151
|
Raspanti M, Viola M, Forlino A, Tenni R, Gruppi C, Tira ME. Glycosaminoglycans show a specific periodic interaction with type I collagen fibrils. J Struct Biol 2008; 164:134-9. [PMID: 18664384 DOI: 10.1016/j.jsb.2008.07.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 06/30/2008] [Accepted: 07/03/2008] [Indexed: 11/28/2022]
Abstract
Current wisdom on intermolecular interactions in the extracellular matrix assumes that small proteoglycans bind collagen fibrils on highly specific sites via their protein core, while their carbohydrate chains interact with each other in the interfibrillar space. The present study used high-resolution scanning electron microscopy to analyse the interaction of two small leucine-rich proteoglycans and several glycosaminoglycan chains with type I collagen fibrils obtained in vitro in a controlled, cell-free environment. Our results show that most ligands directly influence the collagen fibril size and shape, and their aggregation into thicker bundles. All chondroitin sulphate/dermatan sulphate glycosaminoglycans we tested, except chondroitin 4-sulphate, bound to the fibril surface in a highly specific way and, even in the absence of any protein core, formed regular, periodic interfibrillar links resembling those of the intact proteoglycan. Only intact decorin, however, was able to organize collagen fibrils into fibres compact enough to mimic in vitro the superfibrillar organization of natural tissues. Our data indicate that multiple interaction patterns may exist in vivo, may explain why decorin- or biglycan-knockout organisms show milder effects than can be expected, and may lead to the development of better, simpler engineered biomaterials.
Collapse
Affiliation(s)
- Mario Raspanti
- Department of Human Anatomy, Insubria University, Varese, Italy.
| | | | | | | | | | | |
Collapse
|
152
|
Lanfer B, Freudenberg U, Zimmermann R, Stamov D, Körber V, Werner C. Aligned fibrillar collagen matrices obtained by shear flow deposition. Biomaterials 2008; 29:3888-95. [PMID: 18606448 DOI: 10.1016/j.biomaterials.2008.06.016] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Here we present a new technique to generate surface-bound collagen I fibril matrices with differing structural characteristics. Aligned collagen fibrils were deposited on planar substrates from collagen solutions streaming through a microfluidic channel system. Collagen solution concentration, degree of gelation, shear rate and pre-coating of the substrate were demonstrated to determine the orientation and density of the immobilized fibrils. The obtained matrices were imaged using confocal reflection microscopy and atomic force microscopy. Image analysis techniques were applied to evaluate collagen fibril orientation and coverage. As expected, the degree of collagen fibril orientation increased with increasing flow rates of the solution while the matrix density increased at higher collagen solution concentrations and on hydrophobic polymer pre-coatings. Additionally, length of the immobilized collagen fibrils increased with increasing solution concentration and gelation time.
Collapse
Affiliation(s)
- Babette Lanfer
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Hohe Strasse 6, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
153
|
Simon P, Lichte H, Formanek P, Lehmann M, Huhle R, Carrillo-Cabrera W, Harscher A, Ehrlich H. Electron holography of biological samples. Micron 2008; 39:229-56. [PMID: 17374487 DOI: 10.1016/j.micron.2006.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/20/2022]
Abstract
In this paper, we summarise the development of off-axis electron holography on biological samples starting in 1986 with the first results on ferritin from the group of Tonomura. In the middle of the 1990s strong interest was evoked, but then stagnation took place because the results obtained at that stage did not reach the contrast and the resolution achieved by conventional electron microscopy. To date, there exist only a few ( approximately 12) publications on electron holography of biological objects, thus this topic is quite small and concise. The reason for this could be that holography is mostly established in materials science by physicists. Therefore, applications for off-axis holography were powerfully pushed forward in the area of imaging, e.g. electric or magnetic micro- and nanofields. Unstained biological systems investigated by means of off-axis electron holography up to now are ferritin, tobacco mosaic virus, a bacterial flagellum, T5 bacteriophage virus, hexagonal packed intermediate layer of bacteria and the Semliki Forest virus. New results of the authors on collagen fibres and surface layer of bacteria, the so-called S-layer 2D crystal lattice are presented in this review. For the sake of completeness, we will shortly discuss in-line holography of biological samples and off-axis holography of materials related to biological systems, such as biomaterial composites or magnetotactic bacteria.
Collapse
Affiliation(s)
- P Simon
- Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Strasse 40, 01187 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Abstract
The purpose of the current review is to highlight the structure-function relationship of tendons and related structures to provide an overview for readers whose interest in tendons needs to be underpinned by anatomy. Because of the availability of several recent reviews on tendon development and entheses, the focus of the current work is primarily directed towards what can best be described as the 'tendon proper' or the 'mid-substance' of tendons. The review covers all levels of tendon structure from the molecular to the gross and deals both with the extracellular matrix and with tendon cells. The latter are often called 'tenocytes' and are increasingly recognized as a defined cell population that is functionally and phenotypically distinct from other fibroblast-like cells. This is illustrated by their response to different types of mechanical stress. However, it is not only tendon cells, but tendons as a whole that exhibit distinct structure-function relationships geared to the changing mechanical stresses to which they are subject. This aspect of tendon biology is considered in some detail. Attention is briefly directed to the blood and nerve supply of tendons, for this is an important issue that relates to the intrinsic healing capacity of tendons. Structures closely related to tendons (joint capsules, tendon sheaths, pulleys, retinacula, fat pads and bursae) are also covered and the concept of a 'supertendon' is introduced to describe a collection of tendons in which the function of the whole complex exceeds that of its individual members. Finally, attention is drawn to the important relationship between tendons and fascia, highlighted by Wood Jones in his concept of an 'ectoskeleton' over half a century ago - work that is often forgotten today.
Collapse
Affiliation(s)
- M Benjamin
- School of Biosciences, Cardiff University, Cardiff, UK.
| | | | | |
Collapse
|
155
|
Abreu EL, Leigh D, Derwin KA. Effect of altered mechanical load conditions on the structure and function of cultured tendon fascicles. J Orthop Res 2008; 26:364-73. [PMID: 17972327 DOI: 10.1002/jor.20520] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have developed an in vitro model system to investigate the relationships between mechanical unloading and tendon matrix remodeling. Remodeling was characterized by changes in the functional and structural characteristics of rat tail tendon fascicles (RTTF) subjected to no load conditions for 1 week in vitro. We hypothesized that the absence of load will: (I) maintain cross-sectional area (CSA), with decreased elastic modulus and increased stress-relaxation; (II) cause an increase in denatured collagen and a decrease in water and total glycosaminoglycan (GAG) content. Fascicles cultured under a nominal static stress were used as control for culture conditions effects. Unloading resulted in a decrease of approximately 23% in the elastic modulus of cultured fascicles, consistent with previous stress-deprivation studies. Contrary to our hypothesis, a nominal static stress caused an increase in elastic modulus ( approximately 30%) and a significant decrease in stress-relaxation when compared to fresh fascicles at 1% strain. Mechanical changes were associated with changes in the GAG content of the fascicles, but not their CSA, water, or collagen content. Furthermore, we did not find evidence of measurable denatured collagen in the cultured fascicles. Together these results suggest a role for GAG but not collagen or water in the elastic and viscoelastic changes measured in tendon fascicles cultured for 1 week under altered load conditions.
Collapse
Affiliation(s)
- Eduardo L Abreu
- Department of Orthopaedic Surgery, Children's Hospital of Boston, 300 Longwood Avenue, Enders 1022, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
156
|
Biondi M, Ungaro F, Quaglia F, Netti PA. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev 2008; 60:229-42. [PMID: 18031864 DOI: 10.1016/j.addr.2007.08.038] [Citation(s) in RCA: 285] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Accepted: 08/09/2007] [Indexed: 11/15/2022]
Abstract
The concept of tissue and cell guidance is rapidly evolving as more information regarding the effect of the microenvironment on cellular function and tissue morphogenesis become available. These disclosures have lead to a tremendous advancement in the design of a new generation of multifunctional biomaterials able to mimic the molecular regulatory characteristics and the three-dimensional architecture of the native extracellular matrix. Micro- and nano-structured scaffolds able to sequester and deliver in a highly specific manner biomolecular moieties have already been proved to be effective in bone repairing, in guiding functional angiogenesis and in controlling stem cell differentiation. Although these platforms represent a first attempt to mimic the complex temporal and spatial microenvironment presented in vivo, an increased symbiosis of material engineering, drug delivery technology and cell and molecular biology may ultimately lead to biomaterials that encode the necessary signals to guide and control developmental process in tissue- and organ-specific differentiation and morphogenesis.
Collapse
Affiliation(s)
- Marco Biondi
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | | | | | | |
Collapse
|
157
|
Screen HR. Investigating load relaxation mechanics in tendon. J Mech Behav Biomed Mater 2008; 1:51-8. [DOI: 10.1016/j.jmbbm.2007.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
|
158
|
Zhong S, Cui H, Chen Z, Wooley KL, Pochan DJ. Helix self-assembly through the coiling of cylindrical micelles. SOFT MATTER 2007; 4:90-93. [PMID: 32907088 DOI: 10.1039/b715459c] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Both single and double helical superstructures have been created through solution self-assembly of cylindrical micelles for the first time. Helical micelles were formed from the co-assembly of poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-b-PMA-b-PS) triblock copolymers with different multiamines. The helix pitch could be adjusted by adjusting the amount and type of multiamine added. The helical structure exhibits unprecedented regularity for a nanostructure self-assembled from solution indicating the presence of strong, synergistic forces underlying the helix formation.
Collapse
Affiliation(s)
- Sheng Zhong
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.
| | - Honggang Cui
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.
| | - Zhiyun Chen
- Center for Materials Innovation, Department of Chemistry and Department of Radiology, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA
| | - Karen L Wooley
- Center for Materials Innovation, Department of Chemistry and Department of Radiology, Washington University in Saint Louis, Saint Louis, Missouri 63130, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
159
|
Kato K, Sato H, Iwata H. Ultrastructural Study on the Specific Binding of Genetically Engineered Epidermal Growth Factor to Type I Collagen Fibrils. Bioconjug Chem 2007; 18:2137-43. [PMID: 17894450 DOI: 10.1021/bc700259g] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In an attempt to develop collagen-growth factor composites for use in tissue engineering, chimeric proteins consisting of epidermal growth factor and collagen binding domains derived from von Willebrand factor or fibronectin were synthesized by means of recombinant technology. These chimeric proteins were bound to type I collagen fibrils, and the ultrastructures of composites were analyzed by transmission electron microscopy combined with the gold nanoparticle labeling technique. The results of the ultrastructural study revealed that chimeric proteins were densely assembled on collagen fibrils through the specific recognition of binding sites, producing the ordered array of chimeric proteins.
Collapse
Affiliation(s)
- Koichi Kato
- Institute for Frontier Medical Sciences, Kyoto University, Shogoin, Kyoto, Japan
| | | | | |
Collapse
|
160
|
Abstract
The mineral in bone is located primarily within the collagen fibril, and during mineralization the fibril is formed first and then water within the fibril is replaced with mineral. The collagen fibril therefore provides the aqueous compartment in which mineral grows. Although knowledge of the size of molecules that can diffuse into the fibril to affect crystal growth is critical to understanding the mechanism of bone mineralization, there have been as yet no studies on the size exclusion properties of the collagen fibril. To determine the size exclusion characteristics of collagen, we developed a gel filtration-like procedure that uses columns containing collagen from tendon and bone. The elution volumes of test molecules show the volume within the packed column that is accessible to the test molecules, and therefore reveal the size exclusion characteristics of the collagen within the column. These experiments show that molecules smaller than a 6-kDa protein diffuse into all of the water within the collagen fibril, whereas molecules larger than a 40-kDa protein are excluded from this water. These studies provide an insight into the mechanism of bone mineralization. Molecules and apatite crystals smaller than a 6-kDa protein can diffuse into all water within the fibril and so can directly impact mineralization. Although molecules larger than a 40-kDa protein are excluded from the fibril, they can initiate mineralization by forming small apatite crystal nuclei that diffuse into the fibril, or can favor fibril mineralization by inhibiting apatite growth everywhere but within the fibril.
Collapse
Affiliation(s)
- Damon Toroian
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093-0368, USA
| | | | | |
Collapse
|
161
|
Abstract
PURPOSE OF REVIEW Pelvic organ prolapse is a common disease that negatively affects the lives of women. To date, basic science research into the pathogenesis of prolapse has been limited. The vagina and its supportive connective tissues provide one of the primary mechanisms of support to the pelvic organs. This review summarizes our current understanding of the alterations in these tissues in women with prolapse. RECENT FINDINGS Current research suggests that the vagina and its supportive tissues actively remodel in response to different environmental stimuli. The literature has many shortcomings due to restricted access to tissue, absence of longitudinal data, and limited animal models. Nevertheless, recent studies indicate that within prolapsed tissue metabolism of collagen and elastin is altered. Thus, not only the synthesis of those structural proteins but also the balance between the activity of the major proteolytic enzymes that degrade them and the inhibitors of proteolysis are important components to consider in studies on the pathogenesis of pelvic organ prolapse. SUMMARY Biochemical studies of the vagina and its supportive connective tissues have improved understanding of the contribution of altered connective tissue to the pathogenesis of prolapse. It is important to continue research in this area, as the knowledge gained from these studies will allow for the development of innovative reconstructive procedures and the establishment of preventive measures.
Collapse
Affiliation(s)
- Marianna Alperin
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Gynecological Specialties, Magee-Women's Hospital and Magee Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
162
|
|
163
|
Zhang D, Chippada U, Jordan K. Effect of the Structural Water on the Mechanical Properties of Collagen-like Microfibrils: A Molecular Dynamics Study. Ann Biomed Eng 2007; 35:1216-30. [PMID: 17387615 DOI: 10.1007/s10439-007-9296-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 03/07/2007] [Indexed: 11/29/2022]
Abstract
The objective of this paper is to investigate the role played by the structural water on the intermolecular sliding between collagen-like 1QSU peptides in a microfibril under deformation. Three modes of deformation are used to generate intermolecular sliding: forced axial stretching (case I) or sliding (case II) of a central peptide monomer (while other surrounding monomers are fixed); and cantilever bending (case III) under a terminal lateral load. The force-displacement curve of each deformation mode is derived using a module called Steered Molecular Dynamics (SMD) in a molecular dynamics package NAMD under the CHARMM22 force field. Each calculation is carried out twice, one in the presence of structural water, one without. It is found that the structural water is a weak "lubricant" in forced axial stretching (case I), but it functions as a "glue" in forced axial sliding (case II) and cantilever bending (case III). A change in the pulling speed does not significantly alter the force-displacement behavior in axial stretching (case I) and sliding (case II), but it does in cantilever bending (case III). The additional resistance contributed by the structural water is attributed to the additional energy cost in breaking the water-mediated hydrogen bonds (water bridges).
Collapse
Affiliation(s)
- Dajun Zhang
- Bone Mechanics Laboratory, Department of Mechanical & Aerospace Engineering, Rutgers, State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
164
|
Gioia M, Monaco S, Fasciglione GF, Coletti A, Modesti A, Marini S, Coletta M. Characterization of the mechanisms by which gelatinase A, neutrophil collagenase, and membrane-type metalloproteinase MMP-14 recognize collagen I and enzymatically process the two alpha-chains. J Mol Biol 2007; 368:1101-13. [PMID: 17379243 DOI: 10.1016/j.jmb.2007.02.076] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 02/19/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
The turnover of native collagen has been ascribed to different members of the matrix metalloproteinase (MMP) family. Here, the mechanisms by which neutrophil collagenase (MMP-8), gelatinase A (MMP-2), and the ectodomain of MT1-MMP (ectMMP-14) degrade fibrillar collagen were examined. In particular, the hydrolysis of type I collagen at 37 degrees C was investigated to identify functional differences in the processing of the two alpha-chain types of fibrillar collagen. Thermodynamic and kinetic parameters were used for a quantitative comparison of the binding, unwinding, and hydrolysis of triple helical collagen. We demonstrate that the MMP family has developed at least two distinct mechanisms for collagen unwinding and cleavage. MMP-8 and ectMMP-14 display a similar mechanism (although with different catalytic parameters), which is characterized by binding (likely through the hemopexin-like domain) and cleavage of alpha-1 and/or alpha-2 chains without distinguishing between them and keeping the gross conformation of the triple helix (at least during the first cleavage step). On the other hand, MMP-2 binds preferentially the alpha-1 chains (likely through the fibronectin-like domain, which is not present in MMP-8 and ectMMP-14), grossly altering the whole triple helical arrangement of the collagen molecule and cleaving preferentially the alpha-2 chain. These distinctive mechanisms underly a drastically different mode of interaction with triple helical fibrillar collagen I, according to which the MMP domain is involved in binding. These findings can be related to the different role exerted by these MMPs on collagen homeostasis in the extracellular matrix.
Collapse
Affiliation(s)
- Magda Gioia
- Department of Experimental Medicine and Biochemical Sciences, University of Roma Tor Vergata, Via Montpellier 1, I-00133 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
165
|
Daucher JA, Clark KA, Stolz DB, Meyn LA, Moalli PA. Adaptations of the rat vagina in pregnancy to accommodate delivery. Obstet Gynecol 2007; 109:128-35. [PMID: 17197598 DOI: 10.1097/01.aog.0000246798.78839.62] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To characterize ultrastructural changes in the rat vagina in pregnancy, delivery, and postpartum, focusing on collagen architecture and smooth muscle cell morphology. METHODS The vagina of four virgin, four midpregnant, four late pregnant, four immediate, and four late post-vaginal-delivery rats were examined by transmission electron microscopy. Images were classified into one of four categories based on collagen fibril area fraction, with group 1 containing the highest number of collagen fibers per unit area and group 4 containing the lowest. Smooth muscle cells were characterized into three cell types ("synthetic," "intermediate," and "contractile") based on the volume fraction of cytoplasm occupied by organelles compared with myofibrils. RESULTS Quantitative analysis demonstrated that 76% of collagen fibers in virgin rats were categorized as group 1 or 2 compared with 49% in midpregnant, 40% in late pregnant, and 23% in immediate postpartum animals (P=0.006). Late postpartum tissue seemed similar to virgin tissue (77%). Midpregnant (37%), late-pregnant (34%) and immediate postpartum animals (43%) contained a higher proportion of synthetic smooth muscle cells compared with virgins (20%) and late postpartum animals (21%) (P=.02). Contractile smooth muscle cells predominated in virgin (64%) and late postpartum animals (70%) compared with midpregnant (42%), late pregnant (50%) and immediate postpartum (50%, P=.05). CONCLUSION In pregnancy, collagen fiber area decreased while smooth muscle cells transformed from a contractile to a synthetic phenotype. The late postpartum period returned to prepregnant levels for both collagen and smooth muscle cell morphologies. It is likely that these changes represent adaptations to minimize trauma to the vagina during passage of the fetus.
Collapse
Affiliation(s)
- James A Daucher
- Magee-Womens Research Institute and the Department of Obstetrics & Gynecology at Magee Womens Hospital, Center for Biological Imaging, Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
166
|
Yang L, van der Werf KO, Koopman BFJM, Subramaniam V, Bennink ML, Dijkstra PJ, Feijen J. Micromechanical bending of single collagen fibrils using atomic force microscopy. J Biomed Mater Res A 2007; 82:160-8. [PMID: 17269147 DOI: 10.1002/jbm.a.31127] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new micromechanical technique was developed to study the mechanical properties of single collagen fibrils. Single collagen fibrils, the basic components of the collagen fiber, have a characteristic highly organized structure. Fibrils were isolated from collagenous materials and their mechanical properties were studied with atomic force microscopy (AFM). In this study, we determined the Young's modulus of single collagen fibrils at ambient conditions from bending tests after depositing the fibrils on a poly(dimethyl siloxane) (PDMS) substrate containing micro-channels. Force-indentation relationships of freely suspended collagen fibrils were determined by loading them with a tip-less cantilever. From the deflection-piezo displacement curve, force-indentation curves could be deduced. With the assumption that the behavior of collagen fibrils can be described by the linear elastic theory of isotropic materials and that the fibrils are freely supported at the rims, a Young's modulus of 5.4 +/- 1.2 GPa was determined. After cross-linking with glutaraldehyde, the Young's modulus of a single fibril increases to 14.7 +/- 2.7 GPa. When it is assumed that the fibril would be fixed at the ends of the channel the Young's moduli of native and cross-linked collagen fibrils are calculated to be 1.4 +/- 0.3 GPa and 3.8 +/- 0.8 GPa, respectively. The minimum and maximum values determined for native and glutaraldehyde cross-linked collagen fibrils represent the boundaries of the Young's modulus.
Collapse
Affiliation(s)
- Lanti Yang
- Polymer Chemistry and Biomaterials, Faculty of Science and Technology and Institute of Biomedical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
167
|
GOLDBERG MICHAEL, LANGER ROBERT, JIA XINQIAO. Nanostructured materials for applications in drug delivery and tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2007; 18:241-68. [PMID: 17471764 PMCID: PMC3017754 DOI: 10.1163/156856207779996931] [Citation(s) in RCA: 617] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering.
Collapse
Affiliation(s)
- MICHAEL GOLDBERG
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-342, Cambridge, MA 02139, USA
| | - ROBERT LANGER
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, E25-342, Cambridge, MA 02139, USA
| | - XINQIAO JIA
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
168
|
Guo C, Kaufman LJ. Flow and magnetic field induced collagen alignment. Biomaterials 2006; 28:1105-14. [PMID: 17112582 DOI: 10.1016/j.biomaterials.2006.10.010] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 10/09/2006] [Indexed: 10/23/2022]
Abstract
A straightforward technique to align thin collagen gels is presented. This technique requires only collagen solution, surface-modified magnetic beads, a small magnet, and an incubator. As such, this is the only collagen alignment technique that requires no specialized equipment. The collagen gels are imaged with confocal reflectance microscopy, and degree of alignment is quantitatively assessed using image analysis techniques that allow for identification of fiber position and angular distribution. A series of experiments shows that magnetic beads coated with streptavidin lead to the most highly aligned gels. Rheology and microscopy experiments suggest that alignment results from bead coupling to, and entrainment and entrapment in, collagen fibrils during their assembly into fibers that form a sample-spanning gel. The timescales of gelation and bead motion to the poles of the external magnet must be similar to effect good alignment over large areas with this technique. It is also demonstrated that alignment can be attained in both plain and cell-bearing gels that are several millimeters thick.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Chemistry, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
169
|
Layton BE, Sastry AM. Equal and local-load-sharing micromechanical models for collagens: quantitative comparisons in response of non-diabetic and diabetic rat tissue. Acta Biomater 2006; 2:595-607. [PMID: 16905373 DOI: 10.1016/j.actbio.2006.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/09/2006] [Accepted: 05/17/2006] [Indexed: 12/14/2022]
Abstract
Chemical crosslinks in collagens resulting from binding of advanced glycation end-products, have long been presumed to alter the stiffness and permeability of glycated tissues. Recently, we developed a stochastic mechanical model for the response and failure of uniaxially deformed sciatic nerve tissue from diabetic and control rats. Here, we use our model to determine the likely correlation of fibril glycation with failure response, by quantifying statistical differences in their response. Our four-parameter model describes both the non-linear toe region and non-linear failure region of these tissues; the four parameters consist of (1) collagen fibril alignment, (2) fiber bundle waviness, (3) Weibull shape parameter for fibrillar strength, and (4) modulus-normalized Weibull scale parameter for fibrillar strength. Using an equal load sharing model we find that diabetic and control tissues had shape parameters of 9.88+/-5.50 and 4.33+/-3.67 (p=0.043), respectively, and scale parameters of 0.28+/-0.07 and 0.58+/-0.25 (p=0.033), respectively, implying that the diabetic tissue behaves in a more brittle manner, consistent with more highly crosslinked fibrils. We conclude that biochemical crosslinking directly affects measured mechanical properties. Further, this mechanical characterization may prove useful in mapping alterations in stiffness and permeability observed in glycated tissues.
Collapse
Affiliation(s)
- Bradley E Layton
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
170
|
Harris JR, Reiber A. Influence of saline and pH on collagen type I fibrillogenesis in vitro: fibril polymorphism and colloidal gold labelling. Micron 2006; 38:513-21. [PMID: 17045806 DOI: 10.1016/j.micron.2006.07.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/19/2006] [Accepted: 07/21/2006] [Indexed: 10/24/2022]
Abstract
We have produced different collagen type I fibrils by in vitro fibrillogenesis of acetic acid-soluble collagen within the pH range 2.5-9.0, in the presence and absence of 150 mM NaCl. The varying relatively stable molecular assemblies and polymorphic fibrillar end-products produced after 24 h incubation have been assessed and compared by the TEM study of specimens negatively stained with uranyl acetate. In the presence of 150 mM NaCl, the assembly of collagen at low pH (2.5) leads to the formation of initial molecular aggregates that progressively link together at slightly higher pH (5.0) to form sub-fibrils and spindle-shaped D-banded bundles of sub-fibrils. At pH 6.0 these D-banded bundles aggregate into larger spindle-shaped fibrils with lateral misalignment of the D-banding across the bundle. However, at pH 7.0 and 8.0, in the presence of 150 mM NaCl, the characteristic parallel-sided mature D-banded collagen type I fibres are formed. At pH 9.0 more loosely formed parallel-sided D-banded collagen fibrils are present, within which the spindle-shaped sub-fibrils can be defined by negative staining more convincingly than at pH 7-8. In the presence of 50 mM buffer at pH 2.5, but absence of 150 mM NaCl, collagen type I forms disorganized periodic initial molecular aggregates, which have a tendency to link together to form sub-fibrils. Flexuous collagen type I sub-fibrils predominate at pH 5.0, alongside large spindle-shaped fibrils that possess a regular transverse approximately 10 nm periodicity, with an oblique approximately 67 nm periodicity, significantly different to the D-banding periodicity. At pH 7.0 and pH 8 in the absence of saline loosely-formed flexuous and spindle-shaped fibres co-exist, with underlying sub-fibrils visible, but at pH 9.0 only disorganized flexuous fibrillar aggregates are present. Colloidal gold labelling of the characteristic D-banded collagen type I fibrils with 5 nm and 2 nm chemically reactive gold particles reveals a periodic labelling pattern, which is not apparent with 10 nm and 15 nm gold particles, due to steric hindrance. The flexuous and spindle-shaped collagen fibrils also bind 2 nm gold particles in a specific manner. In all cases, the specific chemisorption of gold onto the collagen fibrils is probably determined by the availability of repeating amino acid side chains of the collagen molecules along the fibril surface. The controlled production of varying stable collagen type I fibrillogenesis products is likely to be of value within numerous areas of biotechnology, biology and medicine, including experimental biomineralization.
Collapse
Affiliation(s)
- J Robin Harris
- Institute of Zoology, University of Mainz, D-55099 Mainz, Germany.
| | | |
Collapse
|
171
|
Parsons KK, Maeda N, Yamauchi M, Banes AJ, Koller BH. Ascorbic acid-independent synthesis of collagen in mice. Am J Physiol Endocrinol Metab 2006; 290:E1131-9. [PMID: 16352673 DOI: 10.1152/ajpendo.00339.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mouse has become the most important model organism for the study of human physiology and disease. However, until the recent generation of mice lacking the enzyme gulanolactone oxidase (Gulo), the final enzyme in the ascorbic acid biosynthesis pathway, examination of the role of ascorbic acid in various biochemical processes using this model organism has not been possible. In the mouse, similar to most mammals but unlike humans who carry a mutant copy of this gene, Gulo produces ascorbic acid from glucose. We report here that, although ascorbic acid is essential for survival, its absence does not lead to measurable changes in proline hydroxylation. Vitamin C deficiency had no significant effect on the hydroxylation of proline and collagen production during tumor growth or in angiogenesis associated with tumor or mammary gland growth. This suggests that factors other than ascorbic acid can support proline hydroxylation and collagen synthesis in vivo. Furthermore, the failure of Gulo-/- mice to thrive on a vitamin C-deficient diet therefore suggests that ascorbic acid plays a critical role in survival other than the maintenance of the vasculature.
Collapse
Affiliation(s)
- Kelly K Parsons
- Dept. of Genetics, Univ. of North Carolina at Chapel Hill, 4341 MBRB, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
172
|
Cisneros DA, Hung C, Franz CM, Muller DJ. Observing growth steps of collagen self-assembly by time-lapse high-resolution atomic force microscopy. J Struct Biol 2006; 154:232-45. [PMID: 16600632 DOI: 10.1016/j.jsb.2006.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
Insights into molecular mechanisms of collagen assembly are important for understanding countless biological processes and at the same time a prerequisite for many biotechnological and medical applications. In this work, the self-assembly of collagen type I molecules into fibrils could be directly observed using time-lapse atomic force microscopy (AFM). The smallest isolated fibrillar structures initiating fibril growth showed a thickness of approximately 1.5 nm corresponding to that of a single collagen molecule. Fibrils assembled in vitro established an axial D-periodicity of approximately 67 nm such as typically observed for in vivo assembled collagen fibrils from tendon. At given collagen concentrations of the buffer solution the fibrils showed constant lateral and longitudinal growth rates. Single fibrils continuously grew and fused with each other until the supporting surface was completely covered by a nanoscopically well-defined collagen matrix. Their thickness of approximately 3 nm suggests that the fibrils were build from laterally assembled collagen microfibrils. Laterally the fibrils grew in steps of approximately 4 nm, indicating microfibril formation and incorporation. Thus, we suggest collagen fibrils assembling in a two-step process. In a first step, collagen molecules assemble with each other. In the second step, these molecules then rearrange into microfibrils which form the building blocks of collagen fibrils. High-resolution AFM topographs revealed substructural details of the D-band architecture of the fibrils forming the collagen matrix. These substructures correlated well with those revealed from positively stained collagen fibers imaged by transmission electron microscopy.
Collapse
Affiliation(s)
- David A Cisneros
- Biotechnology Center, University of Technology Dresden, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
173
|
Moalli PA, Shand SH, Zyczynski HM, Gordy SC, Meyn LA. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol 2006; 106:953-63. [PMID: 16260512 DOI: 10.1097/01.aog.0000182584.15087.dd] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE As pelvic organ prolapse progresses, the morphology of the vagina dramatically changes. The objective of this study was to determine whether these changes observed clinically correlate with histologic and biochemical evidence of tissue remodeling METHODS After informed consent, full-thickness biopsies of the vaginal apex were obtained at the time of surgery from 77 women. The tissue of 15 premenopausal women with less than stage II prolapse (controls) was compared with that of 62 women with prolapse divided according to their menopausal status. All specimens were examined histologically. Scanning confocal microscopic analysis of fluorescent micrographs was used to quantitate collagen subtypes I, III, and V. Collagen fiber orientation was analyzed by scanning electron microscopy. Gelatin zymography was used to quantitate the expression of the proenzyme and active forms of matrix metalloproteinases (MMP) -2 and -9. Median values were compared using Mann-Whitney U or Kruskal-Wallis tests, where appropriate RESULTS Vaginal collagen fibers are arranged in a whorled pattern, with collagen III as the predominant fibrillar collagen. The amount of total collagen in the vagina was increased in women with prolapse relative to women without prolapse (P = .054) primarily due to increased expression of collagen III (P = .031). There was no difference in the expression of proMMP-2, active MMP-2, or proMMP-9; however, active MMP-9 was increased in patients with prolapse (P = .030) CONCLUSION: The increase in collagen III and active MMP-9 expression in the vaginal tissues of patients with prolapse suggests that this tissue is actively remodeling under the biomechanical stresses associated with prolapse. LEVEL OF EVIDENCE II-2.
Collapse
Affiliation(s)
- Pamela A Moalli
- Magee-Womens Research Institute and the Department of Obstetrics & Gynecology at Magee Womens Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
174
|
Vesentini S, Montevecchi FM, Redaelli A. Response to letter to the editor: On the calculation of the binding force between decorin and collagen. J Biomech 2006. [DOI: 10.1016/j.jbiomech.2006.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
175
|
Chen CH, Yeh ML, Geyer M, Wang GJ, Huang MH, Heggeness MH, Höök M, Luo ZP. Interactions between collagen IX and biglycan measured by atomic force microscopy. Biochem Biophys Res Commun 2005; 339:204-8. [PMID: 16293224 DOI: 10.1016/j.bbrc.2005.10.205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
The stability of the lattice-like type II collagen architecture of articular cartilage is paramount to its optimal function. Such stability not only depends on the rigidity of collagen fibrils themselves, but more importantly, on their interconnections. One known interconnection is through type IX and biglycan molecules. However, the mechanical properties of this interaction and its role in the overall stability remain unrevealed. Using atomic force microscopy, this study directly measured the mechanical strength (or the rupture force) of a single bond between collagen IX and biglycan. The results demonstrated that the rupture force of this single bond was 15pN, which was significantly smaller than those of other known molecule interactions to date. This result suggested that type IX collagen and biglycan interaction may be the weak link in the cartilage collagen architecture, vulnerable to abnormal joint force and associated with disorders such as osteoarthritis.
Collapse
Affiliation(s)
- Chia-Hsin Chen
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Suhonen H, Fernández M, Serimaa R, Suortti P. Simulation of small-angle x-ray scattering from collagen fibrils and comparison with experimental patterns. Phys Med Biol 2005; 50:5401-16. [PMID: 16264260 DOI: 10.1088/0031-9155/50/22/012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Simulation of small-angle x-ray scattering from collagen in healthy and cancerous breast tissue may reveal detailed information on the structural changes in collagen. Collagen fibril is modelled as a cylinder with axially periodic step-function electron density, and packing is approximated by placing the cylinders in small hexagonal bundles. The intensity from a bundle is calculated by summing analytical scattering amplitudes from the cylinders, and intensities from several bundles with varying lattice constants are averaged. Comparisons with more complex models are made to estimate the robustness of the model. The oscillations in the equatorial direction are not significantly affected by added complexity. The relative intensities of the Bragg peaks in the meridional direction can be tuned by modifying the axial electron density distribution. Tests with different fibril radius distributions show that the average radius can be determined with an accuracy of +/-0.5 nm but that the shape of the radius distribution cannot be accurately determined from the scattering patterns. The effect of multiple scattering and the detector point-spread function (PSF) is considered, and the PSF may make a significant contribution to the final slope of the scattering pattern. Comparisons with observed scattering indicate that the model is basically correct at the supra-molecular level.
Collapse
Affiliation(s)
- Heikki Suhonen
- Department of Physical Sciences, POB 64, FIN-00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
177
|
Tettamanti G, Grimaldi A, Congiu T, Perletti G, Raspanti M, Valvassori R, de Eguileor M. Collagen reorganization in leech wound healing. Biol Cell 2005; 97:557-68. [PMID: 15898949 DOI: 10.1042/bc20040085] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Leeches respond to surgical lesions with the same sequence of events as that described for wound healing in vertebrates, where collagen is important for the development of tensions in healing wounds, functioning as an extracellular scaffold for accurate regeneration of the structures disrupted by surgical or traumatic actions. RESULTS In surgically lesioned leeches, newly synthesized collagen is arranged in hierarchical structures. Fibrils can be packed and shaped to form cords or tubular structures, thus acting as an extracellular scaffold that directs and organizes the outgrowth of new vessels and the migration of immune cells towards lesioned tissues. In these animals, the general architecture of collagen fibrils, generated during tissue regeneration, shows similarities to both the structural pattern of collagen bundles and assembly processes observed in several vertebrate systems (fish scales, amphibian skin and human cornea). CONCLUSIONS The production of extracellular matrix during wound healing in leeches is a surprising example of conservation of an extremely close relationship between the structure and function of molecular structures. It could be hypothesized that collagen structures, characterized not only by a striking structural complexity, but also by multifunctional purposes, are anatomical systems highly conserved throughout evolution.
Collapse
Affiliation(s)
- Gianluca Tettamanti
- Department of Structural and Functional Biology, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy
| | | | | | | | | | | | | |
Collapse
|
178
|
Hassenkam T, Jørgensen HL, Pedersen MB, Kourakis AH, Simonsen L, Lauritzen JB. Atomic force microscopy on human trabecular bone from an old woman with osteoporotic fractures. Micron 2005; 36:681-7. [PMID: 16182551 DOI: 10.1016/j.micron.2005.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 06/03/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022]
Abstract
AFM images were taken of the exterior surface of a single trabecula, extracted from a human femoral head removed during surgery for a hip fracture in an old women with former fractures. The images showed a dense structure of bundled collagen fibrils banded with 67 nm periodicity. Bundles were seen to run in parallel in layers confirming the collagen structure seen by other techniques. Single collagen fibrils were seen to cross the bundles, thus forming cross-links between neighboring bundles of collagen fibrils. Some of these crossing fibrils did not have the 67 nm band pattern and their dimensions were about half compared to the neighboring collagen fibrils. Very little mineral was found on the surface of the trabecula. An AFM image of a fracture plane was also displayed. The trabecula was extracted from a region close to the hip fracture. However, there were in this case no obvious features in the images that could be linked directly to osteoporosis, but altered collagen banding and collagen protrusions may alter mechanical competence. A path to extensive studies of the nanometer scale structure of bone was demonstrated.
Collapse
Affiliation(s)
- Tue Hassenkam
- Nano-Science Center, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
179
|
Poole K, Khairy K, Friedrichs J, Franz C, Cisneros DA, Howard J, Mueller D. Molecular-scale Topographic Cues Induce the Orientation and Directional Movement of Fibroblasts on Two-dimensional Collagen Surfaces. J Mol Biol 2005; 349:380-6. [PMID: 15890202 DOI: 10.1016/j.jmb.2005.03.064] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 03/16/2005] [Accepted: 03/23/2005] [Indexed: 10/25/2022]
Abstract
Collagen fibres within the extracellular matrix lend tensile strength to tissues and form a functional scaffold for cells. Cells can move directionally along the axis of fibrous structures, in a process important in wound healing and cell migration. The precise nature of the structural cues within the collagen fibrils that can direct cell movement are not known. We have investigated the structural features of collagen that are required for directional motility of mouse dermal fibroblasts, by analysing cell movement on two-dimensional collagen surfaces. The surfaces were prepared with aligned fibrils of collagen type I, oriented in a predefined direction. These collagen-coated surfaces were generated with or without the characteristic 67 nm D-periodic banding. Quantitative analysis of cell morphodynamics showed a strong correlation of cell elongation and motional directionality with the orientation of D-periodic collagen microfibrils. Neither directed motility, nor cell body alignment, was observed on aligned collagen lacking D-periodicity, or on D-periodic collagen in the presence of peptide containing an RGD motif. The directional motility of fibroblast cells on aligned collagen type I fibrils cannot be attributed to contact guidance, but requires additional structural information. This allows us to postulate a physiological function for the 67 nm periodicity.
Collapse
Affiliation(s)
- Kate Poole
- BioTechnological Center, University of Technology Dresden, 01307 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
180
|
Jiang F, Hörber H, Howard J, Müller DJ. Assembly of collagen into microribbons: effects of pH and electrolytes. J Struct Biol 2005; 148:268-78. [PMID: 15522775 DOI: 10.1016/j.jsb.2004.07.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2004] [Indexed: 10/26/2022]
Abstract
Collagen represents the major structural protein of the extracellular matrix. Elucidating the mechanism of its assembly is important for understanding many cell biological and medical processes as well as for tissue engineering and biotechnological approaches. In this work, conditions for the self-assembly of collagen type I molecules on a supporting surface were characterized. By applying hydrodynamic flow, collagen assembled into ultrathin ( approximately 3 nm) highly anisotropic ribbon-like structures coating the entire support. We call these novel collagen structures microribbons. High-resolution atomic force microscopy topographs show that subunits of these microribbons are built by fibrillar structures. The smallest units of these fibrillar structures have cross-sections of approximately 3 x 5nm, consistent with current models of collagen microfibril formation. By varying the pH and electrolyte of the buffer solution during the self-assembly process, the microfibril density and contacts formed within this network could be controlled. Under certain electrolyte compositions the microribbons and microfibers display the characteristic D-periodicity of approximately 65 nm observed for much thicker collagen fibrils. In addition to providing insight into the mechanism of collagen assembly, the ultraflat collagen matrices may also offer novel ways to bio-functionalize surfaces.
Collapse
Affiliation(s)
- Fengzhi Jiang
- Biotechnological Center, University of Technology Dresden, 01062 Dresden, Germany
| | | | | | | |
Collapse
|
181
|
Vesentini S, Fitié CFC, Montevecchi FM, Redaelli A. Molecular assessment of the elastic properties of collagen-like homotrimer sequences. Biomech Model Mechanobiol 2005; 3:224-34. [PMID: 15824897 DOI: 10.1007/s10237-004-0064-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Accepted: 12/02/2004] [Indexed: 11/30/2022]
Abstract
Knowledge of the mechanical behavior of collagen molecules is critical for understanding the mechanical properties of collagen fibrils that constitute the main architectural building block of a number of connective tissues. In this study, the elastic properties of four different type I collagen 30-residue long molecular sequences, were studied by performing stretching simulations using the molecular mechanics approach. The energy-molecular length relationship was achieved by means of the geometry optimization procedure for collagen molecule strains up to 10%. The energy was interpolated by a second order function, and the second order of the derivative with respect to the mean length corresponded to the molecule stiffness. According to the hypothesis of linear elastic behavior, except for one sequence, the elastic modulus was around 2.40 GPa. These values are larger than fibril values, and they confirm the hypothesis that tendon mechanical properties are deeply related to tendon hierarchical structure. A possible explanation of the lowest values obtained for one sequence (1.33-1.53 GPa) is provided and discussed.
Collapse
Affiliation(s)
- Simone Vesentini
- Department of Bioengineering, Politecnico di Milano, Via Golgi, 39, 20133, Milano, Italy.
| | | | | | | |
Collapse
|
182
|
Vesentini S, Redaelli A, Montevecchi FM. Estimation of the binding force of the collagen molecule-decorin core protein complex in collagen fibril. J Biomech 2005; 38:433-43. [PMID: 15652541 DOI: 10.1016/j.jbiomech.2004.04.032] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2004] [Indexed: 11/18/2022]
Abstract
Decorin belongs to the small leucine proteoglycans family and is considered to play an important role in extracellular matrix organization. Experimental studies suggest that decorin is required for the assembly of collagen fibrils, as well as for the development of proper tissue mechanical properties. In tendons, decorins tie adjoining collagen fibrils together and probably guarantee the mechanical coupling of fibrils. The decorin molecule consists of one core protein and one glycosaminoglycan chain covalently linked to a serine residue of the core protein. Several studies have indicated that each core protein binds to the surface of collagen fibrils every 67 nm, by interacting non-covalently to one collagen molecule of the fibril surface, while the decorin glycosaminoglycans extend from the core protein to connect to another decorin core protein laying on adjacent fibril surface. The present paper investigates the complex composed of one decorin core protein and one collagen molecule in order to obtain their binding force. For this purpose, molecular models of collagen molecules type I and decorin core protein were developed and their interaction energies were evaluated by means of the molecular mechanics approach. Results show that the complex is characterized by a maximum binding force of about 12.4 x 10(3) nN and a binding stiffness of 8.33 x 10(-8) N/nm; the attained binding force is greater than the glycosaminoglycan chain's ultimate strength, thus indicating that overloads are likely to damage the collagen fibre's mechanical integrity by disrupting the glycosaminoglycan chains rather than by causing decorin core protein detachment from the collagen fibril.
Collapse
Affiliation(s)
- Simone Vesentini
- Department of Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy.
| | | | | |
Collapse
|
183
|
Markova MS, Zeskand J, McEntee B, Rothstein J, Jimenez SA, Siracusa LD. A Role for the Androgen Receptor in Collagen Content of the Skin. J Invest Dermatol 2004; 123:1052-6. [PMID: 15610513 DOI: 10.1111/j.0022-202x.2004.23494.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Collagen, the major macromolecular component of skin, is responsible for maintaining the structural integrity of the tissue as well as for providing important functional characteristics, such as pliability and thickness. We have been studying the structure and regulation of collagen in mouse mutations affecting the skin. In the course of these studies, we found that there are significant differences in collagen content between the skin of wild-type male and female mice, which become evident at puberty. Furthermore, male mice with an X-linked mutation in the androgen receptor gene (formerly called testicular feminization and abbreviated as Ar(Tfm)) showed decreased levels of collagen, indicating that the androgen receptor pathway contributes to the observed differences. These findings demonstrate that there are striking differences in the collagen content of skin between male and female mice, and provide a biochemical explanation for these differences.
Collapse
Affiliation(s)
- Marina S Markova
- Division of Rheumatology, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
184
|
Jiang F, Khairy K, Poole K, Howard J, Müller DJ. Creating nanoscopic collagen matrices using atomic force microscopy. Microsc Res Tech 2004; 64:435-40. [PMID: 15549696 DOI: 10.1002/jemt.20101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The atomic force microscope (AFM) is introduced as a biomolecular manipulation machine capable of assembling biological molecules into well-defined molecular structures. Native collagen molecules were mechanically directed into well-defined, two-dimensional templates exhibiting patterns with feature sizes ranging from a few nanometers to several hundreds of micrometers. The resulting nanostructured collagen matrices were only approximately 3-nm thick, exhibited an extreme mechanical stability, and maintained their properties over the time range of several months. Our results directly demonstrate the plasticity of biological assemblies and provide insight into the physical mechanisms by which biological structures may be organized by cells in vivo. These nanoscopic templates may serve as platforms on non-biological surfaces to direct molecular and cellular processes.
Collapse
Affiliation(s)
- Fengzhi Jiang
- BIOTEC, University of Technology Dresden, 01062 Dresden, Germany
| | | | | | | | | |
Collapse
|
185
|
Hassenkam T, Fantner GE, Cutroni JA, Weaver JC, Morse DE, Hansma PK. High-resolution AFM imaging of intact and fractured trabecular bone. Bone 2004; 35:4-10. [PMID: 15207735 DOI: 10.1016/j.bone.2004.02.024] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/13/2004] [Accepted: 02/20/2004] [Indexed: 10/26/2022]
Abstract
Nanoscale structural analyses of biomineralized materials can frequently help elucidate important structure-function relationships in these complex organic-inorganic composites. Atomic force microscope (AFM) imaging of the exterior surface of trabecular bone reveals a densely woven structure of collagen fibrils, banded with a 67-nm periodicity, and densely packed mineral plates. The mineral plates on the collagen fibrils overlap and exhibit a large range of plate diameters from 30 to 200 nm. On the collagen fibrils, small nodular features, spaced 20-30 nm, run perpendicular to the fibrils. In some cases, these nodules are also seen on filaments extending between collagen fibrils. We hypothesize that these protrusions are noncollagenous proteins such as proteoglycans and may have collapsed into compact structures when the sample was dried. AFM images of pristine fractured surfaces reveal a dense array of mineral plates. In a few isolated locations, short sections of bare collagen fibrils are visible. In other regions, the existence of the underlying collagen fibrils can be inferred from the linear patterns of the mineral plates. Fractured samples, rinsed to remove mineral plates, reveal separated collagen fibrils on the fractured surfaces. These fibrils are often covered with protrusions similar to those observed on the exterior surfaces but are less organized. In addition, as on the exterior surfaces, there are sometimes small filaments extending between neighboring collagen fibrils. These studies provide important insights into the nanostructured architecture of this complex biocomposite.
Collapse
Affiliation(s)
- Tue Hassenkam
- Department of Physics, University of California, Santa Barbara 93106, USA.
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
Fibrocartilage is an avascular tissue that is best documented in menisci, intervertebral discs, tendons, ligaments, and the temporomandibular joint. Several of these sites are of particular interest to those in the emerging field of tissue engineering. Fibrocartilage cells frequently resemble chondrocytes in having prominent rough endoplasmic reticulum, many glycogen granules, and lipid droplets, and intermediate filaments together with and actin stress fibers that help to determine cell organization in the intervertebral disc. Fibrocartilage cells can synthesize a variety of matrix molecules including collagens, proteoglycans, and noncollagenous proteins. All the fibrillar collagens (types I, II, III, V, and XI) have been reported, together with FACIT (types IX and XII) and network-forming collagens (types VI and X). The proteoglycans include large, aggregating types (aggrecan and versican) and small, leucine-rich types (decorin, biglycan, lumican, and fibromodulin). Less attention has been paid to noncollagenous proteins, although tenascin-C expression may be modulated by mechanical strain. As in hyaline cartilage, matrix metalloproteinases are important in matrix turnover and fibrocartilage cells are capable of apoptosis.
Collapse
Affiliation(s)
- M Benjamin
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom
| | | |
Collapse
|
187
|
Investigations on geometrical features in induced ordering of collagen by small molecules. J CHEM SCI 2003. [DOI: 10.1007/bf02708265] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|