151
|
Ishmatov A. "SARS-CoV-2 is transmitted by particulate air pollution": Misinterpretations of statistical data, skewed citation practices, and misuse of specific terminology spreading the misconception. ENVIRONMENTAL RESEARCH 2022; 204:112116. [PMID: 34562486 PMCID: PMC8489301 DOI: 10.1016/j.envres.2021.112116] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 05/03/2023]
Abstract
In epidemiology, there are still outdated myths associated with the spread of respiratory infections. Recently, we have witnessed the origination of a new misconception, to the effect that SARS-CoV-2 is transmitted in the open air by way of particulate air pollution (atmospheric particulate matter (PM)). There is no evidence to support the idea behind this misconception. Nevertheless, more and more people are involved in animated debate and the number of studies concerning atmospheric PM as a carrier of SARS-CoV-2 is growing rapidly. In this work, the origin of the misconception was investigated, and the published papers which have contributed to the spread of this myth were analyzed. The results show that the following factors lie behind the origin and spread of the misconception: a) The specific terminology is not always clearly defined or consistently used by scientists. In particular, the terms 'particulate matter', 'atmospheric aerosol particles', 'air pollutants', and 'atmospheric aerosols' need to be clarified, and besides they are often equated to 'infectious aerosols', 'virus-bearing aerosols', 'bio-aerosols', 'virus-laden particles', 'respiratory aerosol/droplets', and 'droplet nuclei'. b) Authors misinterpret statistical data and information from other sources. Interpretation of the correlation between PM levels and the increasing incidence and severity of COVID-19 infection, is often changed from "PM may reflect the indirect action of certain atmospheric conditions that maintain infectious nuclei suspended for prolonged periods, parameters that also act on atmospheric pollutants" to "PM could cause an increase in infectious droplets/aerosols containing SARS-CoV-2." This is a dramatic change to the meaning. Moreover, it is often not taken into account that PM may reflect activities in areas with high population density and this population density at the same time contributes to the spread COVID-19. c) Skewed citation practices. Many authors cite a hypothetical conclusion from an original study, then other authors cite the papers of these authors as primary sources. This practice leads to the effect that there are many witnesses to a 'phenomenon' that did not ever occur. Thus, the terminology used in interdisciplinary communications should be more nuanced and defined precisely. Authors should be more careful when citing unconfirmed data (and hypotheses) as well as in interpreting statistical data so as to avoid confusion and spreading false information. This is especially important now in the era of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Alexander Ishmatov
- Research Institute of Experimental and Clinical Medicine, Timakova St., Bild. 2., Novosibirsk, 630117, Russian Federation; Kazan Federal University, Kremlyovskaya St. 18, Kazan, 420008, Russian Federation; Togliatti State University, Belorusskaya St. 14, Togliatti, 445020, Russian Federation.
| |
Collapse
|
152
|
Size dependent infectivity of SARS-CoV-2 via respiratory droplets spread through central ventilation systems. INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER 2022; 132:105748. [PMCID: PMC8576066 DOI: 10.1016/j.icheatmasstransfer.2021.105748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/03/2021] [Indexed: 06/01/2023]
Abstract
Here we evaluate the transport of respiratory droplets that carry SARS-CoV-2 through central air handling systems in multiroom buildings. Respiratory droplet size modes arise from the bronchioles representing the lungs and lower respiratory tract, the larynx representing the upper respiratory tract including vocal cords, or the oral cavity. The size distribution of each mode remains largely conserved, although the magnitude of each droplet mode changes as infected individuals breathe, speak, sing, laugh, cough, and sneeze. Here we evaluate how each type of respiratory droplet transits through central ventilation systems and the implications thereof for infectivity of COVID-19. We find that while larger oral droplets can transmit through the air handling systems, their size and concentration are greatly reduced with but few oral droplets leaving the source room. In contrast, the smaller droplets that originate from the bronchioles and larynx are much more effective in transiting through the air handling system into connected rooms. This suggests that the ratio of lower respiratory or deep lung infections may increase relative to upper respiratory infections in rooms connected by central air handling systems. Also, increasing the temperature and humidity in the range considered after the droplets have achieved an “equilibrium” size reduces the probability of infection.
Collapse
Key Words
- covid-19
- well-mixed
- multizone buildings
- indoor air quality
- wells-riley
- airborne transmission
- healthy buildings
- ach, air changes per hour
- b, bronchiolar
- covid-19, coronavirus disease 2019
- hvac, heating, ventilating, and air-conditioning
- l, laryngeal
- o, oral
- rh, relative humidity
- sars-cov-2, severe acute respiratory syndrome coronavirus 2
Collapse
|
153
|
Yao M. SARS-CoV-2 aerosol transmission and detection. ECO-ENVIRONMENT & HEALTH 2022; 1:3-10. [PMID: 38078196 PMCID: PMC9010325 DOI: 10.1016/j.eehl.2022.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 12/28/2022]
Abstract
Aerosol transmission has been officially recognized by the world health authority resulting from its overwhelming experimental and epidemiological evidences. Despite substantial progress, few additional actions were taken to prevent aerosol transmission, and many key scientific questions still await urgent investigations. The grand challenge, the effective control of aerosol transmission of COVID-19, remains unsolved. A better understanding of the viral shedding into the air has been developed, but its temporal pattern is largely unknown. Sampling tools, as one of the critical elements for studying SARS-CoV-2 aerosol, are not readily available around the world. Many of them are less capable of preserving the viability of SARS-CoV-2, thus offering no clues about viral aerosol infectivity. As evidenced, the viability of SARS-CoV-2 is also directly impacted by temperature, humidity, sunlight, and air pollutants. For SARS-CoV-2 aerosol detection, liquid samplers, together with real-time polymerase chain reaction (RT-PCR), are currently used in certain enclosed or semi-enclosed environments. Sensitive and rapid COVID-19 screening technologies are in great need. Among others, the breath-borne-based method emerges with global attention due to its advantages in sample collection and early disease detection. To collectively confront these challenges, scientists from different fields around the world need to fight together for the welfare of mankind. This review summarized the current understanding of the aerosol transmission of SARS-CoV-2 and identified the key knowledge gaps with a to-do list. This review also serves as a call for efforts to develop technologies to better protect the people in a forthcoming reopening world.
Collapse
Affiliation(s)
- Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
154
|
Rufino de Sousa N, Steponaviciute L, Margerie L, Nissen K, Kjellin M, Reinius B, Salaneck E, Udekwu KI, Rothfuchs AG. Detection and isolation of airborne SARS-CoV-2 in a hospital setting. INDOOR AIR 2022; 32:e13023. [PMID: 35347788 PMCID: PMC9111425 DOI: 10.1111/ina.13023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/21/2022] [Accepted: 03/10/2022] [Indexed: 05/15/2023]
Abstract
Transmission mechanisms for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are incompletely understood. In particular, aerosol transmission remains unclear, with viral detection in air and demonstration of its infection potential being actively investigated. To this end, we employed a novel electrostatic collector to sample air from rooms occupied by COVID-19 patients in a major Swedish hospital. Electrostatic air sampling in conjunction with extraction-free, reverse-transcriptase polymerase chain reaction (hid-RT-PCR) enabled detection of SARS-CoV-2 in air from patient rooms (9/22; 41%) and adjoining anterooms (10/22; 45%). Detection with hid-RT-PCR was concomitant with viral RNA presence on the surface of exhaust ventilation channels in patients and anterooms more than 2 m from the COVID-19 patient. Importantly, it was possible to detect active SARS-CoV-2 particles from room air, with a total of 496 plaque-forming units (PFUs) being isolated, establishing the presence of infectious, airborne SARS-CoV-2 in rooms occupied by COVID-19 patients. Our results support circulation of SARS-CoV-2 via aerosols and urge the revision of existing infection control frameworks to include airborne transmission.
Collapse
Affiliation(s)
- Nuno Rufino de Sousa
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Laura Steponaviciute
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Lucille Margerie
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Karolina Nissen
- Department of Medical SciencesInfectious DiseasesUppsala UniversityUniversity Hospital UppsalaUppsalaSweden
| | - Midori Kjellin
- Department of Medical SciencesInfectious DiseasesUppsala UniversityUniversity Hospital UppsalaUppsalaSweden
| | - Björn Reinius
- Department of Medical Biochemistry and Biophysics (MBB)Karolinska InstitutetStockholmSweden
| | - Erik Salaneck
- Department of Medical SciencesInfectious DiseasesUppsala UniversityUniversity Hospital UppsalaUppsalaSweden
| | - Klas I. Udekwu
- Department of Aquatic Sciences and AssessmentSwedish University of Agricultural SciencesUppsalaSweden
| | | |
Collapse
|
155
|
Arpino F, Grossi G, Cortellessa G, Mikszewski A, Morawska L, Buonanno G, Stabile L. Risk of SARS-CoV-2 in a car cabin assessed through 3D CFD simulations. INDOOR AIR 2022; 32:e13012. [PMID: 35347787 PMCID: PMC9111293 DOI: 10.1111/ina.13012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 05/26/2023]
Abstract
In this study, the risk of infection from SARS-CoV-2 Delta variant of passengers sharing a car cabin with an infected subject for a 30-min journey is estimated through an integrated approach combining a recently developed predictive emission-to-risk approach and a validated CFD numerical model numerically solved using the open-source OpenFOAM software. Different scenarios were investigated to evaluate the effect of the infected subject position within the car cabin, the airflow rate of the HVAC system, the HVAC ventilation mode, and the expiratory activity (breathing vs. speaking). The numerical simulations here performed reveal that the risk of infection is strongly influenced by several key parameters: As an example, under the same ventilation mode and emitting scenario, the risk of infection ranges from zero to roughly 50% as a function of the HVAC flow rate. The results obtained also demonstrate that (i) simplified zero-dimensional approaches limit proper evaluation of the risk in such confined spaces, conversely, (ii) CFD approaches are needed to investigate the complex fluid dynamics in similar indoor environments, and, thus, (iii) the risk of infection in indoor environments characterized by fixed seats can be in principle controlled by properly designing the flow patterns of the environment.
Collapse
Affiliation(s)
- Fausto Arpino
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Giorgio Grossi
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Gino Cortellessa
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| | - Alex Mikszewski
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Lidia Morawska
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Giorgio Buonanno
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
- International Laboratory for Air Quality and HealthQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Luca Stabile
- Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoFRItaly
| |
Collapse
|
156
|
Anderson ER, Patterson EI, Richards S, Pitol AK, Edwards T, Wooding D, Buist K, Green A, Mukherjee S, Hoptroff M, Hughes GL. CPC-containing oral rinses inactivate SARS-CoV-2 variants and are active in the presence of human saliva. J Med Microbiol 2022; 71. [PMID: 35180046 PMCID: PMC8941951 DOI: 10.1099/jmm.0.001508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Introduction. The importance of human saliva in aerosol-based transmission of SARS-CoV-2 is now widely recognized. However, little is known about the efficacy of virucidal mouthwash formulations against emergent SARS-CoV-2 variants of concern and in the presence of saliva. Hypothesis. Mouthwashes containing virucidal actives will have similar inactivation effects against multiple SARS-CoV-2 variants of concern and will retain efficacy in the presence of human saliva. Aim. To examine in vitro efficacy of mouthwash formulations to inactivate SARS-CoV-2 variants. Methodology. Inactivation of SARS-CoV-2 variants by mouthwash formulations in the presence or absence of human saliva was assayed using ASTM International Standard E1052-20 methodology. Results. Appropriately formulated mouthwashes containing 0.07 % cetylpyridinium chloride but not 0.2 % chlorhexidine completely inactivated SARS-CoV-2 (USA-WA1/2020, Alpha, Beta, Gamma, Delta) up to the limit of detection in suspension assays. Tests using USA-WA1/2020 indicates that efficacy is maintained in the presence of human saliva. Conclusions. Together these data suggest cetylpyridinium chloride-based mouthwashes are effective at inactivating SARS-CoV-2 variants. This indicates potential to reduce viral load in the oral cavity and mitigate transmission via salivary aerosols.
Collapse
Affiliation(s)
- Enyia R Anderson
- Liverpool School of Tropical Medicine, Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool L3 5QA, UK
| | - Edward I Patterson
- Liverpool School of Tropical Medicine, Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool L3 5QA, UK.,Brock University, Department of Biological Sciences, St. Catharines, L2S 3A1, Canada
| | - Siobhan Richards
- Liverpool School of Tropical Medicine, Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool L3 5QA, UK
| | - Ana K Pitol
- Liverpool School of Tropical Medicine, Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool L3 5QA, UK
| | - Thomas Edwards
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, L3 5QA, UK
| | - Dominic Wooding
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, L3 5QA, UK
| | - Kate Buist
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, L3 5QA, UK
| | - Alison Green
- Unilever Research and Development, Port Sunlight CH63 3JW, UK
| | | | | | - Grant L Hughes
- Liverpool School of Tropical Medicine, Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Diseases, Liverpool L3 5QA, UK
| |
Collapse
|
157
|
Baldridge KC, Edmonds K, Dziubla T, Hilt JZ, Dutch RE, Bhattacharyya D. Demonstration of Hollow Fiber Membrane-Based Enclosed Space Air Remediation for Capture of an Aerosolized Synthetic SARS-CoV-2 Mimic and Pseudovirus Particles. ACS ES&T ENGINEERING 2022; 2:251-262. [PMID: 37406036 PMCID: PMC8768008 DOI: 10.1021/acsestengg.1c00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Reduction of airborne viral particles in enclosed spaces is critical in controlling pandemics. Three different hollow fiber membrane (HFM) modules were investigated for viral aerosol separation in enclosed spaces. Pore structures were characterized by scanning electron microscopy, and air transport properties were measured. Particle removal efficiency was characterized using aerosols generated by a collision atomizer from a defined mixture of synthetic nanoparticles including SARS-CoV-2 mimics (protein-coated 100 nm polystyrene). HFM1 (polyvinylidene fluoride, ~50-1300 nm pores) demonstrated 96.5-100% efficiency for aerosols in the size range of 0.3-3 μm at a flow rate of 18.6 ± 0.3 SLPM (~1650 LMH), whereas HFM2 (polypropylene, ~40 nm pores) and HFM3 (hydrophilized polyether sulfone, ~140-750 nm pores) demonstrated 99.65-100% and 98.8-100% efficiency at flow rates of 19.7 ± 0.3 SLPM (~820 LMH) and 19.4 ± 0.2 SLPM (~4455 LMH), respectively. Additionally, lasting filtration with minimal fouling was demonstrated using ambient aerosols over 2 days. Finally, each module was evaluated with pseudovirus (vesicular stomatitis virus) aerosol, demonstrating 99.3% (HFM1), >99.8% (HFM2), and >99.8% (HFM3) reduction in active pseudovirus titer as a direct measure of viral particle removal. These results quantified the aerosol separation efficiency of HFMs and highlight the need for further development of this technology to aid the fight against airborne viruses and particulate matter concerning human health.
Collapse
Affiliation(s)
- Kevin C Baldridge
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kearstin Edmonds
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - J Zach Hilt
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Rebecca E Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40508, United States
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
158
|
Leonardi AJ, Mishra AK. A Sanitation Argument for Clean Indoor Air: Meeting a Requisite for Safe Public Spaces. Front Public Health 2022; 10:805780. [PMID: 35237550 PMCID: PMC8883285 DOI: 10.3389/fpubh.2022.805780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Asit Kumar Mishra
- MaREI Centre, Ryan Institute & School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
159
|
Borgelink BTH, Carchia AE, Hernández-Sánchez JF, Caputo D, Gardeniers JGE, Susarrey-Arce A. Filtering efficiency model that includes the statistical randomness of non-woven fiber layers in facemasks. Sep Purif Technol 2022; 282:120049. [PMID: 34744488 PMCID: PMC8558106 DOI: 10.1016/j.seppur.2021.120049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/18/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Facemasks have become important tools to fight virus spread during the recent COVID-19 pandemic, but their effectiveness is still under debate. We present a computational model to predict the filtering efficiency of an N95-facemask, consisting of three non-woven fiber layers with different particle capturing mechanisms. Parameters such as fiber layer thickness, diameter distribution, and packing density are used to construct two-dimensional cross-sectional geometries. An essential and novel element is that the polydisperse fibers are positioned randomly within a simulation domain, and that the simulation is repeated with different random configurations. This strategy is thought to give a more realistic view of practical facemasks compared to existing analytical models that mostly assume homogeneous fiber beds of monodisperse fibers. The incompressible Navier-Stokes and continuity equations are used to solve the velocity field for various droplet-laden air inflow velocities. Droplet diameters are ranging from 10 nm to 1.0 µm, which covers the size range from the SARS-CoV-2 virus to the large virus-laden airborne droplets. Air inflow velocities varying between 0.1 m·s-1 to 10 m·s-1 are considered, which are typically encountered during expiratory events like breathing, talking, and coughing. The presented model elucidates the different capturing efficiencies (i.e., mechanical and electrostatic filtering) of droplets as a function of their diameter and air inflow velocity. Simulation results are compared to analytical models and particularly compare well with experimental results from literature. Our numerical approach will be helpful in finding new directions for anti-viral facemask optimization.
Collapse
Affiliation(s)
- B T H Borgelink
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - A E Carchia
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.,Department Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - J F Hernández-Sánchez
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad universitaria, 04510, Mexico City
| | - D Caputo
- Department Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| |
Collapse
|
160
|
Li X, Ding P, Deng F, Mao Y, Zhou L, Ding C, Wang Y, Luo Y, Zhou Y, MacIntyre CR, Tang S, Xu D, Shi X. Wearing time and respiratory volume affect the filtration efficiency of masks against aerosols at different sizes. ENVIRONMENTAL TECHNOLOGY & INNOVATION 2022; 25:102165. [PMID: 34926728 PMCID: PMC8665844 DOI: 10.1016/j.eti.2021.102165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Face masks are critical in preventing the spread of respiratory infections including coronavirus disease 2019 (COVID-19). Different types of masks have distinct filtration efficiencies (FEs) with differential costs and supplies. Here we reported the impact of breathing volume and wearing time on the inward and outward FEs of four different mask types (N95, surgical, single-use, and cloth masks) against various sizes of aerosols. Specifically, 1) Mask type was an important factor affecting the FEs. The FEs of N95 and surgical mask were better than those of single-use mask and cloth mask; 2) As particle size decreased, the FEs tended to reduce. The trend was significantly observed in FEs of aerosols with particle size < 1 μ m ; 3) After wearing N95 and surgical masks for 0, 2, 4, and 8 h, their FEs (%) maintained from 95.75 ± 0.09 to 100 ± 0 range. While a significant decrease in FEs were noticed for single-use masks worn for 8 h and cloth masks worn >2 h under deep breathing (30 L/min); 4) Both inward and outward FEs of N95 and surgical masks were similar, while the outward FEs of single-use and cloth masks were higher than their inward FEs; 5) The FEs under deep breathing was significantly lower than normal breathing with aerosol particle size <1 μ m. In conclusion, our results revealed that masks have a critical role in preventing the spread of aerosol particles by filtering inhalation, and FEs significantly decreased with the increasing of respiratory volume and wearing time. Deep breathing may cause increasing humidity and hence decrease FEs by increasing the airflow pressure. With the increase of wearing time, the adsorption capacity of the filter material tends to be saturated, which may reduce FEs. Findings may be used to provide information for policies regarding the proper use of masks for general public in current and future pandemics.
Collapse
Affiliation(s)
- Xia Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Pei Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yixin Mao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lin Zhou
- Dalian Center for Disease Control and Prevention, Dalian, Liaoning 116021, China
| | - Cheng Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Youbin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yueyun Luo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yakun Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - C Raina MacIntyre
- The Kirby Institute, Faculty of Medicine, The University of New South Wales, Sydney, 2052, NSW, Australia
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
161
|
Port JR, Yinda CK, Avanzato VA, Schulz JE, Holbrook MG, van Doremalen N, Shaia C, Fischer RJ, Munster VJ. Increased small particle aerosol transmission of B.1.1.7 compared with SARS-CoV-2 lineage A in vivo. Nat Microbiol 2022; 7:213-223. [PMID: 35017676 PMCID: PMC11218742 DOI: 10.1038/s41564-021-01047-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
The major transmission route for SARS-CoV-2 is airborne. However, previous studies could not elucidate the contribution between large droplets and aerosol transmission of SARS-CoV-2 and its variants. Here, we designed and validated an optimized transmission caging setup, which allows for the assessment of aerosol transmission efficiency at various distances. At a distance of 2 m, only particles of <5 μm traversed between cages. Using this setup, we investigated the relative efficiency of aerosol transmission between the SARS-CoV-2 Alpha variant (B.1.1.7) and lineage A in Syrian hamsters. Aerosol transmission of both variants was confirmed in all sentinels after 24 h of exposure as demonstrated by respiratory virus shedding and seroconversion. Productive transmission also occurred after 1 h of exposure, highlighting the efficiency of this transmission route. Interestingly, after donors were infected with a mix of both variants, the Alpha variant outcompeted the lineage A variant in an airborne transmission chain. Overall, these data indicate that a lower infectious dose of the Alpha variant, compared to lineage A, could be sufficient for successful transmission. This highlights the continuous need to assess emerging variants and the development for pre-emptive transmission mitigation strategies.
Collapse
Affiliation(s)
- Julia R Port
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Claude Kwe Yinda
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Victoria A Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Jonathan E Schulz
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Myndi G Holbrook
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Carl Shaia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Robert J Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
162
|
Blachere FM, Lemons AR, Coyle JP, Derk RC, Lindsley WG, Beezhold DH, Woodfork K, Duling MG, Boutin B, Boots T, Harris JR, Nurkiewicz T, Noti JD. Face mask fit modifications that improve source control performance. Am J Infect Control 2022; 50:133-140. [PMID: 34924208 PMCID: PMC8674119 DOI: 10.1016/j.ajic.2021.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND During the COVID-19 pandemic, face masks are used as source control devices to reduce the expulsion of respiratory aerosols from infected people. Modifications such as mask braces, earloop straps, knotting and tucking, and double masking have been proposed to improve mask fit however the data on source control are limited. METHODS The effectiveness of mask fit modifications was determined by conducting fit tests on human subjects and simulator manikins and by performing simulated coughs and exhalations using a source control measurement system. RESULTS Medical masks without modification blocked ≥56% of cough aerosols and ≥42% of exhaled aerosols. Modifying fit by crossing the earloops or placing a bracket under the mask did not increase performance, while using earloop toggles, an earloop strap, and knotting and tucking the mask increased performance. The most effective modifications for improving source control performance were double masking and using a mask brace. Placing a cloth mask over a medical mask blocked ≥85% of cough aerosols and ≥91% of exhaled aerosols. Placing a brace over a medical mask blocked ≥95% of cough aerosols and ≥99% of exhaled aerosols. CONCLUSIONS Fit modifications can greatly improve the performance of face masks as source control devices for respiratory aerosols.
Collapse
Affiliation(s)
- Francoise M Blachere
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV.
| | - Angela R Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Jayme P Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Raymond C Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - William G Lindsley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Donald H Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Karen Woodfork
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV; Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV
| | - Matthew G Duling
- National Personal Protective Technology Laboratory, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Brenda Boutin
- National Personal Protective Technology Laboratory, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - James R Harris
- National Personal Protective Technology Laboratory, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| | - Tim Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV; Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV
| | - John D Noti
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV
| |
Collapse
|
163
|
Abstract
The COVID-19 pandemic forced the accessibility, social gathering, lifestyle, and working environment to be changed to reduce the infection. Coronavirus spreads between people in several different ways. Small liquid particles (aerosols, respiratory droplets) from an infected person are transmitted through air and surfaces that are in contact with humans. Reducing transmission through modified heating, ventilation, and air conditioning (HVAC) systems and building design are potential solutions. A comprehensive review of the engineering control preventive measures to mitigate COVID-19 spread, healthy building design, and material was carried out. The current state-of-the-art engineering control preventive measures presented include ultraviolet germicidal irradiation (UVGI), bipolar ionization, vertical gardening, and indoor plants. They have potential to improve the indoor air quality. In addition, this article presents building design with materials (e.g., copper alloys, anti-microbial paintings) and smart technologies (e.g., automation, voice control, and artificial intelligence-based facial recognition) to mitigate the infections of communicable diseases.
Collapse
|
164
|
Infection Risk Prediction Model for COVID-19 Based on an Analysis of the Settlement of Particles Generated during Dental Procedures in Dental Clinics. Int J Dent 2022; 2021:7832672. [PMID: 34976064 PMCID: PMC8717047 DOI: 10.1155/2021/7832672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 11/21/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background The health emergency declaration owing to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has drawn attention toward nosocomial transmission. The transmission of the disease varies depending on the environmental conditions. Saliva is a recognized SARS-CoV-2 reservoir in infected individuals. Therefore, exposure to fluids during dental procedures leads to a high risk of contagion. Objective This study aimed to develop an infection risk prediction model for COVID-19 based on an analysis of the settlement of the aerosolized particles generated during dental procedures. Materials and Methods The settlement of aerosolized particles during dental aerosol-generating procedures (AGPs) performed on phantoms was evaluated using colored saliva. The gravity-deposited particles were registered using a filter paper within the perimeter of the phantom head, and the settled particles were recorded in standardized photographs. Digital images were processed to analyze the stained area. A logistic regression model was built with the variables ventilation, distance from the mouth, instrument used, area of the mouth treated, and location within the perimeter area. Results The largest percentage of the areas stained by settled particles ranged from 1 to 5 µm. The maximum settlement range from the mouth of the phantom head was 320 cm, with a high-risk cutoff distance of 78 cm. Ventilation, distance, instrument used, area of the mouth being treated, and location within the perimeter showed association with the amount of settled particles. These variables were used for constructing a scale to determine the risk of exposure to settled particles in dentistry within an infection risk prediction model. Conclusion The greatest risk of particle settlement occurs at a distance up to 78 cm from the phantom mouth, with inadequate ventilation, and when working with a high-speed handpiece. The majority of the settled particles generated during the AGPs presented stained areas ranging from 1 to 5 µm. This model was useful for predicting the risk of exposure to COVID-19 in dental practice.
Collapse
|
165
|
Ingabire J, McKenney H, Sebesta C, Badhiwala K, Kemere C, Kapur S, Robinson JT. Evaluation of Aerosol Particle Leak and Standard Surgical Mask Fit With 3 Elastomeric Harness Designs. JAMA Netw Open 2022; 5:e2145811. [PMID: 35099550 PMCID: PMC8804914 DOI: 10.1001/jamanetworkopen.2021.45811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This comparative effectiveness study evaluates aerosol particle leak and standard surgical mask fit with 3 elastomeric harness designs tested on mannequin heads and human participants using US Occupational Safety and Health Administration N95 fit factor requirements.
Collapse
Affiliation(s)
- Jeannette Ingabire
- Department of Electrical and Computer Engineering, Brown School of Engineering, Rice University, Houston, Texas
- Systems, Synthetic, and Physical Biology PhD Program, Institute of Biosciences and Bioengineering, Rice University, Houston, Texas
| | - Hannah McKenney
- Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Charles Sebesta
- Department of Electrical and Computer Engineering, Brown School of Engineering, Rice University, Houston, Texas
| | - Krishna Badhiwala
- Department of Electrical and Computer Engineering, Brown School of Engineering, Rice University, Houston, Texas
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Brown School of Engineering, Rice University, Houston, Texas
| | - Sahil Kapur
- Department of Plastic Surgery, The University of Texas MD Anderson Cancer Center, Houston
| | - Jacob T. Robinson
- Department of Electrical and Computer Engineering, Brown School of Engineering, Rice University, Houston, Texas
| |
Collapse
|
166
|
da Silva PG, Gonçalves J, Lopes AIB, Esteves NA, Bamba GEE, Nascimento MSJ, Branco PTBS, Soares RRG, Sousa SIV, Mesquita JR. Evidence of Air and Surface Contamination with SARS-CoV-2 in a Major Hospital in Portugal. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:525. [PMID: 35010785 PMCID: PMC8744945 DOI: 10.3390/ijerph19010525] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023]
Abstract
As the third wave of the COVID-19 pandemic hit Portugal, it forced the country to reintroduce lockdown measures due to hospitals reaching their full capacities. Under these circumstances, environmental contamination by SARS-CoV-2 in different areas of one of Portugal's major Hospitals was assessed between 21 January and 11 February 2021. Air samples (n = 44) were collected from eleven different areas of the Hospital (four COVID-19 and seven non-COVID-19 areas) using Coriolis® μ and Coriolis® Compact cyclone air sampling devices. Surface sampling was also performed (n = 17) on four areas (one COVID-19 and three non-COVID-19 areas). RNA extraction followed by a one-step RT-qPCR adapted for quantitative purposes were performed. Of the 44 air samples, two were positive for SARS-CoV-2 RNA (6575 copies/m3 and 6662.5 copies/m3, respectively). Of the 17 surface samples, three were positive for SARS-CoV-2 RNA (200.6 copies/cm2, 179.2 copies/cm2, and 201.7 copies/cm2, respectively). SARS-CoV-2 environmental contamination was found both in air and on surfaces in both COVID-19 and non-COVID-19 areas. Moreover, our results suggest that longer collection sessions are needed to detect point contaminations. This reinforces the need to remain cautious at all times, not only when in close contact with infected individuals. Hand hygiene and other standard transmission-prevention guidelines should be continuously followed to avoid nosocomial COVID-19.
Collapse
Affiliation(s)
- Priscilla Gomes da Silva
- ICBAS–School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (P.T.B.S.B.); (S.I.V.S.)
| | - José Gonçalves
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain;
- Department of Chemical Engineering, University of Valladolid, 47011 Valladolid, Spain
| | - Ariana Isabel Brito Lopes
- Unidade Local de Saúde do Alto Minho E.P.E., 4904-858 Viana do Castelo, Portugal; (A.I.B.L.); (N.A.E.); (G.E.E.B.)
| | - Nury Alves Esteves
- Unidade Local de Saúde do Alto Minho E.P.E., 4904-858 Viana do Castelo, Portugal; (A.I.B.L.); (N.A.E.); (G.E.E.B.)
| | - Gustavo Emanuel Enes Bamba
- Unidade Local de Saúde do Alto Minho E.P.E., 4904-858 Viana do Castelo, Portugal; (A.I.B.L.); (N.A.E.); (G.E.E.B.)
| | | | - Pedro T. B. S. Branco
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (P.T.B.S.B.); (S.I.V.S.)
| | - Ruben R. G. Soares
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Sofia I. V. Sousa
- LEPABE–Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (P.T.B.S.B.); (S.I.V.S.)
| | - João R. Mesquita
- ICBAS–School of Medicine and Biomedical Sciences, Porto University, 4050-313 Porto, Portugal;
- Epidemiology Research Unit (EPIunit), Institute of Public Health, University of Porto, 4050-600 Porto, Portugal
| |
Collapse
|
167
|
Du Puis JL, Forstenhausler L, Goodge K, Maher M, Frey M, Baytar F, Park H. Cloth face mask fit and function for children part one: design exploration. FASHION AND TEXTILES 2022; 9:14. [PMCID: PMC9107347 DOI: 10.1186/s40691-022-00287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Commercially available children’s cloth masks range widely in material type and fabric structures, methods of construction, layering, and shape, and there is a lack of sizing systems, anthropometric data or guidelines specifically targeting the fit assessment and design of cloth face masks for children 4-6 years old. To better identify and understand the cloth face mask fit and functional needs of children ages 4-6 years old, the researchers embarked on interdisciplinary in-depth study to investigate commercial market offerings of children’s face masks, identify consumer perspectives, and explore mask design improvements through design research. By triangulating results from survey feedback, commercial market content analysis, and wear trial observations, the researchers were able to identify important design criteria that can be used in the improvement of children’s cloth face mask design: size, comfort, dexterity, movement, and thermal comfort. These criteria were used to iteratively develop new mask prototypes involving a 3D printed head form, traditional sewing and hand patternmaking skills, and the creation of multiple mask versions to explore the design criteria listed above. The designs were interpreted through Bye’s (2010) Problem-Based Design Research (PBDR) framework, which identifies common design research practices in the field on a spectrum and situates PBDR as a process centered on a problem as impetus for design through which artifacts are developed.
Collapse
Affiliation(s)
- Jenny Leigh Du Puis
- Cornell University, T-41 Human Ecology Building, 37 Forest Home Dr, Ithaca, NY 14853 USA
| | - Lauren Forstenhausler
- Cornell University, 255 Human Ecology Building, 37 Forest Home Dr, Ithaca, NY 14853 USA
| | - Katarina Goodge
- Cornell University, 150 Human Ecology Building, 37 Forest Home Dr, Ithaca, NY 14853 USA
| | - Mona Maher
- Cornell University, 112 Human Ecology Building, 37 Forest Home Dr., Ithaca, NY 14853 USA
| | - Margaret Frey
- Cornell University, 235 Human Ecology Building, 37 Forest Home Dr, Ithaca, NY 14853 USA
| | - Fatma Baytar
- Cornell University, 133 Human Ecology Building, 37 Forest Home Dr., Ithaca, NY 14853 USA
| | - Huiju Park
- Cornell University, 131 Human Ecology Building, 37 Forest Home Dr, Ithaca, NY 14853 USA
| |
Collapse
|
168
|
Koroteeva E, Shagiyanova A. Infrared-based visualization of exhalation flows while wearing protective face masks. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:011705. [PMID: 35340681 PMCID: PMC8939526 DOI: 10.1063/5.0076230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/27/2021] [Indexed: 05/15/2023]
Abstract
Since the onset of the COVID-19 pandemic, a large number of flow visualization procedures have been proposed to assess the effect of personal protective equipment on respiratory flows. This study suggests infrared thermography as a beneficial visualization technique because it is completely noninvasive and safe and, thus, can be used on live individuals rather than mannequins or lung simulators. Here, we examine the effect of wearing either of three popular face coverings (a surgical mask, a cloth mask, or an N95 respirator with an exhalation valve) on thermal signatures of exhaled airflows near a human face while coughing, talking, or breathing. The flow visualization using a mid-wave infrared camera captures the dynamics of thermal inhomogeneities induced by increased concentrations of carbon dioxide in the exhaled air. Thermal images demonstrate that both surgical and cloth face masks allow air leakage through the edges and the fabric itself, but they decrease the initial forward velocity of a cough jet by a factor of four. The N95 respirator, on the other hand, reduces the infrared emission of carbon dioxide near the person's face almost completely. This confirms that the N95-type mask may indeed lead to excessive inhalation of carbon dioxide as suggested by some recent studies.
Collapse
Affiliation(s)
- E. Koroteeva
- Author to whom correspondence should be addressed:
| | | |
Collapse
|
169
|
Vlachokostas A, Burns CA, Salsbury TI, Daniel RC, James DP, Flaherty JE, Wang N, Underhill RM, Kulkarni G, Pease LF. Experimental evaluation of respiratory droplet spread to rooms connected by a central ventilation system. INDOOR AIR 2022; 32:e12940. [PMID: 35048430 DOI: 10.1111/ina.12940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
This article presents results from an experimental study to ascertain the transmissibility of the SARS-CoV-2 virus between rooms in a building that are connected by a central ventilation system. Respiratory droplet surrogates made of mucus and virus mimics were released in one room in a test building, and measurements of concentration levels were made in other rooms connected via the ventilation system. The paper presents experimental results for different ventilation system configurations, including ventilation rate, filtration level (up to MERV-13), and fractional outdoor air intake. The most important finding is that respiratory droplets can and do transit through central ventilation systems, suggesting a mechanism for viral transmission (and COVID-19 specifically) within the built environment in reasonable agreement with well-mixed models. We also find the deposition of small droplets (0.5-4 μm) on room walls to be negligibly small.
Collapse
Affiliation(s)
- Alex Vlachokostas
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Carolyn A Burns
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | | | - Richard C Daniel
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Daniel P James
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Julia E Flaherty
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Na Wang
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | | | - Gourihar Kulkarni
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Leonard F Pease
- Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| |
Collapse
|
170
|
Wang W, Wang F, Lai D, Chen Q. Evaluation of SARS-COV-2 transmission and infection in airliner cabins. INDOOR AIR 2022; 32:e12979. [PMID: 35048429 DOI: 10.1111/ina.12979] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Commercial airliners have played an important role in spreading the SARS-CoV-2 virus worldwide. This study used computational fluid dynamics (CFD) to simulate the transmission of SARS-CoV-2 on a flight from London to Hanoi and another from Singapore to Hangzhou. The dispersion of droplets of different sizes generated by coughing, talking, and breathing activities in a cabin by an infected person was simulated by means of the Lagrangian method. The SARS-CoV-2 virus contained in expiratory droplets traveled with the cabin air distribution and was inhaled by other passengers. Infection was determined by counting the number of viral copies inhaled by each passenger. According to the results, our method correctly predicted 84% of the infected/uninfected cases on the first flight. The results also show that wearing masks and reducing conversation frequency between passengers could help to reduce the risk of exposure on the second flight.
Collapse
Affiliation(s)
- Wensi Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Feng Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Dayi Lai
- Department of Architecture, Shanghai Jiao Tong University, Shanghai, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
171
|
Karat AS, McCreesh N, Baisley K, Govender I, Kallon II, Kielmann K, MacGregor H, Vassall A, Yates TA, Grant AD. Estimating waiting times, patient flow, and waiting room occupancy density as part of tuberculosis infection prevention and control research in South African primary health care clinics. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000684. [PMID: 36962412 PMCID: PMC10021248 DOI: 10.1371/journal.pgph.0000684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/13/2022] [Indexed: 01/13/2023]
Abstract
Transmission of respiratory pathogens, such as Mycobacterium tuberculosis and severe acute respiratory syndrome coronavirus 2, is more likely during close, prolonged contact and when sharing a poorly ventilated space. Reducing overcrowding of health facilities is a recognised infection prevention and control (IPC) strategy; reliable estimates of waiting times and 'patient flow' would help guide implementation. As part of the Umoya omuhle study, we aimed to estimate clinic visit duration, time spent indoors versus outdoors, and occupancy density of waiting rooms in clinics in KwaZulu-Natal (KZN) and Western Cape (WC), South Africa. We used unique barcodes to track attendees' movements in 11 clinics, multiple imputation to estimate missing arrival and departure times, and mixed-effects linear regression to examine associations with visit duration. 2,903 attendees were included. Median visit duration was 2 hours 36 minutes (interquartile range [IQR] 01:36-3:43). Longer mean visit times were associated with being female (13.5 minutes longer than males; p<0.001) and attending with a baby (18.8 minutes longer than those without; p<0.01), and shorter mean times with later arrival (14.9 minutes shorter per hour after 0700; p<0.001). Overall, attendees spent more of their time indoors (median 95.6% [IQR 46-100]) than outdoors (2.5% [IQR 0-35]). Attendees at clinics with outdoor waiting areas spent a greater proportion (median 13.7% [IQR 1-75]) of their time outdoors. In two clinics in KZN (no appointment system), occupancy densities of ~2.0 persons/m2 were observed in smaller waiting rooms during busy periods. In one clinic in WC (appointment system, larger waiting areas), occupancy density did not exceed 1.0 persons/m2 despite higher overall attendance. In this study, longer waiting times were associated with early arrival, being female, and attending with a young child. Occupancy of waiting rooms varied substantially between rooms and over the clinic day. Light-touch estimation of occupancy density may help guide interventions to improve patient flow.
Collapse
Affiliation(s)
- Aaron S Karat
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- The Institute for Global Health and Development, Queen Margaret University, Edinburgh, United Kingdom
| | - Nicky McCreesh
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kathy Baisley
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Africa Health Research Institute, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Indira Govender
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Idriss I Kallon
- Division of Social and Behavioural Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Evidence-Based Health Care, Division of Epidemiology and Biostatistics, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Karina Kielmann
- The Institute for Global Health and Development, Queen Margaret University, Edinburgh, United Kingdom
| | - Hayley MacGregor
- The Institute of Development Studies, University of Sussex, Brighton, United Kingdom
| | - Anna Vassall
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tom A Yates
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Alison D Grant
- TB Centre, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Africa Health Research Institute, School of Laboratory Medicine & Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
172
|
Chauhan V, Thakur S. State of the Globe: Protecting Health-Care Workers from Aerosolized Infections. J Glob Infect Dis 2022; 14:1-2. [PMID: 35418735 PMCID: PMC8996456 DOI: 10.4103/jgid.jgid_37_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Vivek Chauhan
- Department of Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Suman Thakur
- Department of Microbiology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| |
Collapse
|
173
|
Wilson AM, Aviles N, Petrie JI, Beamer PI, Szabo Z, Xie M, McIllece J, Chen Y, Son Y, Halai S, White T, Ernst KC, Masel J. Quantifying SARS-CoV-2 Infection Risk Within the Google/Apple Exposure Notification Framework to Inform Quarantine Recommendations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:162-176. [PMID: 34155669 PMCID: PMC8447042 DOI: 10.1111/risa.13768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/31/2021] [Accepted: 05/24/2021] [Indexed: 05/13/2023]
Abstract
Most early Bluetooth-based exposure notification apps use three binary classifications to recommend quarantine following SARS-CoV-2 exposure: a window of infectiousness in the transmitter, ≥15 minutes duration, and Bluetooth attenuation below a threshold. However, Bluetooth attenuation is not a reliable measure of distance, and infection risk is not a binary function of distance, nor duration, nor timing. We model uncertainty in the shape and orientation of an exhaled virus-containing plume and in inhalation parameters, and measure uncertainty in distance as a function of Bluetooth attenuation. We calculate expected dose by combining this with estimated infectiousness based on timing relative to symptom onset. We calibrate an exponential dose-response curve based on infection probabilities of household contacts. The probability of current or future infectiousness, conditioned on how long postexposure an exposed individual has been symptom-free, decreases during quarantine, with shape determined by incubation periods, proportion of asymptomatic cases, and asymptomatic shedding durations. It can be adjusted for negative test results using Bayes' theorem. We capture a 10-fold range of risk using six infectiousness values, 11-fold range using three Bluetooth attenuation bins, ∼sixfold range from exposure duration given the 30 minute duration cap imposed by the Google/Apple v1.1, and ∼11-fold between the beginning and end of 14 day quarantine. Public health authorities can either set a threshold on initial infection risk to determine 14-day quarantine onset, or on the conditional probability of current and future infectiousness conditions to determine both quarantine and duration.
Collapse
Affiliation(s)
- Amanda M. Wilson
- Mel & Enid Zuckerman College of Public HealthUniversity of Arizona1295 N Martin AveTucsonAZ85724USA
- Rocky Mountain Center for Occupational and Environmental HealthUniversity of Utah391 Chipeta Way suite cSalt Lake CityUT84108USA
| | - Nathan Aviles
- Graduate Interdisciplinary Program in StatisticsUniversity of Arizona617 N. Santa Rita Ave.TucsonAZ85721USA
| | - James I. Petrie
- WeHealth Solutions PBC5325 Elkhorn Blvd # 7011SacramentoCA95842USA
- Applied MathematicsUniversity of Waterloo200 University Ave. WWaterlooOntarioN2L 3G1Canada
- Covid Watch (affiliation at time of writing, now dissolved)
| | - Paloma I. Beamer
- Mel & Enid Zuckerman College of Public HealthUniversity of Arizona1295 N Martin AveTucsonAZ85724USA
| | - Zsombor Szabo
- Covid Watch (affiliation at time of writing, now dissolved)
| | - Michelle Xie
- WeHealth Solutions PBC5325 Elkhorn Blvd # 7011SacramentoCA95842USA
- Covid Watch (affiliation at time of writing, now dissolved)
| | - Janet McIllece
- World Wide Technology1 World Wide WaySt. LouisMO63146USA
| | - Yijie Chen
- Systems and Industrial EngineeringUniversity of Arizona1127 E. James E. Rogers WayTucsonAZ85721USA
| | - Young‐Jun Son
- Systems and Industrial EngineeringUniversity of Arizona1127 E. James E. Rogers WayTucsonAZ85721USA
| | - Sameer Halai
- WeHealth Solutions PBC5325 Elkhorn Blvd # 7011SacramentoCA95842USA
- Covid Watch (affiliation at time of writing, now dissolved)
| | - Tina White
- Covid Watch (affiliation at time of writing, now dissolved)
| | - Kacey C. Ernst
- Mel & Enid Zuckerman College of Public HealthUniversity of Arizona1295 N Martin AveTucsonAZ85724USA
| | - Joanna Masel
- WeHealth Solutions PBC5325 Elkhorn Blvd # 7011SacramentoCA95842USA
- Ecology & Evolutionary BiologyUniversity of Arizona1041 E Lowell StTucsonAZ85721USA
| |
Collapse
|
174
|
Nannu Shankar S, Witanachchi CT, Morea AF, Lednicky JA, Loeb JC, Alam MM, Fan ZH, Eiguren-Fernandez A, Wu CY. SARS-CoV-2 in residential rooms of two self-isolating persons with COVID-19. JOURNAL OF AEROSOL SCIENCE 2022; 159:105870. [PMID: 34483358 PMCID: PMC8401278 DOI: 10.1016/j.jaerosci.2021.105870] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 05/16/2023]
Abstract
Individuals with COVID-19 are advised to self-isolate at their residences unless they require hospitalization. Persons sharing a dwelling with someone who has COVID-19 have a substantial risk of being exposed to the virus. However, environmental monitoring for the detection of virus in such settings is limited. We present a pilot study on environmental sampling for SARS-CoV-2 virions in the residential rooms of two volunteers with COVID-19 who self-quarantined. Apart from standard surface swab sampling, based on availability, four air samplers positioned 0.3-2.2 m from the volunteers were used: a VIable Virus Aerosol Sampler (VIVAS), an inline air sampler that traps particles on polytetrafluoroethylene (PTFE) filters, a NIOSH 2-stage cyclone sampler (BC-251), and a Sioutas personal cascade impactor sampler (PCIS). The latter two selectively collect particles of specific size ranges. SARS-CoV-2 RNA was detected by real-time Reverse-Transcription quantitative Polymerase Chain Reaction (rRT-qPCR) analyses of particles in one air sample from the room of volunteer A and in various air and surface samples from that of volunteer B. The one positive sample collected by the NIOSH sampler from volunteer A's room had a quantitation cycle (Cq) of 38.21 for the N-gene, indicating a low amount of airborne virus [5.69E-02 SARS-CoV-2 genome equivalents (GE)/cm3 of air]. In contrast, air samples and surface samples collected off the mobile phone in volunteer B's room yielded Cq values ranging from 14.58 to 24.73 and 21.01 to 24.74, respectively, on the first day of sampling, indicating that this volunteer was actively shedding relatively high amounts of SARS-CoV-2 at that time. The SARS-CoV-2 GE/cm3 of air for the air samples collected by the PCIS was in the range 6.84E+04 to 3.04E+05 using the LED-N primer system, the highest being from the stage 4 filter, and similarly, ranged from 2.54E+03 to 1.68E+05 GE/cm3 in air collected by the NIOSH sampler. Attempts to isolate the virus in cell culture from the samples from volunteer B's room with the aforementioned Cq values were unsuccessful due to out-competition by a co-infecting Human adenovirus B3 (HAdVB3) that killed the Vero E6 cell cultures within 4 days of their inoculation, although Cq values of 34.56-37.32 were measured upon rRT-qPCR analyses of vRNA purified from the cell culture medium. The size distribution of SARS-CoV-2-laden aerosol particles collected from the air of volunteer B's room was >0.25 μm and >0.1 μm as recorded by the PCIS and the NIOSH sampler, respectively, suggesting a risk of aerosol transmission since these particles can remain suspended in air for an extended time and travel over long distances. The detection of virus in surface samples also underscores the potential for fomite transmission of SARS-CoV-2 in indoor settings.
Collapse
Affiliation(s)
- Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Chiran T Witanachchi
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Alyssa F Morea
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - John A Lednicky
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Julia C Loeb
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Md Mahbubul Alam
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Z Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL, 32611, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, 32611, USA
| | | | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
175
|
Jumlongkul A. Low-Cost Air Purifier Prototype Using a Ventilating Fan and Pump Against Haze Pollution. AEROSOL SCIENCE AND ENGINEERING 2022; 6:391-399. [PMCID: PMC9391203 DOI: 10.1007/s41810-022-00152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/01/2022] [Accepted: 07/11/2022] [Indexed: 08/30/2023]
Abstract
This study aimed to focus on the design and development of low-cost do-it-yourself (DIY) air purifiers, using a ventilating fan, air pump, water pump, and an ultrasonic generator that can be used during the haze pollution. Six types of household air purifiers were fabricated. The amount of particulate matter (PM) and carbon dioxide (CO2) levels were recorded at 0, 10, 20, 30, and 60 min (min), then, repeated 3 times. After 10 min of the 3rd experiment of each study, the last measurement of air pollution would be recorded. The results showed at 60 min, the high-efficiency particulate air (HEPA) filter and electrostatic fiber was the best technique regarding reduction of PM and CO2 levels. The highest PM reduction rate had occurred at 30 min using an air pump procedure (99.330 to 100%). The CO2 levels of all experiments had fluctuated at different times. After 10 min of a closed machine, PM levels of all air purifier systems were decreased, except HEPA filter and electrostatic fiber types. In conclusion, the best method for reducing particulate matter and cost without taking humidity into account is an air pump technique, whereas the HEPA filter and electrostatic fiber method is the best choice for lowering PM levels without increasing humidity and vapor production.
Collapse
Affiliation(s)
- Arnon Jumlongkul
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
176
|
Bueno de Mesquita PJ, Delp WW, Chan WR, Bahnfleth WP, Singer BC. Control of airborne infectious disease in buildings: Evidence and research priorities. INDOOR AIR 2022; 32:e12965. [PMID: 34816493 DOI: 10.1111/ina.12965] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
The evolution of SARS-CoV-2 virus has resulted in variants likely to be more readily transmitted through respiratory aerosols, underscoring the increased potential for indoor environmental controls to mitigate risk. Use of tight-fitting face masks to trap infectious aerosol in exhaled breath and reduce inhalation exposure to contaminated air is of critical importance for disease control. Administrative controls including the regulation of occupancy and interpersonal spacing are also important, while presenting social and economic challenges. Indoor engineering controls including ventilation, exhaust, air flow control, filtration, and disinfection by germicidal ultraviolet irradiation can reduce reliance on stringent occupancy restrictions. However, the effects of controls-individually and in combination-on reducing infectious aerosol transfer indoors remain to be clearly characterized to the extent needed to support widespread implementation by building operators. We review aerobiologic and epidemiologic evidence of indoor environmental controls against transmission and present a quantitative aerosol transfer scenario illustrating relative differences in exposure at close-interactive, room, and building scales. We identify an overarching need for investment to implement building controls and evaluate their effectiveness on infection in well-characterized and real-world settings, supported by specific, methodological advances. Improved understanding of engineering control effectiveness guides implementation at scale while considering occupant comfort, operational challenges, and energy costs.
Collapse
Affiliation(s)
| | - William W Delp
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Wanyu R Chan
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - William P Bahnfleth
- Department of Architectural Engineering, Pennsylvania State University, State College, Pennsylvania, USA
| | - Brett C Singer
- Indoor Environment Group, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
177
|
Hirschwald LT, Herrmann S, Felder D, Kalde AM, Stockmeier F, Wypysek D, Alders M, Tepper M, Rubner J, Brand P, Kraus T, Wessling M, Linkhorst J. Discrepancy of particle passage in 101 mask batches during the first year of the Covid-19 pandemic in Germany. Sci Rep 2021; 11:24490. [PMID: 34966168 PMCID: PMC8716525 DOI: 10.1038/s41598-021-03862-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/19/2021] [Indexed: 11/09/2022] Open
Abstract
During the first wave of Covid-19 infections in Germany in April 2020, clinics reported a shortage of filtering face masks with aerosol retention> 94% (FFP2 & 3, KN95, N95). Companies all over the world increased their production capacities, but quality control of once-certified materials and masks came up short. To help identify falsely labeled masks and ensure safe protection equipment, we tested 101 different batches of masks in 993 measurements with a self-made setup based on DIN standards. An aerosol generator provided a NaCl test aerosol which was applied to the mask. A laser aerosol spectrometer measured the aerosol concentration in a range from 90 to 500 nm to quantify the masks' retention. Of 101 tested mask batches, only 31 batches kept what their label promised. Especially in the initial phase of the pandemic in Germany, we observed fluctuating mask qualities. Many batches show very high variability in aerosol retention. In addition, by measuring with a laser aerosol spectrometer, we were able to show that not all masks filter small and large particles equally well. In this study we demonstrate how important internal and independent quality controls are, especially in times of need and shortage of personal protection equipment.
Collapse
Affiliation(s)
- Lukas T Hirschwald
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Stefan Herrmann
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Daniel Felder
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Anna M Kalde
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Felix Stockmeier
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Denis Wypysek
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Michael Alders
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Maik Tepper
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Jens Rubner
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany
| | - Peter Brand
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelstr. 30, 52074, Aachen, Germany
| | - Thomas Kraus
- Institute for Occupational, Social and Environmental Medicine, RWTH Aachen University Hospital, Pauwelstr. 30, 52074, Aachen, Germany
| | - Matthias Wessling
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.,DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - John Linkhorst
- AVT.CVT - Chair of Chemical Process Engineering, RWTH Aachen University, Forckenbeckstraße. 51, 52074, Aachen, Germany.
| |
Collapse
|
178
|
Preparing for future waves and pandemics: a global hospital survey on infection control measures and infection rates in COVID-19. Antimicrob Resist Infect Control 2021; 10:170. [PMID: 34930466 PMCID: PMC8685805 DOI: 10.1186/s13756-021-01029-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/24/2021] [Indexed: 11/11/2022] Open
Abstract
A survey of hospitals on three continents was performed to assess their infection control preparedness and measures,
and their infection rate in hospital health care workers during the COVID-19 pandemic. All surveyed hospitals used similar PPE but differences in preparedness, PPE shortages, and infection rates were reported.
Collapse
|
179
|
Coyle JP, Derk RC, Lindsley WG, Blachere FM, Boots T, Lemons AR, Martin SB, Mead KR, Fotta SA, Reynolds JS, McKinney WG, Sinsel EW, Beezhold DH, Noti JD. Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room. Viruses 2021; 13:2536. [PMID: 34960804 PMCID: PMC8707272 DOI: 10.3390/v13122536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.
Collapse
Affiliation(s)
- Jayme P. Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Raymond C. Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - William G. Lindsley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Francoise M. Blachere
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Stephen B. Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Kenneth R. Mead
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA;
| | - Steven A. Fotta
- Facilities Management Office, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Jeffrey S. Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Walter G. McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Erik W. Sinsel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Donald H. Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - John D. Noti
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| |
Collapse
|
180
|
Fennelly KP, Martinez L, Mandalakas AM. Tuberculosis: First in Flight. Am J Respir Crit Care Med 2021; 205:272-274. [PMID: 34905703 PMCID: PMC8886999 DOI: 10.1164/rccm.202111-2513ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Kevin P Fennelly
- National Institutes of Health, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, Maryland, United States;
| | - Leonardo Martinez
- Boston University, 1846, Department of Epidemiology, School of Public Health, Boston, Massachusetts, United States
| | - Anna Maria Mandalakas
- Baylor College of Medicine and Texas Children's Hospital, Global TB Program, Department of Pediatrics, Houston, Texas, United States
| |
Collapse
|
181
|
Hasegawa G, Sakai W, Chaki T, Tachibana S, Kokita A, Kato T, Nishimura H, Yamakage M. Investigations into the efficacy of a novel extubation-aerosol shield: a cough model study. Infect Prev Pract 2021; 4:100193. [PMID: 34901825 PMCID: PMC8642834 DOI: 10.1016/j.infpip.2021.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/30/2021] [Indexed: 01/25/2023] Open
Abstract
Background Physicians have had to perform numerous extubation procedures during the prolonged coronavirus disease 2019 (COVID 19) pandemic. Future pandemics caused by unknown pathogen may also present a risk of exposure to infectious droplets and aerosols. Aim This study evaluated the ability of a newly developed aerosol barrier, “Extubation-Aerosol (EA)-Shield” to provide maximum protection from aerosol exposure during extubation via an aerosolised particle count and high-quality visualisation assessments. Methods We employed a cough model having parameters similar to humans and used micron oil aerosol as well as titanium dioxide as aerosol tracers. Aerosol barrier techniques employing a face mask (group M) and EA-Shield (group H) were compared. Findings The primary outcome was the difference in the number of particles contacting the physician's face before and after extubation. The maximum distances of aerosol dispersal after extubation were measured as the secondary outcomes. All aerosolised particles of the two tracers were significantly smaller in group H than in group M (p < 0.05). In addition, the sagittal and axial maximum distances and sagittal areas of aerosol dispersal for 3, 5, and 10 s after extubation were significantly smaller in group H than in group M (p < 0.05). Conclusion This model indicates that EA-Shield could be highly effective in reducing aerosol exposure during extubation. Therefore, we recommend using it as an aerosol barrier when an infectious aerosol risk is suspected.
Collapse
Affiliation(s)
- Gen Hasegawa
- Department of Anaesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Sakai
- Department of Anaesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohiro Chaki
- Department of Anaesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shunsuke Tachibana
- Department of Anaesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kokita
- Department of Anaesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | - Hidekazu Nishimura
- Virus Research Centre, Clinical Research Division, Sendai Medical Centre, Sendai, Japan
| | - Michiaki Yamakage
- Department of Anaesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
182
|
Abstract
Since the outbreak in late December 2019, the coronavirus disease 2019 (COVID-19) pandemic has spread across the globe, causing great damage to human life and property. A lot of researchers around the world have devoted themselves to the study of its origin, pathogenic mechanism, and transmission route, and this article gives a summary. First, both humans and animals can act as the host of coronavirus. In indoor environments, the virus may exist in aerosols, droplets, saliva, etc., from the nose and mouth connected to the respiratory system, as well as feces, urine, etc., from the digestive and urinary systems. In addition, other substances, such as breast milk, eye feces, and blood, released from the host can carry viruses. The virus transmitted indoors is affected by indoor machinery, natural forces, and human activities, and spreads in different distances. Second, the virus spreads outdoors through three kinds of media: solid, liquid, and gas, and is affected by their survival time, the temperature, and humidity in the environment.
Collapse
|
183
|
Burkert FR, Lanser L, Bellmann-Weiler R, Weiss G. Coronavirus Disease 2019: Clinics, Treatment, and Prevention. Front Microbiol 2021; 12:761887. [PMID: 34858373 PMCID: PMC8631905 DOI: 10.3389/fmicb.2021.761887] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by a novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), emerged at the end of 2019 in China and affected the entire world population, either by infection and its health consequences, or by restrictions in daily life as a consequence of hygiene measures and containment strategies. As of September 2021, more than 231,000.000 infections and 4,740.000 deaths due to COVID-19 have been reported. The infections present with varied clinical symptoms and severity, ranging from asymptomatic course to fatal outcome. Several risk factors for a severe course of the disease have been identified, the most important being age, gender, comorbidities, lifestyle, and genetics. While most patients recover within several weeks, some report persistent symptoms restricting their daily lives and activities, termed as post-COVID. Over the past 18months, we have acquired significant knowledge as reflected by an almost uncountable number of publications on the nature of the underlying virus and its evolution, host responses to infection, modes of transmission, and different clinical presentations of the disease. Along this line, new diagnostic tests and algorithms have been developed paralleled by the search for and clinical evaluation of specific treatments for the different stages of the disease. In addition, preventive non-pharmacological measures have been implemented to control the spread of infection in the community. While an effective antiviral therapy is not yet available, numerous vaccines including novel vaccine technologies have been developed, which show high protection from infection and specifically from a severe course or death from COVID-19. In this review, we tried to provide an up-to-date schematic of COVID-19, including aspects of epidemiology, virology, clinical presentation, diagnostics, therapy, and prevention.
Collapse
Affiliation(s)
- Francesco Robert Burkert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Lukas Lanser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
184
|
Zheng K, Ortner P, Lim YW, Zhi TJ. Ventilation in worker dormitories and its impact on the spread of respiratory droplets. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103327. [PMID: 34545319 PMCID: PMC8443870 DOI: 10.1016/j.scs.2021.103327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 05/29/2023]
Abstract
Most of the COVID-19 cases in Singapore have primarily come from foreign worker dormitories. This people group is especially vulnerable partly because of behavioural habits, but the built environment they live in also plays a significant role. These dormitories are typically densely populated, so the living conditions are cramped. The short lease given to most dormitories also means the design does not typically focus on environmental performance, like good natural ventilation. This paper seeks to understand how these dormitories' design affects natural ventilation and, subsequently, the spread of the COVID-19 particles by looking at two existing worker dorms in Singapore. Findings show that some rooms are poorly orientated against the prevailing wind directions, so there is dominant stagnant air in these rooms, leading to respiratory droplets' long residence times. These particles can hover in the air for 10 min and more. Interventions like increased bed distance and removing upper deck beds only showed limited ventilation improvements in some rooms. Comparatively, internal wind scoops' strategic placement was more effective at directing wind towards more stagnant zones. Large canyon aspect ratios were also effective at removing particles from higher elevations.
Collapse
Affiliation(s)
- Kai Zheng
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Peter Ortner
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Yu Wen Lim
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| | - Tay Jing Zhi
- Architecture and Sustainable Design, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
| |
Collapse
|
185
|
Jarvis MC. Drying of virus-containing particles: modelling effects of droplet origin and composition. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1987-1996. [PMID: 34754455 PMCID: PMC8569499 DOI: 10.1007/s40201-021-00750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/17/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND AND PURPOSE Virus-containing aerosol droplets emitted by breathing, speech or coughing dry rapidly to equilibrium with ambient relative humidity (RH), increasing in solute concentration with effects on virus survival and decreasing in diameter with effects on sedimentation and respiratory uptake. The aim of this paper is to model the effect of ionic and macromolecular solutes on droplet drying and solute concentration. METHODS Deliquescence-efflorescence concepts and Kohler theory were used to simulate the evolution of solute concentrations and water activity in respiratory droplets, starting from efflorescence data on mixed NaCl/KCl aerosols and osmotic pressure data on respiratory macromolecules. RESULTS In NaCl/KCl solutions total salt concentrations were shown to reach 10-13 M at the efflorescence RH of 40-55%, depending on the K:Na ratio. Dependence on K:Na ratio implies that the evaporation curves differ between aerosols derived from saliva and from airway surfaces. The direct effect of liquid droplet size through the Kelvin term was shown to be smaller and restricted to the evolution of breath emissions. Modelling the effect of proteins and glycoproteins showed that salts determine drying equilibria down to the efflorescence RH, and macromolecules at lower RH. CONCLUSION Differences in solute composition between airway surfaces and saliva are predicted to lead to different drying behaviour of droplets emitted by breathing, speech and coughing. These differences may influence the inactivation of viruses.
Collapse
Affiliation(s)
- Michael C. Jarvis
- School of Chemistry, Glasgow University, Glasgow, Scotland G12 8QQ UK
| |
Collapse
|
186
|
Donnat C, Bunbury F, Kreindler J, Liu D, Filippidis FT, Esko T, El-Osta A, Harris M. Predicting COVID-19 Transmission to Inform the Management of Mass Events: Model-Based Approach. JMIR Public Health Surveill 2021; 7:e30648. [PMID: 34583317 PMCID: PMC8638785 DOI: 10.2196/30648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Modelling COVID-19 transmission at live events and public gatherings is essential to controlling the probability of subsequent outbreaks and communicating to participants their personalized risk. Yet, despite the fast-growing body of literature on COVID-19 transmission dynamics, current risk models either neglect contextual information including vaccination rates or disease prevalence or do not attempt to quantitatively model transmission. OBJECTIVE This paper attempted to bridge this gap by providing informative risk metrics for live public events, along with a measure of their uncertainty. METHODS Building upon existing models, our approach ties together 3 main components: (1) reliable modelling of the number of infectious cases at the time of the event, (2) evaluation of the efficiency of pre-event screening, and (3) modelling of the event's transmission dynamics and their uncertainty using Monte Carlo simulations. RESULTS We illustrated the application of our pipeline for a concert at the Royal Albert Hall and highlighted the risk's dependency on factors such as prevalence, mask wearing, and event duration. We demonstrate how this event held on 3 different dates (August 20, 2020; January 20, 2021; and March 20, 2021) would likely lead to transmission events that are similar to community transmission rates (0.06 vs 0.07, 2.38 vs 2.39, and 0.67 vs 0.60, respectively). However, differences between event and background transmissions substantially widened in the upper tails of the distribution of the number of infections (as denoted by their respective 99th quantiles: 1 vs 1, 19 vs 8, and 6 vs 3, respectively, for our 3 dates), further demonstrating that sole reliance on vaccination and antigen testing to gain entry would likely significantly underestimate the tail risk of the event. CONCLUSIONS Despite the unknowns surrounding COVID-19 transmission, our estimation pipeline opens the discussion on contextualized risk assessment by combining the best tools at hand to assess the order of magnitude of the risk. Our model can be applied to any future event and is presented in a user-friendly RShiny interface. Finally, we discussed our model's limitations as well as avenues for model evaluation and improvement.
Collapse
Affiliation(s)
- Claire Donnat
- Department of Statistics, University of Chicago, Chicago, IL, United States
| | - Freddy Bunbury
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, United States
| | - Jack Kreindler
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - David Liu
- Department of Statistics, University of Chicago, Chicago, IL, United States
| | - Filippos T Filippidis
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Tonu Esko
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Austen El-Osta
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Matthew Harris
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| |
Collapse
|
187
|
Klompas M, Milton DK, Rhee C, Baker MA, Leekha S. Current Insights Into Respiratory Virus Transmission and Potential Implications for Infection Control Programs : A Narrative Review. Ann Intern Med 2021; 174:1710-1718. [PMID: 34748374 DOI: 10.7326/m21-2780] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Policies to prevent respiratory virus transmission in health care settings have traditionally divided organisms into Droplet versus Airborne categories. Droplet organisms (for example, influenza) are said to be transmitted via large respiratory secretions that rapidly fall to the ground within 1 to 2 meters and are adequately blocked by surgical masks. Airborne pathogens (for example, measles), by contrast, are transmitted by aerosols that are small enough and light enough to carry beyond 2 meters and to penetrate the gaps between masks and faces; health care workers are advised to wear N95 respirators and to place these patients in negative-pressure rooms. Respirators and negative-pressure rooms are also recommended when caring for patients with influenza or SARS-CoV-2 who are undergoing "aerosol-generating procedures," such as intubation. An increasing body of evidence, however, questions this framework. People routinely emit respiratory particles in a range of sizes, but most are aerosols, and most procedures do not generate meaningfully more aerosols than ordinary breathing, and far fewer than coughing, exercise, or labored breathing. Most transmission nonetheless occurs at close range because virus-laden aerosols are most concentrated at the source; they then diffuse and dilute with distance, making long-distance transmission rare in well-ventilated spaces. The primary risk factors for nosocomial transmission are community incidence rates, viral load, symptoms, proximity, duration of exposure, and poor ventilation. Failure to appreciate these factors may lead to underappreciation of some risks (for example, overestimation of the protection provided by medical masks, insufficient attention to ventilation) or misallocation of limited resources (for example, reserving N95 respirators and negative-pressure rooms only for aerosol-generating procedures or requiring negative-pressure rooms for all patients with SARS-CoV-2 infection regardless of stage of illness). Enhanced understanding of the factors governing respiratory pathogen transmission may inform the development of more effective policies to prevent nosocomial transmission of respiratory pathogens.
Collapse
Affiliation(s)
- Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (M.K., C.R., M.A.B.)
| | - Donald K Milton
- Maryland Institute for Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland (D.K.M.)
| | - Chanu Rhee
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (M.K., C.R., M.A.B.)
| | - Meghan A Baker
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts (M.K., C.R., M.A.B.)
| | - Surbhi Leekha
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (S.L.)
| |
Collapse
|
188
|
Garcia W, Mendez S, Fray B, Nicolas A. Model-based assessment of the risks of viral transmission in non-confined crowds. SAFETY SCIENCE 2021; 144:105453. [PMID: 34511728 PMCID: PMC8418781 DOI: 10.1016/j.ssci.2021.105453] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/10/2021] [Accepted: 08/16/2021] [Indexed: 05/06/2023]
Abstract
This work assesses the risks of Covid-19 spread in diverse daily-life situations involving crowds of maskless pedestrians, mostly outdoors. More concretely, we develop a method to infer the global number of new infections from patchy observations, by coupling ad hoc spatial models for disease transmission via respiratory droplets to detailed field-data about pedestrian trajectories and head orientations. This allows us to rank the investigated situations by the infection risks that they present; importantly, the obtained hierarchy of risks is very largely conserved across transmission models: Street cafés present the largest average rate of new infections caused by an attendant, followed by busy outdoor markets, and then metro and train stations, whereas the risks incurred while walking on fairly busy streets are comparatively quite low. While our models only approximate the actual transmission risks, their converging predictions lend credence to these findings. In situations with a moving crowd, density is the main factor influencing the estimated infection rate. Finally, our study explores the efficiency of street and venue redesigns in mitigating the viral spread: While the benefits of enforcing one-way foot traffic in (wide) walkways are unclear, changing the geometry of queues substantially affects disease transmission risks.
Collapse
Affiliation(s)
- Willy Garcia
- Institut Lumière Matière, CNRS & Université Claude Bernard Lyon 1, Villeurbanne, F-69622, France
| | - Simon Mendez
- Institut Montpelliérain Alexander Grothendieck, CNRS, University of Montpellier, Montpellier, F-34095, France
| | - Baptiste Fray
- Institut Lumière Matière, CNRS & Université Claude Bernard Lyon 1, Villeurbanne, F-69622, France
- École nationale des travaux publics de l'État (ENTPE), Université de Lyon, Vaulx-en-Velin, F-69518, France
| | - Alexandre Nicolas
- Institut Lumière Matière, CNRS & Université Claude Bernard Lyon 1, Villeurbanne, F-69622, France
| |
Collapse
|
189
|
Freeman AL, Parker S, Noakes C, Fitzgerald S, Smyth A, Macbeth R, Spiegelhalter D, Rutter H. Expert elicitation on the relative importance of possible SARS-CoV-2 transmission routes and the effectiveness of mitigations. BMJ Open 2021; 11:e050869. [PMID: 34853105 PMCID: PMC8637346 DOI: 10.1136/bmjopen-2021-050869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVES To help people make decisions about the most effective mitigation measures against SARS-CoV-2 transmission in different scenarios, the likelihoods of transmission by different routes need to be quantified to some degree (however uncertain). These likelihoods need to be communicated in an appropriate way to illustrate the relative importance of different routes in different scenarios, the likely effectiveness of different mitigation measures along those routes, and the level of uncertainty in those estimates. In this study, a pragmatic expert elicitation was undertaken to supply the underlying quantitative values to produce such a communication tool. PARTICIPANTS Twenty-seven individual experts from five countries and many scientific disciplines provided estimates. OUTCOME MEASURES Estimates of transmission parameters, assessments of the quality of the evidence, references to relevant literature, rationales for their estimates and sources of uncertainty. RESULTS AND CONCLUSION The participants' responses showed that there is still considerable disagreement among experts about the relative importance of different transmission pathways and the effectiveness of different mitigation measures due to a lack of empirical evidence. Despite these disagreements, when pooled, the majority views on each parameter formed an internally consistent set of estimates (for example, that transmission was more likely indoors than outdoors, and at closer range), which formed the basis of a visualisation to help individuals and organisations understand the factors that influence transmission and the potential benefits of different mitigation measures.
Collapse
Affiliation(s)
- Alexandra Lj Freeman
- Winton Centre for Risk & Evidence Communication, University of Cambridge, Cambridge, UK
| | - Simon Parker
- Defence Science and Technology Laboratory, Salisbury, UK
| | | | - Shaun Fitzgerald
- Centre for Climate Repair at Cambridge, University of Cambridge, Cambridge, UK
| | | | | | - David Spiegelhalter
- Winton Centre for Risk & Evidence Communication, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
190
|
Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021; 17:e1010106. [PMID: 34969061 PMCID: PMC8718010 DOI: 10.1371/journal.ppat.1010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.
Collapse
Affiliation(s)
- Olivier Terrier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mustapha Si-Tahar
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Inserm U1100, Research Center for Respiratory Diseases (CEPR), Université de Tours, Tours, France
| | - Mariette Ducatez
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- IHAP, UMR1225, Université de Toulouse, ENVT, INRAE, Toulouse, France
| | - Christophe Chevalier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Andrés Pizzorno
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Ronan Le Goffic
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Thibaut Crépin
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gaëlle Simon
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Nadia Naffakh
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
191
|
Elastomeric Respirators for COVID-19 and the Next Respiratory Virus Pandemic: Essential Design Elements. Anesthesiology 2021; 135:951-962. [PMID: 34666348 DOI: 10.1097/aln.0000000000004005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Respiratory viruses are transmitted via respiratory particles that are emitted when people breath, speak, cough, or sneeze. These particles span the size spectrum from visible droplets to airborne particles of hundreds of nanometers. Barrier face coverings ("cloth masks") and surgical masks are loose-fitting and provide limited protection from airborne particles since air passes around the edges of the mask as well as through the filtering material. Respirators, which fit tightly to the face, provide more effective respiratory protection. Although healthcare workers have relied primarily on disposable filtering facepiece respirators (such as N95) during the COVID-19 pandemic, reusable elastomeric respirators have significant potential advantages for the COVID-19 and future respiratory virus pandemics. However, currently available elastomeric respirators were not designed primarily for healthcare or pandemic use and require further development to improve their suitability for this application. The authors believe that the development, implementation, and stockpiling of improved elastomeric respirators should be an international public health priority.
Collapse
|
192
|
Hydroxypropyl Methylcellulose-Based Nasal Sprays Effectively Inhibit In Vitro SARS-CoV-2 Infection and Spread. Viruses 2021; 13:v13122345. [PMID: 34960612 PMCID: PMC8705245 DOI: 10.3390/v13122345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
The ongoing coronavirus disease (COVID-19) pandemic has required a variety of non-medical interventions to limit the transmission of the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). One such option is over-the-counter nasal sprays that aim to block virus entry and transmission within the nasal cavity. In this study, we assessed the ability of three hydroxypropyl methylcellulose (HPMC)-based powder nasal sprays, produced by Nasaleze, to inhibit SARS-CoV-2 infection and release in vitro. Upon application, the HPMC powder forms a gel-like matrix within the nasal cavity—a process we recapitulated in cell culture. We found that virus release from cells previously infected with SARS-CoV-2 was inhibited by the gel matrix product in a dose-dependent manner, with virus levels reduced by >99.99% over a 72 h period at a dose of 6.4 mg/3.5 cm2. We also show that the pre-treatment of cells with product inhibited SARS-CoV-2 infection, independent of the virus variant. The primary mechanism of action appears to be via the formation of a physical, passive barrier. However, the addition of wild garlic provided additional direct antiviral properties in some formulations. We conclude that HPMC-based nasal sprays may offer an additional component to strategies to limit the spread of respiratory viruses, including SARS-CoV-2.
Collapse
|
193
|
Eames I, D'Aiuto F, Shahreza S, Javanmardi Y, Balachandran R, Hyde M, Ng YL, Gulabivala K, Watson S, Davies H, Szita N, Khajeh J, Suvan J, Moeendarbary E. Removal and dispersal of biofluid films by powered medical devices: Modeling infectious agent spreading in dentistry. iScience 2021; 24:103344. [PMID: 34825134 PMCID: PMC8603215 DOI: 10.1016/j.isci.2021.103344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Medical procedures can disperse infectious agents and spread disease. Particularly, dental procedures may pose a high risk of disease transmission as they use high-powered instruments operating within the oral cavity that may contain infectious microbiota or viruses. Here we assess the ability of powered dental devices in removing the biofluid films and identified mechanical, hydrodynamic, and aerodynamic forces as the main underlying mechanisms of removal and dispersal processes. Our results indicate that potentially infectious agents can be removed and dispersed immediately after dental instrument engagement with the adherent biofluid film, while the degree of their dispersal is rapidly depleted owing to the removal of the source and dilution by the coolant water. We found that droplets created by high-speed drill interactions typically travel ballistically, while aerosol-laden air tends to flow as a current over surfaces. Our mechanistic investigation offers plausible routes for reducing the spread of infection during invasive medical procedures. Mechanical, hydrodynamic, and aerodynamic forces drive removal/dispersal processes The air-rotor has the highest ability to remove and disperse infectious agents The aerosol cloud flows as a current and continuously settles Manipulating rheological properties of the fluids can suppress aerosol generation
Collapse
Affiliation(s)
- Ian Eames
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Francesco D'Aiuto
- Unit of Periodontology, UCL Eastman Dental Institute, University College London, London, WC1X 8LT, UK
| | - Somayeh Shahreza
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Yousef Javanmardi
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | - Martin Hyde
- TSI, 30 Millbank, Westminster, London, SW1P 4WP, UK
| | - Yuan-Ling Ng
- Unit of Endodontology, UCL Eastman Dental Institute, University College London, London, WC1X 8LT, UK
| | - Kishor Gulabivala
- Unit of Endodontology, UCL Eastman Dental Institute, University College London, London, WC1X 8LT, UK
| | - Sara Watson
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Hywel Davies
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Nicolas Szita
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Janette Khajeh
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jeanie Suvan
- Unit of Periodontology, UCL Eastman Dental Institute, University College London, London, WC1X 8LT, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge 02139, MA, USA
| |
Collapse
|
194
|
Marr LC, Tang JW. A Paradigm Shift to Align Transmission Routes With Mechanisms. Clin Infect Dis 2021; 73:1747-1749. [PMID: 34415335 DOI: 10.1093/cid/ciab722] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 11/14/2022] Open
Abstract
Current infection-control guidelines subscribe to a contact/droplet/airborne paradigm that is based on outdated understanding. Here, we propose to modify and align existing guidelines with a more accurate description of the different transmission routes. This will improve the effectiveness of control measures as more transmissible variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerge.
Collapse
Affiliation(s)
- Linsey C Marr
- Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
195
|
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, Russo J, Oliveira S, Morris C, Bogetti A, Trifan A, Brace A, Sztain T, Clyde A, Ma H, Chennubhotla C, Lee H, Turilli M, Khalid S, Tamayo-Mendoza T, Welborn M, Christensen A, Smith DGA, Qiao Z, Sirumalla SK, O'Connor M, Manby F, Anandkumar A, Hardy D, Phillips J, Stern A, Romero J, Clark D, Dorrell M, Maiden T, Huang L, McCalpin J, Woods C, Gray A, Williams M, Barker B, Rajapaksha H, Pitts R, Gibbs T, Stone J, Zuckerman D, Mulholland A, Miller T, Jha S, Ramanathan A, Chong L, Amaro R. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy of Delta SARS-CoV-2 in a Respiratory Aerosol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.12.468428. [PMID: 34816263 PMCID: PMC8609898 DOI: 10.1101/2021.11.12.468428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM REFERENCE FORMAT Abigail Dommer 1† , Lorenzo Casalino 1† , Fiona Kearns 1† , Mia Rosenfeld 1 , Nicholas Wauer 1 , Surl-Hee Ahn 1 , John Russo, 2 Sofia Oliveira 3 , Clare Morris 1 , AnthonyBogetti 4 , AndaTrifan 5,6 , Alexander Brace 5,7 , TerraSztain 1,8 , Austin Clyde 5,7 , Heng Ma 5 , Chakra Chennubhotla 4 , Hyungro Lee 9 , Matteo Turilli 9 , Syma Khalid 10 , Teresa Tamayo-Mendoza 11 , Matthew Welborn 11 , Anders Christensen 11 , Daniel G. A. Smith 11 , Zhuoran Qiao 12 , Sai Krishna Sirumalla 11 , Michael O'Connor 11 , Frederick Manby 11 , Anima Anandkumar 12,13 , David Hardy 6 , James Phillips 6 , Abraham Stern 13 , Josh Romero 13 , David Clark 13 , Mitchell Dorrell 14 , Tom Maiden 14 , Lei Huang 15 , John McCalpin 15 , Christo- pherWoods 3 , Alan Gray 13 , MattWilliams 3 , Bryan Barker 16 , HarindaRajapaksha 16 , Richard Pitts 16 , Tom Gibbs 13 , John Stone 6 , Daniel Zuckerman 2 *, Adrian Mulholland 3 *, Thomas MillerIII 11,12 *, ShantenuJha 9 *, Arvind Ramanathan 5 *, Lillian Chong 4 *, Rommie Amaro 1 *. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing '21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis . ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anda Trifan
- Argonne National Laboratory
- University of Illinois at Urbana-Champaign
| | | | | | - Austin Clyde
- Argonne National Laboratory
- University of Chicago
| | | | | | - Hyungro Lee
- Brookhaven National Lab & Rutgers University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Stone
- University of Illinois at Urbana-Champaign
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Ren X, Weisel CP, Georgopoulos PG. Modeling Effects of Spatial Heterogeneities and Layered Exposure Interventions on the Spread of COVID-19 across New Jersey. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11950. [PMID: 34831706 PMCID: PMC8618648 DOI: 10.3390/ijerph182211950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
COVID-19 created an unprecedented global public health crisis during 2020-2021. The severity of the fast-spreading infection, combined with uncertainties regarding the physical and biological processes affecting transmission of SARS-CoV-2, posed enormous challenges to healthcare systems. Pandemic dynamics exhibited complex spatial heterogeneities across multiple scales, as local demographic, socioeconomic, behavioral and environmental factors were modulating population exposures and susceptibilities. Before effective pharmacological interventions became available, controlling exposures to SARS-CoV-2 was the only public health option for mitigating the disease; therefore, models quantifying the impacts of heterogeneities and alternative exposure interventions on COVID-19 outcomes became essential tools informing policy development. This study used a stochastic SEIR framework, modeling each of the 21 New Jersey counties, to capture important heterogeneities of COVID-19 outcomes across the State. The models were calibrated using confirmed daily deaths and SQMC optimization and subsequently applied in predictive and exploratory modes. The predictions achieved good agreement between modeled and reported death data; counterfactual analysis was performed to assess the effectiveness of layered interventions on reducing exposures to SARS-CoV-2 and thereby fatality of COVID-19. The modeling analysis of the reduction in exposures to SARS-CoV-2 achieved through concurrent social distancing and face-mask wearing estimated that 357 [IQR (290, 429)] deaths per 100,000 people were averted.
Collapse
Affiliation(s)
- Xiang Ren
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; (X.R.); (C.P.W.)
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
| | - Clifford P. Weisel
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; (X.R.); (C.P.W.)
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Piscataway, NJ 08854, USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Panos G. Georgopoulos
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA; (X.R.); (C.P.W.)
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08854, USA
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Piscataway, NJ 08854, USA
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
197
|
Cortellessa G, Stabile L, Arpino F, Faleiros DE, van den Bos W, Morawska L, Buonanno G. Close proximity risk assessment for SARS-CoV-2 infection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148749. [PMID: 34225157 PMCID: PMC8242194 DOI: 10.1016/j.scitotenv.2021.148749] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 05/04/2023]
Abstract
Although the interpersonal distance represents an important parameter affecting the risk of infection due to respiratory viruses, the mechanism of exposure to exhaled droplets remains insufficiently characterized. In this study, an integrated risk assessment is presented for SARS-CoV-2 close proximity exposure between a speaking infectious subject and a susceptible subject. It is based on a three-dimensional transient numerical model for the description of exhaled droplet spread once emitted by a speaking person, coupled with a recently proposed SARS-CoV-2 emission approach. Particle image velocimetry measurements were conducted to validate the numerical model. The contribution of the large droplets to the risk is barely noticeable only for distances well below 0.6 m, whereas it drops to zero for greater distances where it depends only on airborne droplets. In particular, for short exposures (10 s) a minimum safety distance of 0.75 m should be maintained to lower the risk below 0.1%; for exposures of 1 and 15 min this distance increases to about 1.1 and 1.5 m, respectively. Based on the interpersonal distances across countries reported as a function of interacting individuals, cultural differences, and environmental and sociopsychological factors, the approach presented here revealed that, in addition to intimate and personal distances, particular attention must be paid to exposures longer than 1 min within social distances (of about 1 m).
Collapse
Affiliation(s)
- G Cortellessa
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - L Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - F Arpino
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - D E Faleiros
- Maritime and Transport Technology, TU Delft, Netherlands
| | - W van den Bos
- Maritime and Transport Technology, TU Delft, Netherlands
| | - L Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia.
| |
Collapse
|
198
|
Development of a Hamster Natural Transmission Model of SARS-CoV-2 Infection. Viruses 2021; 13:v13112251. [PMID: 34835057 PMCID: PMC8625437 DOI: 10.3390/v13112251] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022] Open
Abstract
The global pandemic of coronavirus disease (COVID-19) caused by infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led to an international thrust to study pathogenesis and evaluate interventions. Experimental infection of hamsters and the resulting respiratory disease is one of the preferred animal models since clinical signs of disease and virus shedding are similar to more severe cases of human COVID-19. The main route of challenge has been direct inoculation of the virus via the intranasal route. To resemble the natural infection, we designed a bespoke natural transmission cage system to assess whether recipient animals housed in physically separate adjacent cages could become infected from a challenged donor animal in a central cage, with equal airflow across the two side cages. To optimise viral shedding in the donor animals, a low and moderate challenge dose were compared after direct intranasal challenge, but similar viral shedding responses were observed and no discernible difference in kinetics. The results from our natural transmission set-up demonstrate that most recipient hamsters are infected within the system developed, with variation in the kinetics and levels of disease between individual animals. Common clinical outputs used for the assessment in directly-challenged hamsters, such as weight loss, are less obvious in hamsters who become infected from naturally acquiring the infection. The results demonstrate the utility of a natural transmission model for further work on assessing the differences between virus strains and evaluating interventions using a challenge system which more closely resembles human infection.
Collapse
|
199
|
Corbin JC, Smallwood GJ, Leroux ID, Norooz Oliaee J, Liu F, Sipkens TA, Green RG, Murnaghan NF, Koukoulas T, Lobo P. Systematic experimental comparison of particle filtration efficiency test methods for commercial respirators and face masks. Sci Rep 2021; 11:21979. [PMID: 34753968 PMCID: PMC8578374 DOI: 10.1038/s41598-021-01265-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Respirators, medical masks, and barrier face coverings all filter airborne particles using similar physical principles. However, they are tested for certification using a variety of standardized test methods, creating challenges for the comparison of differently certified products. We have performed systematic experiments to quantify and understand the differences between standardized test methods for N95 respirators (NIOSH TEB-APR-STP-0059 under US 42 CFR 84), medical face masks (ASTM F2299/F2100), and COVID-19-related barrier face coverings (ASTM F3502-21). Our experiments demonstrate the role of face velocity, particle properties (mean size, size variability, electric charge, density, and shape), measurement techniques, and environmental preconditioning. The measured filtration efficiency was most sensitive to changes in face velocity and particle charge. Relative to the NIOSH method, users of the ASTM F2299/F2100 method have commonly used non-neutralized (highly charged) aerosols as well as smaller face velocities, each of which may result in approximately 10% higher measured filtration efficiencies. In the NIOSH method, environmental conditioning at elevated humidity increased filtration efficiency in some commercial samples while decreasing it in others, indicating that measurement should be performed both with and without conditioning. More generally, our results provide an experimental basis for the comparison of respirators certified under various international methods, including FFP2, KN95, P2, Korea 1st Class, and DS2.
Collapse
Affiliation(s)
- Joel C Corbin
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
| | - Greg J Smallwood
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Ian D Leroux
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Jalal Norooz Oliaee
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Fengshan Liu
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Timothy A Sipkens
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Richard G Green
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Nathan F Murnaghan
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | | | - Prem Lobo
- Metrology Research Centre, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| |
Collapse
|
200
|
Hetherington R, Toufique Hasan ABM, Khan A, Roy D, Salehin M, Wadud Z. Exposure risk analysis of COVID-19 for a ride-sharing motorbike taxi. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:113319. [PMID: 35002199 PMCID: PMC8726634 DOI: 10.1063/5.0069454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 05/31/2023]
Abstract
A dominant mode of transmission for the respiratory disease COVID-19 is via airborne virus-carrying aerosols. As national lockdowns are lifted and people begin to travel once again, an assessment of the risk associated with different forms of public transportation is required. This paper assesses the risk of transmission in the context of a ride-sharing motorbike taxi-a popular choice of paratransit in South and South-East Asia and Sub-Saharan Africa. Fluid dynamics plays a significant role in understanding the fate of droplets ejected from a susceptible individual during a respiratory event, such as coughing. Numerical simulations are employed here using an Eulerian-Lagrangian approach for particles and the Reynolds-averaged Navier-Stokes method for the background air flow. The driver is assumed to be exhaling virus laden droplets, which are transported toward the passenger by the background flow. A single cough is simulated for particle sizes 1, 10, 50 μ m , with motorbike speeds 1 , 5 , 15 m / s . It has been shown that small and large particles pose different types of risk. Depending on the motorbike speed, large particles may deposit onto the passenger, while smaller particles travel between the riders and may be inhaled by the passenger. To reduce risk of transmission to the passenger, a shield is placed between the riders. The shield not only acts as a barrier to block particles, but also alters the flow field around the riders, pushing particles away from the passenger. The findings of this paper therefore support the addition of a shield potentially making the journey safer.
Collapse
Affiliation(s)
- R. Hetherington
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - A. B. M. Toufique Hasan
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - A. Khan
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - D. Roy
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - M. Salehin
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh
| | - Z. Wadud
- Institute for Transport Studies and School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|