151
|
Prabhakar KR, Veerapur VP, Bansal P, Parihar VK, Reddy Kandadi M, Bhagath Kumar P, Priyadarsini KI, Unnikrishnan MK. Antioxidant and radioprotective effect of the active fraction of Pilea microphylla (L.) ethanolic extract. Chem Biol Interact 2007; 165:22-32. [PMID: 17113058 DOI: 10.1016/j.cbi.2006.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 10/16/2006] [Accepted: 10/17/2006] [Indexed: 11/23/2022]
Abstract
The ethanolic extract of Pilea microphylla (L.) was defatted, successively fractionated with acetone and the residue so obtained was found to be most potent when subjected to detailed free radical scavenging and in vivo radioprotection studies. The most active fraction reacts with free radicals, such as DPPH (50 microM), ABTS(.)(-) (100 microM) and (.)OH (generated by Fenton reaction) with IC(50) value of 23.15 microg/ml, 3.0 microg/ml and 310 microg/ml, respectively. The most active fraction inhibited iron-induced lipid peroxidation in phosphatidyl choline liposomes with an IC(50) of 13.74 microg/ml. The kinetics of scavenging of DPPH and ABTS(.)(-) radicals were followed at different concentrations of the fraction by employing stopped-flow studies. The observed first order decay rate constants at 200 microg/ml and 50 microg/ml of fraction with DPPH (50 microM) and ABTS(.)(-) (50 microM) were found to be 0.4s(-1) and 2.1s(-1), respectively. The fraction when screened for in vivo radioprotection in Swiss albino mice showed 80% protection at a dose of 900 mg/kg and with a DRF of about 1.12. The fraction was also found to protect livers of irradiated mice from depletion of endogenous antioxidant enzymes like glutathione, GST, SOD, catalase and thiols. The fraction also protected the villi height, increased the number of crypt cells while offering general protection to the intestine from acute radiation effects. The fraction also protected the hematopoietic system as assessed by endogenous spleen colony assay, contributing to the overall radioprotective ability.
Collapse
Affiliation(s)
- K R Prabhakar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal 576104, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Parihar VK, Prabhakar KR, Veerapur VP, Kumar MS, Reddy YR, Joshi R, Unnikrishnan MK, Rao CM. Effect of sesamol on radiation-induced cytotoxicity in Swiss albino mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 611:9-16. [PMID: 17045515 DOI: 10.1016/j.mrgentox.2006.06.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 04/28/2006] [Accepted: 06/30/2006] [Indexed: 12/16/2022]
Abstract
The radio-protective ability of sesamol (SM) at various doses viz., 0, 10, 25, 40, 50, 70 and 100mg/kg bw, administered intraperitoneally 30min prior to 9.5Gy whole-body gamma-irradiation was studied in Swiss albino mice. Radiation toxicity and mortality were observed during a period of 30 days and the percentage mortality was calculated. SM pretreatment with 50mg/kg bw was found to be the most effective dose in maintaining body weight and in reducing the percentage mortality, while 100mg/kg bw was found to be more effective in maintaining the spleen index and in stimulation of endogenous spleen colony-forming units. Pretreatment with SM (50mg/kg bw) in mice irradiated with 15Gy significantly reduced dead, inflammatory, mitotic and goblet cells in irradiated jejunum. SM at 50mg/kg bw also increased crypt cells, maintained villus height, and prevented mucosal erosion. Nuclear enlargement in epithelial cells was found less in SM-treated mice compared with the irradiated control. The radiation-induced decrease in endogenous antioxidant enzymes (GSH, GST, catalase) and the increase in lipid peroxidation were also reduced by pretreatment with SM [50 and 100mg/kg bw] at all monitored post-irradiation intervals. There was no protection at a dose less than 25mg/kg bw.
Collapse
Affiliation(s)
- Vipan Kumar Parihar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal 576104, India
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Mullan PB, Gorski JJ, Harkin DP. BRCA1--a good predictive marker of drug sensitivity in breast cancer treatment? BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1766:205-16. [PMID: 16919882 DOI: 10.1016/j.bbcan.2006.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2006] [Revised: 07/05/2006] [Accepted: 07/10/2006] [Indexed: 11/28/2022]
Abstract
There are currently only two predictive markers of response to chemotherapy for breast cancer in routine clinical use, namely the Estrogen receptor-alpha and the HER2 receptor. The breast and ovarian cancer susceptibility gene BRCA1 is an important genetic factor in hereditary breast and ovarian cancer and there is increasing evidence of an important role for BRCA1 in the sporadic forms of both cancer types. Our group and numerous others have shown in both preclinical and clinical studies that BRCA1 is an important determinant of chemotherapy responses in breast cancer. In this review we will outline the current understanding of the role of BRCA1 as a determinant of response to DNA damaging and microtubule damaging chemotherapy. We will then discuss how the known functions of this multifaceted protein may provide mechanistic explanations for its role in chemotherapy responses.
Collapse
Affiliation(s)
- Paul B Mullan
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, BT9 7AB, United Kingdom.
| | | | | |
Collapse
|
154
|
de Toledo SM, Azzam EI. Adaptive and bystander responses in human and rodent cell cultures exposed to low level ionizing radiation: the impact of linear energy transfer. Dose Response 2006; 4:291-301. [PMID: 18648584 DOI: 10.2203/dose-response.06-103.detoledo] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
To understand the potential impact on risk from exposure to low-level ionizing radiation, we have investigated the modulation of gene expression, induction of DNA damage and of neoplastic transformation in human or rodent cells derived from cultures exposed in vitro to low dose gamma-rays (a low linear energy transfer radiation) or very low fluences of alpha-particles (a high linear energy transfer radiation). Pre-exposure of cells to a low gamma-ray dose protected cells from the DNA damaging and killing effects induced by a subsequent acute challenge exposure to gamma-rays. Furthermore, a low dose chronic exposure to gamma-rays decreased the frequency of micronucleus formation and neoplastic transformation to a level below the spontaneous rate in human and rodent cells respectively. In contrast, when cell cultures were exposed to low fluences of alpha-particles, wherein a small fraction of cells were irradiated, stressful effects were transmitted from the irradiated to adjoining nonirradiated bystander cells. The mechanisms underlying these effects and their relative contribution to the overall risk to ionizing radiation is discussed.
Collapse
Affiliation(s)
- Sonia M de Toledo
- Department of Radiology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | | |
Collapse
|
155
|
Allen-Brady K, Cannon-Albright LA, Neuhausen SL, Camp NJ. A role for XRCC4 in age at diagnosis and breast cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15:1306-10. [PMID: 16835328 DOI: 10.1158/1055-9965.epi-05-0959] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Genetic variants in DNA repair genes influence the ability to repair damaged DNA. Unrepaired or improperly repaired DNA may lead to genetic instability and carcinogenesis. We evaluated the role of four tagging single nucleotide polymorphisms (tSNP) in the DNA repair gene, XRCC4, and its association with breast cancer risk and age at diagnosis of breast cancer in 464 cases and 576 controls selected to be BRCA1/2 mutation negative from high-risk Utah pedigrees. We observed a significant association for two 4-locus tSNP haplotypes and age at diagnosis. Carriage of one haplotype was associated with later diagnosis (haplotype frequency, 0.039; mean age at diagnosis, 67.17 years; P = 0.001), and carriage of the other was associated with earlier diagnosis (haplotype frequency, 0.214; mean age at diagnosis, 54.04 years; P = 0.0085). For breast cancer risk, two 2-locus tSNP haplotypes explained the observed association as well as extended four-locus haplotypes. The two 2-locus haplotypes were nominally associated with breast cancer risk, one for reduced risk (odds ratio, 0.57; 95% confidence interval, 0.36-0.90; P = 0.014) and one for increased risk (odds ratio, 1.30; 95% confidence interval, 1.02-1.67; P = 0.033). Moreover, one of the tSNPs is in strong linkage disequilibrium (D' = 1.00) with an XRCC4 SNP found to be significantly associated with breast cancer risk in Taiwan, hence, confirming their findings. Our results suggest that XRCC4 may play a role in the age at diagnosis and risk of breast cancer in non-BRCA1/2, heritable breast cancer cases.
Collapse
Affiliation(s)
- Kristina Allen-Brady
- Genetic Epidemiology, Department of Medical Informatics, University of Utah, Salt Lake City, 84108, USA.
| | | | | | | |
Collapse
|
156
|
Chang HW, Kim SY, Yi SL, Son SH, Song DY, Moon SY, Kim JH, Choi EK, Ahn SD, Shin SS, Lee KK, Lee SW. Expression of Ku80 correlates with sensitivities to radiation in cancer cell lines of the head and neck. Oral Oncol 2006; 42:979-86. [PMID: 16472552 DOI: 10.1016/j.oraloncology.2005.12.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/08/2005] [Indexed: 01/03/2023]
Abstract
The Ku protein is essential for the repair of a majority of DNA double-strand breaks in mammalian cells. The purpose of this study was to investigate the relationship between the expression of Ku70/80 and sensitivity to radiation in cancer cell lines of the head and neck. The sensitivity to radiation in various head and neck cancer cell lines (AMC-HN-1 to -9) was analyzed by colony forming assay. Of the nine cell lines examined, the most radiosensitive cell line (AMC-HN-3) and the most radioresistant cell line (AMC-HN-9) were selected for this experiments. The expression of Ku70/80 was examined after irradiation using real time PCR, Western blotting and immunofluorescence in two different cell lines. Cell cycle distribution after irradiation were analysed. A differential radioresponse was demonstrated by expression of Ku70/80 in AMC-HN-3 and AMC-HN-9 cells. While the expression of Ku70 was slightly increased in the radioresistant AMC-HN-9 cell line, the expression of Ku80 was remarkably increased, suggesting a correlation between Ku80 expression and radiation resistance. Overexpression of Ku80 plays an important role in the repair of DNA damage induced by radiation. Ku80 expression may provide an effective predictive assay of radiosensitivity in head and neck cancers.
Collapse
Affiliation(s)
- Hyo Won Chang
- Department of Otolaryngology, University of Ulsan, College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Lower level of BRCA2 protein in heterozygous mutation carriers is correlated with an increase in DNA double strand breaks and an impaired DSB repair. Cancer Lett 2006; 243:90-100. [DOI: 10.1016/j.canlet.2005.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 11/15/2005] [Accepted: 11/22/2005] [Indexed: 01/07/2023]
|
158
|
Parihar VK, Prabhakar KR, Veerapur VP, Priyadarsini KI, Unnikrishnan MK, Rao CM. Anticlastogenic activity of morin against whole body gamma irradiation in Swiss albino mice. Eur J Pharmacol 2006; 557:58-65. [PMID: 17207789 DOI: 10.1016/j.ejphar.2006.09.073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 09/19/2006] [Accepted: 09/26/2006] [Indexed: 01/01/2023]
Abstract
Anticlastogenic activity of morin was explored against whole body gamma radiation, at a dose rate of 1.66 Gy/min in Swiss albino mice pretreated intraperitoneal or orally. Pretreatment with morin 10, 25, 50, 75, 100, 125, and 150 mg/kg, i.p. delayed and reduced percentage mortality and increased mean survival times in mice irradiated with 10 Gy gamma radiation. Intraperitoneal route was found superior to oral route. An i.p. dose of 100 mg/kg was found to be the most effective dose in preventing radiation-induced weight loss, increasing the mean survival times and reducing percentage mortality. Morin (100 mg/kg) pretreatment effectively maintained spleen index (spleen weight/body weight x 100) and stimulated endogenous spleen colony forming units. Pretreatment with morin (100 mg/kg) significantly reduced dead, inflammatory, and mitotic cells in irradiated mice jejunum along with a significant increase in goblet cells and rapidly multiplying crypt cells. Morin (100 mg/kg) also maintained the villus height close to normal, prevented mucosal erosion and basement membrane damage in irradiated jejunum. Nuclear enlargement in epithelial cells of jejunum was lower in morin treated mice compared to radiation control. Morin (100 mg/kg) also significantly elevated the endogenous antioxidant enzymes viz. glutathione S transferase (GST), superoxide dismutase (SOD) and reduced glutathione (GSH), in normal mice at 2, 4 and 8 h post treatment. Drastic decrease in endogenous enzymes (GSH, GST, catalase and SOD) and total thiols was observed in irradiated mice at 2, 4 and 8 h post irradiation, while pretreatment with morin (100 mg/kg) prevented this decrease. Morin (100 mg/kg) also elevated radiation LD(50) from 9.2 to 10.1 Gy, indicating a dose modifying factor (DMF) of 1.11.
Collapse
Affiliation(s)
- Vipan Kumar Parihar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal-576104, Karnataka, India
| | | | | | | | | | | |
Collapse
|
159
|
Ohnishi K, Scuric Z, Schiestl RH, Okamoto N, Takahashi A, Ohnishi T. siRNA targeting NBS1 or XIAP increases radiation sensitivity of human cancer cells independent of TP53 status. Radiat Res 2006; 166:454-62. [PMID: 16972754 DOI: 10.1667/rr3606.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 05/02/2006] [Indexed: 11/03/2022]
Abstract
NBS1 is essential for the repair of radiation-induced DNA double-strand breaks (DSBs) in yeast and higher vertebrate cells. In this study, we examined whether suppressed NBS1 expression by small interference RNA (siRNA) could enhance radiation sensitivity in cancer cells with different TP53 status. We used human non-small cell lung cancer cells differing in TP53 gene status (H1299/wtp53 cells bearing wild-type TP53 or H1299/mp53 cells bearing mutant TP53). A DNA cassette expressing siRNA targeted for the NBS1 gene was transfected into those cell lines, and radiation sensitivity was examined with a colony-forming assay. Cellular levels of NBS1 and other proteins were analyzed using Western blotting. We found that the radiation sensitivity of H1299/wtp53 and H1299/mp53 cells was enhanced by transfection of the DNA cassette. In the NBS1-siRNA-transfected cells, we observed decreased constitutive expression of NBS1 protein and decreased radiation-induced accumulation of phosphorylated NBS1 protein. In addition, radiation-induced expression of the transcription factor NF-kappaB (NFKB) and XIAP (X-chromosome-linked inhibitor of apoptosis protein) was suppressed by NBS1-siRNA. Enhanced X-ray sensitivity after NBS1-siRNA transfection was achieved in TP53 wild-type cells and sensitivity was even more pronounced in TP53 mutant cells. The transfection of siRNA targeted for XIAP also enhanced X-ray sensitivity even more for TP53 mutant cells compared to TP53 wild-type cells. Our data suggest that the sensitization to radiation results from NBS1-siRNA-mediated suppression of DNA repair and/ or X-ray-induced cell survival signaling pathways through NFKB and XIAP. siRNA targeting appears to be a novel radiation-sensitizing agent, particularly in human TP53 mutant cancer cells.
Collapse
Affiliation(s)
- Ken Ohnishi
- Department of Biology, Nara Medical University School of Medicine, Kashihara, Nara, Japan
| | | | | | | | | | | |
Collapse
|
160
|
Kantidze OL, Iarovaia OV, Klochkov DB, Razin SV. Illegitimate recombination as a possible mechanism of topoisomerase-II-induced chromosomal rearrangements. Mol Biol 2006. [DOI: 10.1134/s0026893306050141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
161
|
Toczylowski T, Yan H. Mechanistic analysis of a DNA end processing pathway mediated by the Xenopus Werner syndrome protein. J Biol Chem 2006; 281:33198-205. [PMID: 16959775 DOI: 10.1074/jbc.m605044200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The first step of homology-dependent repair of DNA double-strand breaks is the strand-specific processing of DNA ends to generate 3' single-strand tails. Despite its importance, the molecular mechanism underlying end processing is poorly understood in eukaryotic cells. We have taken a biochemical approach to investigate DNA end processing in nucleoplasmic extracts derived from the unfertilized eggs of Xenopus laevis. We found that double-strand DNA ends are specifically degraded in the 5' --> 3' direction in this system. The reaction consists of two steps: an ATP-dependent unwinding of double-strand ends and an ATP-independent 5' --> 3' degradation of single-strand tails. We also found that the Xenopus Werner syndrome protein, a member of the RecQ helicase family, plays an important role in DNA end processing. Mechanistically, Xenopus Werner syndrome protein (xWRN) is required for the unwinding of DNA ends but not for the degradation of single-strand tails. The xWRN-mediated end processing is remarkably similar to the end processing that has been proposed for the Escherichia coli RecQ helicase and RecJ single-strand nuclease, suggesting that this mechanism might be conserved in prokaryotes and eukaryotes.
Collapse
|
162
|
Balcer-Kubiczek EK, Attarpour M, Edelman MJ. The synergistic effect of dimethylamino benzoylphenylurea (NSC #639829) and X-irradiation on human lung carcinoma cell lines. Cancer Chemother Pharmacol 2006; 59:781-7. [PMID: 16957930 DOI: 10.1007/s00280-006-0333-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE The present study was designed to investigate the ability of N-[4-(5-bromo-2-pyrimidyloxy)-3-methylphenyl]-(dimemethylamino)-benzoylphenylurea (dimemethylamino benzoylphenylurea; BPU) to sensitize cells to radiation and to examine the relationship between phenotype versus survival, DNA damage, apoptosis, or cell cycle progression in non-small cell lung cancer (NSCLC) cell lines. METHODS Asynchronous cultures of three NSCLC (phenotype) lines, A549 (adenocarcinoma), NCI-H226 (squamous) and NCI-H596 (adenosquamous) were used. Cells were treated for 24 h with BPU at various concentrations (0-10 microM) to obtain drug doses for inhibiting cell survival by approximately 50% (IC50). Cells were X-irradiated without BPU or after 24 h BPU treatment at IC50. Radiation doses ranged from 0 to10 Gy. Cell survival was determined by a colony-forming ability assay. The effect of BPU on the cell cycle distribution and induction of apoptosis were measured by flow cytometry-based assays. The effect of BPU on radiation-induced DNA damage and repair was analyzed according to nuclear gammaH2AX immunofluorescence of cells exposed to X-rays alone or after BPU. Anti-gammaH2AX antibody staining, a surrogate determinant of double stranded DNA breaks, was measured using flow cytometry. RESULTS BPU (1.5 microM) for 24 h produced approximately 50% cell survival. BPU and X-irradiation were synergistic in the three cell lines at survival levels of 20-50%. Flow cytometry analysis of replicate experiments with BPU (1.5 microM for 24 h) showed that BPU blocked cell progression at S and/or G2/M. The incidence of apoptosis in BPU-treated versus control cells ranged from approximately 0.3 to approximately 8%. Twenty-four hour after X-irradiation cells pre-treated with BPU and X-irradiated after drug exposure showed gammaH2AX levels approximately two times higher than did the cells exposed to X-rays only. CONCLUSIONS The study identified BPU as a novel radiation sensitizer. The analysis of phosphorylated histone H2AX as a surrogate marker of DNA double strand breaks suggested a positive association between radiosensitization and the inhibition of X-irradiation-induced DNA damage repair by BPU.
Collapse
Affiliation(s)
- Elizabeth K Balcer-Kubiczek
- Department of Radiation Oncology, Radiation Oncology Research Laboratory, Universtity of Maryland School of Medicine, 655 W. Baltimore Street, BRB 6-009, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
163
|
Huff LM, Lee JS, Robey RW, Fojo T. Characterization of gene rearrangements leading to activation of MDR-1. J Biol Chem 2006; 281:36501-9. [PMID: 16956878 DOI: 10.1074/jbc.m602998200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the MDR-1/P-glycoprotein gene confers drug resistance both in vitro and in vivo. We previously reported that gene rearrangements resulting in a hybrid MDR-1 transcript represent a common mechanism for acquired activation of MDR-1/P-glycoprotein. We have identified hybrid MDR-1 transcripts in nine MDR-1-overexpressing cell lines and two patients with relapsed ALL. We characterize these rearrangements as follows. 1) Non-MDR-1 sequences in the hybrid MDR-1 transcripts are expressed in unselected cell lines, showing that these sequences are constitutively expressed. 2) The rearrangements occur randomly and involve partner genes (sequences) on chromosome 7 and on chromosomes other than 7. Breakpoints have been characterized in six cell lines. In one, the rearrangement occurred within intron 2 of MDR-1; in the other five, the rearrangement occurred 24 to >96 kb 5' of the normal start of transcription of MDR-1. In one cell line, homologous recombination involving an Alu repeat was observed. However, in the remaining five cell lines, nonhomologous recombination was observed. 3) The rearrangements arise during drug selection. The acquired rearrangements are not detected in parental cells. 4) Five of the six active promoters that captured MDR-1 controlled MDR-1 from a distance of 29 to more than 110 kb 5' to MDR-1. Transcription was initiated in an antegrade or retrograde direction. We conclude that drug selection with natural products targeting DNA or microtubules leads to DNA damage, nonhomologous recombination, and acquired drug resistance, wherein MDR-1 expression is driven by a random but constitutively active promoter.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- Base Sequence
- Cell Line
- Cell Line, Tumor
- DNA Damage
- Gene Rearrangement
- Genes, MDR/genetics
- Humans
- Microtubules/genetics
- Models, Genetic
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA/chemistry
- Recombination, Genetic
- Transcription, Genetic
Collapse
Affiliation(s)
- Lyn M Huff
- Medical Oncology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
164
|
Abstract
Chemotherapy and radiation are two important modalities for cancer treatment. Many agents in clinical used have the ability to induce DNA damage, however they may be highly cytotoxic as a secondary effect. Different mechanisms are involved both, in detection and repair of DNA damage. The modulation of these pathways, has a great impact on clinical outcome and is frequently responsible of therapeutic resistance. Therefore, pharmacological inhibition of DNA damage repair pathways has been explored as a useful strategy to enhance chemo and radiosensitivity, thus it could be used for reversing drug resistance. Different agents have shown excellent results in preclinical studies in combination with radiation or chemotherapy. Early phase clinical trials are now being carried out using different DNA repair inhibitors targeting several enzymes such as PARP, DNA-PK or MGMT.
Collapse
Affiliation(s)
- Isabel Sánchez-Pérez
- Instituto de Investigaciones Biomédicas del CSIC/UAM, Traslational Oncology Unit CSIC/Hospital La Paz, Madrid, Spain.
| |
Collapse
|
165
|
Bentle MS, Bey EA, Dong Y, Reinicke KE, Boothman DA. New tricks for old drugs: the anticarcinogenic potential of DNA repair inhibitors. J Mol Histol 2006; 37:203-18. [PMID: 16868862 DOI: 10.1007/s10735-006-9043-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 06/21/2006] [Indexed: 01/14/2023]
Abstract
Defective or abortive repair of DNA lesions has been associated with carcinogenesis. Therefore it is imperative for a cell to accurately repair its DNA after damage if it is to return to a normal cellular phenotype. In certain circumstances, if DNA damage cannot be repaired completely and with high fidelity, it is more advantageous for an organism to have some of its more severely damaged cells die rather than survive as neoplastic transformants. A number of DNA repair inhibitors have the potential to act as anticarcinogenic compounds. These drugs are capable of modulating DNA repair, thus promoting cell death rather than repair of potentially carcinogenic DNA damage mediated by error-prone DNA repair processes. In theory, exposure to a DNA repair inhibitor during, or immediately after, carcinogenic exposure should decrease or prevent tumorigenesis. However, the ability of DNA repair inhibitors to prevent cancer development is difficult to interpret depending upon the system used and the type of genotoxic stress. Inhibitors may act on multiple aspects of DNA repair as well as the cellular signaling pathways activated in response to the initial damage. In this review, we summarize basic DNA repair mechanisms and explore the effects of a number of DNA repair inhibitors that not only potentiate DNA-damaging agents but also decrease carcinogenicity. In particular, we focus on a novel anti-tumor agent, beta-lapachone, and its potential to block transformation by modulating poly(ADP-ribose) polymerase-1.
Collapse
Affiliation(s)
- Melissa S Bentle
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
166
|
Brugmans L, Kanaar R, Essers J. Analysis of DNA double-strand break repair pathways in mice. Mutat Res 2006; 614:95-108. [PMID: 16797606 DOI: 10.1016/j.mrfmmm.2006.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 01/19/2006] [Accepted: 01/23/2006] [Indexed: 11/26/2022]
Abstract
During the last years significant new insights have been gained into the mechanism and biological relevance of DNA double-strand break (DSB) repair in relation to genome stability. DSBs are a highly toxic DNA lesion, because they can lead to chromosome fragmentation, loss and translocations, eventually resulting in cancer. DSBs can be induced by cellular processes such as V(D)J recombination or DNA replication. They can also be introduced by exogenous agents DNA damaging agents such as ionizing radiation or mitomycin C. During evolution several pathways have evolved for the repair of these DSBs. The most important DSB repair mechanisms in mammalian cells are nonhomologous end-joining and homologous recombination. By using an undamaged repair template, homologous recombination ensures accurate DSB repair, whereas the untemplated nonhomologous end-joining pathway does not. Although both pathways are active in mammals, the relative contribution of the two repair pathways to genome stability differs in the different cell types. Given the potential differences in repair fidelity, it is of interest to determine the relative contribution of homologous recombination and nonhomologous end-joining to DSB repair. In this review, we focus on the biological relevance of DSB repair in mammalian cells and the potential overlap between nonhomologous end-joining and homologous recombination in different tissues.
Collapse
Affiliation(s)
- Linda Brugmans
- Department of Cell Biology and Genetics, Erasmus MC, Dr. Molewaterplein 50, PO Box 1738, Rotterdam 3015GE, The Netherlands
| | | | | |
Collapse
|
167
|
Kantidze OL, Iarovaia OV, Razin SV. Assembly of nuclear matrix-bound protein complexes involved in non-homologous end joining is induced by inhibition of DNA topoisomerase II. J Cell Physiol 2006; 207:660-7. [PMID: 16447266 DOI: 10.1002/jcp.20597] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Topoisomerases maintain the DNA structure by relieving the torsional stress and alleviating other topological problems occurring in DNA during transcription and replication. Topoisomerase II appears to have a close association with the family of proteins involved in the organization of chromatin in a series of loops on the proteinaceous chromosomal matrix. Beyond its physiological functions, topoisomerase II is the target for some of the most active anticancer drugs. Inhibition of the topoisomerase II function can result in DNA double-strand breaks (DSBs) and, thus, lead to chromosomal translocations. The earliest event during DSB repair is phosphorylation of histone H2AX at S139 (so-called gammaH2AX) which is believed to serve as a focal point for the assembly of repair proteins at the DSB. In this work, we have demonstrated the formation of gammaH2AX foci in two human cell lines--K562 and HeLa--after suppression of topoisomerase II activity with etoposide. Furthermore, these foci remained visible at nuclear matrices and colocalized with the major components of non-homologous end joining (NHEJ) system of DSBs repair. Thus, inhibition of topoisomerase II activity triggers assembly of NHEJ complexes at the nuclear matrix.
Collapse
Affiliation(s)
- Omar L Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, Moscow, Russia
| | | | | |
Collapse
|
168
|
Cheung HW, Chun ACS, Wang Q, Deng W, Hu L, Guan XY, Nicholls JM, Ling MT, Chuan Wong Y, Tsao SW, Jin DY, Wang X. Inactivation of human MAD2B in nasopharyngeal carcinoma cells leads to chemosensitization to DNA-damaging agents. Cancer Res 2006; 66:4357-67. [PMID: 16618761 DOI: 10.1158/0008-5472.can-05-3602] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rev7p has been suggested to play an important role in regulating DNA damage response in yeast, and recently, the human homologue (i.e., MAD2B) has been identified, which shares significant homology to the mitotic checkpoint protein MAD2. In this study, we investigated whether MAD2B played a key role in cellular sensitivity to DNA-damaging anticancer drugs by suppressing its expression using RNA interference in nasopharyngeal carcinoma cells. Using colony formation assay, we found that suppression of MAD2B conferred hypersensitivity to a range of DNA-damaging agents, especially DNA cross-linkers, such as cisplatin, and gamma-irradiation. This effect was associated with reduced frequencies of spontaneous and drug-induced mutations, elevated phosphorylation of histone H2AX, and markedly increased chromosomal aberrations in response to DNA damage. In addition, there was also a significant decrease in cisplatin-induced sister chromatid exchange rate, a marker for homologous recombination-mediated post-replication repair in MAD2B-depleted cells. These results indicate that MAD2B may be a key factor in regulating cellular response to DNA damage in cancer cells. Our findings reveal a novel strategy for cancer therapy, in which cancer cells are sensitized to DNA-damaging anticancer drugs through inactivation of the MAD2B gene.
Collapse
Affiliation(s)
- Hiu Wing Cheung
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Yamaguchi H, Ohara H, Waker AJ. A model for the induction of DNA damages and their evolution into cell clonogenic inactivation. JOURNAL OF RADIATION RESEARCH 2006; 47:197-211. [PMID: 16819146 DOI: 10.1269/jrr.47.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The dependence of the initial production of DNA damages on radiation quality was examined by using a proposed new model on the basis of target theory. For the estimation of DNA damage-production by different radiation qualities, five possible modes of radiation action, including both direct and indirect effects, were assumed inside a target the molecular structure of which was defined to consist of 10 base-pairs of DNA surrounded by water molecules. The induction of DNA damage was modeled on the basis of comparisons between the primary ionization mean free path and the distance between pairs of ionized atoms, such distance being characteristic on the mode of radiation action. The OH radicals per average energy to produce an ion pair on the nanosecond time scale was estimated and used for indirect action. Assuming a relation between estimated yields of DNA damages and experimental inactivation cross sections for AT-cells, the present model enabled the quantitative reproduction of experimental results for AT-cell killing under aerobic or hypoxic conditions. The results suggest a higher order organization of DNA in a way that there will be at least two types of water environment, one filling half the space surrounding DNA with a depth of 3.7-4.3 nm and the other filling all space with a depth 4.6-4.9 nm.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- International Space Radiation Laboratory National Institute of Radiological Sciences, Chiba, Japan.
| | | | | |
Collapse
|
170
|
Yang MH, Chiang WC, Chou TY, Chang SY, Chen PM, Teng SC, Wu KJ. Increased NBS1 expression is a marker of aggressive head and neck cancer and overexpression of NBS1 contributes to transformation. Clin Cancer Res 2006; 12:507-15. [PMID: 16428493 DOI: 10.1158/1078-0432.ccr-05-1231] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) represents the sixth most frequent type of cancer worldwide. However, the molecular genetic alterations underlying its malignant behavior and progression are little known. We showed previously that c-MYC directly activates the expression of the DNA double-strand break repair gene NBS1, and NBS1 overexpression contributes to transformation. Here, we investigate the role of NBS1 overexpression in HNSCC. EXPERIMENTAL DESIGN Immunohistochemistry analysis of NBS1 expression was done in 81 locally advanced HNSCC patients. Real-time PCR and Western blot analysis were used to confirm immunohistochemistry results. Human hypopharyngeal cancer cell lines (FADU) with overexpressing NBS1 (FADUNBS) or inducible short interference RNA to repress endogenous NBS1 (FADUNBSi) were generated by stable transfection. Soft agar clonogenicity assay was used to determine the transformation activity. Western blot analysis and phosphatidylinositol 3-kinase (PI3K) assay were done to evaluate the signaling pathways that were involved. RESULTS NBS1 overexpression was identified in 45% of advanced HNSCC patients. It was an independent marker of poor prognosis. NBS1 expression levels correlated with the transformation activity of FADU clones and also correlated with the phosphorylation levels of Akt and its downstream target mammalian target of rapamycin (mTOR). PI3K activity was increased in NBS1-overexpressing FADU clones. NBS1 overexpression also correlated with increased Akt phosphorylation levels in tumor samples. CONCLUSIONS Increased NBS1 expression is a significant prognostic marker of advanced HNSCC, and the underlying mechanism may involve the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, No. 155 Li-Nong Street Sec. 2, Peitou, Taipei 112, Taiwan
| | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Trp53 is arguably the most critical tumour suppressor gene product that inhibits malignant transformation. Besides mutations that inactivate Trp53 functions, genetic polymorphisms have been suggested to be risk factors for cancer. A polymorphic site at codon 72 in exon 4 encodes either an arginine amino acid (Trp53(72R)) or a proline residue (Trp53(72P)). Previous studies have shown that the Trp53(72R) form is more efficient in apoptosis induction, whereas the Trp53(72P) form was suggested to induce G1 arrest better. Here we report that Trp53(72P) is more efficient than Trp53(72R) in specifically activating several Trp53-dependent DNA-repair target genes in several cellular systems. Moreover, using isogenic cell lines and several DNA-repair assays, we show that Trp53(72P) cells have a significantly higher DNA-repair capacity than the Trp53(72R) cells. Furthermore, Trp53(72P)-expressing cells exhibit reduced micronuclei formation compared to Trp53(72R)-expressing cells, suggesting that genomic instability is reduced in these cells. Together, the data highlight the functional differences between the Trp53 polymorphic variants, and suggest that their expression status may influence cancer risk.
Collapse
Affiliation(s)
- M Siddique
- Laboratory of Molecular Carcinogenesis, National Cancer Centre, Singapore
| | | |
Collapse
|
172
|
Lankoff A, Bialczyk J, Dziga D, Carmichael WW, Gradzka I, Lisowska H, Kuszewski T, Gozdz S, Piorun I, Wojcik A. The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor. Mutagenesis 2006; 21:83-90. [PMID: 16434448 DOI: 10.1093/mutage/gel002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The genotoxic activity of microcystin-LR (MC-LR) is a matter of debate. MC-LR is known to be a phosphatase inhibitor and it may be expected that it is involved in the regulation of the activity of DNA-dependent protein kinase (DNA-PK), the key enzyme involved in the repair of radiation-induced DNA damage. We studied the effect of MC-LR on the repair capacity of radiation-induced DNA damage in human lymphocytes and human glioblastoma cell lines MO59J and MO59K. A dose of 0.5 microg/ml of MC-LR was chosen because it induced very little early apoptosis which gives no false positive results in the comet assay. Human lymphocytes in G0-phase of the cell cycle were pre-treated with MC-LR for 3 h and irradiated with 2 Gy of gamma radiation. The kinetics of DNA repair was assessed by the comet assay. In addition the frequencies of chromosomal aberrations were analysed. The pre-treatment with MC-LR inhibited the repair of radiation-induced damage and lead to enhanced frequencies of chromosomal aberrations including dicentric chromosomes. The results of a split-dose experiment, where cells were exposed to two 1.5 Gy doses of radiation separated by 3 h with or without MC-LR, confirmed that the toxin increased the frequency of dicentric chromosomes. We also determined the effect of MC-LR and ionizing radiation on the frequency of gamma-H2AX foci. The pre-treatment with MC-LR resulted in reduced numbers of gamma-H2AX foci in irradiated cells. In order to elucidate the impact of MC-LR on DNA-PK we examined the kinetics of DNA repair in human glioblastoma MO59J and MO59K cells. Both cell lines were exposed to 10 Gy of X-rays and DNA repair was analysed by the comet assay. A strong inhibitory effect was observed in the MO59K but not in the MO59J cells. These results indicate that DNA-PK might be involved in DNA repair inhibition by MC-LR.
Collapse
Affiliation(s)
- A Lankoff
- Department of Radiobiology and Immunology, Institute of Biology, Swietokrzyska Academy, Kielce, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Boán F, Blanco MG, Barros P, Gómez-Márquez J. DNA end-joining driven by microhomologies catalyzed by nuclear extracts. Biol Chem 2006; 387:263-7. [PMID: 16542147 DOI: 10.1515/bc.2006.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In a previous work we used an in vitro system for the generation and analysis of double-strand breaks (DSBs) using nuclear extracts from rat testes as a source of DSB activity. Since the recombination process can be triggered by the formation of DSB, in the present study we developed a strategy to isolate and characterize recombinant molecules using the same in vitro system. Our results indicate that the mechanism for the formation of recombinants was non-homologous end-joining driven by microhomologies. The procedure described here represents an alternative to investigate the mechanisms of DNA end-joining and other forms of DNA repair.
Collapse
Affiliation(s)
- Francisco Boán
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Bioloxía, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
174
|
Pavlov YI, Shcherbakova PV, Rogozin IB. Roles of DNA Polymerases in Replication, Repair, and Recombination in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 255:41-132. [PMID: 17178465 DOI: 10.1016/s0074-7696(06)55002-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The functioning of the eukaryotic genome depends on efficient and accurate DNA replication and repair. The process of replication is complicated by the ongoing decomposition of DNA and damage of the genome by endogenous and exogenous factors. DNA damage can alter base coding potential resulting in mutations, or block DNA replication, which can lead to double-strand breaks (DSB) and to subsequent chromosome loss. Replication is coordinated with DNA repair systems that operate in cells to remove or tolerate DNA lesions. DNA polymerases can serve as sensors in the cell cycle checkpoint pathways that delay cell division until damaged DNA is repaired and replication is completed. Eukaryotic DNA template-dependent DNA polymerases have different properties adapted to perform an amazingly wide spectrum of DNA transactions. In this review, we discuss the structure, the mechanism, and the evolutionary relationships of DNA polymerases and their possible functions in the replication of intact and damaged chromosomes, DNA damage repair, and recombination.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer and Allied Diseases, Departments of Biochemistry and Molecular Biology, and Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-6805, USA
| | | | | |
Collapse
|
175
|
Thyagarajan B, Anderson KE, Folsom AR, Jacobs DR, Lynch CF, Bargaje A, Khaliq W, Gross MD. No association between XRCC1 and XRCC3 gene polymorphisms and breast cancer risk: Iowa Women's Health Study. ACTA ACUST UNITED AC 2006; 30:313-21. [PMID: 16963196 DOI: 10.1016/j.cdp.2006.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2006] [Indexed: 12/01/2022]
Abstract
BACKGROUND Genetic variation in DNA repair may contribute to differences in the susceptibility of several cancers. We evaluated two polymorphisms in the base excision repair pathway (BER) (XRCC1; Arg194Trp and Arg399Gln) and one polymorphism in the double strand DNA repair pathway (XRCC3; Thr241Met) for their association with breast cancer risk. METHODS The association was analyzed in a nested case control study of 460 breast cancer cases and 324 cancer-free controls within the Iowa Women's Health Cohort. DNA was obtained from blood samples or paraffin embedded tissues (PET) and all samples were genotyped by one of three genotyping platforms-PCR-RFLP, PCR-INVADER, or Sequenom. RESULTS None of the three polymorphisms studied were significantly associated with breast cancer risk (XRCC1: Arg194Trp (OR=1.21, 95% CI: 0.78-1.88); Arg399Gln (OR=1.20, 95% CI: 0.80-1.79); XRCC3: Thr241Met (OR=1.04, 95% CI: 0.76-1.41). CONCLUSIONS These results suggest that independently these polymorphisms of XRCC1 and XRCC3 genes do not contribute significantly to the genetic susceptibility of breast cancer.
Collapse
Affiliation(s)
- Bharat Thyagarajan
- University of Minnesota, Division of Epidemiology, Suite 300, West Bank Office Building, Minneapolis, MN 55454, United States
| | | | | | | | | | | | | | | |
Collapse
|
176
|
van de Lagemaat LN, Gagnier L, Medstrand P, Mager DL. Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Res 2005; 15:1243-9. [PMID: 16140992 PMCID: PMC1199538 DOI: 10.1101/gr.3910705] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Insertion of transposable elements is a major cause of genomic expansion in eukaryotes. Less is understood, however, about mechanisms underlying contraction of genomes. In this study, we show that retroelements can, in rare cases, be precisely deleted from primate genomes, most likely via recombination between 10- to 20-bp target site duplications (TSDs) flanking the retroelement. The deleted loci are indistinguishable from pre-integration sites, effectively reversing the insertion. Through human-chimpanzee-Rhesus monkey genomic comparisons, we estimate that 0.5%-1% of apparent retroelement "insertions" distinguishing humans and chimpanzees actually represent deletions. Furthermore, we demonstrate that 19% of genomic deletions of 200-500 bp that have occurred since the human-chimpanzee divergence are associated with flanking identical repeats of at least 10 bp. A large number of deletions internal to Alu elements were also found flanked by homologies. These results suggest that illegitimate recombination between short direct repeats has played a significant role in human genome evolution. Moreover, this study lends perspective to the view that insertions of retroelements represent unidirectional genetic events.
Collapse
|
177
|
Slijepcevic P, Al-Wahiby S. Telomere biology: integrating chromosomal end protection with DNA damage response. Chromosoma 2005; 114:275-85. [PMID: 15843951 DOI: 10.1007/s00412-005-0338-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 02/12/2005] [Accepted: 02/28/2005] [Indexed: 01/01/2023]
Abstract
Telomeres play the key protective role at chromosomes. Many studies indicate that loss of telomere function causes activation of DNA damage response. Here, we review evidence supporting interdependence between telomere maintenance and DNA damage response and present a model in which these two pathways are combined into a single mechanism for protecting chromosomal integrity. Proteins directly involved in telomere maintenance and DNA damage response include Ku, DNA-PKcs, RAD51D, PARP-2, WRN and RAD50/MRE11/NBS1 complex. Since most of these proteins participate in the repair of DNA double-strand breaks (DSBs), this was perceived by many authors as a paradox, given that telomeres function to conceal natural DNA ends from mechanisms that detect and repair DSBs. However, we argue here that the key function of one particular DSB protein, Ku, is to prevent or control access of telomerase, the enzyme that synthesises telomeric sequences, to both internal DSBs and natural chromosomal ends. This view is supported by observations that Ku has a high affinity for DNA ends; it acts as a negative regulator of telomerase and that telomerase itself can target internal DSBs. Ku then directs other DSB repair/telomere maintenance proteins to either repair DSBs at internal chromosomal sites or prevent uncontrolled elongation of telomeres by telomerase. This model eliminates the above paradox and provides a testable scenario in which the role of DSB repair proteins is to protect chromosomal integrity by balancing repair activities and telomere maintenance. In our model, a close association between telomeres and different DNA damage response factors is not an unexpected event, but rather a logical result of chromosomal integrity maintenance activities.
Collapse
Affiliation(s)
- Predrag Slijepcevic
- Brunel Institute of Cancer Genetics and Pharmacogenomics, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex UB8 3PH, UK.
| | | |
Collapse
|
178
|
Jones KR, Gewirtz DA, Yannone SM, Zhou S, Schatz DG, Valerie K, Povirk LF. Radiosensitization of MDA-MB-231 breast tumor cells by adenovirus-mediated overexpression of a fragment of the XRCC4 protein. Mol Cancer Ther 2005; 4:1541-7. [PMID: 16227403 DOI: 10.1158/1535-7163.mct-05-0193] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Incomplete DNA repair or misrepair can contribute to the cytotoxicity of DNA double-strand breaks. Consequently, interference with double-strand break repair, by pharmacologic or genetic means, is likely to sensitize tumor cells to ionizing radiation. The current studies were designed to inhibit the nonhomologous end joining repair pathway by interfering with the function of the XRCC4/ligase IV complex. A PCR-generated fragment of the XRCC4 gene, encompassing the homodimerization and ligase IV-binding domains, was inserted into a plasmid vector (pFLAG-CMV-2) expressing the FLAG peptide and the cassette encoding FLAG-tagged XRCC4 fragment was cloned into an adenoviral vector. Both the plasmid and the corresponding adenovirus elicited robust expression of a truncated XRCC4 protein designed to compete in a dominant-negative fashion with full-length XRCC4 for binding to ligase IV. Binding of the XRCC4 fragment to ligase IV in vivo was confirmed by immunoprecipitation. Clonogenic survival assays showed that the adenovirus expressing the truncated XRCC4 protein sensitizes MDA-MB-231 breast tumor cells to ionizing radiation, presumably through interference with the functional activity of ligase IV, leading to inhibition of the final ligation step in end joining. These studies support the potential clinical utility of combining radiation therapy with agents that inhibit DNA double-strand break repair.
Collapse
Affiliation(s)
- Kara R Jones
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, P.O. Box 980230, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Leister D. Origin, evolution and genetic effects of nuclear insertions of organelle DNA. Trends Genet 2005; 21:655-63. [PMID: 16216380 DOI: 10.1016/j.tig.2005.09.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/16/2005] [Accepted: 09/05/2005] [Indexed: 01/24/2023]
Abstract
In eukaryotes, nuclear genomes are subject to an influx of DNA from mitochondria and plastids. The nuclear insertion of organellar sequences can occur during the illegitimate repair of double-stranded breaks. After integration, nuclear organelle DNA is modified by point mutations, and by deletions. Insertion of organelle DNA into nuclear genes is not rare and can potentially have harmful effects. In humans, some insertions of nuclear mitochondrial DNA are associated with heritable diseases. It remains to be determined whether nuclear organelle DNA can contribute beneficially to gene evolution.
Collapse
Affiliation(s)
- Dario Leister
- Department Biologie I, Botanik, Ludwig-Maximilians-Universität, Menzingerstr. 67, D-80638 München, Germany.
| |
Collapse
|
180
|
Blanco MG, Boán F, Barros P, Castaño JG, Gómez-Márquez J. Generation of DNA double-strand breaks by two independent enzymatic activities in nuclear extracts. J Mol Biol 2005; 351:995-1006. [PMID: 16051267 DOI: 10.1016/j.jmb.2005.06.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/24/2005] [Accepted: 06/29/2005] [Indexed: 11/18/2022]
Abstract
We have reported the existence in rat nuclear extracts of a specific cleavage activity on a DNA fragment containing the human minisatellite MsH42 region (minisatellite plus its flanking sequences). Here, we have developed a system to analyse the nature of the cleavage products from the MsH42 region generated by the nuclear extracts. Our results demonstrated the formation of DNA double-strand breaks (DSB) in the MsH42 region by two different enzymatic activities, and that their distribution along this fragment changes depending on the presence of Mg2+. In the assays with Mg2+, the DSB were located in the minisatellite and its 3'-flanking region, showing preference for G-rich stretches. Oligonucleotide mutagenesis analysis confirmed that this enzymatic activity has a strong preference for G-tracts and that the recognition site is polarized towards the 3' end. Moreover, this activity cuts GC palindromes efficiently. In contrast, in the experiments without Mg2+, most DSB were mapped within the minisatellite flanking sequences. The analysis with oligonucleotides showed that G-tracts are recognized by this endonuclease activity, but with differences in the cleavage behaviour with respect to the reactions observed with Mg2+. The existence of two separate activities (Mg2+-dependent and Mg2+-independent) for the production of DSB was confirmed by analysing the effect of EGTA, N-ethyl maleimide, ionic strength, and by preincubations of the nuclear extracts at different temperatures. The tissue distribution of both DSB-producing activities was also different. The in vitro system used in the present work may be a useful tool for studying the formation of DSB and for investigation of the mechanisms of DNA repair.
Collapse
Affiliation(s)
- Miguel G Blanco
- Departamento de Bioquímica e Bioloxía Molecular, Facultade de Bioloxía, Universidade de Santiago de Compostela, Galicia 15782, Spain
| | | | | | | | | |
Collapse
|
181
|
Chen YC, Su YN, Chou PC, Chiang WC, Chang MC, Wang LS, Teng SC, Wu KJ. Overexpression of NBS1 Contributes to Transformation through the Activation of Phosphatidylinositol 3-Kinase/Akt. J Biol Chem 2005; 280:32505-11. [PMID: 16036916 DOI: 10.1074/jbc.m501449200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nijmegen breakage syndrome (NBS) is a chromosomal instability syndrome associated with cancer predisposition, radiosensitivity, microcephaly, and growth retardation. The NBS gene product, NBS1 (p95) or nibrin, is a part of the hMre11 complex, a central player associated with double strand break repair. We previously demonstrated that c-Myc directly activates NBS1 expression. Here we have shown that constitutive expression of NBS1 in Rat1a and HeLa cells induces/enhances their transformation. Repression of endogenous NBS1 levels using short interference RNA reduces the transformation activity of two tumor cell lines. Increased NBS1 expression is observed in 40-52% of non-small cell lung carcinoma, hepatoma, and esophageal cancer samples. NBS1 overexpression stimulates phosphatidylinositol (PI) 3-kinase activity, leading to increased phosphorylation levels of Akt and its downstream targets such as glycogen synthase kinase 3beta and mammalian target of rapamycin in different cell lines and tumor samples. Transformation induced by NBS1 overexpression can be inhibited by a PI3-kinase inhibitor (LY294002). Repression of endogenous Akt expression by short interference RNA decreases the transformation activity of Rat1a cells overexpressing NBS1. These results indicate that overexpression of NBS1 is an oncogenic event that contributes to transformation through the activation of PI3-kinase/Akt.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Houghtaling S, Newell A, Akkari Y, Taniguchi T, Olson S, Grompe M. Fancd2 functions in a double strand break repair pathway that is distinct from non-homologous end joining. Hum Mol Genet 2005; 14:3027-33. [PMID: 16135554 DOI: 10.1093/hmg/ddi334] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fanconi anemia (FA) is a multigenic recessive disease resulting in bone marrow failure and increased cancer susceptibility. Cells from FA patients and mouse models are sensitive to DNA interstrand crosslinks (ICLs) and FA mice are moderately sensitive to ionizing radiation (IR). Both kinds of damage induce DNA double strand breaks (DSBs). To date, nine genes in 11 complementation groups have been identified; however, the precise function of the FA pathway remains unclear. Many of the proteins form a nuclear complex necessary for the mono-ubiquitination of the downstream protein, Fancd2. To further investigate the role of the FA pathway in repair of DSBs, we generated Fancd2(-/-)/Prkdc(sc/sc) double mutant mice. Prkdc(sc/sc) mutant mice have a defect in non-homologous end joining (NHEJ) and are sensitive to IR-induced DNA damage. Double mutant animals and primary cells were more sensitive to IR than either single mutant, suggesting that Fancd2 operates in DSB repair pathway distinct from NHEJ. Fancd2(-/-)/Prkdc(sc/sc) double mutant cells were also more sensitive to DSBs generated by a restriction endonuclease. The role of Fancd2 in DSB repair may account for the moderate sensitivity of FA cells to irradiation and FA cells sensitivity to ICLs that are repaired via a DSB intermediate.
Collapse
Affiliation(s)
- Scott Houghtaling
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, 97239, USA.
| | | | | | | | | | | |
Collapse
|
183
|
Hinz JM, Yamada NA, Salazar EP, Tebbs RS, Thompson LH. Influence of double-strand-break repair pathways on radiosensitivity throughout the cell cycle in CHO cells. DNA Repair (Amst) 2005; 4:782-92. [PMID: 15951249 DOI: 10.1016/j.dnarep.2005.03.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 03/17/2005] [Accepted: 03/22/2005] [Indexed: 11/17/2022]
Abstract
Unrepaired DNA double-strand breaks (DSBs) produced by ionizing radiation (IR) are a major determinant of cell killing. To determine the contribution of DNA repair pathways to the well-established cell cycle variation in IR sensitivity, we compared the radiosensitivity of wild-type CHO cells to mutant lines defective in nonhomologous end joining (NHEJ), homologous recombination repair (HRR), and the Fanconi anemia pathway. Cells were irradiated with IR doses that killed approximately 90% of each asynchronous population, separated into synchronous fractions by centrifugal elutriation, and assayed for survival (colony formation). Wild-type cells had lowest resistance in early G1 and highest resistance in S phase, followed by declining resistance as cells move into G2/M. In contrast, HR-defective cells (xrcc3 mutation) were most resistant in early G1 and became progressively less resistant in S and G2/M, indicating that the S-phase resistance in wild-type cells requires HRR. Cells defective in NHEJ (dna-pk(cs) mutation) were exquisitely sensitive in early G1, most resistant in S phase, and then somewhat less resistant in G2/M. Fancg mutant cells had almost normal IR sensitivity and normal cell cycle dependence, suggesting that Fancg contributes modestly to survival and in a manner that is independent of cell cycle position.
Collapse
Affiliation(s)
- John M Hinz
- Biosciences Directorate, L441 Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, USA
| | | | | | | | | |
Collapse
|
184
|
Sturgis EM, Zhao C, Zheng R, Wei Q. Radiation Response Genotype and Risk of Differentiated Thyroid Cancer: A Case-Control Analysis. Laryngoscope 2005; 115:938-45. [PMID: 15933498 DOI: 10.1097/01.mlg.0000163765.88158.86] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Radiation is the only clear etiologic agent for differentiated thyroid cancer (DTC). Understanding the factors affecting sensitivity to gamma radiation and susceptibility to DTC will be critical to early detection and prevention of DTC. HYPOTHESIS Germline variants of double-strand break repair genes are markers of DTC risk. OBJECTIVE Determine the frequency of common single nucleotide polymorphisms of genes of the double-strand break repair pathway in patients with DTC and cancer-free controls. STUDY DESIGN Case-control study. METHODS This study included 134 patients with DTC, 79 patients with benign thyroid lesions, and 166 cancer-free control subjects. To avoid ethnic confounding, all subjects were non-Hispanic whites. Genotype analyses were performed on DNA isolated from peripheral blood lymphocytes. Multivariate logistic regression analyses were performed to estimate the risk of DTC associated with each variant genotype. RESULTS The XRCC3 18067T polymorphic allele was found significantly more commonly among the DTC cases than for the control subjects (P=.006). After multivariate adjustment, having the XRCC3 18067T allele was associated with an increased risk of DTC (adjusted odds ratio [OR] = 2.1; 95% confidence interval [CI] = 1.3 to 3.4; P = .004). In addition, there was a suggestion that the XRCC3 18067T polymorphic allele was more common among the patients with benign thyroid disease (P = .054), and the homozygous polymorphic genotype was associated with risk for benign thyroid disease (adjusted OR = 2.1; 95% CI = 0.9-4.9; P = .078). CONCLUSIONS In this case-control analysis, the XRCC3 18067T polymorphism is associated with DTC risk. However, such work needs confirmation in larger studies.
Collapse
Affiliation(s)
- Erich M Sturgis
- Department of Head and Neck Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030-4009, USA.
| | | | | | | |
Collapse
|
185
|
Diggle CP, Bentley J, Knowles MA, Kiltie AE. Inhibition of double-strand break non-homologous end-joining by cisplatin adducts in human cell extracts. Nucleic Acids Res 2005; 33:2531-9. [PMID: 15872216 PMCID: PMC1088968 DOI: 10.1093/nar/gki528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effect of cis-diaminedichloroplatinum(II) (cisplatin) DNA damage on the repair of double-strand breaks by non-homologous end-joining (NHEJ) was determined using cell-free extracts. NHEJ was dramatically decreased when plasmid DNA was damaged to contain multiple types of DNA adducts, along the molecule and at the termini, by incubation of DNA with cisplatin; this was a cisplatin concentration-dependent effect. We investigated the effect a single GTG cisplatination site starting 10 bp from the DNA termini would have when surrounded by the regions of AT-rich DNA which were devoid of the major adduct target sequences. Cisplatination of a substrate containing short terminal 13-15 bp AT-rich sequences reduced NHEJ to a greater extent than that of a substrate with longer (31-33 bp) AT-rich sequences. However, cisplatination at the single GTG site within the AT sequence had no significant effect on NHEJ, owing to the influence of additional minor monoadduct and dinucleotide adduct sites within the AT-rich region and owing to the influence of cisplatination at sites upstream of the AT-rich regions. We then studied the effect on NHEJ of one cis-[Pt(NH3)2{d(GpTpG)-N7(1),-N7(3)} [abbreviated as 1,3-d(GpTpG)] cisplatin adduct in the entire DNA molecule, which is more reflective of the situation in vivo during concurrent chemoradiation. The presence of a single 1,3-d(GpTpG) cisplatin adduct 10 bases from each of the two DNA ends to be joined resulted in a small (30%) but significant decrease in NHEJ efficiency. This process, which was DNA-dependent protein kinase and Ku dependent, may in part explain the radiosensitizing effect of cisplatin administered during concurrent chemoradiation.
Collapse
Affiliation(s)
| | | | | | - A. E. Kiltie
- To whom correspondence should be addressed. Tel: +44 113 206 4908; Fax: +44 113 242 9886;
| |
Collapse
|
186
|
Drexler GA, Rogge S, Beisker W, Eckardt-Schupp F, Zdzienicka MZ, Fritz E. Spontaneous homologous recombination is decreased in Rad51C-deficient hamster cells. DNA Repair (Amst) 2005; 3:1335-43. [PMID: 15336628 DOI: 10.1016/j.dnarep.2004.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Revised: 05/04/2004] [Accepted: 05/05/2004] [Indexed: 11/29/2022]
Abstract
The Chinese hamster cell mutant, CL-V4B that is mutated in the Rad51 paralog gene, Rad51C (RAD51L2), has been described to exhibit increased sensitivity to DNA cross-linking agents, genomic instability, and an impaired Rad51 foci formation in response to DNA damage. To directly examine an effect of the Rad51C protein on homologous recombination (HR) in mammalian cells, we compared the frequencies and rates of spontaneous HR in CL-V4B cells and in parental wildtype V79B cells, using a recombination reporter plasmid in host cell reactivation assays. Our results demonstrate that HR is reduced but not abolished in the CL-V4B mutant. We thus, provide direct evidence for a role of mammalian Rad51C in HR processes. The reduced HR events described here help to explain the deficient phenotypes observed in Rad51C mutants and support an accessory role of Rad51C in Rad51-mediated recombination.
Collapse
Affiliation(s)
- Guido A Drexler
- Institute of Molecular Radiobiology, GSF-National Research Center for Environment and Health, Neuherberg D-85758, Germany
| | | | | | | | | | | |
Collapse
|
187
|
Smith JA, Waldman BC, Waldman AS. A role for DNA mismatch repair protein Msh2 in error-prone double-strand-break repair in mammalian chromosomes. Genetics 2005; 170:355-63. [PMID: 15781695 PMCID: PMC1449728 DOI: 10.1534/genetics.104.039362] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We examined error-prone nonhomologous end joining (NHEJ) in Msh2-deficient and wild-type Chinese hamster ovary cell lines. A DNA substrate containing a thymidine kinase (tk) gene fused to a neomycin-resistance (neo) gene was stably integrated into cells. The fusion gene was rendered nonfunctional due to a 22-bp oligonucleotide insertion, which included the 18-bp I-SceI endonuclease recognition site, within the tk portion of the fusion gene. A double-strand break (DSB) was induced by transiently expressing the I-SceI endonuclease, and deletions or insertions that restored the tk-neo fusion gene's reading frame were recovered by selecting for G418-resistant colonies. Overall, neither the frequency of recovery of G418-resistant colonies nor the sizes of NHEJ-associated deletions were substantially different for the mutant vs. wild-type cell lines. However, we did observe greater usage of terminal microhomology among NHEJ events recovered from wild-type cells as compared to Msh2 mutants. Our results suggest that Msh2 influences error-prone NHEJ repair at the step of pairing of terminal DNA tails. We also report the recovery from both wild-type and Msh2-deficient cells of an unusual class of NHEJ events associated with multiple deletion intervals, and we discuss a possible mechanism for the generation of these "discontinuous deletions."
Collapse
Affiliation(s)
- Jason A Smith
- Department of Biological Sciences, University of South Carolina, Columbia, 29208, USA
| | | | | |
Collapse
|
188
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
189
|
Comai L, Li B. The Werner syndrome protein at the crossroads of DNA repair and apoptosis. Mech Ageing Dev 2005; 125:521-8. [PMID: 15336909 DOI: 10.1016/j.mad.2004.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 06/10/2004] [Accepted: 06/11/2004] [Indexed: 01/08/2023]
Abstract
Werner syndrome (WS) is a premature aging disease characterized by genetic instability. WS is caused by mutations in a gene encoding for a 160 kDa nuclear protein, the Werner syndrome protein (WRN), which has exonuclease and helicase activities. The mechanism whereby WRN controls genome stability and life span is not known. Over the last few years, WRN has become the focus of intense investigation by a growing number of scientists. The studies carried out by many laboratories have provided a wealth of new information about the functional properties of WRN and its cellular partners. This review focuses on recent findings that demonstrate a functional interaction between WRN and two factors that bind to DNA breaks, Ku and poly(ADP-ribose) polymerase 1, and discuss how these interactions can influence fundamental cellular processes such as DNA repair, apoptosis and possibly regulate cell senescence and organismal aging.
Collapse
Affiliation(s)
- Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
190
|
Yang H, Asaad N, Held KD. Medium-mediated intercellular communication is involved in bystander responses of X-ray-irradiated normal human fibroblasts. Oncogene 2005; 24:2096-103. [PMID: 15688009 DOI: 10.1038/sj.onc.1208439] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although radiation-induced bystander effects have been demonstrated in a number of cell types, the studies have largely been performed using high linear energy transfer (LET) radiation, such as alpha-particles. The literature is contradictory on whether fibroblasts show bystander responses, especially after low LET radiation such as X- or gamma-rays and whether the same signal transmission pathways are involved. Herein, a novel transwell insert culture dish method is used to show that X-irradiation induces medium-mediated bystander effects in AGO1522 normal human fibroblasts. The frequency of micronuclei formation in unirradiated bystander cells increases from a background of about 6.5% to about 9-13% at all doses from 0.1 to 10 Gy to the irradiated cells. Induction of p21Waf1 protein and foci of gamma-H2AX in bystander cells is also independent of dose to the irradiated cells above 0.1 Gy. In addition, levels of reactive oxygen species (ROS) were increased persistently in directly irradiated cells up to 60 h after irradiation and in bystander cells for 30 h. Adding Cu-Zn superoxide dismutase (SOD) and catalase to the medium decreases the formation of micronuclei and induction of p21Waf1 and gamma-H2AX foci in bystander cells, suggesting oxidative metabolism plays a role in the signaling pathways in bystander cells. The results of clonogenic assay of bystander cells showed that survival of bystander cells decreases from 0 to 0.5 Gy, and then is independent of the dose to irradiated cells from 0.5 to 10 Gy. Unlike the response with p21Waf1 expression, gamma-H2AX foci and micronuclei, adding SOD and catalase has no effect on the survival of bystander cells. The data suggest that irradiated cells release toxic factors other than ROS into the medium.
Collapse
Affiliation(s)
- Hongying Yang
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, COX 302, Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
191
|
Genomic Instability:Signaling Pathways Orchestrating the Responsesto Ionizing Radiation and Cisplatin. Genome Integr 2005. [DOI: 10.1007/7050_010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
192
|
Shin KH, Kang MK, Dicterow E, Kameta A, Baluda MA, Park NH. Introduction of human telomerase reverse transcriptase to normal human fibroblasts enhances DNA repair capacity. Clin Cancer Res 2004; 10:2551-60. [PMID: 15073136 DOI: 10.1158/1078-0432.ccr-0669-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE From numerous reports on proteins involved in DNA repair and telomere maintenance that physically associate with human telomerase reverse transcriptase (hTERT), we inferred that hTERT/telomerase might play a role in DNA repair. We investigated this possibility in normal human oral fibroblasts (NHOF) with and without ectopic expression of hTERT/telomerase. EXPERIMENTAL DESIGN To study the effect of hTERT/telomerase on DNA repair, we examined the mutation frequency rate, host cell reactivation rate, nucleotide excision repair capacity, and DNA end-joining activity of NHOF and NHOF capable of expressing hTERT/telomerase (NHOF-T). NHOF-T was obtained by transfecting NHOF with hTERT plasmid. RESULTS Compared with parental NHOF and NHOF transfected with empty vector (NHOF-EV), we found that (a) the N-methyl-N'-nitro-N-nitrosoguanidine-induced mutation frequency of an exogenous shuttle vector was reduced in NHOF-T, (b) the host cell reactivation rate of N-methyl-N'-nitro-N-nitrosoguanidine-damaged plasmids was significantly faster in NHOF-T; (c) the nucleotide excision repair of UV-damaged DNA in NHOF-T was faster, and (d) the DNA end-joining capacity in NHOF-T was enhanced. We also found that the above enhanced DNA repair activities in NHOF-T disappeared when the cells lost the capacity to express hTERT/telomerase. CONCLUSIONS These results indicated that hTERT/telomerase enhances DNA repair activities in NHOF. We hypothesize that hTERT/telomerase accelerates DNA repair by recruiting DNA repair proteins to the damaged DNA sites.
Collapse
Affiliation(s)
- Ki-Hyuk Shin
- School of Dentistry, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
193
|
Yun S, Lie-A-Cheong C, Porter ACG. Discriminatory suppression of homologous recombination by p53. Nucleic Acids Res 2004; 32:6479-89. [PMID: 15601996 PMCID: PMC545454 DOI: 10.1093/nar/gkh986] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/19/2004] [Accepted: 11/19/2004] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is used in vertebrate somatic cells for essential, RAD51-dependent, repair of DNA double-strand-breaks (DSBs), but inappropriate HR can cause genome instability. A transcriptional transactivation-independent role for p53 in suppressing HR has been established, but is not detected in all HR assays. To address the basis of such exceptions, and the possibility that suppression by p53 may be discriminatory, we have conducted a controlled comparison of the effects of p53 depletion on three different kinds of HR. We show that, within the same cells, p53 depletion promotes both intra-chromosomal HR (ICHR) and extra-chromosomal HR (ECHR), but not homologous DNA integration (gene targeting; GT). This conclusion holds true for both spontaneous and DSB-induced ICHR and GT. We show further that non-conservative ICHR is more susceptible than conservative ICHR to inhibition by p53. These results provide strong evidence that p53 can discriminate between different forms of HR and, despite the fact that GT is used experimentally for gene disruption, is consistent with the possibility that p53 preferentially suppresses genome-destabilizing forms of HR. While the mechanism of suppression by p53 remains unclear, our data suggest that it is independent of mismatch repair and of changes in RAD51 protein levels.
Collapse
Affiliation(s)
- Sheng Yun
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
194
|
Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst 2004; 96:1659-68. [PMID: 15547178 DOI: 10.1093/jnci/djh312] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Germline mutations of the BRCA1 gene account for approximately 5% of breast and ovarian cancer cases, and lower than normal BRCA1 expression or function may be an important contributing factor in sporadic cancers. The major role of BRCA1 is to respond to DNA damage by participating in cellular pathways for DNA repair, mRNA transcription, cell cycle regulation, and protein ubiquitination. Because most chemotherapeutic agents function by directly or indirectly damaging DNA, the role of BRCA1 as a regulator of chemotherapy-induced DNA damage has been the subject of an increasing number of investigations. We review published preclinical and clinical evidence that the level of BRCA1 function in an individual patient's tumor can guide the choice of chemotherapeutic agents for breast and ovarian cancer. We conclude that a loss of BRCA1 function is associated with sensitivity to DNA-damaging chemotherapy and may also be associated with resistance to spindle poisons. We recommend that prospective clinical studies investigating the role of BRCA1 in the response to chemotherapy be conducted.
Collapse
Affiliation(s)
- Richard D Kennedy
- Department of Oncology, Cancer Research Centre, The Queen's University of Belfast, Northern Ireland
| | | | | | | | | |
Collapse
|
195
|
D'Anjou H, Chabot C, Chartrand P. Preferential accessibility to specific genomic loci for the repair of double-strand breaks in human cells. Nucleic Acids Res 2004; 32:6136-43. [PMID: 15562005 PMCID: PMC534631 DOI: 10.1093/nar/gkh952] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dynamic organization of the human genome in the nucleus is gaining recognition as a determining factor in its functional regulation. In order to be expressed, replicated or repaired, a genomic locus has to be present at the right place at the right time. In the present study, we have investigated the choice of a double-strand break (DSB) repair partner for a given genomic loci in an ATM-deficient human fibroblast cell line. We found that partner choice is restricted such that a given genomic locus preferentially uses certain sites in the genome to repair itself. These preferential sites can be in the vicinity of the damage site or megabases away or on other chromosomes entirely, while potential sites closer to the break along the length of the chromosome can be ignored. Moreover, there can be more than a 10-fold difference in usage between repair sites located only 10 kb apart. Interestingly, arms of a given chromosome are less accessible to one another than to other chromosomes. Altogether, these results indicate that the accessibility between genomic sites in the human genome during DSB repair is specific and conserved in a cell population.
Collapse
Affiliation(s)
- Hélène D'Anjou
- Molecular Biology Program, Montreal Cancer Institute, CHUM, Université de Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
196
|
Secretan MB, Scuric Z, Oshima J, Bishop AJR, Howlett NG, Yau D, Schiestl RH. Effect of Ku86 and DNA-PKcs deficiency on non-homologous end-joining and homologous recombination using a transient transfection assay. Mutat Res 2004; 554:351-64. [PMID: 15450431 DOI: 10.1016/j.mrfmmm.2004.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/11/2004] [Accepted: 05/28/2004] [Indexed: 11/21/2022]
Abstract
In mammalian cells, DNA double-strand breaks are repaired by non-homologous end-joining and homologous recombination, both pathways being essential for the maintenance of genome integrity. We determined the effect of mutations in Ku86 and DNA-PK on the efficiency and the accuracy of double-strand break repair by non-homologous end-joining and homologous recombination in mammalian cells. We used an assay, based on the transient transfection of a linearized plasmid DNA, designed to simultaneously detect transfection and recombination markers. In agreement with previous results non-homologous end-joining was largely compromised in Ku86 deficient cells, and returned to normal in the Ku86-complemented isogenic cell line. In addition, analysis of DNA plasmids recovered from Ku86 mutant cells showed an increased use of microhomologies at the nonhomologous end joining junctions, and displayed a significantly higher frequency of DNA insertions compared to control cells. On the other hand, the DNA-PKcs deficient cell lines showed efficient double-strand break repair by both mechanisms.
Collapse
Affiliation(s)
- M B Secretan
- Department of Pathology, UCLA School of Medicine and Public Health, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
197
|
Ismail SM, Puppi M, Prithivirajsingh S, Munshi A, Raju U, Meyn RE, Buchholz TA, Story MD, Brock WA, Milas L, Thames HD, Stevens CW. Predicting radiosensitivity using DNA end-binding complex analysis. Clin Cancer Res 2004; 10:1226-34. [PMID: 14977819 DOI: 10.1158/1078-0432.ccr-03-0331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous reports have suggested that measuring radiosensitivity of normal and tumor cells would have significant clinical relevance for the practice of radiation oncology. We hypothesized that radiosensitivity might be predicted by analyzing DNA end-binding complexes (DNA-EBCs), which form at DNA double-strand breaks, the most important cytotoxic lesion caused by radiation. To test this hypothesis, the DNA-EBC pattern of 21 primary human fibroblast cultures and 15 tumor cell lines were studied. DNA-EBC patterns were determined using a modified electrophoretic mobility shift assay and were correlated with radiosensitivity, as measured by SF2. DNA-EBC analysis identified a rapidly migrating ATM-containing band (identified as "band-A") of which the density correlated with SF2 (0.02 </= SF2 </= 0.41) in primary fibroblasts (r(2) = 0.77). The DNA-EBC pattern of peripheral blood lymphocytes was identical to that of fibroblasts. In addition, band-A density correlated with SF2 (0.35 </= SF2 </= 0.80) in 15 human tumor cell lines (r(2) = 0.91). Densitometry of other bands, or total DNA-EBC binding, correlated more poorly with SF2 (r(2) < 0.45). These data indicate that DNA-EBC analysis may be a practical, clinically relevant predictor of tumor and primary cell radiosensitivity.
Collapse
Affiliation(s)
- Sheikh M Ismail
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Ismail SM, Buchholz TA, Story M, Brock WA, Stevens CW. Radiosensitivity is predicted by DNA end-binding complex density, but not by nuclear levels of band components. Radiother Oncol 2004; 72:325-32. [PMID: 15450732 DOI: 10.1016/j.radonc.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 06/26/2004] [Accepted: 06/28/2004] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND PURPOSE We previously determined that the density of a rapidly migrating DNA end-binding complex (termed 'band-A') predicts radiosensitivity of human normal and tumor cells. The goal of this study was first to identify the protein components of band-A and to determine if the protein levels of band-A components would correlate with band-A density and radiosensitivity. PATIENTS AND METHODS DNA end-binding protein complex (DNA-EBC) protein components were identified by adding antibodies specific for a variety of DNA repair-associated proteins to the DNA-EBC reaction and then noting which antibodies super-shifted various DNA-EBC bands. Band-A levels were correlated with SF2 for a panel of primary human fibroblasts heterozygous for sequence-proven mutations in BRCA1 or BRCA2. The nuclear protein levels of band-A components were determined in each BRCA1 heterozygote by western hybridization. RESULTS DNA-EBC analysis of human nuclear proteins revealed 10 identifiable bands. The density of the most rapidly migrating DNA-EBC band correlated closely with both BRCA-mutation status and radiosensitivity (r(2)=0.85). This band was absent in cells with homozygous mutations in their ataxia-telangiectasia-mutated protein (ATM) genes. This band was also completely supershifted by the addition of antibodies to ATM, Ku70, DNA ligase III, Rpa32, Rpa14, DNA ligase IV, XRCC4, WRN, BLM, RAD51 and p53. However, the intranuclear concentrations of these proteins did not correlate with either the SF2 or DNA-EBC density. Neither BRCA1 or BRCA2 could be detected in band-A. CONCLUSIONS DNA-EBC analysis of human nuclear extracts resulted in 10 bands, at least six of which contained ATM. The density of one of the DNA-EBCs predicted the radiosensitization caused by BRCA haploinsufficiency, and this band contains Ku70, ATM, DNA ligase III, Rpa32, Rpa14, DNA ligase IV, XRCC4, WRN, BLM, RAD51 and p53 but not BRCA 1 or 2. The density of band-A was independent of the nuclear concentration of any of its known component.
Collapse
Affiliation(s)
- Sheikh M Ismail
- Department of Experimental Radiation Oncology, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 97, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
199
|
Kreder NC, ten Cate R, Rodermond HM, van Bree C, Franken NAP, Zdzienicka MZ, Haveman J. Cellular response to pulsed low-dose rate irradiation in X-ray sensitive hamster mutant cell lines. JOURNAL OF RADIATION RESEARCH 2004; 45:385-91. [PMID: 15613783 DOI: 10.1269/jrr.45.385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The role of DNA repair mechanisms in the cellular response to low dose rate (LDR) irradiation was studied with the aim to gain insight in the process of sublethal damage (SLD) repair. Chinese hamster cell lines mutated in either DNA single strand break (ssb) repair or DNA double strand break (dsb) repair by non homologous end joining (NHEJ) and homologous recombination (HR), or showing an AT-like phenotype, were irradiated in plateau-phase either at high dose rate (HDR, 3.3 Gy/min) or at pulsed low dose rate (p-LDR, average 1 Gy/h). Cell survival after irradiation was assessed using the clonogenic assay. A change in sensitivity when the dose rate was decreased was observed for all parental cell lines and the DNA ssb repair mutant. No difference in cell survival after p-LDR versus. HDR irradiation was observed for the two NHEJ mutants, the AT-like mutant and the HR mutant. Based on these results we conclude that single strand break repair does not play a role in the dose rate effect. The AT like protein, functional NHEJ and XRCC3 are required for the dose rate effect.
Collapse
Affiliation(s)
- N Castro Kreder
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam
| | | | | | | | | | | | | |
Collapse
|
200
|
van Heemst D, Brugmans L, Verkaik NS, van Gent DC. End-joining of blunt DNA double-strand breaks in mammalian fibroblasts is precise and requires DNA-PK and XRCC4. DNA Repair (Amst) 2004; 3:43-50. [PMID: 14697758 DOI: 10.1016/j.dnarep.2003.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA double-strand break repair by non-homologous end-joining (NHEJ) is generally considered to be an imprecise repair pathway. In order to study repair of a blunt, 5' phosphorylated break in the DNA of mammalian fibroblasts, we used the E. coli cut-and-paste type transposon Tn5. We found that the Tn5 transposase can mediate transposon excision in Chinese hamster cell lines. Interestingly, a blunt 5' phosphorylated break could efficiently be repaired without loss of nucleotides in wild type fibroblasts. Catalytic subunit of DNA-dependent protein kinase (DNA-PK(CS)) deficiency reduced the efficiency of joining four-fold without reducing precision, whereas both efficiency and accuracy of joining were affected in Ku80 or XRCC4 mutant cell lines. These results show that both the DNA-PK and the XRCC4/ligase IV complexes are required for NHEJ and that other, more error-prone, repair processes cannot efficiently substitute for joining of blunt breaks produced in living cells. Interestingly, the severity of the end-joining defect differs between the various mutants, which may explain the difference in the severity of the phenotypes, which have been observed in the corresponding mouse models.
Collapse
Affiliation(s)
- Diana van Heemst
- Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|