms of albumin administration to relieve T2DM. We examined whether the administration of young and undamaged recombinant albumin can alleviate T2DM in mice. METHODS The serum albumin levels and metabolic phenotypes including fasting blood glucose, glucose tolerance tests, and glucose-stimulated insulin secretion were studied in db/db mice or diet-induced obesity mice treated with saline or young, undamaged, and ultrapure rMSA. Apoptosis assays were performed at tissue and cell levels to determine the function of rMSA on islet β cell protection. Metabolic flux and glucose uptake assays were employed to investigate metabolic changes in saline-treated or rMSA-treated mouse hepatocytes and compared their sensitivity to insulin treatments. RESULTS In this study, treatment of T2DM mice with young, undamaged, and ultrapure recombinant mouse serum albumin (rMSA) increased their serum albumin levels, which resulted in a reversal of the disease including reduced fasting blood glucose levels, improved glucose tolerance, increased glucose-stimulated insulin secretion, and alleviated islet atrophy. At the cellular level, rMSA improved glucose uptake and glycolysis in hepatocytes. Mechanistically, rMSA reduced the binding between CAV1 and EGFR to increase EGFR activation leading to PI3K-AKT activation. Furthermore, rMSA extracellularly reduced the rate of fatty acid uptake by islet β-cells, which relieved the accumulation of intracellular ceramide, endoplasmic reticulum stress, and apoptosis. This study provided the first clear demonstration that injections of rMSA can alleviate T2DM in mice. CONCLUSION Our study demonstrates that increasing serum albumin levels can promote glucose homeostasis and protect islet β cells, which alleviates T2DM.
Collapse
Affiliation(s)
- Hongyi Liu
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,grid.452723.50000 0004 7887 9190Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Anji Ju
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Xuan Dong
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Zongrui Luo
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Jiaze Tang
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Boyuan Ma
- grid.12527.330000 0001 0662 3178School of Life Sciences, Tsinghua University, Beijing, 100084 China ,The National Engineering Research Center for Protein Technology, Beijing, 100084 China ,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084 China
| | - Yan Fu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yongzhang Luo
- School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China. .,The National Engineering Research Center for Protein Technology, Beijing, 100084, China. .,Beijing Key Laboratory for Protein Therapeutics, Beijing, 100084, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
189
|
Han Y, Hu H, Li Q, Deng Z, Liu D. Triglyceride glucose-body mass index and the risk of progression to diabetes from prediabetes: A 5-year cohort study in Chinese adults. Front Public Health 2023; 11:1028461. [PMID: 36817911 PMCID: PMC9935616 DOI: 10.3389/fpubh.2023.1028461] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Objective Evidence regarding the relationship between the triglyceride glucose-body mass index (TyG-BMI) and the risk of progression from prediabetes to diabetes remains limited. Our study aimed to investigate the relationship between them in patients with prediabetes. Methods In this retrospective cohort study, data were collected from 25,279 patients with prediabetes who received health checks between 2010 and 2016. We used a Cox proportional-hazards regression model to examine the relationship between TyG-BMI and diabetes risk. We used Cox proportional hazards regression with cubic spline functions and smooth curve fitting to identify the nonlinear relationship between them. In addition, A series of sensitivity and subgroup analyses were also conducted. Results The mean age of the included participants was 49.29 ± 13.82 years old, and 1,6734 (66.2%) were male. The mean TyG-BMI was 219.47. The median follow-up time was 2.89 years, and 2,687 (10.63%) individuals had a final diagnosis of diabetes. After adjusting for covariates, TyG-BMI was positively linked with incident diabetes in patients with prediabetes (HR = 1.011, 95%CI 1.010-1.012). TyG-BMI had a non-linear connection with diabetes risk, and its inflection point was 231.66. Right and left effects sizes (HR) at the inflection point were 1.017 (95%CI:1.014-1.019) and 1.007 (95%CI:1.005-1.009), respectively. The sensitivity analysis demonstrated the robustness of these results. Conclusion This study demonstrated a positive, non-linear relationship between the TyG-BMI and diabetes risk in Chinese patients with prediabetes. When the TyG-BMI was <231.66, there was a significant positive association between TyG-BMI and the risk of progression from prediabetes to diabetes. This study serves as a reference to promote clinical consultation and optimize diabetes prevention decisions for patients with prediabetes.
Collapse
Affiliation(s)
- Yong Han
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Qiming Li
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Zhe Deng
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Dehong Liu
- Department of Emergency, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
190
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Metal-Based Nanozymes with Multienzyme-Like Activities as Therapeutic Candidates: Applications, Mechanisms, and Optimization Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205870. [PMID: 36513384 DOI: 10.1002/smll.202205870] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Most nanozymes in development for medical applications only exhibit single-enzyme-like activity, and are thus limited by insufficient catalytic activity and dysfunctionality in complex pathological microenvironments. To overcome the impediments of limited substrate availabilities and concentrations, some metal-based nanozymes may mimic two or more activities of natural enzymes to catalyze cascade reactions or to catalyze multiple substrates simultaneously, thereby amplifying catalysis. Metal-based nanozymes with multienzyme-like activities (MNMs) may adapt to dissimilar catalytic conditions to exert different enzyme-like effects. These multienzyme-like activities can synergize to realize "self-provision of the substrate," in which upstream catalysts produce substrates for downstream catalytic reactions to overcome the limitation of insufficient substrates in the microenvironment. Consequently, MNMs exert more potent antitumor, antibacterial, and anti-inflammatory effects in preclinical models. This review summarizes the cellular effects and underlying mechanisms of MNMs. Their potential medical utility and optimization strategy from the perspective of clinical requirements are also discussed, with the aim to provide a theoretical reference for the design, development, and therapeutic application of their catalytic effects.
Collapse
Affiliation(s)
- Dan Li
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Danni Dai
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Gege Xiong
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Shuquan Lan
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chao Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
191
|
Li Y, Xie L, Liu K, Li X, Xie F. Bioactive components and beneficial bioactivities of flowers, stems, leaves of Lonicera japonica Thunberg: A review. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
192
|
Chung TL, Liu YH, Wu PY, Huang JC, Chen SC. Sex difference in the associations among obesity-related indices with incidence of diabetes mellitus in a large Taiwanese population follow-up study. Front Public Health 2023; 11:1094471. [PMID: 36741951 PMCID: PMC9895090 DOI: 10.3389/fpubh.2023.1094471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023] Open
Abstract
Background Obesity is a major risk factor for diabetes mellitus (DM), which is in turn a major risk factor for cardiovascular diseases such as coronary artery disease and stroke. As few studies have investigated sex differences in the association between obesity and incidence of DM, the aim of this longitudinal study was to explore this issue in a large group of Taiwanese participants. Methods A total of 24,346 participants were enrolled in this study, of whom 8,334 (mean age, 50.6 ± 11.0 years) were male and 16,012 (mean age, 50.5 ± 10.1 years) were female. The following obesity-related indices were studied: body mass index, waist-to-height ratio, waist-to-hip ratio (WHR), body roundness index, conicity index (CI), body adiposity index, abdominal volume index, lipid accumulation product (LAP), and visceral adiposity index (VAI). Results The analysis showed significant associations between all of these indices with incidence of DM (all p < 0.001). In the male participants, the strongest predictors for incidence of DM were LAP (AUC = 0.692), WHtR (AUC = 0.684), and WHR (AUC = 0.683). In the female participants, the strongest predictors were LAP (AUC = 0.744), WHtR (AUC = 0.710) and VAI (AUC = 0.710), followed by BRI (AUC = 0.708). Conclusion Strong associations were found between the studied obesity-related indices and incidence of DM, and sex differences were found. Hence, to better control DM, reducing body weight may be beneficial in addition to lifestyle modifications, diet control, and pharmacological interventions.
Collapse
Affiliation(s)
- Tung-Ling Chung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Hsueh Liu
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan,Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Pei-Yu Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jiun-Chi Huang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan,Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan,*Correspondence: Szu-Chia Chen ✉
| |
Collapse
|
193
|
Two Distinct Groups Are Shown to Be at Risk of Diabetes by Means of a Cluster Analysis of Four Variables. J Clin Med 2023; 12:jcm12030810. [PMID: 36769457 PMCID: PMC9918294 DOI: 10.3390/jcm12030810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/05/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Recent attempts to classify adult-onset diabetes using only six diabetes-related variables (GAD antibody, age at diagnosis, BMI, HbA1c, and homeostatic model assessment 2 estimates of b-cell function and insulin resistance (HOMA2-B and HOMA2-IR)) showed that diabetes can be classified into five clusters, of which four correspond to type 2 diabetes (T2DM). Here, we classified nondiabetic individuals to identify risk clusters for incident T2DM to facilitate the refinement of prevention strategies. Of the 1167 participants in the population-based Iwaki Health Promotion Project in 2014 (baseline), 868 nondiabetic individuals who attended at least once during 2015-2019 were included in a prospective study. A hierarchical cluster analysis was performed using four variables (BMI, HbA1c, and HOMA2 indices). Of the four clusters identified, cluster 1 (n = 103), labeled as "obese insulin resistant with sufficient compensatory insulin secretion", and cluster 2 (n = 136), labeled as "low insulin secretion", were found to be at risk of diabetes during the 5-year follow-up period: the multiple factor-adjusted HRs for clusters 1 and 2 were 14.7 and 53.1, respectively. Further, individuals in clusters 1and 2 could be accurately identified: the area under the ROC curves for clusters 1and 2 were 0.997 and 0.983, respectively. The risk of diabetes could be better assessed on the basis of the cluster that an individual belongs to.
Collapse
|
194
|
Gong Q, Yin J, Wang M, Zha C, Yu D, Yang S, Feng Y, Li J, Du L. Anemoside B4 Exerts Hypoglycemic Effect by Regulating the Expression of GLUT4 in HFD/STZ Rats. Molecules 2023; 28:molecules28030968. [PMID: 36770636 PMCID: PMC9921942 DOI: 10.3390/molecules28030968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Anemoside B4 (B4) is a saponin that is extracted from Pulsatilla chinensis (Bge.), and Regel exhibited anti-inflammatory, antioxidant, antiviral, and immunomodulatory activities. However, its hypoglycemic activity in diabetes mellitus has not been evaluated. Here, we explored the effect of B4 on hyperglycemia and studied its underlying mechanism of lowering blood glucose based on hyperglycemic rats in vivo and L6 skeletal muscle cells (L6) in vitro. The rats were fed a high-fat diet (HFD) for one month, combined with an intraperitoneal injection of 60 mg/kg streptozotocin (STZ) to construct the animal model, and the drug was administrated for two weeks. Blood glucose was detected and the proteins and mRNA were expressed. Our study showed that B4 significantly diminished fasting blood glucose (FBG) and improved glucose metabolism. In addition, B4 facilitated glucose utilization in L6 cells. B4 could enhance the expression of glucose transporter 4 (GLUT4) in rat skeletal muscle and L6 cells. Mechanistically, B4 elevated the inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathways. Furthermore, we confirmed the effect of B4 on glucose uptake involved in the enhancement of GLUT4 expression in part due to PI3K/AKT signaling by using a small molecule inhibitor assay and constructing a GLUT4 promoter plasmid. Taken together, our study found that B4 ameliorates hyperglycemia through the PI3K/AKT pathway and promotes GLUT4 initiation, showing a new perspective of B4 as a potential agent against diabetes.
Collapse
Affiliation(s)
- Qin Gong
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
| | - Jilei Yin
- Institute of Traditional Chinese Medicine, Jiangsu Union Technical Institute Lianyungang Branch, Lianyungang 222007, China
| | - Mulan Wang
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
| | - Chengliang Zha
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
| | - Dong Yu
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Shilin Yang
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
| | - Yulin Feng
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
| | - Jun Li
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
- Correspondence: (J.L.); (L.D.); Tel.:+86-180-7009-0101 (J.L.); +791-8711-9785 (L.D.)
| | - Lijun Du
- School of pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330006, China
- National Engineering Research Center for Manufacturing Technology of Solid Preparation, Nanchang 330006, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
- Correspondence: (J.L.); (L.D.); Tel.:+86-180-7009-0101 (J.L.); +791-8711-9785 (L.D.)
| |
Collapse
|
195
|
Saati S, Dehghan P, Azizi-Soleiman F, Mobasseri M. The effect of bitter almond (Amygdalus communis L. var. Amara) gum as a functional food on metabolic profile, inflammatory markers, and mental health in type 2 diabetes women: a blinded randomized controlled trial protocol. Trials 2023; 24:35. [PMID: 36650599 PMCID: PMC9847170 DOI: 10.1186/s13063-023-07085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Using functional foods in the prevention and treatment of type 2 diabetes mellitus (T2DM) has increased across the world owing to their availability, cultural acceptability, and lower side effects. The present study will aim to examine the impact of bitter almond (Amygdalus communis L. var. Amara) gum as a functional food on metabolic profile, inflammatory markers, and mental health in women with T2DM. METHODS We will conduct a randomized, triple-blind, placebo-controlled trial. A total of 44 women with T2DM will be randomly allocated into two groups: an intervention group (n = 20) and a placebo group (n = 20). Patients will receive either 5 g/d of bitter melon gum or a placebo for 8 weeks. Clinical and biochemical outcome parameters which include glycemic indices, lipid profile, inflammatory markers, oxidative stress indices, tryptophan (Trp), kynurenine (KYN), cortisol, glucagon-like peptide 1 (GLP-1), leptin, adiponectin, ghrelin, peroxisome proliferator-activated receptor (PPAR) gene expression, brain-derived neurotrophic factor (BDNF), endothelial cell adhesion molecules, plasminogen, cluster deference 4 (CD4), cluster deference 8 (CD8), anthropometric indices, blood pressure, dietary intake, and mental health will be measured at the baseline and end of the study. Statistical analysis will be conducted using the SPSS software (version 24), and P value less than 0.05 will be considered statistically significant. DISCUSSION The present randomized controlled trial will aim to investigate any beneficial effects of bitter almond gum supplementation on the cardio-metabolic, immune-inflammatory, and oxidative stress biomarkers, as well as mental health in women with T2DM. ETHICS AND DISSEMINATION The study protocol was approved by the Ethical Committee of the Tabriz University of Medical Sciences (IR.TBZMED.REC.1399.726). TRIAL REGISTRATION Iranian Registry of Clinical Trials ( www.irct.ir/IRCT20150205020965N7 ).
Collapse
Affiliation(s)
- Saba Saati
- grid.412888.f0000 0001 2174 8913Student Research Committee, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parvin Dehghan
- grid.412888.f0000 0001 2174 8913Nutrition Research Center, Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, 5166614711 Iran
| | - Fatemeh Azizi-Soleiman
- grid.468130.80000 0001 1218 604XDepartment of Nutrition, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Majid Mobasseri
- grid.412888.f0000 0001 2174 8913Department of Internal Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
196
|
Huang X, Huang J, Li X, Chen L. Pharmacokinetic and Bioequivalence Studies of 2 Metformin Glibenclamide Tablets in Healthy Chinese Subjects Under Fasting and Fed Conditions. Clin Pharmacol Drug Dev 2023; 12:509-517. [PMID: 36642944 DOI: 10.1002/cpdd.1219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/18/2022] [Indexed: 01/17/2023]
Abstract
The rational combination of oral antidiabetic agents is more likely to provide better glycemic control than monotherapy. Metformin glibenclamide tablets can be used as second-line therapy for patients with type 2 diabetes mellitus who cannot successfully control their blood glucose levels by diet and exercise plus metformin or sulfonylureas. The aim of this study was to evaluate the bioequivalence and safety of metformin hydrochloride and glibenclamide tablets (500 mg/5 mg) prepared by 2 different vendors in healthy Chinese subjects under fasting and fed conditions. This is an open-label, single-center, randomized, 2-formulation, 2-period crossover study. After screening, 40 subjects were enrolled in the fasting trial, while 40 subjects were enrolled in the fed trial. Qualified subjects were randomly assigned to receive a monotherapy dose of 500 mg/5 mg of the test or reference formulation, and after a 1-week washout period, they took the alternative formulation. Blood samples were collected from 24 blood collection sites per cycle for pharmacokinetic analysis until 36 hours after oral administration. In total, 78 subjects completed the study. Under fasting and fed conditions, the geometric mean ratios of maximum plasma concentration, area under the plasma concentration-time curve (AUC) from time 0 to time of last quantifiable drug level , and AUC from time 0 to infinity between the 2 products, as well as the corresponding 90%CIs, were all within the range of 80%-125%. It was found that exposure (AUC from time 0 to infinity) to metformin is decreased by about 25% in the fed state compared to fasting, whereas glibenclamide exposure is increased by about 30% in the fed state. No severe adverse events were observed in the study.
Collapse
Affiliation(s)
- Xiaolun Huang
- College of Pharmacy of Jinan University, Guangzhou, China
| | - Jiao Huang
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinjing Li
- College of Pharmacy of Jinan University, Guangzhou, China
| | - Lin Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
197
|
Duarte JV, Guerra C, Moreno C, Gomes L, Castelo-Branco M. Changes in hemodynamic response function components reveal specific changes in neurovascular coupling in type 2 diabetes. Front Physiol 2023; 13:1101470. [PMID: 36703928 PMCID: PMC9872943 DOI: 10.3389/fphys.2022.1101470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disease that leads to multiple vascular complications with concomitant changes in human neurophysiology, which may lead to long-term cognitive impairment, and dementia. Early impairments of neurovascular coupling can be studied using event-related functional magnetic resonance imaging (fMRI) designs. Here, we aimed to characterize the changes in the hemodynamic response function (HRF) in T2DM to probe components from the initial dip to late undershoot. We investigated whether the HRF morphology is altered throughout the brain in T2DM, by extracting several parameters of the fMRI response profiles in 141 participants (64 patients with T2DM and 77 healthy controls) performing a visual motion discrimination task. Overall, the patients revealed significantly different HRFs, which extended to all brain regions, suggesting that this is a general phenomenon. The HRF in T2DM was found to be more sluggish, with a higher peak latency and lower peak amplitude, relative slope to peak, and area under the curve. It also showed a pronounced initial dip, suggesting that the initial avidity for oxygen is not compensated for, and an absent or less prominent but longer undershoot. Most HRF parameters showed a higher dispersion and variability in T2DM. In sum, we provide a definite demonstration of an impaired hemodynamic response function in the early stages of T2DM, following a previous suggestion of impaired neurovascular coupling. The quantitative demonstration of a significantly altered HRF morphology in separate response phases suggests an alteration of distinct physiological mechanisms related to neurovascular coupling, which should be considered in the future to potentially halt the deterioration of the brain function in T2DM.
Collapse
Affiliation(s)
- João Valente Duarte
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Intelligent Systems Associate Laboratory (LASI), Coimbra, Portugal
| | - Catarina Guerra
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Carolina Moreno
- Service of Endocrinology, Diabetes and Metabolism, Coimbra University Hospital, Coimbra, Portugal
| | - Leonor Gomes
- Service of Endocrinology, Diabetes and Metabolism, Coimbra University Hospital, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Intelligent Systems Associate Laboratory (LASI), Coimbra, Portugal,*Correspondence: Miguel Castelo-Branco,
| |
Collapse
|
198
|
Peng Y, Ou Y, Wang K, Wang Z, Zheng X. The effect of low volume high-intensity interval training on metabolic and cardiorespiratory outcomes in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Front Endocrinol (Lausanne) 2023; 13:1098325. [PMID: 36686490 PMCID: PMC9845913 DOI: 10.3389/fendo.2022.1098325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/05/2023] Open
Abstract
Aims The present systematic review and meta-analysis of randomized controlled trials (RCTs) was conducted to investigate the effect of low volume high-intensity interval training (LVHIIT) on the metabolic and cardiorespiratory outcomes in patients with type 2 diabetes mellitus (T2DM). Methods Relevant articles were sourced from PubMed, EBSCO, Web of Science, Embase, and the Cochrane Library from inception to October 2022. The study search strategy and all other processes were implemented in accordance with the PRISMA statement. Results Five randomized controlled trials that satisfied the inclusion criteria were included in this meta-analysis. The LVHIIT group had significantly lower fasting blood glucose levels (RR= -1.21; 95% CI= -2.02- -0.40, p = 0.0032) and HbA1c levels (RR= -0.65; 95% CI= -1.06- -0.23, p = 0.002) and higher levels of insulin resistance indicator HOMA-IR (RR= -1.34; 95% CI = -2.59- -0.10, p = 0.03) than the control group. Moreover, our results show that LVHIIT can reduce body mass (RR = -0.94, 95% CI = -1.37- -0.51, p<0.0001) and body mass index (RR = -0.31, 95% CI = -0.47- -0.16, p<0.0001). LVHIIT had a better therapeutic effect on blood lipid metabolism, such as total cholesterol, high-density lipoprotein, low-density lipoprotein and triglycerides. However, the change in fasting insulin levels was not statistically significant (RR= -1.43; 95% CI = -3.46- 0.60, p =0.17). Furthermore, LVHIIT reduced the systolic blood pressure (RR =-4.01, 95% CI = -4.82 - -3.21, p<0.0001) and improved peak oxygen uptake (VO2peak) compared to the control group (RR= 5.45; 95% CI = 1.38 - 9.52, p =0.009). Conclusion After a certain period of LVHIIT, glycaemic control, insulin resistance, body weight, lipid profile and cardiorespiratory outcomes were significantly improved in T2DM patients.
Collapse
Affiliation(s)
- Yang Peng
- West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Yiran Ou
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Wang
- Department of Vascular Surgery, University Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhenghao Wang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofeng Zheng
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
199
|
Jiang H, Liu Z, Townsend JH, Wang J. Effects of Methylenetetrahydrofolate Reductase ( MTHFR) Polymorphisms on Retinal Tissue Perfusion in Mild Diabetic Retinopathy Patients Receiving the Medical Food, Ocufolin ®. Clin Ophthalmol 2023; 17:1121-1127. [PMID: 37077224 PMCID: PMC10106310 DOI: 10.2147/opth.s401743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/27/2023] [Indexed: 04/21/2023] Open
Abstract
Purpose We evaluate the effects of methylenetetrahydrofolate reductase (MTHFR) polymorphisms on retinal tissue perfusion in patients with mild diabetic retinopathy (DR + PM) taking the medical food, Ocufolin®, for 6 months. Methods Prospective, case-controlled study. Eight early diabetic retinopathy patients with common reduced function MTHFR polymorphisms (DR+PM) and 15 normal controls (NC) were recruited. MTHFR polymorphisms were subtyped as normal, C677T, or A1298C. Best corrected visual acuity (BCVA) was evaluated. Retinal blood flow velocity (BFV) was measured using Retinal Function Imager. Retinal tissue perfusion (RTP, blood flow rate per inner retinal volume) was calculated within a 2.5 mm diameter circle centered on the fovea. The medical food is intended to address ocular ischemia with high doses of vitamin B-complexes and antioxidants, including L-methylfolate, methylcobalamin, zinc, copper, lutein, vitamins C, D, E, and n-acetylcysteine. The subjects were provided with a medical food for a period of 6 months. Results BCVA and vascular indices of DR + PM patients at baseline were initially below those of NC and improved after medical food. Compared to baseline, DR + PM patients after the medical food had significantly improved BCVA during the follow-up period (P < 0.05). In comparison, overall RTP and arteriolar BFV were significantly increased at 6 months (P < 0.05). The changes varied with MTHFR subtypes. In patients with the C677T and the C677T/A1298C compound mutations, RTP was increased at 6 months as compared to that at baseline and 4 months (P < 0.05). In patients with only the A1298C mutation, all microcirculation metrics were increased from baseline at 4 and 6 months, but with less improvement at 6 months than at 4 months (P < 0.05). Conclusion Medical food was effective in improving both visual acuity and retinal tissue perfusion in DR + PM patients. The degree of improvement of retinal microcirculation varied among MTHFR subtypes.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Zhiping Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Ophthalmic Center, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Justin H Townsend
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jianhua Wang
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Correspondence: Jianhua Wang, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, 1638 NW 10th Avenue, McKnight Building - Room 202A, Miami, FL, 33136, USA, Tel +1 305 482-5010, Fax +1 305 482-5012, Email
| |
Collapse
|
200
|
Ganugula R, Nuthalapati NK, Dwivedi S, Zou D, Arora M, Friend R, Sheikh-Hamad D, Basu R, Kumar MNVR. Nanocurcumin combined with insulin alleviates diabetic kidney disease through P38/P53 signaling axis. J Control Release 2023; 353:621-633. [PMID: 36503070 PMCID: PMC9904426 DOI: 10.1016/j.jconrel.2022.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Treatments for diabetic kidney disease (DKD) mainly focus on managing hyperglycemia and hypertension, but emerging evidence suggests that inflammation also plays a role in the pathogenesis of DKD. This 10-week study evaluated the efficacy of daily oral nanoparticulate-curcumin (nCUR) together with long-acting insulin (INS) to treat DKD in a rodent model. Diabetic rats were dosed with unformulated CUR alone, nCUR alone or together with INS, or INS alone. The progression of diabetes was reflected by increases in plasma fructosamine, blood urea nitrogen, creatinine, bilirubin, ALP, and decrease in albumin and globulins. These aberrancies were remedied by nCUR+INS or INS but not by CUR or nCUR. Kidney histopathological results revealed additional abnormalities characteristic of DKD, such as basement membrane thickening, tubular atrophy, and podocyte cytoskeletal impairment. nCUR and nCUR+INS mitigated these lesions, while CUR and INS alone were far less effective, if not ineffective. To elucidate how our treatments modulated inflammatory signaling in the liver and kidney, we identified hyperactivation of P38 (MAPK) and P53 with INS and CUR, whereas nCUR and nCUR+INS deactivated both targets. Similarly, the latter interventions led to significant downregulation of renal NLRP3, IL-1β, NF-ĸB, Casp3, and MAPK8 mRNA, indicating a normalization of inflammasome and apoptotic pathways. Thus, we show therapies that reduce both hyperglycemia and inflammation may offer better management of diabetes and its complications.
Collapse
Affiliation(s)
- Raghu Ganugula
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Nikhil K Nuthalapati
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Subhash Dwivedi
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Dianxiong Zou
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - Meenakshi Arora
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA
| | - Richard Friend
- College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Translational Research on Inflammatory Diseases, Michael E. Debakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - M N V Ravi Kumar
- The Center for Convergent Bioscience and Medicine (CCBM), The University of Alabama, Tuscaloosa, AL, USA; College of Community Health Sciences, The University of Alabama, Tuscaloosa, AL, USA; Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, USA; Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL, USA; Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, TX, USA; Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, USA; Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|